
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Risk aversion and social networks

Kovarik, J.; van der Leij, M.J.

Publication date
2011
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Kovarik, J., & van der Leij, M. J. (2011). Risk aversion and social networks. (Tinbergen
Institute discussion paper; No. TI 2011-072). Tinbergen Institute.
http://www.tinbergen.nl/discussionpapers/11072.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/risk-aversion-and-social-networks(276aae78-5962-4b44-a08e-4f06525c939b).html
http://www.tinbergen.nl/discussionpapers/11072.pdf


 TI 2011-072/1 
Tinbergen Institute Discussion Paper 

 
Risk Aversion and Social Networks 

 Jaromir Kovarik1 

Marco J. van der Leij2 
 

1 University of the Basque Country; 
2 Faculty of Economics and Business, University of Amsterdam, and Tinbergen 
Institute. 

 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus 
University Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, 
with the ambition to support innovative research and offer top quality academic education in 
core areas of finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Risk aversion and social networks∗
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Abstract

Agents involved in the formation of a social or economic network typically face uncer-
tainty about the benefits of creating a link. However, the interplay of such uncertainty and
risk attitudes has been neglected in the network formation literature. We propose a dynamic
network formation model that builds on standard microeconomic concepts of utility max-
imization, incomplete information, and risk aversion. The model predicts that an agent’s
risk aversion is correlated with her network clustering coefficients, but not with her degree.
We discover a mechanism that generates a correlation between network position and payoffs
of individuals. Moreover, we show how the generated network architecture depends on the
uncertainty in the environment it is embedded in.
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1 Introduction

Social networks play an important role in many socio-economic settings, and it has been docu-

mented that the particular network architectures influence both global and individual economic

outcomes.1 It is then important to understand both how and why networks are formed.

Risk and uncertainty are ubiquitous and individual attitudes toward risk constitute a funda-

mental element of decision-making in economics and finance (Pratt, 1964; Arrow, 1965). Risk

is also present while people form ties with others, but so far the role of risk and risk aversion in

network formation has been neglected in the literature.

Economic agents form relationships with others in order to generate benefits. Network links

provide access to information, ideas, different markets, or represent joint creation of innovations.2

However, in many situations the potential benefits from linking to a certain agent are not fully

observable before the establishment of the relationship. Hence, creating connections can be

risky. In network contexts, people can avoid such risky decisions by connecting to individuals

about whom they have more information. In this way, risk aversion may play an important role

in network formation processes.

In this paper, we propose a network formation model, building on standard microeconomic

concepts of utility maximization, incomplete information, and risk aversion. In the model, the

linking decision is endogenized and individuals can create links in two ways. They can link up

either locally to neighbors of their neighbors or globally, using random search in the population.

Naturally, creating links randomly is more uncertain and aversion to risk influences which type

of link a node is willing to create.

The introduction of risk aversion and risk exposure to network formation generates several

questions. Can different network positions of individuals be traced back to heterogeneity in

risk attitudes? If so, how does it affect the payoff distribution? How does higher exposure

to risk and uncertainty influence linking decisions and which effect does it have on generated

architectures? Given the relevance of networks for economic outcomes, answering these questions

can contribute to a better understanding of wealth distribution in networked populations. It also

provides an opportunity to evaluate the impact of exogenous environmental changes, such as

natural disasters, financial crises, emergence of epidemics or policy interventions, onto networked

societies.

In our model, individuals sequentially enter the population. Initially, an entering individual,

say, A does not know anyone, and acquaints a random individual B. By interacting with B, A

learns the benefits from the interaction with B, but she also learns about the potential benefits

1See Goyal (2007) and Jackson (2008) for reviews.
2See Jackson (2010) for a survey of economic applications.

1



from the neighbors of B.3 With this information, A then has to make a choice: does she acquaint

one of B’s neighbors about whom she is now informed, or does she leave the "circle of friends"

of B and meet some random stranger?

We argue that A connects to a neighbor of B if at least one of them is attractive enough

for A. Otherwise, she will create a link to a random individual in the population. There are

two crucial factors for such a decision: first, the beliefs about the benefits one could get from

neighbors of neighbors versus that from strangers, and second, the amount of risk aversion of

the individual, because creating a link to a random node is much riskier than creating a link to

a neighbor of a neighbor, about whom one has more information.

We show that in the resulting network, risk averse individuals tend to have neighborhoods

that are highly clustered; that is, neighbors of a risk averse individual are more likely to be

neighbors as well. Thus, we are partly able to trace back heterogeneity in local clustering to

heterogeneity in risk aversion. On the other hand, there is no relation between risk attitudes and

degree. Since the link between the network position and risk aversion is new in the literature,

in Section 5 we empirically test the predictions of the model. We find that these predictions are

confirmed in the data.

The main findings of the model arise from the microfoundation of the network formation

process. First, we show that there is a positive relation between the clustering coefficient and

expected payoffs of agents. There are two reasons that induce people to link through network-

based meetings and, consequently, increase their clustering coefficient: risk aversion and at-

tractive neighborhoods. In the former case, risk averse people accept relatively lower payoffs

and drive the payoff of highly clustered individuals down, while the latter effect makes people

link through the network, because they link to attractive neighbors of their neighbors, rising the

payoffs of highly clustered agents. We show that the latter effect outperforms the former.

Second, relating the economic fundamentals of the environment to linking decision allows to

make predictions about the shape of generated networks. We show that the linking decisions

of individuals and, consequently, the whole network architecture depend on the riskiness of the

environment. More precisely, the volatility of benefits from linking to "strangers" generates more

clustered networks and allows us to rank the in-degree distribution in the sense of second-order

stochastic dominance. If the environment becomes more risky, the number of links of highly

connected individuals increases, while the number of links of less connected agents decreases.

Hence, more risky environments generate more unequal networks.

Our paper makes three important contributions to social network analysis. First, the pro-

posed network formation process has solid behavioral foundations as in economic models, but at

3The idea that agents learn more about their local neighborhood than about nodes outside the local network
is natural (Galleoti et al., 2010; Gallo, 2009) and has been confirmed empirically by Fafchamps, Goyal and Van
der Leij (2010).
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the same time our model is empirically verifiable as in statistical mechanics models, synergizing

the economic and physics approach to network formation (see Jackson, 2006, for a discussion of

this issue).4

Second, we discover a new mechanism that relates network structure to individual payoffs.

This mechanism differs starkly from the more traditional, sociological explanations (Granovetter,

1973; Coleman, 1988; Burt, 1995). In those sociological theories, the social network is assumed to

be rigid, and behavioral processes taking place on the network allow some individuals to benefit

more from their (given) network position than others. In contrast, in our model it is the network

formation process that creates a relation between clustering and payoffs. Individuals learn

about their network neighborhood during the network formation process. If this information

or experience is particularly positive, then the individual does not leave her neighborhood, and

therefore any additional tie will be created within her local network. Only those who happen to

get into a bad neighborhood have incentives to leave and try to form “random” ties. We may

therefore call this mechanism a “good neighborhood effect”.5

The last contribution lies in the linkage between the environment the network is embedded

in (characterized by the distribution of payoffs from linking), on the one hand and the resulting

network architecture and expected payoffs, on the other. Jackson and Rogers (2007) show that

more unequal networks lower the welfare of the population. However, their model is mech-

anical and cannot predict under which conditions the network is to be expected more or less

unequal. We show that shocks increasing the volatility of potential benefits from relationships

make people rely more on local neighborhoods, affecting the clustering and degree distribution

of the global architecture.6 This may help to evaluate policies in contexts, where networks play

a role. A particular intervention will affect both behavior and the underlying social organization

and, therefore, final policy implications cannot be correctly evaluated without a proper under-

standing of how the network itself will react to the proposed policy. Hence, abstracting away

the endogenous network formation process may result in undesirable policy decisions.

