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RESEARCH ARTICLE Open Access

BRCA1-mutated and basal-like breast cancers
have similar aCGH profiles and a high incidence
of protein truncating TP53 mutations
Henne Holstege1, Hugo M Horlings2,5, Arno Velds3, Anita Langerød4, Anne-Lise Børresen-Dale4,
Marc J van de Vijver5, Petra M Nederlof2, Jos Jonkers1*

Abstract

Background: Basal-like breast cancers (BLBC) are aggressive breast cancers for which, so far, no targeted therapy is
available because they typically lack expression of hormone receptors and HER2. Phenotypic features of BLBCs,
such as clinical presentation and early age of onset, resemble those of breast tumors from BRCA1-mutation carriers.
The genomic instability of BRCA1-mutated tumors can be effectively targeted with DNA-damaging agents and
poly-(ADP-ribose) polymerase 1 (PARP1) inhibitors. Molecular similarities between BLBCs and BRCA1-mutated
tumors may therefore provide predictive markers for therapeutic response of BLBCs.

Methods: There are several known molecular features characteristic for BRCA1-mutated breast tumors: 1) increased
numbers of genomic aberrations, 2) a distinct pattern of genomic aberrations, 3) a high frequency of TP53
mutations and 4) a high incidence of complex, protein-truncating TP53 mutations. We compared the frequency of
TP53 mutations and the pattern and amount of genomic aberrations between BRCA1-mutated breast tumors,
BLBCs and luminal breast tumors by TP53 gene sequencing and array-based comparative genomics hybridization
(aCGH) analysis.

Results: We found that the high incidence of protein truncating TP53 mutations and the pattern and amount of
genomic aberrations specific for BRCA1-mutated breast tumors are also characteristic for BLBCs and different from
luminal breast tumors.

Conclusions: Complex, protein truncating TP53 mutations in BRCA1-mutated tumors may be a direct consequence
of genomic instability caused by BRCA1 loss, therefore, the presence of these types of TP53 mutations in sporadic
BLBCs might be a hallmark of BRCAness and a potential biomarker for sensitivity to PARP inhibition. Also, our data
suggest that a small subset of genomic regions may be used to identify BRCA1-like BLBCs. BLBCs share molecular
features that were previously found to be specific for BRCA1-mutated breast tumors. These features might be
useful for the identification of tumors with increased sensitivity to (high-dose or dose-dense) alkylating agents and
PARP inhibitors.

Background
Lobules and ducts within the normal human breast are
lined with a double layer of epithelial cells: an inner
layer of luminal cells and an outer layer of basal/myoe-
pithelial cells that are in direct contact with the base-
ment membrane. Transformation of different mammary

epithelial cells results in considerable heterogeneity in
breast cancer subtypes, giving rise to differences in clini-
cal presentation, histology and response to therapy [1].
Gene expression profiling has identified five molecular
breast tumor subtypes: luminal A, luminal B, normal
breast-like, human epidermal growth factor 2 (HER2/
ERBB2) positive, and basal-like [2,3]. In the clinic how-
ever, only immunohistochemistry data for estrogen
receptor (ER), progesterone receptor (PR) and HER2
status are used to guide treatment choice [4].
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Approximately ~70-80% of all breast tumors are hor-
mone receptor positive [5] and therefore sensitive to
adjuvant endocrine therapy [6]. These tumors classify
mostly as luminal A/B breast tumors [3]. The addition
of trastuzumab to adjuvant chemotherapy considerably
improved the outcome of HER2-positive breast tumors
[7]. However, approximately 10-20% of all breast tumors
do not express hormone receptors or HER2, and are
therefore insensitive to endocrine or trastuzumab treat-
ment. Currently, the only treatment available for these
triple-negative breast cancers (TNBCs) is cytotoxic che-
motherapy [8].
The TNBC group as defined by immunohistochemical

staining consists for approximately 80% of basal-like
breast cancers (BLBCs) as defined by gene expression
profiling [9]. BLBCs express luminal (CK19 and CK18)
as well as basal cytokeratins (CK5/6, CK17 and CK14),
suggesting that these tumors originate from an undiffer-
entiated, dual-lineage stem/progenitor cell type. Further-
more, the TP53 gene is often mutated in BLBCs [10],
and the gene expression profiles of TP53-mutated breast
tumors show strong association with the BLBC sub-
group [11]. Consequently, BLBCs are aggressive tumors
with an expansive growth pattern (pushing margins), a
high proliferation rate, high relapse rates and poor survi-
val. Moreover, BLBCs occur more frequently in preme-
nopausal women than in postmenopausal women and
are often difficult to detect by mammography or ultra-
sound [9].
Although TNBC/BLBC has a relatively poor prognosis

in the first five years after diagnosis, approximately 60%
of patients - even without adjuvant chemotherapy - do
not relapse, and after ~8 years of follow up have a high
chance of being cured (reviewed in [9]). This indicates
that within the TNBC/BLBC tumor group there is con-
siderable heterogeneity in tumor behavior. At present
however, all TNBC/BLBC patients are treated with cyto-
toxic adjuvant chemotherapy because there are no clini-
cally useful prognostic and predictive markers to
identify patients with aggressive, chemotherapy-sensitive
TNBC/BLBC, leading to unnecessary exposure to che-
motherapy of a substantial number of patients [8]. In
recent years it is becoming clear that phenotypic fea-
tures of TNBC/BLBC may also apply to the majority of
hereditary BRCA1-mutated breast tumors [12,13]. Since
BRCA1 function is required for homology-directed
repair of DNA double-strand breaks (DSBs), BRCA1-
mutated tumors and BRCA1-like BLBCs are predicted
to be sensitive to DSB inducing therapy [14]. Indeed,
breast tumors from BRCA1-mutation carriers are sensi-
tive to inhibition of DNA single-strand break (SSB)
repair by poly(ADP-ribose) polymerase (PARP) inhibi-
tors [15] and to chemotherapy that causes DSBs, such
as platinum drugs, alkylating agents and topoisomerase I

poisons [16,17]. It will therefore be important to identify
features of sporadic BLBCs [14] that may be useful as
predictive biomarkers for response to DSB-inducing
chemotherapy or PARP inhibitors. Known molecular
features characteristic for BRCA1-mutated breast tumors
are 1) a high degree of genomic instability due to homo-
logous recombination (HR) deficiency [18], 2) a distinct
pattern of genomic aberrations [19-22] 3) a high fre-
quency of TP53 mutations and 4) a high incidence of
complex, protein-truncating TP53 mutations [10,23]. In
this study, we determined to what extent these molecu-
lar characteristics of BRCA1-mutated tumors are present
in BLBCs.

