
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Experiences in porting the SVP concurrency model to the 48-core Intel SCC
using dedicated copy cores

Bakker, R.; van Tol, M.W.

Publication date
2012
Document Version
Author accepted manuscript
Published in
Universitaet Potsdam. Hasso-Plattner-Institut fuer Softwaresystemtechnik. Technische
Berichte

Link to publication

Citation for published version (APA):
Bakker, R., & van Tol, M. W. (2012). Experiences in porting the SVP concurrency model to
the 48-core Intel SCC using dedicated copy cores. Universitaet Potsdam. Hasso-Plattner-
Institut fuer Softwaresystemtechnik. Technische Berichte, 55, 55-60.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/experiences-in-porting-the-svp-concurrency-model-to-the-48core-intel-scc-using-dedicated-copy-cores(6b2ffd25-77e8-4bd2-a4ea-60b0903863ac).html

1

Experiences in porting the SVP concurrency model
to the 48-core Intel SCC using dedicated copy cores

Roy Bakker and Michiel W. van Tol
Informatics Institute, University of Amsterdam

Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Abstract—The Single-chip Cloud Computer (SCC) is a 48-core
experimental processor created by Intel Labs targeting the many-
core research community. It has hardware support for sending
short messages between cores, while large messages have to go
through off-chip shared memory. In this paper we discuss our
implementation of the SVP model of concurrency on this archi-
tecture, and how we deal with its distributed memory design and
communication bottlenecks. We employ our previously developed
copy core technique and show which approaches show scalable
performance against our original implementation.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core concept vehicle created by Intel Labs
as a platform for many-core software research. It provides
an on-chip message passing network, a non cache-coherent
off-chip shared memory and dynamic frequency and voltage
scaling. In this paper we discuss our implementation of SVP
on this platform, a hierarchical concurrent execution model [2].
In future work, we will use this implementation and exploit
its dataflow-style execution to provide us with a handle for
adaptive power management.

The Self-adaptive Virtual Processor, or SVP, is an abstract
concurrent programming and machine model, which evolved
from the earlier work on the Microthread CMP architecture [3]
which implemented SVP in hardware [4]. The model can be
used to express concurrency at many levels of granularity
for multi- or manycore systems, and uses shared memory
semantics with a weak consistency model. As the SCC has
a distributed shared memory architecture without cache co-
herency, this suits the consistency model of SVP very well.
As SVP actions can be trivially translated into messages in
a distributed environment, this maps well onto the message
passing communication infrastructure of the SCC.

Effectively, the SCC is an on-chip distributed system, and
therefore we can already run the available distributed im-
plementation of SVP [5] without any modifications. As this
is based on the coarse grained communication primitives of
TCP/IP sockets, we experimented with different approaches
to more efficiently use the hardware messaging support on the
SCC. However, we have already shown in previous work [6]
that using the on-chip message passing buffers with RCCE [7]
or iRCCE [8] are not sufficient for such an implementation.
In this paper we will employ several of the techniques that we
investigated in our earlier work to efficiently copy memory on
the SCC, for example by using dedicated copy cores.

In this paper we will discuss our experiences with porting
the distributed SVP runtime to the SCC. We assume sufficient
knowledge of the SCC architecture and its memory system
as this is broadly covered by both related work [1], [9] as
well as our previous [6] work. First we will discuss the
SVP model of concurrency and its consistency model in
Section II, and discuss which approaches we considered for
the implementation on the SCC in Section III. In Section IV
we evaluate these different approaches and we conclude with
a discussion and future work in Section V.

II. SVP

SVP is a generic concurrent programming and machine
model which has a separation of concerns between the expres-
sion and management of concurrency. The SVP model defines
a set of actions to express concurrency on groups (families)
of indexed asynchronous activities (threads).

Each thread can execute a create action to start a new con-
current child family of threads, making the model hierarchical,
and later on use the sync action to wait for its termination. The
create action has a set of parameters to control the number
and sequence of created threads, as well as a reference to
the thread function that the threads will execute. This thread
function can have a set of communication channels defined
that are explained later on.

Besides these two basic constructs, there is the kill action
to asynchronously terminate an execution. Programs for SVP
based architectures or run-times are written in a dialect of the
C language which has extensions to explicitly support these
SVP actions and thread definitions.