4Campbell (2008) also microfoundates the decision to link globally or locally. He argues that people link to
neighbors of their neighbors in order to signal their willingness to cooperate. See also Vigier (2009) or Bramoullé
& Rogers (2009). These models are purely theoretical, but we provide empirical evidence that risk aversion plays
an important role in the network formation process. Babus & Ule (2008), Gallo (2009) and König, Tessone &
Zenou (2009) start from the standard game theoretical models, but propose versions that are empirically more
realistic.

5Naturally, this mechanism does not preclude the existence of the other mentioned mechanisms. However, we
do point out that the empirical identification of those sociological theories becomes much more challenging in the
presence of the “good neighborhood effect”. Data from a simple non-repeated survey measuring networks and
individual performance, such as has been common in the sociological and management science literature (e.g. Burt,
1995), would not allow the researcher to separate the effect of, say, structural holes from our mechanism. These
problems are in line with the identification problems recognized in the social interaction/peer effects literature
(Manski, 1993; Moffitt, 2001).

6The present model does not allow for relinking, but we believe that the same mechanism would also operate
when agents decide which links to sever or to whom to redirect their links.
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We proceed our paper as follows. In Section 2 we present the model and establish the relation

between network structure and risk aversion. In Sections 3 and 4 we continue the theoretical

analysis linking the network structure and payoffs, and analyze the effect of contextual variables

on the resulting architecture. Section 5 tests the theoretical predictions, regarding network

structure and risk aversion. In Section 6 we discuss potential extensions and applications of the

model. Section 7 concludes. An illustration of how the model changes if we relax one of the

model’s assumption, model simulations and proofs are relegated to Appendix.

2 The Model

In this section, we propose a network formation model. The model is a variant of the models in

Jackson and Rogers (2007) and Vázquez (2003), but unlike those paper, we base the model on

standard economic assumptions. We formally characterize the network structures generated by

the model and relate individual network characteristics to their risk attitudes.

Let N(t) be the population of agents existing at time t. The directed network among those

agents is denoted by G(t), and gij(t) = 1 denotes a directed link from i to j at time t. Define

Ni(t) = {j : gij(t) = 1} as the outdegree neighborhood of individual i at time t. For notational

convenience, dependence on t will be dropped if confusion is unlikely.

Network formation occurs through the following dynamic process. Each period one new

player enters the population. This player is identified by its entrance period i. We assume that

individuals have a capacity constraint with respect to outdegree, and agent i is only able to have

m links pointing outwards, which it creates when entering the network. On the other hand,

we assume that individuals do not have capacity constraints with respect to the in-degree, and

therefore no individual j refuses a link ij if offered by i. Links are only created by the entering

node i at time of entrance. Afterwards links cannot be changed.7

The benefits node i gets from linking with an existing node j ∈ N(i) ≡ {0, 1, . . . , i − 1} is

denoted as uij, which is drawn from an i.i.d. distribution F having support on the interval [a, b].

This distribution (but not the realizations) is common knowledge and has mean ū. Naturally,

the assumption that uij is independently distributed for each i and j is a very strong assumption.

For example, it excludes the possibility that some nodes have intrinsic traits vj that make them

more beneficial for any node i. It also excludes any (indirect) network effects once the network

is in place. As we will see, even this simplest case gives rise to a relation between network

structure, risk aversion and payoffs, such that it is best to focus on this case first. Later, in

Section 6, we explore deviations from the independence assumptions.

7The network formation process is initialized by letting the first m + 1 agents create a link with all their
predecessors, that is, each agent k ∈ {0, . . . , m} creates k−1 links, such that gki = 1 if i < k, and gki = 0 if i > k.
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Let Ui = Ui(
∑
Ni

uij) be the (Bernoulli) utility function of i. This utility is strictly increasing

and concave with a constant risk premium ri, such that node i is indifferent between a sure benefit

of ū−ri against a random benefit drawn from F , that is Ui(x+ ū−ri) = E[Ui(x+uij)] for all x.

Let individuals differ in their risk attitudes. In particular, we assume that there are two levels

of risk aversion with risk premium, rH and rL, with u − b < rL < rH < u− a. A new node i

has risk premium ri = rH with probability θ, and ri = rL with 1− θ.8

The decision of node i to link with m nodes j1, . . . , jm goes as follows. When entering,

individual i initially does not have information on the benefits nor on the number of links of

the other individuals. Nonetheless, individual i may obtain information on j by connecting to

a friend of j, say k, who is connected to j, gkj = 1.
9 The new node i first connects with one

randomly drawn existing node j1. We assume that by connecting to j1, individual i obtains

a perfect signal on the benefits of the out-degree neighbors of j1.
10 Individual i then makes a

decision on whom to connect next. If

max
k∈Nj1

uik > ū− ri (1)

then i connects to the node k ∈ Nj1 that maximizes uik, otherwise i connects to a random node

outside Nj1 . Let this second node to which i links be denoted by j2. By connecting to j2 it

again learns about the benefits of the nodes in Nj2 . Starting from j2 the process is repeated,

that is, if

max
k∈Nj2

uik > ū− ri,

then i connects to the node k ∈ Nj2 that maximizes uik, otherwise i connects to a random node

outside Nj2 .
11 The linking process of i stops when i has formed m links, after which agent

i+ 1 enters the network, and starts to create links. Figure 1 illustrates one step of the network

formation process when m = 3.12

8We would like to stress here that all the results of this paper would still work if we assumed more complex
distributions of risk aversion.

9An alternative approach is to consider a process that creates homophily with respect to quality, such as in
Montgomery (1991). In that case, linking to, say, a high type would give us information on the type of the
neighbors.

10As in Jackson and Rogers (2007) we assume that network search is directed, in particular, channeled through
out-degree links. Allowing for network search through in-degree links would complicate the analysis significantly.
See Jackson and Rogers (2007) for details.

11We assume that i does not recall (or is unable to contact) the neighbors of previously visited links, that is, at
the s-th step, the agent i is unable to recall the benefits from linking to agents in neighborhoods of N1, . . . , Ns−1.
This is only in order to keep the model tractable, but has no major implications on the results. If we would allow
for aggregation of information on neighbors, the probability to link a friend would steadily increase during the m
linking steps.

12 It is worth noting that with the decision rule in (1), we assume a certain bounded rationality of agents. More
precisely, suppose that i connects to j in the first linking decision and k, a neighbor of j, afterwards. If j linked up
locally to a neighbor of k in one of the previous rounds, then there exists a node l who is an out-degree neighbor
of both j and k. Hence, i observed l after the first linking, but has not connected to him (since he linked up to k),
and observes l again after linking to k. This means that i observes again the same node, about whom he has full
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Figure 1: Example of link formation of a new node i, when m = 3, u = .5 and ri = .1. (a) Node
i creates a random link to j, and learns about the benefits of linking to j and j’s neighbors. A
link to k gives the highest benefit to i, and since uik = .8 > u− ri = .4, a link to k is preferred
to a random link. (b) Node i creates a link to k and learns about the benefits of linking to k’s
neighbors. (c) Since the benefits of linking to a neighbor of k are all lower than u− ri, node i
creates a link to a random node in some other part of the network.

We first analyze the statistical properties of the network that is generated by the above

network formation process, and we compare it to the structrual properties commonly observed in

social networks (see Jackson and Rogers, 2007). In particular, we will look at degree distribution

and local clustering. Given the complexity of the problem (especially due to the dependence of

meetings on the network structure), we rely on mean-field analysis of the model. The mean-field

approach approximates the complex evolution of a stochastic system by a simpler deterministic

system, in which the evolution is determined by the expected change. In order to check the

precision of the approximations, we provide simulation results for particular cases.

