
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Automatic identification of simultaneous equations models

Omtzigt, P.H.

Publication date
2003

Link to publication

Citation for published version (APA):
Omtzigt, P. H. (2003). Automatic identification of simultaneous equations models. (UvA
Econometrics Discussion Paper; No. 2002/14). Department of Quantitative Economics.
http://www1.feb.uva.nl/pp/bin/464fulltext.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/automatic-identification-of-simultaneous-equations-models(46caf1ef-cf61-4547-9df8-54fa2c5cbb65).html
http://www1.feb.uva.nl/pp/bin/464fulltext.pdf

Discussion Paper: 2002/14

Automatic identification of simultaneous

 equations models

Pieter Omtzigt

www.fee.uva.nl/ke/UvA-Econometrics

Department of Quantitative Economics
Faculty of Economics and Econometrics
Universiteit van Amsterdam
Roetersstraat 11
1018 WB AMSTERDAM
The Netherlands

Automatic identification of simultaneous equations
models

Pieter Omtzigt∗

January 2, 2003

Abstract

This paper considers within-equation restrictions in simultaneous equation models.
It provides an algorithm, which renders them generically identifying. This algorithm
works directly on the the restrictions and renders estimation by means of methods
that require identification possible. Using this method it is possible to calculate the
right number of degrees of freedom analytically and to provide standard errors on all
the estimated parameters.

1 Introduction

Consider the simultaneous equations model:

β′zt = A′yt + B′xt = ut, t = 1, . . . , T (1)

ut v iidN(0, Ω),

whereyt is a vector of lengthr with endogenous variables,xt a vector of lengthq with
predetermined variables andβ = [A′, B′]′ a p × r matrix of coefficients(p = r + q).
Assume thatA and thereforeβ is of full rank and thatxt andut are independent.

Likelihood inference on(β, Ω) is possible, but it is readily verified that a parameter
point (β1, Ω1) is not uniquely identified (which means that there is at least one other
parameter point(β2, Ω2), with whom it shares the same probability measure). For any
non-singular matrixC, (β1C,CΩ1C ′) has an identical probability measure. To uniquely
identify a space we need to put restrictions on the parameter space. In this article we shall
consider only within-equation restrictions onβ without putting restrictions onΩ. More
precisely, we consider

β = [H1ϕ1, . . . , Hrϕr] (2)

∗Universiteit van Amsterdam, Roetersstraat 11, 1018WB Amsterdam. Email: P.H.Omtzigt@uva.nl

1

whereHi arep × si matrices of full column rank. DefiningRi = (Hi)⊥ an equivalent
expression of these restrictions is given by:

R′
iβi = 0 for i = 1, . . . , r (3)

We repeat the well known fact that the likelihood of the model is invariant under premul-
tiplication by a full rank matrixS.

The Wald condition states a necessary and sufficient condition for identification:

Theorem 1 The parameter value(β, Ω) is uniquely identified (up to a normalization of
one of the elements in each vector ofβ) if and only if for anyi = 1, . . . r

rank(R′
iβ) = r − 1 (4)

There are two problems in practice with this theorem: it depends on the a priori un-
known parametersβ and it does not give an indication as how to identify a model if
(4) fails. The first problem was tackled by Johansen (1995) , who proved the following
theorem:

Theorem 2 If the only restrictions imposed on the parameters are (3) a set of necessary
and sufficient conditions for the parameter valueβ and henceΩ to be uniquely identified
(up to a normalization of one of the elements in each vectorβ) is:

rank
(
R′

j [Hk1 , ..., Hkn]
)

= n (5)

for n = 1, . . . r − 1,
for all j ∈ {1, . . . , r},
and for every set{k1, . . . , kn} not containingj,

This theorem gives conditions that only depend on the restrictions, not on the param-
eters. If all the conditions (5) are satisfied, then there are

∑r
i=1(p − r − si + 1) degrees

of freedom for testing the hypothesis (2).
However if one of the rank conditions (5) fails, serious problems arise not just in the

interpretation of potential estimates, but in the maximization of the likelihood function
and testing process itself. To my knowledge no analytical method exists to determine the
number of restrictions imposed by (3) on the model.

This paper provides a simple algorithm to determine identifying restrictions, when (5)
fails. There are four main applications of this algorithm.