Methods
Breast tumor groups
To compare molecular characteristics of BRCA1-
mutated tumors with BLBCs, we used data from two
published tumor sets from the Netherlands Cancer
Institute that were sequenced for TP53 and for which
aCGH data was generated. The first dataset contains
27 BRCA1-mutated breast tumors and 17 luminal
breast tumors (defined by expression profiling) that
were previously described by Joosse et al [24]. The
luminal tumors from this study were designated lumi-
nal-J: J for Joosse. The second dataset from Horlings
et al., [25] contained 21 non-hereditary BLBCs and 31
luminal breast tumors that were part of a series of 295
breast tumor specimens [26] which were assigned to
breast cancer subgroups according tot their gene
expression profiles [2,3]. For privacy reasons BRCA1-
mutation status was not verified in the BLBCs, how-
ever, these patients did not have a family history of
breast cancer. Luminal tumors from this study were
labeled luminal-H, H for Horlings. Six luminal breast
tumors were used in both the Joosse study and the
Horlings study. TP53 mutation, ER/PR/HER2, CK56
staining pattern and age at diagnosis of all tumors are
shown in Table 1.

TP53 mutation analyses
For 21 BRCA1-mutated tumors, and 13 luminal-J
tumors exons 2-9 of TP53 were previously sequenced
[23]. The abundance of the aberrant base was estimated
from the sequence chromatogram from both the for-
ward and reverse sequencing runs. When comparing
mutation types found in the tumor groups, the influence
of tumor heterogeneity was minimized by only including
TP53 mutations that had an estimated abundance of
>25% in the tumor DNA [23].
For all BLBC and luminal-H tumors TP53 exons 2-11

(including +/- 30 bp outside each exon) were sequenced
using AB 3730 DNA Analyzer (reference sequence
NM_000546).
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Table 1 Tumor characteristics of BRCA1-related, Luminal-J, basal-like and Luminal-H breast tumors

NKI ID deleterious TP53
mutation by prediction

complex/
truncatingTP53

mutation

hotspot
mutation

TP53
IHC

ER
IHC

PR
IHC

HER2
IHC

CK5/
6IHC

breast cancer subtype/
BRCA1 mutation

Age at
diagnosis

BRCA1-mutated breast tumors

B107 G266E 0 1 0 0 0 0 NA c.1319delT 41

B109 R213X, H214Y 1 1 0 0 0 0 NA c.IVS21-36del510 30

B116 Y163C 0 1 1 0 0 0 NA c.185delAG 49

B118 NA NA NA 0 0 0 0 NA c.4416_4417delTTinsG 34

B119 NA NA NA 0 0 0 0 NA c.4416_4417delTTinsG 34

B122 239 insT 1 0 0 0 0 0 NA c.4446C > T 45

B124 NA NA NA 1 0 0 0 NA c.3875del4 61

B125 NA NA NA 0 0 0 0 NA c.2804delAA 35

B126 del 255 1 0 1 0 0 0 NA c.IVS21-36del510 40

B127 T55I 0 0 1 0 0 0 NA c.5382insC 39

B135 wild type 0 0 1 0 0 0 NA c.2312del5 41

B137 224 splice G > A 1 0 0 0 0 0 NA c.IVS12-1632del3835 32

B141 wild type 0 0 0 0 0 0 NA c.IVS21-36del510 39

B145 110 delC, Q100X 1 0 0 0 0 0 NA c.185delAG 33

B146 145 delG, Q104X, P98S 1 0 0 0 0 0 NA c.185delAG 33

B149 R273H 0 1 1 0 0 0 NA c.IVS20+1G > A 31

B150 V216 M, P223 S, R290C 0 1 0 0 0 0 NA c.IVS21-36del510 41

B152 R175H 0 1 1 0 0 0 NA c.IVS13+4123ins6081 47

B153 del 155-156 1 0 1 0 0 0 NA c.185delAG 48

B156 R248W, R280K, V218I 0 1 1 0 0 0 NA c.5382insC 47

B158 R282G, E326K 0 1 1 0 0 0 NA c.IVS21-36del510 27

B160 167 insA 1 0 0 0 0 0 NA c.IVS20+1G > A 61

B161 R213X, R282W, P151R 1 1 1 0 0 0 NA c.IVS13+4123ins6081 30

B162 NA NA NA 0 0 0 0 NA c.IVS20+1G > A 27

B164 258 delG 1 0 0 0 0 0 NA c.del exons 1A-7 31

B165 NA NA NA 1 0 0 0 NA c.IVS12-1632del3835 33

B171 R306X 1 0 0 0 0 1 NA c.IVS2-9C > G 33

Luminal-J breast tumors

C002 R248W, R110C, T55I 0 1 0 0 0 1 0 Luminal A 45

C010 NA NA NA 0 1 1 0 0 Luminal A 40

C017 K305X 1 0 0 1 1 0 0 Luminal B 36

C020 wild type 0 0 1 0 0 0 1 Luminal A 34

C022 NA NA NA 0 1 0 0 0 Luminal B 51

C025 P177L 0 1 0 1 1 0 0 Luminal A 50

C027 NA NA NA 0 1 1 1 0 Luminal A 45

C028 wild type 0 0 0 1 1 0 0 Luminal B 41

C030 wild type 0 0 0 1 0 0 0 Luminal B 38

C034 wild type 0 0 0 1 1 0 0 Luminal A 47

C036 wild type 0 0 0 1 1 0 0 Luminal A 40

C037 NA NA NA 0 1 1 0 0 Luminal B 49

C042 P190L 0 0 0 1 1 0 0 Luminal B 42

C044 wild type 0 0 0 1 0 0 0 Luminal B 45

C052 wild type 0 0 0 1 1 0 0 Luminal A 45

C057 P98L 0 0 0 0 0 0 0 Luminal B 51

C060 H179R, T125M 0 1 1 1 1 0 0 Luminal B 47

Basal-like breast tumors

131 239_240delCA 1 0 1 0 0 0 1 Basal-like 39

135 C242Y 0 1 1 0 0 0 1 Basal-like 45

164 W53X 1 0 0 0 0 0 1 Basal-like 50
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Table 1 Tumor characteristics of BRCA1-related, Luminal-J, basal-like and Luminal-H breast tumors (Continued)