A. Resources

While SVP code has no notion of what a resource physically
is or how code is scheduled, an abstract resource identifier,
a place, is provided. On a create action a place can be
specified where the new family should be created, binding the
execution onto a certain resource, similar to sending an Active
Message [10]. What this place physically maps to, is left up to
the SVP implementation; for example, on our implementation
on the SCC it will be a single core, but on the Microgrid
CMP [11], it is a group of cores. On other implementations
it could, for example, be a reserved piece of FPGA fabric,
an ASIC, or some time-sliced execution slot on a single- or
multi- processor system.

2

As long as the underlying implementation supports it, mul-
tiple places can be virtualized onto a single physical resource.
Mutual exclusion is supported through places; families dele-
gated to an exclusive place are guaranteed to be sequentialized
so that only one family can be executing on such a place at a
time.

B. Communication and Synchronization

Each family has a set of synchronized communication
channels that link up the threads and the parent context. There
are two types of unidirectional write-once channels; global
and shared of which multiple can be present. These channels
have non-blocking writes and blocking reads. A global channel
allows vertical communication from the parent thread to all
threads in the family. A shared channel allows horizontal
communication, as it daisy-chains through the sequence of
threads in the family, connecting the parent to the first thread
and the last thread back to the parent. These channels are
defined as arguments of a thread function and identify the
data dependencies between the threads.

Due to this restricted definition, and under restricted use
of exclusive places, we can guarantee that the model is
composable and free of communication deadlock [12], and that
there is always a well defined sequential schedule if parallel
execution is infeasible.

C. Memory Consistency

The model assumes a shared memory with a restricted
consistency model. It is seen as asynchronous and therefore it
is not suitable for synchronizations, and no explicit memory
barriers or atomic operations are provided. The consistency
model is described by the following three rules:

• A child family is guaranteed to see the same memory
state as the parent thread saw at the point of create.

• The parent thread is only guaranteed to see the memory
changed by a child after sync on the child has completed.

• A family on an exclusive place is guaranteed to see the
changes to memory by earlier families on that place.

The memory consistency relationship between parent and
child threads is similar to the well-known release consistency
model [13]. The create resembles an acquire, and sync re-
sembles the release. We should note that the third rule is
a very important property as it can be used to implement
communication between two arbitrary threads, but it can also
be used to implement a service; state is resident at the exclusive
place and instances of the functions implementing that service
are created on the place by its clients.

D. Distributed SVP

Distributed SVP, or DSVP, is an extension to SVP to handle
distributed memory [5]. The implementation of DSVP was
our starting point for an SVP implementation on the SCC.
The DSVP extension introduced the idea of a data description
function which tells the implementation which parts of mem-
ory need to be sent/received when a thread function is started
remotely with a create or completes with a sync, similar to how

thread f i b o n a c c i (shared i n t p1 , shared i n t p2 , i n t∗ r e s u l t)
{

index i ;
r e s u l t [i] = p1 + p2 ;
p2 = p1 ;
p1 = r e s u l t [i] ;

}
DISTRIBUTABLE_THREAD(f i b o n a c c i) (i n t p1 , i n t p2 , i n t∗ r e s u l t , i n t N)
{

INPUT (p1) ;
INPUT (p2) ;
ARRAY_SIZE(r e s u l t , N) ;
f o r (i n t i = 2 ; i < N; i ++)

OUTPUT(r e s u l t [i]) ;
}
main ()
{

f a mi ly f i d ;
i n t r e s u l t [N] ;
i n t a = r e s u l t [1] = 1 ;
i n t b = r e s u l t [0] = 0 ;

c r e a t e (f i d ; ; 2 ; N ; ;) f i b o n a c c i (a , b , r e s u l t) ;
sync (f i d) ;

}

Figure 1: Fibonacci code example

in- and outputs are annotated in CellSs [14] and Sequoia [15].
This is based on the premise that a thread needs to receive a
reference to any data it will access through its communication
channels, and therefore this identifies which data needs to be
communicated to adhere to the consistency model.