The first step is to derive the probability that an agent entering at time t+1 is willing to create

a link with a particular node i having in-degree di(t) =
∑
j gji(t). Define p(r) as the probability

that an entering node t + 1 of type r, having already linked to j1, . . . , js : 0 < s < m agents,

decides to link to a friend of js instead of linking to someone randomly. That is, p(r) measures

the tendency to search locally through the network, instead of randomly. This probability equals

the probability that at least one of m friends of js is more attractive than the benefits of linking

randomly, and is therefore given by:

p(r) = 1− F (ū− r)m. (2)

Note that this probability depends on the risk aversion of agent t+1, such that p(rH) > p(rL).

information. Since this occurs with positive (non-negligible) probability, there is a certain (expected) utility loss
from linking to a neighbor of a neighbor anytime agents link through the network. Completely rational agents
should take this potential utility loss into account while deciding whether to connect locally or through random
search. In the main model, we abstract from this possibility, but in the appendix, we illustrate how taking this
into account affects the linking decision of individual for m = 3 and how it adds substantial complexity to the
model.
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At entrance of agent t+1 the process is as follows: agent t+1 first links up randomly. Thus,

for a particular agent i < t+1 the probability of receiving this link is 1t . Once this link has been

created, t+ 1 faces m− 1 decisions between linking locally through the network (by observing

the neighbors of his neighbors), or linking to a randomly chosen agent from the population. In

this case, the probability of i to increase its degree in one of these decisions is approximately

1− p(rt+1)

t
+ p(rt+1)

di(t)

t

1

m
, (3)

where the first part corresponds to the probability that t + 1 decides for a random search and

links up to i. The second part of the expression is the joint probability of three events: (i) t+1

finds it attractive to connect through the network structure, p(rt+1), (ii) she has connected to

one of the di (in-degree) neighbors j of i in the previous decision, di(t)/t,
13 and (iii) i has the

largest gain for t+ 1 out of the (outdegree) neighbors of j, 1/m.

Given that each link i < t+ 1 can receive at most one link in each period, that is, multiple

links are ruled out, we can write the deterministic change of i’s in-degree in period t as

ddi(t)

dt
=
1

t
+ (m− 1)

[
1− pθ

t
+ pθ

di(t)

t

1

m

]
. (4)

where pθ = θp(rH) + (1− θ)p(rL) is the expected probability that an agent finds it optimal to

follow a network-based meeting.

The resulting differential equation (4) deserves some attention. Expression (4) shows that

the proposed linking process leads to a similar evolution of the degree distribution in the present

setting, as in Jackson and Rogers (2007).14 The right-hand side of (4) is a weighted sum of

uniform random matching and linear preferential attachment.15 The equation (4) can be easily

solved and, using that the initial in-degree of entering agents is 0, the in-degree of an agent i at

period t is

di(t) =

[
m(m+ pθ −mpθ)

(m− 1)pθ

](
t

i

) (m−1)pθ
m

−
m(m+ pθ −mpθ)

(m− 1)pθ
. (5)

A second important feature of socially generated social networks is the clustering coefficient.

The clustering coefficient of individual i is the fraction of i’s direct neighbors that are neighbors

themselves, thus measuring how much overlap there is in friendship circles. There are several

definitions of the clustering coefficient depending on the way one keeps track of the direction of

13This approximation does not take into account that there is positive assortativity in the network. If indegree
neighbor j is found through local network search, then the probability that j is found increases in the degree
of j, dj , and given that there is a positive degree correlation, in the degree of i, di, as well. Simulation results
obtainable from the authors suggest that this ignorance does not have major implications on the results.

14The idea behind (3) goes into the direction of Vázquez (2003), where in each moment the entering agent
decides whether to follow the network or to search randomly, but as we show here this can be easily merged into
the process proposed by Jackson and Rogers (2007).

15Hence, our model also encompass the properties of Pennock et al. (2002), who use a similar equation to show
that it can generate a large set of empirically plausible unimodel distributions of nodes observed in Internet.
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the links.16 We focus on one measure, called the fraction of transitive triples. In the terms of

our model, it measures the fraction of times, in which an agent i connects to agent k, who has

an in-going link from j who at the same time has an in-going link from i. Formally:

Ci(g) =

∑
j �=i;k �=i,j gijgjkgik∑
j �=i;k �=i,j gijgjk

. (6)

Again there are several definitions of the average clustering coefficients in the population.

Here, we focus on the definition that measures the total fraction of transitive triples in the

network. Formally,

C(g) =

∑
i;j �=i;k �=i,j gijgjkgik∑
i;j �=i;k �=i,j gijgjk

. (7)

We first show that the proposed network formation process, based on the utility maximization

of agents, exhibit typical features of empirical social networks:17

Theorem 1 Under mean field approximation,

(i) if m > 1 and p(rL) > 0, the (complementary) cumulative distribution function of in-

degrees in period t can be characterized as

1− Ft(d) =




m(m+pθ−mpθ)
(m−1)pθ

d+ m(m+pθ−mpθ)
(m−1)pθ




m
(m−1)pθ

(ii) the average clustering coefficient in the network satisfies

C(g) ≥
pθ
m2
(m− 1). (8)

Theorem 1 shows that - as long as there is a positive probability of low-risk individuals to

find an attractive agent through network - f(d) ∝ d
−( m

(m−1)pθ
+1)

for large d; that is, the in-

degree distribution of agents for large d has a power-law distribution in the tail, and the average

clustering coefficient will be strictly positive independently of other characteristics of the model.

We now turn to the relation between an agent’s risk aversion and her position in the network.

We have the following proposition:

Proposition 2 The in-degree of i, di(t) is independent of ri, the degree of risk aversion of i,

while rH types have a higher fraction of transitive triples than rL types.

16See Wasserman and Faust (1994) or Newman (2003) for discussions on this issue.
17All proofs can be found in Appendix.
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By assumption of the model the outdegree of all individuals is identical, m, and therefore

independent of risk aversion. Expression (5) shows that the same also holds for in-degree. On

average, the in-degree of both rH and rL types depends on the distribution of risk aversion in

the population, determined by θ, rather than on i’s type. This is due to two facts; first, because

link formation is one-sided, that is, only the entering agent t+ 1 decides on the formation of a

link, and second, because the distribution of risk aversion in the population is independent of

the distribution of utilities that i conveys for entering agent t + 1. As a result, entering node

t + 1 does not take into account the risk attitude of agents while deciding whether to connect

to them or not.

Proposition 2 also shows that in our model more risk averse types with rH have a higher

fraction of transitive triples than rL types. The intuition is that random links do not contribute

to closing triads, whenever the network is large. The fact that rH types have fewer random links

implies that they have larger clustering.

To complement the results of this section, we provide simulation results of the model in

the appendix. The motivation is twofold. First, we aim to check the precision of the mean-

field approximations in previous theoretical results. The simulations confirm the findings from

Theorem 1 and Proposition 2. Second, we would like to show that the proposed network form-

ation process generates architectures, which exhibits other typical properties of empirical social

networks, namely short network distances, assortativity, and the negative clustering/degree cor-

relation. The first states that the average network distances and the largest distance between two

(reachable) nodes in real-life networks are in general low in relation to the size of the network.

The second property, assortativity, is a tendency such that high (low) degree nodes are more

likely linked to high (low) degree nodes. Last, negative clustering/degree correlation simply

suggests that the larger the degree of the node the lower its clustering coefficient. The simulated

networks exhibit these network properties (see Figures 4 and 5 in Appendix).