184 183_184insC 1 0 0 0 0 0 1 Basal-like 44

215 110delC 1 0 0 0 0 0 1 Basal-like 49

228 IVS5-2 A > C (splice) 1 0 0 0 0 0 0 Basal-like 39

230 E221X 1 0 0 0 0 1 0 Basal-like 28

238 V173M 0 1 1 0 0 0 1 Basal-like 42

241 R196X 1 0 0 0 0 0 1 Basal-like 41

268 L252P 0 0 1 0 0 0 1 Basal-like 38

269 N131S 0 0 0 0 1 0 1 Basal-like 38

270 283insGC 1 0 0 0 0 0 1 Basal-like 50

307 218delGTG 1 0 1 0 0 0 1 Basal-like 44

324 I195T 0 1 1 0 0 0 1 Basal-like 46

326 155_156del 1 0 1 0 0 0 1 Basal-like 39

330 201delT 1 0 0 0 0 0 1 Basal-like 26

332 Q286K 0 1 1 0 0 0 1 Basal-like 49

335 R248W 0 1 1 0 0 0 1 Basal-like 48

367 wild type 0 0 1 1 0 1 0 Basal-like 49

377 255_256delTCA 1 0 1 1 1 0 1 Basal-like 52

398 Y220C 0 1 1 0 0 0 1 Basal-like 34

Luminal-H breast tumors

6 wild type 0 0 0 1 1 0 0 Luminal A 49

107 Q317X 1 0 0 1 1 0 NA Luminal B 38

110 wild type 0 0 0 1 1 0 0 Luminal B 51

145 R273C 0 1 0 0 1 0 0 Luminal B 48

157
(C002)
*

R248W 0 1 0 0 0 1 0 Luminal A 45

166 wild type 0 0 0 1 0 0 0 Luminal B 43

167 wild type 0 0 0 1 1 1 0 Luminal A 44

176 wild type 0 0 0 0 1 0 0 Luminal A 46

203 wild type 0 0 0 1 1 1 0 Luminal A 49

205 K132R 0 1 0 1 1 0 1 Luminal A 50

214 wild type 0 0 0 1 1 0 0 Luminal A 41

220 wild type 0 0 0 1 1 0 0 Luminal A 42

231 wild type 0 0 0 1 1 NA 0 Luminal A 43

240
(C060)
*

H179R 0 1 0 1 1 0 0 Luminal B 47

295 wild type 0 0 0 1 1 0 0 Luminal A 48

298 wild type 0 0 1 1 1 0 0 Luminal A 50

302
(C034)
*

wild type 0 0 0 1 1 0 0 Luminal A 47

305
(C036)
*

wild type 0 0 0 1 1 0 0 Luminal A 40

312 205delT 1 0 0 1 1 0 0 Luminal B 47

318 R110L, S127C 0 1 0 1 1 0 0 Luminal A 37

322
(C044)
*

wild type 0 0 0 1 0 0 0 Luminal B 45

329 wild type 0 0 0 1 1 0 0 Luminal B 49

346 wild type 0 0 0 1 1 0 0 Luminal A 49

354 P177R 0 1 1 1 1 0 1 Luminal A 47

356 wild type 0 0 0 1 1 0 0 Luminal A 49

361 wild type 0 0 0 1 1 0 0 Luminal A 42
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Frameshift, splice and nonsense mutations and in-
frame insertions/deletions are defined as “complex TP53
mutations”. All missense mutations found in the
BRCA1-mutated and luminal-J tumor groups were clas-
sified according to their predicted effect on p53 function
as determined by the Sorting Intolerant from Tolerant
algorithm SIFT; [27,28], as used in the IARC TP53 data-
base [29,30]. Because no matched normal/germ-line
DNA was available, some benign germ-line variants may
have been identified as deleterious somatic mutations by
SIFT. All TP53 missense mutations found in the BLBC
and luminal-H tumor groups were classified to be dele-
terious or non-deleterious according to their predicted
effect on TP53 function using “EffectGroup3” [31] as
used in the IARC TP53 database. The 29 most common
hotspot mutations (P < 0.001) identified by Walker and
colleagues [32] are referred to as ‘’hotpot mutations’’:
K132, C135, P151, V157, R158, Y163, V173, R175, C176,
H179, H193, Y205, Y220, Y234, M237, C238, S241,
C242, G245, M246, R248, R249, G266, R273, P278,
R280, D281, R282, and E285.

Comparisons aCGH data derived from FFPE and fresh
frozen tissue
For aCGH procedures of the BRCA1-mutated and lumi-
nal-J tumor groups: see Joosse et al., 2009 [24]. For
aCGH procedures of the BLBC and luminal-H tumor
groups: see Horlings et al., [25]. For the aCGH analyses,
a microarray platform containing 3,500 human BAC/
PAC clones covering the whole genome with an average
spacing of 1 Mb was used [33]. Although the 1 Mb
resolution of the BAC platform limits sensitivity for
focal changes, the aCGH data is a sound representation
of our tumor groups and can be used to find recurrent
differences between tumor groups.
When comparing aCGH profiles of tumor DNA iso-

lated from formalin-fixed paraffin-embedded (FFPE) tis-
sue [24] and fresh-frozen tissue [25], we noticed that

the log2-ratios obtained from the different DNA sources
showed different distributions. From the six overlapping
samples between the luminal-H and luminal-J tumor
groups, as shown in Table 1 we saw that distribution of
log2-ratios derived from FFPE samples was consistently
wider than the log2-ratios derived from fresh frozen tis-
sue (Additional File 1). Therefore, we transformed both
the FFPE (i.e. all log2 ratios from BRCA1-mutated and
luminal-J tumors taken together) and the fresh frozen
datasets (i.e. all log2 ratios from BLBC and luminal-H
tumors taken together) to have a mean of zero and a
standard deviation of one before applying KC-SMART
and comparative-KC-SMART. This enabled us to con-
struct one luminal tumor group consisting of tumors
from both the luminal-H and luminal-J tumor groups to
compare the BRCA1-mutated and BLBC-data with. The
six tumors that overlapped between the two groups
were included only once and taken from the luminal-J
tumor group.