An example code is given in Figure 1, showing a program
that stores the Fibonacci sequence up to N into a result array.
Threads 2 to N are created for the corresponding iterations
and they communicate their dependent values through their
shared channels p1 and p2. The data description function takes
the two initial values for p1 and p2 as input, and returns
the resulting fibonacci array as output. Please note that some
parameters for create are omitted, for example one to set the
place where the computation is executed and others to control
more complexing indexing.

III. IMPLEMENTATION

The distributed SVP implementation that uses TCP/IP for
communication between places [5] runs on the SCC without
any modifications. However, it supports heterogeneous plat-
forms with different data representations, which adds addi-
tional overhead. All data that needs to be communicated (indi-
cated by a data description function) is serialized to a platform
independent representation using XDR [16] before it is sent
to the other place, where it needs to be deserialized again.
On the SCC we can avoid this step, as it is a homogeneous
system with the potential to use shared memory.

Our initial optimization was to skip the XDR step and
send each data element that is part of the data description
function directly through the socket. For scalar values this
causes a large communication overhead, since they are now
all pushed separately through the channel. For (large) arrays
this means a great reduction in the overhead of encoding and
copying, especially on the SCC where memory operations are
expensive. The data description function was altered to support
sending arrays in a single shot. To send arrays, we no longer
need to explicitly touch each single element of the array, but

3

just provide a pointer to the first element, and the number of
elements in that array.

A. Using (i)RCCE

Our first approach was to modify the communication layer
of the existing implementation to make use of the RCCE and
iRCCE libraries. We could easily replace all send and receive
calls with the appropriate iRCCE functions. For the connection
establishment we used an iRCCE waitlist with a receive
request for each possible sending core. However, the (i)RCCE
implementation only matches requests on core identifier. As a
result, we cannot have multiple outstanding receive requests
for a single sending core, and the first message that fits the
size will complete. Therefore, we cannot issue another receive
request in the connection establishment function while there is
already a connection active. The messages in the connection
establishment function are rather small, and therefore match
any other larger sized message. We see that messages sent
through a previously established connection now initiate a
new connection, and fail thereafter. iRCCE does not support
virtual channels, and therefore was not suitable for our SVP
implementation in its current form.

B. Memory Remapping

The SCC allows us to share memory from one core with an
other by using the programmable look-up tables (LUT), which
means that the communication of large data chunks through a
channel can be avoided. However, the virtual memory system
of Linux makes this difficult as the virtual addresses seen by a
process are not the same as the physical addresses. A function
in the special SCC Linux memory kernel driver provides a
virtual to physical address translation. The sccLinux virtual
memory system uses 4KB pages, and chunks of contiguous
virtual memory that span more than one page, therefore do
not necessarily map to contiguous core-physical memory.
However, as sccLinux does not support the use of swap space,
the virtual to physical address mapping of a page is stable.
Once the core-physical memory address is known, the real-
physical address can easily be obtained from the LUT.

To make effective use of the memory remapping approach,
we need to manage our own virtual to core-physical memory
mappings, avoiding the fragmentation induced by the sccLinux
virtual memory system. We use an sccLinux image that has
only 320MB of private memory configured, which leaves
about the same amount of memory for the application to
manage as there is 656MB of private memory reserved for
each core. We mmap() this region so that we have a contiguous
mapping of virtual to core-physical addresses, and within that
use our own memory allocator with a simple first-fit algorithm.

When using memory remapping, we can either use cached
memory or non-cached memory. Cached memory has the
downside that the L2 cache is write back and therefore needs
to be flushed, which is an expensive [6] operation, to make
sure all data will be in physical memory on the sending side.
We can avoid the L2 flush at the receiving side by mapping
the memory with the MPBT tag on, so that the L2 cache is
bypassed, but multiple accesses within the same cache line

will hit in the L1 cache. Then, it is enough to issue the cheap
CL1INVMB instruction that invalidates all data in the L1
cache with the MPBT tag. The alternative, the use of non-
cached memory, was not considered; it is too expensive as
every individual access needs to go to main memory.