3 Network Position and Payoffs

One of the main interests in the study of social and economic networks is the relation between in-

dividual network position and individual economic outcomes. In particular, the relation between

clustering coefficient and payoffs has raised some debate. On the one hand, the theory of net-

work closure (Coleman, 1988) argues that local clustering is beneficial, because it allows for

better monitoring, which enforces more cooperation and higher trust levels (see also Granovet-

ter, 1985). On the other hand, the theory of structural holes (Burt, 1995) argues that network

positions that bridge different groups allow for better information access and control. These

structural hole positions are typically characterized by low local clustering.
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Given that our model builds on standard economic assumptions of utility maximization, we

are able to give an alternative view on the relation between clustering and payoffs. To this aim,

we first show that the expected monetary payoff depends on the type. Define the monetary

payoff of i as
∑
j∈Ni

uij .
18

Proposition 3 Suppose that rH > rL > 0. The expected monetary payoff of an individual of

type r, E[
∑
j∈Ni

uij |ri = r], is decreasing with the risk premium r.

Proposition 3 shows that, in our model, individuals with larger risk premium tend to earn

less. There is a standard economic interpretation behind this result: risk averse individuals

accept sure relatively low payoffs from second-order neighbors in order to avoid risky decisions.

Now we proceed with the analysis of the relation between the individual network position

and payoffs. By the construction of the model, there is no relation between in-degree (outdegree

and, hence, degree) and payoffs, since only the quality of outdegree neighbors are relevant for

payoffs of agents and outdegree is the same for all nodes. Therefore, we focus on clustering

coefficient.

So far, we have derived two results regarding risk aversion, Propositions 2 and 3. The

former establishes a positive relation between risk aversion of individuals and their clustering

coefficient, while the latter proposition proves that the expected payoff is negatively affected by

risk aversion. This might suggest that if there is any relation between clustering coefficient and

payoffs it should be negative. However, Theorem 4 shows that this is not the case.19

Theorem 4 For m < 5, the expected monetary payoff of individual i, conditional on her clus-

tering coefficient c, E[
∑
j∈Ni

uij |Ci = c], is (weakly) increasing in c.

At first sight, Theorem 4 seems to contradict Propositions 2 and 3. Nevertheless, a closer look

at the forces behind the formation of transitive triples (that determine the level of clustering)

reveals a more complex relation between payoffs and clustering.

There are two forces that influence this relation. Propositions 2 and 3 captures one direction:

Risk averse individuals pay a risk premium for sure payoffs from network-based linking, which

leads to larger clustering and this drives payoffs of more clustered individuals down.

However, there is a “neighborhood effect,” which goes into the opposite direction. More

precisely, people, whose neighborhoods are attractive, tend to stay within their neighborhoods,

i.e. link to the neighbors of their neighbors, increasing the individual clustering coefficient and

increasing the average payoff of highly clustered nodes.

18Utilities of individuals U(
∑

j∈Ni
uij) are non-comparable, and therefore not considered.

19We were only able to prove the theorem for m < 5. The matters are complex for larger m. However, we can
easily show that there are upper and lower bounds on the payoff conditional on clustering, both strictly increasing
in the level of clustering. Therefore, we conjecture that the theorem holds for any m.
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Theorem 4 shows that the neighborhood effect always dominates the influences from Propos-

itions 2 and 3. Note that if relatively less risk averse individuals adhere to the clustering, then

their neighbors have to be really attractive. This effect drives up the average payoffs conditional

on the level of clustering.

4 Risk Preferences and Contexts

Recent empirical literature presents evidence that who links up with whom is an endogenous pro-

cess influenced by the socioeconomic environment (de Weerdt, 2004; Krishnan & Sciubba, 2009).

Other streams of literature document how existing networks reshape when the environmental

conditions change. For instance, Goyal, van der Leij & Moraga-González (2006) report how

the structure of scientific collaboration has changed over past decades in parallel with the burst

of communication technologies, and Eeckhout & Munshi (2010) - while analyzing an informal

financial institution that brings agents together in groups - observe that participants rematch

immediately following an unexpected exogenous regulatory change. To provide an example out-

side the domain of economics, it has been documented that the emergence of HIV epidemics has

considerably affected the architecture of needle-sharing among drug users (Rothemberg et al.,

1998). Hence, networks endogenously reorganize in presence of exogenous shocks. This generate

many new questions. Which aspects of the environment trigger the endogenous adaptation of

social organization? Why and how do network architectures react to these variables?

The present framework allows us to relate how network properties depend on the economic

and social context in which the network formation takes place. If risk attitudes or the distribution

of benefits are different in one environment compared to the other, then individual decisions are

different, and so is the network formation process and the eventual network structure. Hence,

different social and economic contexts lead to different network architectures, and this may have

implications on eventual social and economic outcomes as well.

We illustrate formally how the change of the context, characterized by the distribution

function of benefits, F , interacts with risk preferences of individuals. To this aim, we assume

that agents have constant relative risk aversion utility functions with risk aversion coefficient ρi

and the payoff distribution of linking to individual j, uij, is normally distributed with mean u

and variance σ2.

Let the (Bernoulli) utility function of individual i be

Ui(x) = −
1

ρi
e−ρix. (9)

With this utility function, the risk premium of an individual will be a function of her risk-aversion

coefficient and characteristics of the payoff distribution F :

r = r(ρi, u, σ
2)
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Proposition 5 Suppose that individual i has utility function (9) with coefficient of absolute risk

aversion ρi. Let F be a cumulative distribution function of a normal distribution with mean u

and variance σ2. Then,

(i) p[r(ρi, u, σ
2)] does not depend on u, and

(ii) p[r(ρi, u, σ
2)] increases with σ2.

This result has strong implications for the model. It shows that we can observe the same

individuals in very different network position (in terms of their random vs. local search), de-

pending on the riskiness of the environment, in which a particular network is embedded. More

precisely, we show that more risky contexts will drive people to link up to neighbors of their

neighbors more often. On the other hand, a simple increases or decrease of the average benefits

will not affect the decisions of agents, as long as preferences for absolute riskiness are preserved.

Proposition 5 also has direct implications for the global structure of the model:

Theorem 6 Let F and F ′ be two normal distribution functions with means u and u′ and vari-

ances σ2 and σ′2 respectively. Consider the networks g and g′ associated with linking benefit

distributions F and F ′.

(i) If σ2 > σ′2, then the degree distribution of g′ second order stochastically dominates the

degree distribution of g, and C(g) > C(g′).

(ii) If σ2 = σ′2, then the degree distribution of g and g′ are identical and C(g) = C(g′),

independently of u and u′.

This result shows how a change of context affects the network properties. A mean preserving-

spread of the payoff distribution has a direct effect on whether the network will be more or less

random, since more risky environment enhances local, non-random search. This at the same

time affects the probabilities of incumbent nodes to receive a link. More precisely, less connected

agents, who mostly rely on global search, become less likely to receive a link, while agents above

a certain degree, whose main source of new connections is to be found through the network,

are now more likely to receive new incoming links. The global affect, stated in Theorem 6, is a

shift of degree distribution in terms of second-order stochastic dominance; a riskier environment

creates more inequality in terms of connectivity.

Concerning the local clustering of the network, riskier environments generate more clustered

network architectures. Location shift alone will affect neither the degree distribution nor local

clustering of the network.

These findings illustrate how network architectures endogenously adapt to changes of en-

vironmental variables. For instance, people might be more careful choosing close friends than
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mere acquaintanceship, leading to more clustered networks in the former case. Other examples

might be that firms’ position in technological networks can differ according to the riskiness of

the innovation in progress, and that people will search for new sexual partners more locally after

the start of the HIV epidemics. Despite that our network model does not allow for relinking,

we believe the same logic - which determines which type of connection will establish - will also

operate when individuals sever or redirect their links.

5 Empirical Analysis

In this section, we report an elicited real-life social network, and relate the social network

characteristics to risk attitudes of individuals.