KC-SMART and comparative-KC-SMART analysis
KC-SMART
(Kernel Convolution - a Statistical Method for Aberrant
Region detection) is a computational approach for statis-
tical analysis of non-discretized aCGH data from multi-
ple experiments, and determines which regions are
significantly gained or lost relative to randomized data
(P < 0.05) [34]. We used KC-SMART to smooth the
raw log2-ratios by generating a Kernel Smoothed Esti-
mate (KSE) curves for gains (KSEgains) and losses (KSE-

losses) separately across a group of tumors.
Comparative-KC-SMART
[35] detects genomic regions that have a differential
aCGH signal between two tumor groups. The compara-
tive-KC-SMART algorithm smoothes raw log2-ratio
data from each individual tumor profile by placing
Gaussian kernel functions with the height of the log2-
ratio at the genomic midposition of each probe (without

Table 1 Tumor characteristics of BRCA1-related, Luminal-J, basal-like and Luminal-H breast tumors (Continued)

371 wild type 0 0 1 1 0 0 0 Luminal A 51

378 wild type 0 0 0 1 0 0 0 Luminal B 52

389
(C057)
*

wild type 0 0 0 1 0 0 0 Luminal B 51

391 wild type 0 0 0 1 0 0 0 Luminal A 51

393 wild type 0 0 0 1 1 0 0 Luminal B 51

TP53 mutations Bold: predicted truncating TP53 mutation (frameshift, splice, nonsense and in-frame insertions or deletions), plain text: hotspot mutations
according to Walker et al. Italics, missense TP53 mutations predicted deleterious by the SIFT or EffectGroup3 algorithms. Immunohistochemistry data for TP53, ER,
PR, HER2 and CK5/6; BRCA1-mutation; tumor type as determined by expression profiling; age at diagnosis.

*The TP53 gene of the BRCA1-mutated, Luminal-J tumors were sequenced in a different laboratory than the BLBCs and the luminal-H tumors. Of the 6
overlapping tumors between Luminal-H and Luminal-J tumors a discrepancy occurs in 3 tumors: In luminal-H tumor 157 a R248W mutation is found and in
corresponding Luminal-J tumor C002 an additional R110C and T55I mutations are found. In luminal-J tumor C057 a P98L mutation is found and corresponding
luminal-H tumor 389 no mutations are found. In luminal-H tumor 240 a H179R mutation is detected and in corresponding luminal-J tumor C060 an additional
T125 M mutation is found.
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separating gains and losses, as done for KC-SMART).
For each tumor, an aggregated profile is determined by
convolution of locally weighted kernel functions. For
each genomic position, the KSE values from all tumors
that belong to the two tumor groups in the comparison
are used to calculate a signal to noise ratio (SNR). We
determined a cut-off that defines significant SNR values
by generating SNR data using 6000 class-label permuta-
tions and calculating the significance threshold
corresponding with a False Discovery Rate (FDR) of
0.05. The width of a kernel applied to each data point
determines the extent of smoothing and the size of
aberrations detected. Smoothing individual tumors with
a kernel width of 20 Mb resulted in aCGH profiles that
recapitulated raw aCGH data well; therefore, we chose
to use this kernel width for all comparisons. R-packages
of KC-SMART and comparative-KC-SMART have been
submitted to Bioconductor [36]. We used NCBI Build
36 (Hg 18) for these analyses.

Clustering analysis
We used the MeV program [37] to cluster tumor aCGH
data. Samples and genes are hierarchically clustered
using pearson correlation and complete linkage with leaf
ordening.

Results
TP53 mutations in BRCA1-mutated, BLBC and luminal
breast cancers
We previously found that nearly all BRCA1-mutated
breast tumors had deleterious TP53 mutations due to an
increased frequency of truncating frameshift, splice, non-
sense mutations and in-frame insertions and deletions
[23]. BRCA1-mutated tumors and BLBCs are both basal
like TNBCs, characteristics that are different from hor-
mone receptor positive luminal breast tumors (Table 1).
Therefore, we were motivated to compare TP53 mutation
type and frequency found in non-hereditary BLBCs, in
BRCA1-mutated tumors and in luminal breast tumors.
TP53 mutation types and other tumor characteristics are
listed in Table 1. The TP53 gene from the BRCA1-
mutated/luminal-J tumors and the BLBC/luminal-H
tumors were sequenced in different labs with slightly dif-
ferent methods (see Methods section). At the cost of
reducing the power of this analysis we wanted to make
sure we did not introduce a methodical bias in our com-
parisons, therefore, the TP53 mutation data for luminal-J
and luminal-H tumors were not combined.
Similar to the 90% (19/21) of BRCA1-mutated tumors,

95% (20/21) of the BLBCs harbored TP53 mutations,
significantly more than the 46% (6/14) of the luminal-J
and the 26% (8/31) of the luminal-H tumors (p = 7 ×
10-3 and p = 5 × 10-7 respectively, two-tailed Fisher’s
Exact test), Figure 1 Additional File 2. We next

compared TP53 mutation types from BRCA1-mutated
tumors and non-hereditary BLBCs with luminal-H and
luminal-J tumors. We found that 52% (11/21) of the
BRCA1-mutated tumors and 57% (12/21) of the BLBCs
have complex/truncating TP53 mutations, which is sig-
nificantly more than the 8% (1/13) and 7% (2/31) of the
luminal-J and luminal-H tumors, respectively (p = 1 ×
10-2 and p = 8 × 10-5 respectively; two-tailed Fisher’s
Exact test, Figure 1 Additional File 2), indicating that
this feature is common in hereditary BRCA1-mutated
breast tumors and non-hereditary BLBCs. Interestingly,
the increase in deleterious missense or hotspot TP53
mutations in BRCA1-mutated or BLBCs (8/21) their
respective luminal tumor groups was not significant.
Deleterious missense mutations: 11/21 BRCA1-mutated
vs. 5/13 luminal-J, p = 5 × 10-1, and 8/21 BLBCs vs.
6/31 luminal-H tumors p = 2 × 10-1, two-tailed Fisher’s
Exact test). Hotspot mutations: 9/21 BRCA1-mutated vs.
3/13 luminal-J, p = 3 × 10-1, and 6/21 BLBCs vs. 6/31
luminal-H tumors p = 5 × 10-1, two-tailed Fisher’s Exact
test). Together, these data suggest that the increase of
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Figure 1 Analysis of TP53 mutations in BRCA1-mutated tumors
and BLBCs. TP53 exons 2-9 were sequenced for 21/27 of the
BRCA1-mutated tumors and for 13/21 of the luminal-J tumors. TP53
exons 2-11 were sequenced for all 21 BLBCs and 31 luminal-H
tumors (see Table 1 for TP53 mutations see Additional File 1 for
TP53 mutation frequencies). a. Amount of tumors with at least one
TP53 mutation. b. Amount of tumors with at least one complex,
predicted truncating TP53 mutation (frameshift, splice and nonsense
mutations and in-frame insertions/deletions). c. Amount of tumors
with at least one deleterious missense mutation. d. the amount of
tumors with at least one hotspot mutation as defined by Walker et
al. Three BRCA1-mutated tumors have a complex/truncating TP53
mutation and also a deleterious missense mutation. * Significant
difference between groups (p < 0.01, determined with a Fisher’s
Exact Test), ns: no significant difference between groups.
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TP53 mutations in the BRCA1-mutated tumors and
BLBCs is primarily due to the increase in complex/trun-
cating TP53 mutations.