In the memory remapping implementation, the sending core
will send the core-physical address through the socket to
the receiving core. The receiving core checks the LUT of
the sending core to obtain the real-physical address. It will
dynamically map this address range on free LUT pages and
start a memory copy operation to the receive buffer. As the
initial socket communication, lut writing procedure and cache
flushing will cause overhead, this approach is only efficient
when the message is large enough to compensate for this
overhead. To allow faster writing, the target area is remapped
with the MPBT flag on, which enables the WCB. As these
addresses are independent from the L2 cache perspective,
and MPBT bypasses the L2 cache, no additional flushes are
required in this approach.

The remapping approach is similar to the Privately Owned
Public Shared Memory (POPSHM) approach proposed by
Intel. However, POPSHM requires a copy of the data into
the shared memory region on the sending side, and a copy
out of the shared memory region on the receiving side. In
contrast, we map the memory locations directly on demand
at the receiving side, therefore only requiring a single copy
operation which uses specialized memory flags for the fastest
possible reading and writing.

C. Copy Cores

Instead of performing the memory copy operation at the
receiving core, we can also choose to use our earlier proposed
copy cores [6] to copy memory regions. Copy cores are
dedicated cores that run a memory copy service; when data
needs to be copied between cores, multiple copy cores can be
employed to copy the data, similar to DMA engines, which due
to the limited memory throughput of a single core should be
able to deliver a better performance. Copy cores use the same
approach to copy memory as the remapping implementation,
using specialized flags for reading and writing. In the current
implementation, all copy tasks are issued round robin to a set
of copy cores.

IV. EVALUATION

A. Benchmarks

1) Ping Pong: The first benchmark that we use is an SVP
based Ping-Pong application which creates a computation on
the remote node which terminates immediately, but using the
data description function sends chunks of data back and forth
with incremental size. We use this benchmark to measure the
latency and throughput achieved by our different approaches.
The sizes we measured range from 4 bytes up to 16MB, and
are transferred between cores 0 and 1.

2) Matrix Multiplication: A benchmark that fits the dis-
tributed implementation of SVP with the potential to copy lots
of data is matrix multiplication. We implemented a recursive
decomposition algorithm that splits a matrix in sub matrices

4

and performs the calculations on sub matrices only. Figure 2
shows the decomposition algorithm. We can apply the decom-
position recursively as long as the square matrix size is still
dividable by two. Each step splits the calculation in eight parts
that can execute concurrently, followed by four additions that
can also execute concurrently. Note that the addition can be
performed on the individual sub matrices, or on the combined
larger matrices. In this benchmark we perform the addition on
the sub matrices, since this exposes more concurrency without
changing the representation again. This implementation works
on square matrices and operates on double precision floating
point values.

A×B →
∣∣∣∣a1 a2
a3 a4

∣∣∣∣× ∣∣∣∣b1 b2
b3 b4

∣∣∣∣ =∣∣∣∣a1× b1 a1× b2
a3× b1 a3× b2

∣∣∣∣+ ∣∣∣∣a2× b3 a2× b4
a4× b3 a4× b4

∣∣∣∣ = ∣∣∣∣c1 c2
c3 c4

∣∣∣∣→ C

Figure 2: Matrix decomposition: Matrices A and B (both
N ×N are split into four N

2 ×
N
2 matrices each. Eight matrix

multiplications and four matrix additions are performed on the
sub matrices.

In order to make the decomposition more time and space
efficient, the matrix representation in memory is a column
of pointers that all index a row in the matrix. All matrix
rows together form one contiguous block of memory, both
virtual and physical, guaranteed by our own memory allocator.
This representation is visualized in Figure 3. The normal lines
indicate a pointer to an element in memory, while the dashed
lines refer to the same element in the corresponding matrix. Pa,
Pb, Pc and Pd are pointers to arrays with pointers to sub matrix
rows. This allows us to do the decomposition by creating a
new array of pointers and assign the pointers to elements in
the original matrix rows, without the need of copying data.

Full Matrix

Sub B Sub C Sub D

Decompositions

Sub A

Pointer Array to matrix rows

Pa Pd

memory

Pb Pc

Figure 3: Representation of the original and decomposed
matrices in memory

We have run two versions of the matrix multiplication
benchmark with different distribution strategies. The first has
only one master node that decomposes the matrices and sends

the sub matrices to worker nodes. Initial experiments have
shown that only a single master node can not keep the other
cores busy when we use two decomposition steps creating
8 × 8 = 64 concurrent multiplications on only 47 (or 48,
when the master is included) nodes. The overhead for the
decomposition and communication is too large compared to
the computation performed by the worker nodes. In the second
version the master node does a single recursion step, and then
delegates the work to eight nodes which in turn do the second
recursion step to create a total of 64 tasks. Using this method,
we divide the communication overhead over multiple nodes,
but the total amount of required communication is higher.