The data presented here were collected within a sequence of surveys and experiments in

the spring semester of 2005 at the University of Granada, Spain.20 First-year undergraduate

students of Economics were invited to participate in the sessions. In order to stimulate the

participation, subjects were rewarded with classroom points that served to increase the final

grade in the course of Microeconomics I. Subjects were informed that the number of points

obtained during the sessions in which they would participate, contributed to their final grade in

the course in the following way: the student who obtained the highest number of points would

add three extra points (out of ten) to her final grade. Other subjects’ grade depended on how

close their performance was to the winner’s. Subjects were not informed of their own and others’

performances in any of the sessions and tasks until all sessions had ended. In this document, we

combine the data from two particular sessions: one in which the network was elicited and one

in which risk aversion was elicited.

This data set is the only one we know that contains both data on risk aversion and on

network structure, and therefore gives us a unique opportunity to directly test the predictions

from our theoretical model.

5.1 Network elicitation

All first-year students (more than 300) were invited to participate in a network elicitation survey

and a subsequent game serving to elicit their sharing preferences. The aim of the survey to elicit

relationships among subjects was to be able to study experimentally the effects of social distance

on sharing behavior, rather than the analysis of the actual underlying network structure (Brañas

et al., 2006). Nevertheless, as shown below, the network structure exhibits features traditionally

observed empirically in social and economic networks.

20The sequence of sessions carried out by the pool under scrutiny was as follows: a dictator game (March), a
GRE-type math test (beginning of April), risk aversion elicitation (end of April), network elicitation jointly with
a two-stage variation of the dictator game (May), and session containing Traveler’s dilemma and self-confidence
questionnaire (June).
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Figure 2: The network of friendship relationships between 256 undergraduate students at the
University of Granada. The colors of the nodes denote the amount of risk aversion (white: very
risk loving. red: very risk averse. grey: risk aversion not elicited).

The elicitation protocol was very simple. Subjects had to write the names of their friends in

class on a piece of paper. There was no restriction on the number of friends people could have

named. On the other hand, a special emphasis was put in the instructions to make clear to the

subjects that in the next stage of the experiment they would be given a chance to benefit one of

the friends they named. To this aim, the instructions stated: “the more friends you will name,

the lower the probability to be able to reward a particular friend of yours.” For more details on

the experimental protocol used in the network elicitation stage, we refer the reader to Brañas

et al. (2006).

Figure 2 provides a global view of the elicited social network of the 256 individuals, who

participated in the network elicitation part of the experiment. There is a giant component in

the network containing 183 nodes and thanks to the highly interconnected cluster in the center

of the graph the average distance between reachable individuals (i.e. between agents in the giant

component) is quite small (on average 7.5).

Table 1 provides a summary of the statistics of the network variables of interest: in-degree,

outdegree, degree, and clustering coefficient. In-degree of individual i gives the number of

individuals j 	= i that name i as a friend of theirs; outdegree equals the number of individuals i

names as her friends; degree is the number links of i, abstracting from the direction of the link;

clustering coefficient gives the fraction of pairs of i’s neighbors that are neighbors themselves

(ignoring direction of the links). Thus, the first three variables are measures of connectivity of

individuals, while the clustering coefficient reflects the density or interconnectivity of agents’

neighborhoods. We can see that the average values of connectivity characteristics are low in
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Obs. Mean St.Dev. Min Max

indegree 256 2.031 1.671 0 8
outdegree 256 2.031 1.444 0 6
degree 256 2.750 1.887 0 9

clustering 181 0.397 0.360 0 1

female 256 0.534 0.500 0 1
age 176 19.53 2.272 18 35
risk 187 5.39 1.702 0 10

Table 1: Summary statistics for the friendship network among 256 undergaraduate students at
the University of Granada. Individual clustering coefficient is only defined and computed for
those nodes with degree 2 or higher and therefore contains only 181 observations.

A B
A 4,4 8,3
B 3,8 0,0

Table 2: Game from the risk aversion elicitation.

comparison with other studies, as for example Leider et al. (2009). We believe that this is

due to the elicitation mechanism, which motivates to solely name close friends, rather than

acquaintances. Moreover, the value of the average clustering, .397, is an order of magnitude

larger than in a comparable randomly generated network.21

5.2 Risk aversion elicitation

The risk aversion test was performed in a session different from the network elicitation one.

There were 187 subjects who coincided in both sessions, allowing us to relate their attitudes

toward risk to their position in the class network.

To elicit risk attitudes, a variation of the standard Holt and Laury’s (2002) protocol was

used. In the first stage, subjects were asked to choose between a “two-player” game in Table 2

and a fixed amount of money. Students were told (i) they would be the row players and (ii) the

play of the column player would be simulated by a computer, which would play A with 50%

probability or B with the same probability. The aim of this exposition was to somehow check the

rationality of subjects, as playing A always leads to a higher payoff. In fact, only one subject,

who was removed from the analysis, chose to play B. Moreover, given that the column player

was a computer, neither social nor efficiency concerns were at work here. Hence, the presented

game actually represents a lottery where a rational player, i.e. player who chooses A, obtains

either 4 or 8 experimental points both with the same probability 1/2.

21The clustering of a randomly generated network with the same size and average degree would be 0.011.
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Figure 3: A histogram of the risk variable elicited from 187 students.

Each subject faced a series of 10 decisions, in which he had to decide between the game

described above or a fixed amount of money. Decision 1 was to decide between either 1 exper-

imental point for sure or to play the game; Decision 2 between 2 points for sure or the game,

and so on, until Decision 10 between 10 points for sure or the game. The number of decisions in

which the participant chooses to play the game is the elicited risk attitude we use in the present

paper. Hence, note that the variable of interest measures risk lovingness: the larger its value

the lower risk aversion.

Figure 3 shows a histogram of the risk variable. We observe a striking heterogeneity of

choices; some students behave extremely risk-averse (risk=0), and others extremely risk-loving

(risk=10). This suggests that risk aversion is not a homogenous principle, but that there is a

substantial individual heterogeneity with respect to risk attitudes.

5.3 Results

Table 3 lists the correlation coefficients of the variable measuring risk attitudes with the meas-

ures of connectivity and clustering coefficient.22 The correlations of connectivity measures are

calculated for all students participating in both the network and risk attitude elicitation, but

the correlation of the clustering coefficient with risk attitudes is calculated only for subjects,

whose degree is larger than one.23 The Table shows that there is no significant relation between

22p-values are obtained from a random permutation test on zero correlation, in which the distribution under
the null hypothesis is simulated by permuting the observations of the risk variable 100000 times and recalculating
the correlation coefficient for the permuted sample.

23Since the clustering coefficient is defined as a number of friendships between the neighbors of a node divided
by all possible friendships among them, it is not determined for people, whose degree is lower than two. Some
scholars set the value of the coefficient in such cases to zero (see, for instance, Vega-Redondo (2007)). To check the
robustness of our findings, we also performed the present analysis under this definition. The obtained results lead
to even stronger relation between the variables of interests, without affecting the relation between connectivity
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indegree outdegree degree clustering

risk
correlation -0.036 -0.002 0.003 -0.226***
p-value 0.629 0.975 0.965 0.006

Table 3: Correlation between risk attitudes and network characteristics. ***significant at 1%
level

risk attitudes of individuals and their connectivity measures, while risk and clustering coefficient

are significantly correlated. Recall that high values of risk denote a low risk aversion and the

negative correlation of the two variables thus suggests that neighbors of risk averse individuals

are more likely to be neighbors themselves.

The correlations suggest that heterogeneity in risk attitudes is related to heterogeneity in

clustering. However, it is known that network degree is negatively related to clustering as well.