Comparison of aCGH profiles of BRCA1-mutated tumors,
BLBCs and luminal breast cancers
To identify DNA copy number aberrations (CNAs) that
occur significantly more often in BRCA1-mutated breast
tumors than in BLBCs, we analyzed their aCGH with
comparative-KC-SMART, a computational method for
detection of genomic regions that have a significantly
different aCGH signal between two tumor groups [35].
However, the DNA samples used to acquire aCGH pro-
files for the BLBC and the BRCA1-mutated tumor
groups were isolated from fresh frozen tissue and FFPE
material respectively, resulting in differences in log2-
ratio distribution of the aCGH profiles (Additional File
1). To account for this difference, we normalized the
data as explained in the Methods section. We applied
comparative-KC-SMART to the normalized aCGH data
of the BRCA1-mutated tumor group and the BLBC
group (Figure 2a). Comparative-KC-SMART detected
small CNAs on chromosomes 5, 7, 8 and 14 that are
significantly different between these tumor groups (for
regions and cancer-related genes see Additional File 3).
BRCA1-specific losses and BLBC-specific gains on chro-
mosomes 5 and 7 flanked each other and seem to be
dependent on each other. Interestingly, the BRCA1-
specific chromosome 7 loss encompasses EGFR. The
BRCA1-specific gain on chromosome 14 peaks at the T-
cell receptor alpha (TCRa) locus and encompasses,
among other cancer-related genes, poly(ADP-ribose)
polymerase 2 (PARP2), and B-cell lymphoma 2 like 2
(BCL2L2). Whether any of the genes located within
these CNAs promote survival of BRCA1-deficient cells
remains to be established.
Next, we used comparative-KC-SMART to compared

CNAs in the BRCA1-mutated tumors and BLBCs vs. the
combined luminal tumors (Figure 2b-c). Differential
gains and losses are shown in Additional File 4. We
compared CNAs between Luminal-J and luminal-H
tumors as a control for merging these tumor groups
(Figure 2d): as expected, no differences between the two
luminal groups were detected.
Gains on chromosomes 1q and 16p, and the loss on

chromosome 16q occur more often in the luminal
tumors than in the basal-like/BRCA1-mutated tumors
(Figure 2b-c, Table 2). The first chromosome 1q gain
peaks at 177.31 Mb; the second 1q gain peaks at 202.65
Mb close to MDM4 (202.81 Mb). Similarly, the 16p gain
peaks at 15.7 Mb. The chromosome 16q loss consists of
two peaks: the first peak maps to 52.19 Mb, at the
BRD7, CYLD, and RBL2/p130 genes. The second peak
maps to 79.19 Mb, at one of the most active common

fragile sites in the human genome, FRA16 D, associated
with the WWOX gene (77.24 Mb). Many of the luminal
tumors show a co-occurrence of chromosome 1q gain
and 16q loss (Additional File 5).

Impact of TP53 mutation on luminal tumors
Because BLBCs and BRCA1-mutated tumors are almost
always TP53-mutated, we investigated whether TP53
mutations are associated with specific CNAs in luminal
tumors. We stratified the 31 luminal-H tumors by their
TP53 mutation status and used comparative-KC-
SMART to compare both tumor groups. Although no
differences were detected between CNAs from 8 TP53-
mutated and 23 TP53 wild-type luminal breast tumors,
quantitative differences in KC-SMART profiles can be
observed, Figure 3. TP53-mutated tumors have more
overall gains on chromosomes 3q, 6p, 20q, 21q and 22q
and losses on chromosomes 2q, 3p, 4p, 4q, 13q, 15q and
X. On the other hand, TP53 wild-type tumors have a
higher incidence of chromosome 1q gain, and 16q loss.
However, these data do not provide evidence for an
altered profile of TP53-mutated luminal breast tumors,
perhaps because the TP53-mutated tumor group is too
small for robust statistical analysis.

Analysis of genomic instability in BRCA1-mutated tumors
and BLBCs
To determine the amount of CNAs in the different
tumor groups, we used KC-SMART to smooth indivi-
dual aCGH profiles and counted the amount of CNAs
exceeding a range of cutoffs for each tumor separately.
We found that the median amount of CNAs of BRCA1-
mutated tumors was not different from the amount of
CNAs found in BLBCs (Figure 4a). In contrast, we
found that the median amount of CNAs is significantly
greater in the BRCA1-mutated tumors compared with
luminal breast tumors between KSE cutoffs 0.02 and 0.1
and between 0.24 and 0.74 (P < 0.01, two sided t-test
Figure 4b). Similarly, the median amount of CNAs in
the BLBCs was higher compared with luminal tumors
for KSE cutoffs between 0.02 and 0.14 and between 0.28
and 0.96 (Figure 4c). We did not detect differences in
the median amount of aberrations between luminal-J
breast tumors and luminal-H except for KSE cutoffs 0.2
and 0.24 (Figure 4d).

Overlapping gains and losses specific for BLBCs and
BRCA1-mutated tumors
We compared gains and losses specific for the BLBC/
BRCA1-mutated tumor groups relative to the luminal
tumor groups. The BLBC/BRCA1-mutated tumors har-
bored overlapping differential gains on chromosomes 1p,
2p, 3q, 6p, 6q, 7q, 8q, 10p, 12p, 13q and 19q and losses
on chromosomes 3p, 4p, 5q, 10q, 12q, 14q and 15q. The
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Figure 2 Comparative-KC-SMART analysis of aCGH data from BRCA1-mutated tumors and BLBCs. For each tumor group, comparative-KC-
SMART was applied to normalized aCGH data, which was scaled to have a mean of zero and a standard deviation of one. The KSE curves for
each tumor group are shown for gains and losses separately. a: BRCA1-mutated breast tumors (blue) vs. BLBCs (gray). CNAs that occur more
often in the BRCA1-mutated tumors vs. the BLBCs are shown as red horizontal bars on above or below the KSEgains and KSElosses respectively, and
they are plotted as red overlays on the blue KSE curves. CNAs that occur more often the BLBCs vs. the BRCA1-mutated tumors are shown as
green horizontal bars above or below the KSEgains and KSElosses respectively, and as green overlays on the gray KSE curves. b: BRCA1-mutated
tumors (blue) vs. luminal tumors (gray) c: BLBCs (blue) vs. luminal (gray) tumors. d: Luminal-J tumors (blue) vs. luminal-H tumors (gray).
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luminal tumor groups contained overlapping gains on
chromosomes 1q, 8p and 16p, and an overlapping loss on
chromosome 6q, 11q, 13q and 16q (Table 2).
Clearly, the differentially occurring CNAs detected by

comparative-KC-SMART are fully dependent on the
tumors included in the groups. However, when peaks of

recurrent aberrations of two different analyses map clo-
sely together, this could point to a region whose gain or
loss is relevant for tumorigenesis. Cancer-related genes
that map to overlapping differential gains or losses
between BRCA1-mutated tumors and BLBCs vs. luminal
tumors are shown in Additional File 6.