B. Results

1) Ping Pong: In Figure 4, the results of the Ping Pong
benchmark are visualized in two graphs. The first graph shows
the best achieved latency of creating a remote computation,
followed by a synchronization directly thereafter with different
data payloads. All results are the minimum over 10 mea-
surements, to compensate for outliers generated by TCP/IP
timeouts that would have a large impact on an average. We
show the results for the previously discussed implementations;
Direct is the same implementation as the original but without
the XDR encoding and decoding steps, Remap is the approach
that remaps and copies the memory on the receiving side,
and Copy core is spreading the copy operation over 4 or 16
dedicated copy cores.

The new approaches have a higher latency, around 6 ms in-
stead of 1 ms, for a small payload, due to the required L2 cache
flush, but have a much better latency when communication a
lot of data. This is further shown in the second graph, which
shows the corresponding throughput, note that this graph is
also on a log to log scale. As the initial communication of
the addresses still goes through TCP/IP, we set a threshold
for using remapping or copy cores to 128 bytes, however they
only become faster then the direct approach when transferring
more then 16 KB.

The direct communication approach reduces the execution
time by almost an order of magnitude compared to the original
implementation. The speedup peaks at a factor of 9 for
messages larger than 512KB. Remapping memory is about two
orders of magnitude faster than the original implementation.
The copy core approach clearly improves on the memory
remapping approach, as it can aggregate more bandwith by
using multiple cores, as described in [6]. It is three times as fast
as remapping when using 4 copy cores, and four times as fast
with 16 copy cores, where you start to notice the delegation
and synchronization overheads to send the Copy cores their
work requests.

2) Matrix multiply using one decomposition step: In this
benchmark we run our matrix multiplication application using
one decomposition step, resulting in eight remote creates. We
ran the benchmark for square matrix sizes of 128, 256, 512
and 1024 elements, resulting in sub matrices of half that square
size. The amount of communication is order O(n2) while the
computation is in the order O(n3), which results in better
scalability for larger matrices due to a better computation to

5

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

Payload size in Bytes

1

10

100

1000

10000

100000

La
te

n
cy

 (
m

s)

Direct
Remapping
4x Copy core
16x Copy core
Original

(a) Latencies for the different implementations

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

Payload size in Bytes

0.001

0.01

0.1

1

10

100

1000

B
a
n
d

w
id

th
 (

M
B

/s
)

(b) Throughput for the different implementations

Figure 4: Results for the SVP based Ping Pong benchmark

communication ratio. The master node initializes the matrices,
performs the decomposition, and distributes the work over 1
to 8 remote places. The results averaged over three runs and
are shown in Figure 5. We benchmark again our four imple-
mentations; the original, the direct implementation, remapping
and copy cores with 4 or 16 copy cores which are placed at
the edges of the SCC chip around the memory controllers. All
speedups are measured against a baseline of a non-threaded
local matrix multiplication using the same computation kernel
but without distribution or decomposition.

For a small matrix size of 128× 128 elements (Figure 5a),
we see the impact of the large overhead of communication.
The original and direct implementation perform about the
same but do not scale at all. In this case, the messages
are rather small due to the memory layout of the matrices.
Every row of each matrix has to be sent separately, consisting
of 64 double precision floating point elements of 8 bytes
each, resulting in a message size of 512 bytes. Using the
original and direct implementations, each of these messages
will be sent separately, resulting in a lot of TCP/IP overhead.
The remapping and copy core implementations show some
scalability as they only receive a list of addresses that they
have to copy their data from. The L2 cache also does not have
to be flushed for every message, as it recognizes that all these
messages together are part of the same remote computation.