1. A device for counting the number of restrictions in a particular model (if the restric-
tions are not identifying).

2. An instrument to be used for estimation algorithms, which require identification.
For instance the algorithms of Johansen and Juselius (1994) and Johansen (1995)
require identification. Without identification, they seem to work more than 99%
of the time: for automated model selection, this is however not sufficient. Other
algorithms for estimation based on general optimization methods, do not require
identification (Doornik, 1995) .

2

3. Only in identified models can (asymptotic) standard errors be given for all estimated
parameters. The algorithm finds an identification scheme, which is not necessarily
unique. One can thus employ the algorithm to find standard errors of the estimated
parameters. If there are multiple identification schemes, we can scan them all (usu-
ally there are only a few) and use the standard errors of all schemes to decide where
to put additional restrictions.

4. In the cointegrated VAR model Davidson (1998) provides an algorithm to find all
possible restricted cointegration vectors (using Wald testing). However he only
considers one restricted vector at the time, but not a combination of them. Using
the results in this paper and likelihood ratio tests, Omtzigt (2001) tests not only
one restricted vector at the time, but also all possible combinations of them. The
switching algorithm never breaks down, once the model has been generically identi-
fied and the automated model selection procedure results in one preferred restricted
model only (with possibly equivalent formulations).

For further discussions on the (restricted) simultaneous equations models, we refer to
Koopmans et al. (1950) , Fisher (1966) , Hsiao (1983) and Sargan (1988) and references
therein. For potential applications to the I(1) model we refer to Johansen (1995) and for
the I(2) model to Johansen (2000) .

The outline of the paper is as follows. Section 2 contains the main theoretical result.
In section 3 the algorithm is presented and illustrated by means of an example. Section
4 provides an empirical illustration of its use in cointegrated VAR models. and section
5 concludes. The appendices contain all proofs and a Matlab program implementing the
algorithm.

2 Results

In this paper we shall refer to (5) as rank conditions of ordern. They can be given the
following logical ordering (from order 1 to order r):

rank
(
R′

jHk1

)
= 1, j 6= k1 (6)

rank
(
R′

j [Hk1 , Hk2]
)

= 2, j 6= k1 6= k2 (7)
...

rank
(
R′

j

[
Hk1 , Hk2 , . . . , Hkm−1

])
= m− 1, j 6= k1 6= . . . 6= km−1 (8)
...

rank
(
R′

j

[
Hk1 , . . . , Hkr−1

])
= r − 1, j 6= k1 6= . . . 6= kr−1 (9)

There arer rank conditions of order 1,r (r − 1) /2 rank conditions of order two andr
rank conditions of orderr. In case the rank conditions do not hold, many different ones
may fail at the same time. Letm be the lowest order for which at least one rank condition

3

breaks down:

rank
(
R′

j [Hk1 , .., Hkm]
)

= m− 1, j 6= k1 6= . . . 6= km (10)

The rank deficiency in (10) must be exactly one as all the lower rank conditions (6)-(8)
hold and in particular

rank
(
R′

j

[
Hk1 , .., Hkm−1

])
= m− 1, j 6= k1 6= . . . 6= km−1

Let the columns ofHj be hj1, ..., hjsj
and letHj,−i = [h11, . . . h1i−1, h1i+1, . . . h1s],

that isHj without columnHji. Furthermore letkji = hij−Hj,−i

(
H ′

j,−iHj,−i

)−1
H ′

j,−ihij.
The following theorem shows that we can always ‘repair’ this rank conditions by

deleting one column from matrixHj and adjustingRj accordingly. Not any column can
be deleted, but at least one of the columns repairs the rank condition.

Theorem 3 If (6)-(8) hold and (10) then for at least one of the columnshji of Hj,

rank
(
[Rj, kji]

′ [Hk1 , .., Hkm]
)

= m. (11)

Without loss of generality, we shall assume that a condition involvingR1 is the first
one for which the rank condition fails to hold and thath1d is the column in Theorem 3.

The next theorem shows that we can rotate the columns of any matrixβ which is
restricted as in (2) to find a matrixβ∗ which obeys all the previous restrictions implied by
(2) and the new restriction, caused by shiftingh′1d from H1 to R1.