To be sure that the results are not driven by this degree/clustering relation, we regress clustering

over risk attitudes, gender, degree measures, and a constant, and we report the OLS coefficients

and standard errors in Table 4. Since the network formation process creates an unspecified

autocorrelation in the dependent variable, we cannot interpret the OLS standard errors directly.

We therefore also perform a random permutation test on the null hypothesis that risk attitudes

are partially uncorrelated with clustering coefficient (controlling for other regressors), and we

report the corresponding p-value.24

The estimation results confirm the negative relation between clustering coefficient and the

variable risk. More risk averse individuals tend to have larger probability that their neighbors are

also connected, even after controlling for gender and connectivity. As seen in the table, the effect

of risk aversion is robust against the inclusion of basic connectivity measures into the regression

analysis. As a final check we perform a regression that includes the age of the participants as well.

Not all participants provided their age, and therefore we lose some observations. Nonetheless,

the results remain unaffected.

To conclude, the regression results support our theoretical predictions that risk attitudes and

network clustering are related. We would like to be cautious regarding the interpretation, though.

The data were collected for other purposes than testing our theory. That is, we did not have any

control over the friendship formation process of the students, and it is obvious that many factors

contributed to that process. We cannot exclude that some of these factors were confounding

measures and risk aversion.
24The null distribution of the random permutation test is simulated by repeatedly permuting separately the

male observations of the risk variable, and the female observations of the risk variable, in total a 100000 times,
and reestimating the regression under the obtained null hypothesis. Doing so, we maintain the difference in
risk attitudes between male and female in the simulations of the null hypothesis. The network variables are not
permuted in order to maintain the network structure and the implied correlation in the network variables.
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(1) (2) (3) (4) (5)

risk -0.039** -0.038** -0.038** -0.034** -0.037**
(0.016) (0.016) (0.016) (0.016) (0.018)

gender 0.193*** 0.197*** 0.204*** 0.195*** 0.140**
(0.056) (0.056) (0.057) (0.056) (0.060)

indegree - -0.022 - - -
(0.017)

outdegree - - -0.012 - -
(0.023)

degree - - - -0.042** -0.047**
(0.018) (0.020)

age - - - - -0.002
(0.012)

constant 0.499*** 0.553*** 0.525*** 0.625*** 0.751***
(0.099) (0.107) (0.112) (0.111) (0.283)

# obs. 146 146 146 146 117
R2 0.12 0.13 0.11 0.16 0.14

Random permutation test. H0 : βrisk = 0
p-value 0.020 0.027 0.022 0.040 0.046

Table 4: Estimation results from regressions of clustering on a risk variables and degree variables.
OLS standard errors in parentheses. **OLS coefficient significant at 5% level. ***at 1% level.
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with our mechanism, but on the other hand, in this setting of friendship formation between

undergraduate college students, we find it very hard to think of an alternative explanation for

the relation between risk aversion and clustering. On the contrary, we believe that the most

likely explanation for this relation is that students that are less risk averse, are less shy and

more open to exploring new friendships outside their current group of friends. It is exactly this

intuition that we envision, and that we model more formally here in this paper.

6 Extensions and Discussion

Our model is built on strong assumptions in order to keep it tractable. In particular the assump-

tion that benefits are identically and independently distributed is unlikely to be true. These

assumptions help us to focus on the role of risk aversion in network formation, the main ob-

jective of this paper, but it is important to understand what happens if we relax some of these

assumptions. In this section, we therefore discuss variations on the standard model.

6.1 Common Benefits from Linking

The assumption that the benefits that agents derive from their neighbors, are idiosyncratic

makes the proposed model applicable to only a few contexts. There is a large number of ap-

plications, where the potential benefits of a particular node are the same for all the members

of the population. Examples of such applications can be labor market connections, where some

individuals have better access to job opportunities, coauthorship networks, research networks

among companies etc. In terms of our model, this would make uij = uj for each i ∈ N\{j}. The

effect of this specification is that network-based linking would become more frequent, because

anytime an entering node i links up to j, who formed at least one link through the network

(say to a node k), i will create a link to k with probability one if i’s risk premium is equal or

larger than j’s one, since, given that gjk = 1 and uik = ujk = uk, uk > u− ri if ri ≥ rj . Then,

network-based search is enhanced under such a specification.

However, the main results of this paper remain unchanged. Note that the relation between

clustering and risk aversion holds, since the above argument does not hold for ri < rj , that is if

i is less risk averse than j, he does not necessarily create links to neighbors of j found through

the network. As a result, there still is a positive relation between risk aversion and clustering

coefficient, while in-degree would still be independent of risk attitudes. Similar considerations

hold for the relation between clustering and expected payoffs. The benefits an agent earns,

conditional on the way of linking are larger when linking through the network.

Since in such a specification the network-based search is enhanced the only effect would

be larger clustering coefficient and a different, more unequal degree distribution. The qualit-

ative features of generated networks would be unchanged. Therefore, our model also applies

19



to situations where the benefits of a particular node are the same for all the members of the

population.

6.2 Public Knowledge

In our model we assumed that an entering agent initially has zero information about the benefits

it can obtain by connecting to other agents. In reality, this is not always realistic. For example,

in the academic world it is always possible to find information on other scientists by looking up

their C.V.

The assumption of no prior information on the benefits of linking is easily relaxed. For

example, suppose instead that an individual i has an imperfect signal about the benefits of

linking to j, say ũij = uij + ǫij where ǫij is unobserved i.i.d. noise with zero expectation.

Initially, the entering agent i links to the agent j about whom it has the best signal, maxj ũij.

Next, the agent receives a better, perhaps perfect, signal about the neighbors of j, and again

the agent decides to link the best neighbor of j, or to link to the best outside option, that is the

node k with the best signal that is not j or a neighbor of j, maxk∈N\{j∪Nj} ũik. Agent i chooses

to link to a neighbor of j if and only if

max
k∈Nj1

uik > max
k∈N\{j∪Nj}

E[uik|ũik]− r̃i

Naturally, r̃i is smaller than ri, because given that there is some initial information on non-

neighbors, the risk of linking to a non-neighbor is smaller. Nonetheless, given that i still has a

better signal about the neighbors of j than about non-neighbors, risk aversion again plays a role;

the more risk-averse agent i, the more likely i links to a neighbor of j. This implies the same

positive relation between clustering coefficient and risk aversion. Here it is irrelevant that the

choice of non-neighbor is not random anymore, that is, agent i would choose the non-neighbor

with the best signal, but given that the benefits and the signals are still randomly distributed,

for the outside observer the choice of agent i is observably equivalent to random linking if it is

not a neighbor of j.

Note that conditional on the signal ũik, the expected benefit of linking to k, E[uik|ũik] will

be between the true benefit uik and the average benefit ū with the expected value closer to the

former when the quality of the signal is better. Therefore,

max
k∈N\{j∪Nj}

E[uik|ũik] > ū.

When agents have prior information on non-neighbors, it is therefore more likely that they choose

a “random” link than a friend of a friend, compared to the case where agents do not have such

prior information. Moreover, the better the signal on the benefits of linking to non-neighbors,
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the more likely it is that the agent chooses to link to a non-neighbor, which for the outsider is

a “random” link.

This observation allows for a direct application towards the impact of internet on network

formation. The emergence of internet has made it much easier to publish and obtain information

on other individuals. For example, it is now standard that scientists put their C.V. on their

homepage, which is then publicly available. In our model this implies that individuals have

some prior knowledge on the benefit of linking to individuals, and therefore they are much less

likely to link to a friend of a friend. That is, random linking should have become much more

prominent than local network-based linking. Evidence provided in Fafchamps, Goyal & Van der

Leij (2010) indeed suggests that this is the case.