For size 256, (Figure 5b), we still do not see a lot of
speedup for the original and direct implementation. The data
size per message has increased to 1KB, which is a clear
advantage to the remapping and copy core approaches, where

the measurement with 4 copy cores manages to nearly gain
a perfect speedup of 8. For size 512, (Figure 5c), the direct
implementation starts to show some scalability for multiple
cores, scaling up to a speedup of 4. The remapping and copy
core approaches scale well and perform roughly the same,
though the latter shows some superlinear speedup for 4 cores,
probably as the data fits well into the L2 cache. The last graph
(Figure 5d) shows similar results, except that the remapping
implementation is now clearly outperformed by the copy
cores as they provide more communication bandwidth. The
original implementation again scales poorly, which is caused
by the different ratio between communication bandwidth and
computational power, compared to a cluster environment.

1 2 3 4 5 6 7 8

Number of Computing Cores

0.00

0.50

1.00

1.50

2.00

S
p

e
e
d

u
p

Direct
Remapping
4x Copycore
16x Copycore
Original

(a) Matrix size 128× 128.

1 2 3 4 5 6 7 8

Number of Computing Cores

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e
d

u
p

(b) Matrix size 256× 256.

1 2 3 4 5 6 7 8

Number of Computing Cores

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e
d

u
p

(c) Matrix size 512× 512.

1 2 3 4 5 6 7 8

Number of Computing Cores

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e
d

u
p

(d) Matrix size 1024× 1024.

Figure 5: Matrix multiply with 1 decomposition step

3) Matrix multiply using two decomposition steps: The ma-
trix multiplication benchmark exposes eight times the concur-
rency for each decomposition step that is performed. However,
the additional recursion step leads to more communication
overhead due to increased number of messages. We ran this
benchmark for sizes 1024 × 1024, and 2048 × 2048, but the
original implementation could not run on the latter size due
to memory constraints.

In Figure 6, we see no speedup for the original implemen-
tation when using additional cores. It fails to scale as the
master node is fully occupied with the distribution of tasks
while most of the workers are idle waiting for work. This
also limits the scalability of the direct approach to about a
factor of 5 at 20 cores, but this is not the case for remapping
or copy cores. As these two approaches fetch the memory,
more concurrency in the communication is exposed when the
number of workers is increased, resulting in more scalable
communication and corresponding speedups, peaking at 27
with the copy core approach. The master node only needs

6

to send a set of addresses which reduces the communication
time for the master so it can distribute tasks faster. The copy
core approach performs slightly better then remapping with
more clients as the master node still becomes a bottleneck
on receiving back the result of the computations. Note that
computations using the copy core approaches can not be run
on all 48 cores as some cores are reserved for the copy tasks.

4 8 12 16 20 24 28 32 36 40 44 48

Number of Computing Cores

0.00

5.00

10.00

15.00

20.00

25.00

30.00

S
p
e
e
d
u
p

Direct
Remapping
4x Copycore
16x Copy core
Original

(a) Matrix size 1024× 1024.

4 8 12 16 20 24 28 32 36 40 44 48

Number of Computing Cores

0.00

5.00

10.00

15.00

20.00

25.00

30.00

S
p
e
e
d
u
p

(b) Matrix size 2048× 2048.

Figure 6: Matrix multiply with 2 decomposition steps

4) Recursive decomposition over multiple nodes: A so-
lution that decreases the load of a single master node, is
to split the recursion steps over multiple nodes. The master
node performs one decomposition step and delegates the next
decomposition to other nodes. These nodes then perform the
second step and distribute the work over even more nodes,
using a round robin algorithm that guarantees an as much
even distribution as possible. This approach introduces a lot
of additional communication, but not much computational
overhead as the decomposition on a single node can be done
without additional copy operations due to the way we structure
our matrices in memory.

The benchmark results are shown in Figure 7, where again
the original implementation was unable to run the 2048 con-
figuration. The original and direct approaches clearly benefit
from the different communication pattern, while the remapping
and copy core approaches perform about the same as with the
other communication pattern, peaking at a factor 25 speedup.

4 8 12 16 20 24 28 32 36 40 44 48

Number of Computing Cores

0.00

5.00

10.00

15.00

20.00

25.00

30.00

S
p
e
e
d
u
p

Direct
Remapping
4x Copycore
16x Copy core
Original

(a) Matrix size 1024× 1024.