Table 2 Overlapping gains and losses that differentiate BLBCs and BRCA1-mutated tumors from luminal breast tumors

a Chr - region Start (Mb) End (Mb) peaks (Mb) BRCA1-related peaks (Mb) BLBC

Gains 1p 58.05 65.50 62.00 61.20

2p-1 23.35 25.95 26.45 27.45

2p-2 56.80 65.20 60.85 63.95

3q-1 151.00 161.10 150.85 154.85

3q-2 175.80 186.40 178.55 179.80

6p-1 4.30 29.75 10.90, 19.20 14.05

6p-2 37.05 58.65 42.60, 53.85 36.65

6q-1 90.35 90.75 86.50 91.00

6q-2 105.20 112.30 107.15 107.75

6q-3 115.00 120.40 no peak in region

6q-4 123.55 138.75 125.55 135.60

7q-1 132.80 139.40 134.40 130.25

7q-2 155.15 157.65 156.95 157.65

8q 127.40 132.95 120.95 121.95, 135.3

10p-1 1.30 12.45 5.10 6.45

10p-2 25.65 30.70 24.90 29.20

12p 0.25 11.60 0.25, 16.10 0.25

13q 101.25 107.00 99.55 110.35

19q 36.50 41.75 39.15 41.10

Losses 3p 53.00 53.25 53.85 62.55

4p 15.65 27.05 18.55 11.00, 26.65

5q-1 50.05 146.95 57.70, 70.75, 89.75,102.30, 116.25, 133.80 70.05, 89.85, 108.60,118.55, 136.30

5q-2 161.40 171.20 161.05, 178.30 157.30

10q-1 80.65 95.50 83.30, 90.15 91.05

10q-2 105.55 111.35 109.70 108.60

12q-1 47.70 48.35 no peak in region 42.15

12q-2 54.30 59.25 55.25 58.40

14q-1 38.30 44.75 40.65 36.35

14q-2 48.35 92.95 57.35, 79.90, 98.00 55.20, 66.15, 81.0, 95.05

15q 35.10 49.65 44.40 33.70, 42.85

b Chr - region Start (Mb) End (Mb) peaks (Mb)

Gains 1q 176.70 215.40 177.35, 202.75

8p 35.95 38.90 41.5

16p 4.30 27.75 15.8

Losses 6q-1 79.05 87.25 82.35

6q-2 142.75 149.25 no peak in region

6q-3 156.90 157.85 160.05

11q 104.45 125.35 112.30, 126.60

13q 91.70 95.50 99.1

16q 45.15 88.50 52.30, 79.40

Table 2: a. Overlapping differential CNAs of BLBCs and BRCA1-mutated breast tumors vs luminal breast tumors. b. Overlapping differential CNAs of luminal breast
tumors vs BRCA1-mutated breast tumors and BLBCs.

Differential gains and losses determined by comparative-KC-SMART (Figure 1b-c). a) Overlapping regions that differentiate BRCA1-mutated tumors and BLBCs from
luminal tumors. b) overlapping regions that differentiate luminal-J and luminal-H tumors from BLBC/BRCA1-mutated tumors. KSE peak locations are listed for all
tumor groups; peaks in italics fall just outside the region of overlap.
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TP53 mutated (n=8)
TP53 wild type (n=23)

Comparative KC-SMART profiles of TP53 mutated vs. TP53 wild type (Luminal-H) breast tumors

Figure 3 Comparative-KC-SMART analysis of aCGH data from luminal breast tumors. The luminal-H tumor group was divided into 8 TP53-
mutated tumors and 23 TP53 wild-type tumors. KSE curves of the TP53-mutated tumors (blue) and the TP53 wild-type tumors (gray) are shown
for gains and losses separately. Comparative-KC-SMART analysis did not detect significant differences between the two tumor groups.
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Figure 4 Median number of aberrations. a: Median amount of aberrations of BRCA1-mutated tumors and BLBCs. Normalized aCGH profiles
from individual tumors were smoothed using KC-SMART (kernel width: 20 Mb) for a range of thresholds (KSE cutoff, x-axis). Gains exceeding a
positive threshold and losses exceeding the same negative threshold were counted and the median was calculated over each tumor group.
Gray background indicates thresholds for which the average number of CNAs in the BLBC group is significantly different compared with the
luminal tumors, calculated with a two sided t-test (P < 0.01). Median amount of aberrations of (b) BRCA1-mutated tumors (blue dots) and
luminal tumors (black dots); (c) BLBCs (red dots) and luminal breast tumors (black dots); (d) luminal-H (dark gray dots) and luminal-J tumors
(light gray dots).
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Unsupervised hierarchical clustering of breast cancers
The overlapping differential gains and losses of BLBCs
and BRCA1-mutated tumors may represent regions that
discriminate BRCA1-mutated tumors and BLBCs from
luminal tumors. To test this possibility, we performed an
unsupervised hierarchical clustering analysis. First, we
smoothed each tumor profile with KC-SMART to
remove experimental noise. Then, for each of the regio-
nal aberrations specific for the BLBC/BRCA1-mutated
tumors or the luminal tumors (shown in Table 2), we cal-
culated the mean of all KSE values within the region for
all tumors. We used the mean KSE values to perform a
hierarchical clustering of samples and regions using com-
plete linkage and pearson correlation (Figure 5). The
tumors clustered in two branches: 6 luminal tumors and
47 of the 48 BLBCs/BRCA1-mutated tumors clustered in
one branch, whereas 1 BRCA1-mutated tumor and 42 of
the 48 luminal-H/J tumors clustered in the other branch.
Interestingly, the BRCA1 and BLBC cases do not form
separate clusters but mix together, meaning that a limited
amount of regions can distinguish BLBCs and BRCA1-
mutated tumors from luminal tumors. The fact that the
luminal-H and luminal-J tumors are mixed, shows that
no unwanted biases are introduced by differences in
quality of DNA from FFPE vs. fresh-frozen tumor mate-
rial. As an additional internal control we have used the 6
luminal tumors for which DNA from FFPE and fresh-

frozen tumor tissue was both available, and each of the 6
pairs cluster together. Notably, four of the six TP53 wild-
type tumors that clustered within the BLBC/BRCA1-
mutated branch were luminal. One of the six luminal
tumors that clustered within the BLBC/BRCA1-mutated
branch also had a complex TP53 mutation, whereas only
two of the luminal tumors clustering in the luminal
branch had a complex TP53 mutation.