Theorem 4 If (6)-(8) hold and (10) andh′1d satisfies (11) then for anyβ = [H1ϕ1, ..., Hrϕr]
there exists almost surelyβ∗ = [H1,−dϕ

∗
1, H2ϕ2, ..., Hrϕr] such thatsp (β) = sp (β∗).

The result has been split into two parts on purpose: theorem 3 only involves the re-
strictions, whereas theorem 4 shows that whatever the parameter value, the additional
restriction can be satisfied. This means that we are only putting an extra identifying con-
straint on the model and do not put additional binding restrictions on it.

The idea of the proof is that if the rank condition of orderm fails (and all the lower
ones hold), then we can find exactly one linear combination of(βk1 , .., βkm), sayγ which
lies in the space ofβj. Let βj = Hjϕj andγ = Hjψ To distinguishβj from γ we put one
additional restriction on theβj.

3 Algorithm

Together these last two theorems give rise to an operational algorithm to identify the
space, given by any set of restrictions. Each time the rank condition is not satisfied by
(H1, ..., Hr) we are able to take away a column of one of theH ′s without imposing further
restrictions. We repeat the operation until we have identifying restrictions (the algorithm
is guaranteed to end as the number of columns of the matricesH is finite).

Formally we propose the following algorithm:
4

Algorithm 5

1. Check the rank conditions (6)-(9), for identification, starting with the lowest one,
(6).

2. If all rank conditions are satisfied, go to 4.

3. When the first rank condition is broken, as in (10), find a columnhij such that (11)
is satisfied. Cancel this column fromHi and then go to 1.

4. The space is generically identified

An implementation of this algorithm in Matlab is available in the appendix of the
paper. Note the loop structure in which all the rank conditions are checked, starting from
the lowest one. If a rank condition does not hold, we see which of the columnshij we can
eliminate fromHi to satisfy it. The checking of all the rank conditions then starts again.

3.1 An example

A detailed example of how the algorithm works in practice clarifies the exact functioning
of the algorithm. Among other things it shows that if a rank condition of orderm is
repaired at stept, then at timet + 1 it may be necessary to repair a lower order rank
condition. It is thus absolutely vital that all conditions are checked in each round. The
example is also just simple enough to be done by hand, but a computer will just do it quite
a bit faster.

Consider the following matrixβ with 5 rows and 3 columns, on which we impose
within-equation restrictions (2) by means of the following matricesHi: (Note that of each
of the three matricesHf the columns are mutually orthogonal, such thathfi = kfi.)

H1 =

1 0 0
0 0 0
0 1 0
0 0 1
1 0 0

, H2 =

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

, H3 =

1 0 0
0 1 0
0 0 0
0 0 1
1 0 0

(12)

H1 = [h11, h12, h13] , H2 = [h21, h22, h23] , H3 = [h31, h32, h33]

As bases of orthogonal complements to these matrices we choose:

R1 =

1 0
0 1
0 0
0 0
−1 0

, R2 =

1 0
0 0
0 0
0 0
0 1

, R3 =

1 0
0 0
0 1
0 0
−1 0

R1 = [r11, r12] , R2 = [r21, r22] , R3 = [r31, r32]

The algorithm now runs as follows:
5

3.1.1 First round

Check the first-order rank conditions

rank(R′
1H2) = rank

(
0 0 0
1 0 0

)
= 1

rank(R′
1H3) = rank

(
0 0 0
0 1 0

)
= 1

rank(R′
2H1) = rank

(
1 0 0
1 0 0

)
= 1

rank(R′
2H3) = rank

(
1 0 0
1 0 0

)
= 1

rank(R′
3H1) = rank

(
0 0 0
0 1 0

)
= 1

rank(R′
3H2) = rank

(
0 0 0
0 1 0

)
= 1

Check the second-order rank conditions
As all first-order rank conditions are satisfied, we check the second-order rank condi-

tions:

rank(R′
1 [H2, H3]) = rank

(
0 0 0 0 0 0
1 0 0 0 1 0

)
= 1

This rank condition fails, which means that we must apply step 3 of the algorithm.
Find a column of H1 that satisfies (11)
We add one of the columns ofH1 to R1 and see whether this particular rank condition

is repaired. TryH∗
1 = [h12, h13] andR∗

1 = [r11, r12, h11]. The rank condition becomes:

rank(R∗′
1 [H2, H3]) = rank

0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 2 0 0

 = 2

The rank condition is now satisfied and we takeH1 = H∗
1 andR∗

1 = R1 (leaving the
other matrices as they were before) and start the algorithm at point 1:

3.1.2 Second round

Check the first order rank conditions

rank(R′
1H2) = rank

0 0 0
1 0 0
0 0 0

 = 1

rank(R′
1H3) = rank

0 0 0
0 1 0
2 0 0

 = 2

rank(R′
2H1) = rank

(
0 0
0 0

)
= 0

This rank condition fails.