7 Conclusion

This paper contributes to synergizing the game-theoretic and statistical mechanical models of

network formation. We introduce a simple economic reasoning into the models of Vázquez

(2003) and Jackson and Rogers (2007) and show that all the stylized facts of socially generated

networks can be derived from standard microeconomic concepts.

Moreover, we show that inherent characteristics of individuals may play an important role in

network formation and explaining empirical regularities of networks. Ex-ante individual hetero-

geneity is an issue that has been underexplored; partly in order to keep models tractable, and

partly due to the believe the network formation is an endogenous process, and that understand-

ing this endogenous process is what is most important.25 However, recent work of Fowler, Dawes

& Christakis (2009) suggests that ex-ante individual differences are very important as well. Com-

paring the network positions of identical and non-identical twins they find that about 45 % of the

variation in in-degree and clustering coefficient can be traced back to variation in genes. They

do not explore what behavioral heritable aspects lead to this variation, though. With respect to

in-degree it has been argued before that ex-ante heterogeneity in technology/potential benefits

may lead to a stronger attractiveness of some nodes, and therefore a higher in-degree.26 Since

Cesarini et al. (2009) report that a non-negligible part of risk-taking preferences of people are

due to genes, we believe that we uncover a possible heritable aspect explaining social network

positions of individuals: the variation in clustering can partly be traced back to variation in risk

25Exceptions are Galeotti, Goyal & Kamphorst (2006), and Jackson & Rogers (2005) in the economics literature,
Bianconi & Barabasi (2001) and Kong et al. (2008) in the physics literature, and Burt et al. (1998) in the sociology
literature.

26For example, Google has been able to outcompete other search engines and become a star on the WWW,
because of its superior search technology, see Barabasi (2003) and Kong et al. (2008).
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aversion among individuals.27 We hope our results will enhance the exploration of the relevance

of heterogeneity in social networks.

Other contribution of the paper is the welfare impact of social network position. Microaspects

of social positions have for long been discussed in the sociological literature (Coleman, 1988;

Granovetter, 1973 ; Burt, 1995) and only recently drawn attention from theoretical scholars

(see Ballester et al. (2006) for a recent influential reference). We adhere to this discussion by

providing a linkage between the profits of agents and their clustering coefficient.

As the last contribution, we provide an argument for why different network topologies arise

in different socioeconomic contexts, and why they may be affected by changing environment,

such as lower cost of communication and link maintenance, or external interventions or shocks

that influence the benefits from linking opportunities. Hence, our model or its variations might

provide an interesting tool for the evaluation of policies in networked contexts. Nevertheless,

whether networks indeed react this way to external shocks is an empirical question, which we

leave for future research.
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8 Appendix

8.1 Perfect rationality for m = 3

There is an important issue concerning the rationality of players for m > 2. In particular, the

clustering of the network can lead to a situation, such that anytime a node i links through

network there is a positive probability that one or more of newly observed neighbors of neighbor

have already been observed and not chosen in previous linking stages. A completely rational

individual should take this into account. Since the entering node has not linked up to such

node(s), i has information about them. This affects the mean field analysis, because the expected

payoff from linking to such neighbors of neighbors is lower than the expected payoff i gets from

observing and linking to someone i has no information about. In this section, we illustrate this

argument formally.

Denote the nodes that t+ 1 connects in each linking stage as j1, j2 and j3. First, note that

this issue never concerns the first and last linking decision, since the first is always random, while

in the last linking decision the entering nodes do not care about who they observe afterwards.

Hence, for m = 3 the only linking decision, in which he may observe someone, whom he has

already observed, is the second one. Suppose that t+1 decides to link to a node j2 ∈ Nj1(t+1)

such that j2 ∈ argmaxj∈Nj1(t+1) uij . If so, then there is a positive probability that j1 is connected

to a neighbor of j2. It this occurs there exist a node l, an out-degree neighbor of both j1 and

j2, who t+1 observes after linking to j1 and will observe after linking to j2. Furthermore, there

is an important information in the fact that t+ 1 observed l, but has not connected to him.

Formally, t+ 1 links to a j2 ∈ argmaxj∈Nj1(t+1) uij if

max
j∈Nj1(t+1)

uij −
m−1∑

s=1




C(g)s(m− s)

m
[u−

m− s

m
u−

s

m

maxj∈Nj1(t+1) uij∫

a

udF (u)]





> u− rt+1 (10)

where C(g) is the fraction of transitive triples in the population and measures the average

probability that a triangle exists. C(g) = pθ(m−1)

m2−
pθ
m

for m = 3 and reflects the average probability

that t+1 observes m− 1 new individuals and 1 individual t+1 has already been observed and

have not chosen because the utility he would reported to t+1 was lower that maxj∈Nj1(t+1) uij.

The second expression, u− m−1
m u− 1

m

∫ maxj∈Nj1(t+1) uij

a

udF (u), reflects the expected utility loss

due the fact that t+ 1 observes only m− 1 new individuals (instead of m), taking into account

the expected utility from the individual observed and unchosen in the previous linking stage.
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After some simplification of (10), we get

max
j∈Nj1(t+1)

uij −
m−1∑

s=1

C(g)ss2

ms
[u−

maxj∈Nj1(t+1) uij∫

a

udF (u)] > u− rt+1 (11)

max
j∈Nj1(t+1)

uij −

[
m−1∑

s=1

C(g)ss2

ms

]


b∫

maxj∈Nj1(t+1) uij

udF (u)


 > u− rt+1. (12)

As a result, the probability that t + 1 links through network search in its second linking

decision is

p2nd(rt+1) = 1− F


u− rt+1 +

m−1∑

s=1

C(g)ss2

ms

b∫

maxj∈Nj1(t+1) uij

udF (u)m


 > p(rt+1).

Then, the expected probability of node i < t+1 to receive a new link in t+1, analogous to

expression (4), is

ddi(t)

dt
=
1

t
+

[
1− p2nd(rt+1)

t
+ p2nd(rt+1)

di(t)

t

1

m

]
+

[
1− p(rt+1)

t
+ p(rt+1)

di(t)

t

1

m

]
. (13)

The only difference between (4) and (13) is the intermediate term. The effect of perfect

rationality is to enhance global search. In (13), it increases the probability of receiving a random

link and decreases the probability of receiving a link from a neighbor of a neighbor. The overall

effect, hence, depends on the current in-degree of each node. In particular, nodes with large

in-degrees will be negatively affected by perfect rationality, because a large fraction of nodes

they receive is through local linking. Nodes with low connectivity, on the other hand, benefit

from the form of rationality we model here, since they receive almost no links through network

anyway. Formally,
∂
ddi(t)

dt

p(r2ndt+1)
= di(t)

t
1
m −

1
t > 0 if di(t) > m. Hence, the effect of the rationality

discussed here is the following:

If di(t) > m, i receives a link with lower probability than in the original specification,

If di(t) = m, i is unaffected by the new specification,

If di(t) < m, i receives a link with higher probability in the new specification.

In sum, the effect of the perfect rationality considered here is to enhance random search.

This will affect the in-degree of each agent as a function of his connectivity. From the global

point of view, the tails of the degree distribution shift down, more frequent global search lowers

the clustering coefficient, and the distances would shrink.
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Figure 4: (a) The predicted (solid line) and simulated (crosses and circles) degree distribu-
tions. (b) The average clustering coefficient. The solid line is the predicted lower bound from
Proposition 4.

Figure 5: (a) Relation between degree and clustering., (b) Assortativity

8.2 Simulations

Results in the main text are based on the mean field approach. Therefore, it only provides

approximations. In order to check the accuracy of the predictions, we also run simulations of the

model and match them with the approximations. Moreover, there are three other stylized facts

of empirical social networks, that we wish to verify in our model through means of simulations:

short network distances, positive assortativity and the negative clustering/degree correlation.

The reader is referred to Goyal (2007) or Jackson (2008) for formal definitions and evidence.