Discussion
BLBC is an aggressive subgroup of breast cancers for
which, so far, no druggable target has been identified. In
recent years it has become clear that phenotypic features
of a subset of BLBCs resemble those of hereditary
BRCA1-mutated breast cancers [13] and are distinctly
different from the more common luminal breast tumors.
BRCA1-mutated breast tumors are HR deficient (HRD)
and can therefore be targeted with DNA-damaging
agents or PARP inhibitors [38,39]. Because there is evi-
dence that a substantial fraction of BLBCs have HR
pathway defects [40], we set out to determine which
molecular characteristics of BRCA1-mutated tumors are
common to BLBCs but not to luminal tumors. Since
some of these characteristics are likely to be linked to
BRCA1-disfunction or the HRD phenotype, they might
provide important leads for discovery of new biomarkers
or drug targets.

Figure 5 Clustering analysis. Unsupervised hierarchical clustering of 27 BRCA1-mutated tumors, 21 BLBCs, 17 luminal-J tumors and 31 luminal-
H tumors. For each individual tumor, a KSE curve was calculated by smoothing each tumor profile with KC-SMART. A mean KSE value for was
determined for all overlapping regions of gain and loss (shown in Table 2) between BLBCs (light blue) and BRCA1-mutated tumors (dark blue),
and for the overlapping regions between the luminal-H (red) and luminal-J (pink) groups. We used two-dimensional Pearson correlation to
perform complete linkage clustering over the mean KSE values and tumors.

Holstege et al. BMC Cancer 2010, 10:654
http://www.biomedcentral.com/1471-2407/10/654

Page 11 of 15



High incidence of protein truncating TP53 mutations in
BLBC and BRCA1-mutated breast cancer
We and others have previously shown that BRCA1-
mutated breast tumors exhibit an increased frequency
of TP53 mutations due to a selective increase in com-
plex TP53 mutations such as frameshift, nonsense and
splice mutations or in-frame insertions/deletions
[10,23]. In this study, we found that almost all BRCA1-
mutated tumors and BLBCs are TP53 mutated com-
pared with 25-50% of the luminal-tumors. Interest-
ingly, 52.4% of the BRCA1-mutated breast tumors and
57.1% of the BLBCs have complex TP53 mutations,
significantly more compared with ~7% luminal tumors.
It has been suggested that the increased incidence of
complex TP53 mutations in BRCA1-mutated tumors is
a direct consequence of the genomic instability result-
ing from the DNA repair defect induced by BRCA1
loss [10,23]. Furthermore, the DSB repair defect of
BRCA1-deficient tumors might confer strong selection
pressure on mutation of TP53 in order to abrogate the
p53-dependent DNA damage checkpoint [41]. The
high frequency of TP53 mutations in non-hereditary
BLBCs might suggest that these tumors are also com-
promised in homology-directed DSB repair. To test
this possibility, it would be interesting to perform
functional assays to measure DNA damage response
and DNA repair in non-hereditary BLBCs with a (com-
plex) TP53 mutation. It has previously been suggested
that TP53 mutations, including complex TP53 muta-
tions, affecting the DNA binding domain of the p53
protein may cause resistance to several different cyto-
toxic compounds such as anthracyclins, 5FU and mito-
mycin [42,43]. However, tumors used in these studies
were primarily invasive ductal carcinomas, most of
which are likely not compromised in homology direc-
ted DSB repair. It is therefore interesting that Silver et
al. recently reported a significant association between
truncating TP53 mutations and cisplatin response in
TNBCs [44].
It is interesting that, like us, Manie et al., found an

increased frequency of complex TP53 mutations in
BRCA1-mutated breast tumors; however, they did not
detect this feature in BLBCs [10,23]. It is possible that
BLBCs are more effectively identified by gene expression
profiling than by immunohistochemical selection of
tumors negative for ER/PR/HER2 and positive for CK5/
6, CK14 or EGFR, as done by Manie et al. Of note, the
TP53 mutation analyses for the BRCA1-mutated breast
tumors and the BLBCs described in this manuscript
were performed in different labs, thereby reducing the
possibility that the detection of a high incidence of com-
plex/truncating TP53 mutations is due to a methodical
artifact.

Recurrent CNAs in luminal tumors
Luminal breast tumors are mostly TP53 wild type, or
they have a common TP53 hotspot mutation. Interest-
ingly, the chromosome 1q gain and 16q loss (1q/16q)
differentiate luminal tumors from BRCA1-mutated/
BLBC tumors. Co-occurrence of these aberrations
results from an unbalanced translocation event [45,46]
and has been associated with TP53 wild-type status, low
tumor grade and good prognosis [47]. Indeed, many of
the ER-positive luminal tumors show the 1q/16q co-
occurrence. The peak of the chromosome 1q gain of the
luminal tumor group maps to 202.75 Mb, with the
MDM4 gene at (202.81 Mb), which is a negative regula-
tor of p53 [48]. The 16q loss has two peaks, the first
maps near the bromodomain 7 (BRD7) gene, associated
with downregulation of p53 [49], CYLD, loss of which is
associated with oncogenesis by activation of NF-ΚB sig-
naling [50], and the retinoblastoma-like 2 gene (RBL2/
p130), involved in G1S cell cycle control and senescence
[51]. The second peak on the 16q loss maps to one of
the most active common fragile sites in the human gen-
ome, FRA16 D (associated with the WWOX gene),
which could underlie the translocation process [52].
Together, these data suggest that, whereas development
of BLBCs or BRCA1-mutated tumors depends on TP53
mutation, indirect p53 downregulation may be sufficient
for luminal tumor development.

aCGH profiles of BRCA1-mutated breast tumors
resemble BLBCs
BRCA1-mutated breast tumors are associated with a
specific aCGH profile which exhibits features that can
be used to identify hereditary breast tumors for which
information on BRCA1-mutation is not available
[19,22,24]. Several previous studies have reported a
specific aCGH profile for BLBCs different from other
breast cancer subtypes [53,54]. Interestingly, compari-
son of CNAs from BRCA1-mutated tumors and BLBCs
using comparative-KC-SMART yielded a limited set
BRCA1- or BLBC-specific aberrations. The peaks of
most gains and losses of BRCA1-mutated tumors and
BLBCs co-localized, suggesting a common selection
pressure during development of these tumors. Indeed,
we found that BRCA1-mutated tumors and BLBCs
showed many overlapping CNAs, including the chro-
mosome 3q gain and the chromosome 5q loss. Impor-
tantly, clustering on the basis of these regions
separated BLBCs and BRCA1-mutated breast tumors
from luminal breast tumors.