4 8 12 16 20 24 28 32 36 40 44 48

Number of Computing Cores

0.00

5.00

10.00

15.00

20.00

25.00

30.00

S
p
e
e
d
u
p

(b) Matrix size 2048× 2048.

Figure 7: Matrix multiply with distributed decomposition.

V. CONCLUSION

We have shown our initial results of porting our implemen-
tation of the SVP model of concurrency to the Intel SCC.
One of the biggest problems was the efficient communication
of data; it is difficult to keep all the cores busy and to find a
good communication to computation ratio.

We have discussed several approaches on how we improved
our communication bottleneck; removing XDR encoding,

remapping and copying data directly at the receiving core,
and employing our copy core techniques. The latter showed a
two orders of magnitude improvement in throughput, and has
the potential to scale up by employing multiple copy cores.
However, the matrix multiply benchmarks that we used were
not able to effectively use the large bandwidth provided by the
copy core techniques compared to the remapping approach.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS,” Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pp. 108–109, February 2010.

[2] C. R. Jesshope, “A model for the design and programming of multi-
cores,” Advances in Parallel Computing, vol. High Performance Com-
puting and Grids in Action, no. 16, pp. 37–55, 2008.

[3] K. Bousias, N. Hasasneh, and C. Jesshope, “Instruction level parallelism
through microthreading—a scalable approach to chip multiprocessors,”
Comput. J., vol. 49, pp. 211–233, March 2006.

[4] J. Sykora, L. Kafka, M. Danek, and L. Kohout, “Analysis of execution
efficiency in the microthreaded processor UTLEON3,” in Proceedings
of the 2011 Conference on Architecture of Computing Systems (ARCS
2011), vol. 6566 of Lecture Notes in Computer Science, pp. 110–121,
Springer, 2011.

[5] M. W. van Tol and J. Koivisto, “Extending and implementing the self-
adaptive virtual processor for distributed memory architectures,” CoRR,
vol. abs/1104.3876, April 2011.

[6] M. W. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. R. Jesshope,
“Efficient memory copy operations on the 48-core intel scc processor,” in
3rd Many-core Applications Research Community (MARC) Symposium,
KIT Scientific Publishing, September 2011.

[7] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on Intel’s Single-chip Cloud Computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[8] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011) – to appear, Work-
shop on New Algorithms and Programming Models for the Manycore
Era (APMM), (Istanbul, Turkey), July 2011.

[9] Intel Labs, SCC External Architecture Specification, revision 1.1 ed.,
November 2010.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active messages: a mechanism for integrated communication and
computation,” in ISCA ’92: Proc. of the 19th annual Int. Symp. on
Computer architecture, (New York, NY), pp. 256–266, ACM, 1992.

[11] C. R. Jesshope, M. Lankamp, and L. Zhang, “Evaluating CMPs and
their memory architecture,” in Proc. Architecture of Computing Systems
(M. Berekovic, C. Muller-Schoer, C. Hochberger, and S. Wong, eds.),
pp. 246–257, 2009.

[12] T. D. Vu and C. R. Jesshope, “Formalizing sane virtual processor in
thread algebra,” in ICFEM, pp. 345–365, 2007.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in ISCA ’90: Proceedings of the 17th
annual international symposium on Computer Architecture, (New York,
NY, USA), pp. 15–26, ACM, 1990.

[14] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “Cellss: a
programming model for the cell be architecture,” in SC ’06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, (New York, NY,
USA), p. 86, ACM, 2006.

[15] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
programming the memory hierarchy,” in SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, (New York, NY, USA),
p. 83, ACM, 2006.

[16] M. Eisler, “XDR: External Data Representation Standard.” RFC 4506
(Standard), May 2006.

	Introduction
	SVP
	Resources
	Communication and Synchronization
	Memory Consistency
	Distributed SVP

	Implementation
	Using (i)RCCE
	Memory Remapping
	Copy Cores

	Evaluation
	Benchmarks
	Ping Pong
	Matrix Multiplication

	Results
	Ping Pong
	Matrix multiply using one decomposition step
	Matrix multiply using two decomposition steps
	Recursive decomposition over multiple nodes

	Conclusion
	References