6

Find a column of H2 that satisfies (11)
When we move the first column ofH2 toR2 we obtain the following candidatesH∗

2 =
[h22, h23] andR∗

1 = [r21, r22, h21]. The rank condition then reads:

rank(R∗′
2 H1) = rank

0 0
0 0
0 0

 = 0

It is still not satisfied, so we try shifting the second column ofH2: H∗
2 = [h21, h23]

andR∗
2 = [r21, r22, h22]. This results in the following rank condition:

rank(R∗′
2 H1) = rank

0 0
0 0
1 0

 = 1

The rank condition now holds and we takeH2 = H∗
2 andR2 = R∗

2 to go back to step
1 of the algorithm:

3.1.3 Third round

Check the first-order rank conditions
It is easily verified that of all the first-order rank conditions are satisfied, with the

exception of

rank(R′
3H2) = rank

(
0 0
0 0

)
= 0

Find a column of H3 that satisfies (11)
Shifting the first column ofH3 to R3 would clearly not work, as that would imply

sp(H2) = sp(H3). (In this case evenH2 = H3). We therefore shift the second column of
H3 : H∗

3 = [h31, h33] andR∗
3 = [r31, r32, h32]. The rank condition is now satisfied:

rank(R∗′
3 H2) = rank

0 0
0 0
1 0

 = 1

For the next round takeH3 = H∗
3 andR3 = R∗

3.

3.1.4 Fourth round

Check the first and second-order rank conditions

All 6 first order and 3 second order rank conditions are satisfied, such that we conclude
that the restrictions identify the model: The conditions of Theorem 3 in Johansen (1995)
now hold for this example

For completeness we shall also give the matricesS from Theorem 4. If we have the

7

matrices (12), then we can write the matrixβ as:

β =

ϕ11 0 ϕ31

0 ϕ21 ϕ32

ϕ12 ϕ22 0
ϕ13 ϕ23 ϕ33

ϕ11 0 ϕ31

The combinationϕ32β2 − ϕ21β3 ≡ γ ∈ sp (H1). Post-multiplyingβ by the full-rank
matrix

S1 =

1 0 0
ϕ32

ϕ31
1 0

−ϕ11

ϕ31
0 1

gives way to

β∗ =

0 0 ϕ31

0 ϕ21 ϕ32

ϕ∗12 ϕ22 0
ϕ∗13 ϕ32 ϕ33

0 0 ϕ31

(13)

which satisfies the restrictions after the first round of the algorithm. Note that this trans-
formation is not defined ifϕ22 = 0 or ϕ31 = 0.

Taking away the stars in the last expression, we can post-multiply again by

S2 =

1 ϕ22

ϕ12
0

0 1 0
0 0 1

to obtain a matrix, satisfying the restrictions at the end of the second round. This step
inserts a zero in place ofϕ22 in (13). In the last step, the matrixS3 is given by:

S3 =

1 0 0
0 1 ϕ32

ϕ21

0 0 1

 .

Post-multiplication leads to the following general matrix:

β =

0 0 ϕ31

0 ϕ21 0
ϕ12 0 0
ϕ13 ϕ32 ϕ33

0 0 ϕ31

(14)

which satisfies all the rank conditions and is therefore generically identified.

8

3.2 Discussion

Making a change in a broken rank condition can cause a previously satisfied rank con-
dition to fail. In the example above, all rank conditions of first order are satisfied in the
first round, but the change made causes first-order rank conditions to fail subsequently.
This demonstrates that in every round we have to start checking the lowest order rank
conditions.

In the second round, we note that not any column can be eliminated fromH, but we
can still choose between deleting the second and the third column. This implies that the
restrictions imposed by the algorithm are in general not unique. We thus find but only one
of many ways to identify this space. It may be hard to attach an economic meaning to a
particular identification in any one application. In some way this is the only weak point of
the algorithm: in automatic search algorithms and other applications, the researcher may
look for an different identification scheme to make economic sense of it. This however
can easily be achieved by making available all equivalent identification schemes.