BRCA1 and TP53 involvement in the BLBC phenotype
Our data show that BRCA1-mutated tumors share mole-
cular characteristics of undifferentiated BLBCs. It has
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previously been proposed that BRCA1-mutation is asso-
ciated with BLBC because BRCA1 function has stem
cell regulation properties and because loss of BRCA1
impairs DNA damage repair during epithelial cell differ-
entiation [55]. However, it is also possible that a defect
in DNA repair mechanisms is primarily harmful in pro-
liferating cells, which are more prone to acquire genetic
lesions during cell division. Notably, proliferating cells
in the premenopausal mammary gland have been shown
to rarely express hormone receptors whereas hormone
receptor-positive cells only rarely divide [56]. In line
with this, and in contrast to most breast tumors, both
BRCA1-mutated tumors and BLBCs often occur in pre-
menopausal breast epithelia [57]. Therefore, we propose
that inadequate DNA repair mechanisms result in
increased susceptibility to genomic instability in the pro-
liferating hormone receptor-negative cells of the preme-
nopausal mammary gland. Furthermore, we propose
that because of this, hormone receptor-negative cells
depend heavily on p53-mediated cell cycle arrest and
apoptosis to remain untransformed. This line of thought
lends great importance to TP53 mutation in TNBC.

Conclusions
Our data suggest that a small subset of genomic regions
may be useful for the identification of BRCA1-like
BLBCs, which exhibit a high frequency of TP53 muta-
tions, especially protein truncating mutations. These fea-
tures of basal-like breast cancers might be useful for the
identification of tumors with increased sensitivity to
(high-dose or dose-dense) alkylating agents and PARP
inhibitors. In support of this, it was recently reported
that TP53 mutations in non-inflammatory BLBCs are
highly predictive of complete response to dose-dense
neoadjuvant chemotherapy with epirubicine-cyclopho-
sphamide [58]. Furthermore, a significant positive corre-
lation was found between truncating TP53 mutations
and cisplatin response in TNBCs [44]. Together, these
and our data support further investigation of (protein
truncating) TP53 mutation status as a potential predic-
tor of chemotherapy responsiveness in solid tumors.

Additional material

Additional file 1: fresh frozen tissue vs. FFPE. When comparing the
aCGH profiles acquired by hybridization of DNA isolated from formalin
fixed paraffin embedded tissue (FFPE) and fresh-frozen tissues we
noticed that the log2 ratios obtained from the different DNA sources
have different distributions. Therefore, we transformed both the FFPE
and the fresh frozen datasets to have a mean of zero and a standard
deviation of one, using all tumors (both luminal and basal-like) from the
Horlings dataset, and all tumors (both BRCA1-mutated and luminal) from
the Joosse dataset. The influence of this transformation is shown for the
six tumors that were included in the aCGH datasets from both the
luminal-H, and luminal-J tumor groups, hybridized from DNA isolated
from fresh frozen tissue and FFPE material respectively. For each tumor,

we compared the log2 ratios from both platforms. Red line: x = y (if log2
ratios of FFPE and fresh frozen tumor data would be equal), Blue line:
ratio of the factors used to scale both datasets to a standard deviation of
1.

Additional file 2: Frequency of TP53 mutations in BRCA1-mutated
tumors and BLBCs. TP53 exons 2-9 were sequenced for 21/27 of the
BRCA1-mutated tumors and for 13/21 of the luminal-J tumors. TP53
exons 2-11 were sequenced for all BLBCs and luminal-H tumors (for TP53
mutation data, see Table 1).

Additional file 3: Regions of differential gains and losses detected
by comparative-KC-SMART analyses between the BRCA1-mutated
tumors and BLBCs. Genes that map within these regions and locations
of the KSE peaks.

Additional file 4: Regions of differential gains and losses detected
by comparative-KC-SMART analyses in (a) the BRCA1-mutated
tumors and BLBCs vs. luminal tumors, genes in overlapping regions
are shown in green. KSE peak locations are given for both tumor
groups (b) luminal tumors vs. BRCA1-mutated and BLBC tumor groups,
KSE peak locations are given for both tumor groups.

Additional file 5: Line plots. Normalized aCGH profiles of each
individual tumor were smoothed with KC-SMART. Normalization was
done by transformation of the log2 ratios from the FFPE aCGH dataset (i.
e. all log2 ratios from BRCA1-mutated and luminal-J tumors taken
together) and the fresh frozen dataset (see Methods section). The
position of gains and exceeding the standard deviation of 1 are shown
in red, the position of losses exceeding the standard deviation of -1 are
shown in blue.

Additional file 6: Cancer related genes in overlapping gains and
losses found by comparative-KC-SMART. Cancer-related genes that
map to the differential gains and losses determined by comparative-KC-
SMART (Figure 2b/c). a) Cancer related genes that map in the
overlapping regions that differentiate BRCA1-mutated and BLBC tumors
from luminal tumors. b) Cancer related genes that map in the
overlapping regions that differentiate luminal tumors from BLBC/BRCA1-
mutated tumors. KSE peak locations are listed for all tumor groups, peaks
in italics fall just outside the region of overlap. Cancer related genes are
taken from the Atlas of Genetics and Cytogenetics in Oncology and
Haematology [59] and the cancer gene census [60]. The cancer related
genes closest to the KSE peak locations are shown in red for the BRCA1-
mutated tumors, and in blue for the BLBCs tumors. When the same gene
maps closest the peaks of both KSE-curves it is shown in green. For the
luminal tumor group, cancer related genes closest to the KSE peak
locations are shown in bold.
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