The simulation assumes that uij is drawn from a standard uniform distribution. Agents have

a risk premium of either rL = 0 and rH = .25 with equal probability (θ = .5). We initially set

m = 2 and we generate a network of 5000 nodes. Figures 4a through 5b contain various plots for

four of the five stylized facts of observed social networks that our model predicts. The distances

are only discussed at the end of this section.
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Figure 4a contrasts the predicted in-degree distribution with the simulated one. They seem

to be very similar. Hence, we can conclude that the mean field approach approximates very

well the degree distribution generated by the model. Moreover, we distinguish between the high

(crosses) and low (circles) risk premium types. Figure 4b plots the average clustering coefficient

(in terms of fraction of transitive triples) for several values of m. The figure shows that the

clustering coefficient is indeed positive and lies above the lower bound derived in Proposition

1. In fact, the simulated values of the average clustering coefficient are well above and increase

over m, suggesting that the more connections the agents of our model form, the more clustered

the network becomes.

Figure 5a shows that our model also generates the negative clustering/degree correlation.

(Here the clustering coefficient is measured ignoring the direction of the links.) The x- and y-axes

plot the degree and clustering, respectively, and there is an obvious negative relation between

the two variables in the graph. Moreover, in this plot we also make a distinction between the

clustering coefficient of high risk-averse agents and low risk-averse agents. The plot shows that

the clustering coefficient is substantially higher for high-risk averse agents, in particular for low

degree values, where the majority of the nodes lies (see Figure 2a).

To check for assortativity, we draw a plot with the degree of a node on the x-axis and the

average degree of an out-neighboring node on the y-axis. This plot shows a positive correlation.

Nodes with high degree have also high degree neighbors, indicating positive assortativity. We

also compute the degree correlation, which is .260, well above zero.

To check for network distances, we compute the average networks distance and the largest

distance between two nodes in the resulting simulated network, again ignoring directions. The

obtained values are 5.74, and 13, respectively, thus of the order of ln(n).

8.3 Proofs

Proof of Theorem 1. Concerning part (i),(4) can be rewritten as ddi(t)dt = adi(t)t + b
t + c, where

a = (m−1)pθ
m , b = [1 + (m− 1)(1− pθ)], and c = 0. Given that m > 1 and that p(rL) > 0 ensures

pθ > 0, the first part of Lemma 1 in Jackson and Rogers (2007) applies.

As for the clustering coefficient, consider an agent i. Each agent initially creates 1 random

link and afterwards faces m − 1 decisions to either link locally or search randomly. The first

case occurs with probability p(ri). Thus the agent has on average p(ri)× (m− 1) links that are

based on network search. If k is found through network search, then it must be through j to

whom i is also linked. So we have gij = gjk = gik = 1. Each such network-searched link creates

at least one transitive triple. Given that the amount of triples for which gij = gjk = 1 equals

m2 and E[p(ri)] = pθ, we obtain (8).
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Proof of Proposition 2. The first part follows directly from (5), which does not depend on

the risk aversion of individual i. The second follows from that p(rH) > p(rL), thus high types

are more likely to search through the network. Each time an agent i decides to link through

the network at least one transitive triple is created in its neighborhood, whereas the probability

that a transitive triple is created after a random linking decision converges to 0 for large t. The

proposition directly follows.

Proof of Proposition 3. Note that

E[
∑

j∈Ni

uij |ri = r] = u+ (m− 1)

{
[1− p(r)]u+ p(r)E[max

j∈Ni
uij |max

j∈Ni
uij > u− r]

}
.

Since

[1− p(rH)]u+ p(rH)E[max
j∈Ni

uij|max
j∈Ni

uij > u− rH ]

=

∫ u−rH

a

udF (u)m +

∫ b

u−rH

udF (u)m

=

∫ u−rH

a

udF (u)m +

∫ u−rL

u−rH

udF (u)m +

∫ b

u−rL

udF (u)m

<

∫ u−rH

a

udF (u)m +

∫ u−rL

u−rH

udF (u)m +

∫ b

u−rL

udF (u)m

=[1− p(rL)]u+ p(rL)E[max
j∈Ni

uij|max
j∈Ni

uij > u− rL],

it directly follows that E[
∑
j∈Ni

uij|ri = rL] > E[
∑
j∈Ni

uij |ri = rH ].

Proof of Theorem 4. For any existing link ij, define Lij an indicator that is 1 if i found j

through local network search, and 0 if found by random search. For any existing link ij, let

u ≡ E[uij|Lij = 0] =

b∫

a

udF (u)

and

ũ ≡ E[uij |Lij = 1]

= P [ri = rH |Lij = 1]E[uij|Lij = 1, ri = rH ] + P [ri = rL|Lij = 1]E[uij |Lij = 1, ri = rL]

= P [ri = rH |Lij = 1]

b∫

u−rH

udF (u)m + P [ri = rL|Lij = 1]

b∫

u−rL

udF (u)m

denote the expected payoff of linking up to a random individual and a neighbor of a neighbor,

respectively. Let Li =
∑
j∈Ni

Lij . Then

E[
∑

j∈Ni

uij|Ci = c] = uE[m− Li|Ci = c] + ũE[Li|Ci = c].
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Naturally, ũ > u. Hence, nodes who search more often locally will tend to earn higher payoffs.

To complete the proof, we now show that E[Li|Ci = c] is weakly increasing in c for m < 5.

Note that each node i can close at most
m−1∑
j=1

j = m(m−1)
2 triples in period i since links are

directed and entering nodes can only link up to older nodes.

Suppose m = 2. Then Ci is (approximately) 0 or positive, depending on whether the second

link was random or via a friend of friend. Hence, E[Li|Ci = 0] = 0 and E[Li|Ci > 0] = 1.

Next, suppose m = 3 and denote the outdegree neighbors of i as j1, j2, j3. Then Li is at

most 2, and at most 3 triples can be closed. The first link does not close triples, the second

link closes one triple if Lij2 = 1, and the third link closes one or two triples if Lij3 = 1. Hence,

E[Li|Ci = 0] = 0, E[Li|Ci = 1/9] = 1, E[Li|Ci ≥ 2/9] = 2.

Finally, suppose m = 4 and let i have outdegree neighbors j1, . . . , j4. Then Li is at most

3, and at most 6 triples can be closed. We have, E[Li|Ci = 0] = 0, E[Li|Ci = 1/16] = 1,

E[Li|Ci = 2/16] = 2, E[Li|Ci = 3/16] ∈ (2, 3), and E[Li|Ci ≥ 4/16] = 3.

Proof of Propostion 5. With utility (9), the certainty equivalent y of linking to a random

agent solves

Ui(y) = EF [U(x)].

Hence, with normal distribution of payoffs, y is given by

y = u−
ρi
2
σ2

The risk premium is defined as r = u− y = ρi
2 σ

2, leading to

p
(ρi
2
σ2
)
= 1− F

(
u−

ρi
2
σ2
)m

.

With a normal distribution, F (u− ρi
2 σ

2) = Φ(−ρi
2 σ) where Φ(.) is the cumulative distribution

function of standard normal distribution. Since it is decreasing with σ2 and independent of u,

the proposition directly follows.

Proof of Theorem 6. Since pθ = θp(rH)+(1−θ)p(rL), it follows from Proposition 5 that ratio

of the global and local search probabilities 1+(1−pθ)(m−1)
pθ(m−1)

decreases with σ2 and is independent

of uF . It then directly follows from Jackson and Rogers (2007), Theorem 6, that the degree

distribution of g′ second order stochastically dominates the degree distribution of g whenever

σ2 > σ′2, independently of u and u′. Moreover, since pθ increases with σ2 and remains constant

with u, the results on the clustering coefficient directly follow.
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