4 An application

As a practical application we consider the p-dimensional cointegrated VAR-model with k
lags:

∆Xt = αβ′
(

Xt−1

t

)
+

k−1∑
i=1

Γi∆Xt−i + Ψdt + µ + εt (15)

whereβ′ are the cointegration vectors,t is a time trend anddt are dummy variables.
We note that the likelihood function depends onΠ = αβ′. This means that we can take

α∗ = κα andβ∗ = κ−1β, whereκ is any invertible matrix. The likelihood is unchanged
after this transformation asΠ∗ = Π. We thus have exactly the same identification problem
for β in this model as in the simultaneous equations model (1).

For tests of the kind (2), a number of computer packages have implemented the switch-
ing algorithm of Johansen and Juselius (1994) , henceforth JJ. CATS1 by Hansen and
Juselius (1994) performed better than PcFiml version 9.32 by Doornik and Hendry (1997)
and my own implementation of the switching algorithm (which does not put identifying
restrictions): The maximum in the likelihood function CATS found was the highest in all
the examples considered below.

We compare the CATS implementation of the switching algorithm of JJ (which does
not put identifying restrictions on the cointegration space) and the implementation of a
Matlab program, which executes the switching algorithm after having imposed identifying
restrictions by means of algorithm 5. We consider an Australian data set, first analyzed
by JJ and also used by Doornik (1995) to illustrate his alternative numerical method. It
consists of the log of nominal money (m), the log of real national income (y), the log of

1We use version 1 of this CATS in RATS 4.3
2Version 10.1 of PcGive does not give the user the option to use beta switching. We thus used the latest

version of the program that did.

9

Hypothesis tested CATS New Algorithm[
m y p i3 i10 t

]
LR-test # iterations LR-test # iterations

H1 :
[

1 -1 -1 0 0 *
]

11.30 36 11.28 49
H2 : H1 +

[
0 0 0 * * *

]
12.63 93 12.61 80

H3 : H1 +
[

0 0 0 1 -1 *
]

15.88 200 13.44 53
H4 : H1 +

[
0 0 0 1 -1 0

]
16.62 2 16.10 158

H5 : H1 +
[

0 0 0 1 * 0
]

15.20 195 15.15 87
H6 : H1 +

[
0 0 0 0 1 *

]
17.28 200 17.13 200

H7 : H1 +
[

0 0 0 1 0 *
]

16.37 197 16.32 152
H8 : H1 +

[
1 0 * 0 * 0

]
11.40 89 11.62 200

Table 1: Comparison between optimization in CATS (without identification) and opti-
mization with identification

the GDP deflator (p), a three month interest rate (i3) and the 10 year government bond
rate (i10).dt contains centered seasonal dummies and a dummy which takes value 0 until
1982, 2nd quarter and 1 afterwards.

JJ fit a VAR with 2 lags for the period 1976-1 until 1991-1 (61 effective observa-
tions). The trace and rank test point to a rank of at most one, but JJ choose three as
their preferred rank.They test a a number of hypotheses, which we have tested in PcGive
9.3, PcFiml 10.1, CATS and our own program. All of them give identical answers. We
then considered testing a number of hypothesis, where restrictions were put on only one
or two of the cointegration vectors. By definition these restrictions are not identifying.
In the table below we report the results of testing that the velocity of money (m-y-p) is
trend stationary on its own and in combination with all possible cointegration relations
between the interest rates and an unrelated hypothesisH8. Both algorithms have the same
convergence criterium and number of maximum iterations (200).

For hypothesisH1 − H7 the new algorithm in Matlab does remarkably better. It
needs less iterations and finds a higher maximum in the likelihood, resulting in a lower
Likelihood Ratio test statistic. Unlike CATS it also reports the degrees of freedom of the
likelihood ratio test. Just to show that there is no mathematical guarantee, we also report
H8, where CATS does better than the new method.3 We have checked these LR-tests
against all other methods implemented in PcGive 9.3, namely linear switching (Boswijk,
1995) and the Broyden-Fletcher-Goldfarb-Shanno method (Doornik, 1995) . Neither of
them found better maxima. (and the first one did notably worse in casesH6 −H7). Both
these methods have the advantage that they are able to cope with more general restrictions
on bothα andβ.

A partial explanation for the result is the difficulty of the the optimization problem at
hand. We impose three cointegration relationship, where the evidence of the second and
third ones are weak, such that those relationships are hard to find in the data. Prices and

3If the maximum number of iterations is lifted, it does find a maximum after 725 iterations for an LR-test
statistic of 11.35

10

money are often modelled as I(2) and this would probably be better in the current data
set as well. And the hypotheses tested are all soundly rejected at the 5% level by any
method. The likelihood in the region we are searching is extremely flat. Yet this is the
ideal situation to put algorithms to the test. In easy situations all of them find the same
maximum, which in all likelihood is the global one.

5 Conclusions

We have presented a way of identifying an under-identified parameter space in simulta-
neous equations models and hence rendered estimation by the means of the switching
methods of Johansen (1995) possible. In over106 test executed so far in simulations
Omtzigt (2002) , the method has not broken down once, such that it is ideal in automated
model selection. It is reasonably fast, calculates the degree of freedoms for the likelihood
ratio test automatically and analytically (no separate procedure is needed) and allows for
calculating standard errors on all the estimated parameters. The procedure is very easy to
implement and a Matlab version is attached to this paper.

References

Boswijk, H. (1995). Identifiability of cointegrated systems. Technical report, Department
of Actuarial Sciences and Econometrics, University of Amsterdam.

Davidson, J. (1998). Structural relations, cointegration and identification: Some simple
results and their applications.Journal of Econometrics 87, 87–113.

Doornik, J. (1995). Testing general restrictions on the cointegration space. Technical
report, Nuffield College, Oxford.

Doornik, J. and D. Hendry (1997).Modelling Dynamic Systems Using PcFiml 9 for
Windows. Timberlake, London.

Fisher, F. (1966).The Identification Problem in Econometrics. New York: McGraw-Hill.

Hansen, H. and K. Juselius (1994).CATS for RATS4: Manual to Coinegration Analysis
to Time Series. Estima.

Hsiao, C. (1983). Identification. In Z. Grilliches and M. Intriligator (Eds.),Handbook of
Econometrics, Amsterdam. North Holland.

Johansen, S. (1995). Identifying restrictions of linear equations: With applications to
simultaneous equation and cointegration.Journal of Econometrics 69, 111–132.

Johansen, S. (2000). Testing hypotheses in the I(2) model. Technical report, Economics
Department, European University Institute, Florence.

11

Johansen, S. and K. Juselius (1994). Identification of the long-run and short-run structure:
An application to the IS-LM model.Journal of Econometrics 63, 7–36.

Koopmans, T., H. Rubin, and R. Leipnik (1950).Statistical Inference in Dynamic Eco-
nomic Models. New York: Cowles Commission Monograph 10, J.Wiley.

Omtzigt, P. (2001). Selezione automatica dei modelli autoregressivi cointegrati. In P. Giu-
dice, C. Tarantola, and F. Verrecchia (Eds.),Modelli Statistici per le Applicazioni di
Data Mining, pp. 109–114. Università di Pavia.

Omtzigt, P. (2002). Automatic identification of simultaneous equations models. Technical
Report 2002/01, University of Insubria, Varese, Italy.

Sargan, J. (1988).Lecture Notes on Advanced Econometric Theory. Oxford: Basil Black-
well.

Appendix: Proofs

The following lemma is needed for the proof of Theorem 3:

Lemma 6 If the rank conditions (6)-(8) hold

rank
([

Hk1 , . . . , Hkj

])
= j, j = 1, . . . , m− 1 (16)

Proof. For j = 1, . . . , m− 1 the result follows directly from (6)-(8): for instance (8)
implies that

m− 1 ≤ rank
(
R′

j

[
Hk1 , Hk2 , . . . , Hkm−1

]) ≤ rank(H1, . . . , Hm−1)

such that
m− 1 ≤ rank(H1, . . . , Hm−1)

For j = m let us assume that the lemma does not hold, i.e. thatrank(H1, . . . , Hm) ≤
m− 1. We find

m− 1 ≤ rank(H1, . . . , Hm−1) ≤ rank(H1, . . . , Hm) ≤ m− 1 (17)

such that equality holds throughout andrank(H1, . . . , Hm) = m − 1 This leads to the
existence ofh1, . . . , hm−1 ∈ sp(H1, . . . , Hm) so thatHi = (h1, . . . , hm−1)Mi From (17)
we see that

m− 1 = rank(H1, . . . , Hm−1) = rank(h1, . . . , hm−1)

such that(H1, . . . , Hm−1)⊥ = sp(h1, . . . , hm−1)⊥, and hence(H1, . . . , Hm−1)
′
⊥Hm = 0,

which contradicts (8), sinceHm is a non-null matrix.
Proof of theorem 3.by lemma 6 we know that

rank ([Hk1 , .., Hkm]) = m (18)
12

rank
(
[Rj, Hj]

′ [Hk1 , .., Hkm]
)

= m

as(Rj, Hj) is a matrix of full rank. AsHj is of full column rank,[kj1, . . . , kji, Rj] is a
square, full rank matrix, which together with (18) implies that

rank
(
[kj1, . . . , kji, Rj]

′ (Hk1 , ..Hkm)
)

= m

This combined with (10) means that

rank
(
[Rj, kji]

′ [Hk1 , .., Hkm]
)

= m

for at least one column ofHj.
We note that

rank (k′1d [Hk1 , ..Hkm]) = 1 (19)

Proof of theorem 4. rank(R′
1 [βk1 , ..., βkm]) = m − 1, (10), implies that there exists

an m × 1 vectora⊥, such thatR′
1 [βk1 , ..., βkm] a⊥ = 0. Without loss of generality we

assume thatk1 = 2, . . . , km = m + 1.
Therefore[β2, ..., βm+1] a⊥ ≡ γ ∈ sp(H1)

As rank([R1, h1d]
′ [β2, ..., βm+1]) = m, h′1dγ 6= 0. This implies that we can takeβ∗1 =

β1 − γ (h′1dγ)−1 h′1dβ1. This transformation is of the kindβ∗ = βS, where

S =

1 0 0

−a⊥ (h′1dγ)−1 h′1dβ1 Im 0
0 0 Ir−m−1

 .

This matrix does not exist if(h′1dγ) = 0, but this only happens on a set of Lebesgue
measure zero. When it exists it is clearly of full rank, which means thatsp (β) = sp (β∗)

Appendix: Matlab program
function [Hblockout,Rblock] = identify(Hblock)

% For a given set of linear restrictions of the kind
% beta =[Hblclock {1}*phi1,...,Hblock {r }*phir]
% (without normalizations), this function provides an equivalent
% identifying set of restrictions Hblockout

r = size(Hblock,2);
p =size(Hblock {1},1);
% Get the orthogonal complements (see equation (3))
for f=1:r

Rblock {f }= null(Hblock {f }’);
end

13

% The main loop of the program
identification = 0;
% As long as there is no identification run the following loop
while identification == 0

[Hblock,Rblock,identification] = mainloop(Hblock,Rblock,r);
end

%**
% Internal function:
%**
function [Hblock,Rblock,identification] = mainloop(Hblock,Rblock,r)
identification = 1;
% Set identification flag to one. If one the rank conditions fails
% we repair it and set it to zero (no identification)
% Start with rank condition of order 1 (for which k=2)

M = nchoosek(1:r,k);
% one of the indices,j, on the left (R) others (in C) on the right

(H’s)
for j=1:size(M,1)

for m=1:k
C = setdiff(M(j,:),M(j,m));
right = zeros(size(Hblock {1},1),0);
for m2=1:k-1
right = [right,Hblock {C(m2) }];

end
% Check whether rank condition is satisfied.
if rank(Rblock {M(j,m) }’*right, 0.00001)< k-1

% if not, check which column of H can be shifted
sizeH = size(Hblock {M(j,m) },2);
H = Hblock {M(j,m) };
for s2 = 1:sizeH
H(:,1:s2-1);
H(:,s2+1:sizeH);
testblockH = [H(:,1:s2-1),H(:,s2+1:sizeH)];
testblockR = null(testblockH’);
if rank(testblockR’*right, 0.00001) == k-1

%this column can be shifted!
Hblock {M(j,m) }=testblockH;
Rblock {M(j,m) }=testblockR;
identification = 0; % no identification

%model has been changed, such that there is
%no guarantee all rank conditions are satisfied

break,end
end

end
end
end

end

14

