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Abstract

An approach is presented to get interconnections between the Fisher information matrix of an

ARMAX process and a corresponding solution of a Stein equation. The case of algebraic mul-

tiplicity greater than one and the case of distinct eigenvalues are addressed. Appropriate links

are constructed for these two cases by applying a factorization both for the Fisher information

matrix and for a corresponding solution of a Stein equation. These factored forms are nonsquare

linear systems of equations Ax = b, the kernels of the appropriate coefficient matrices are de-

scribed. These are of fundamental importance for the solutions of the obtained linear systems.

The structured coefficient matrix associated with the factored form of the Fisher information ma-

trix is composed by basis vectors associated with an ARMAX polynomial, whereas the coefficient

matrix obtained through the solution of a Stein equation consists of resolvant matrices associated

with a companion matrix used in a corresponding Stein equation. The presence of Vandermonde

matrices in right inverses of coefficient matrices of the obtained linear systems is investigated.

Links between coefficient matrices which originate both from the Fisher information matrix and a

corresponding solution of the Stein equation are derived. An example is provided for illustrating

a solution of a Stein equation in terms of the Fisher information matrix as well as for describing

the kernels of the appropriate coefficient matrices.

AMS classification: 15A06

Keywords : Fisher information matrix; Stein equation; Linear systems; Kernel ; Coefficient

matrix; ARMAX process.

1. Introduction



In a previous paper, part I- [12], interconnections between the asymptotic Fisher information matrix of

an ARMA process (autoregressive and moving average) and solutions of corresponding Stein equations

have been investigated. The subject of this paper is concerned with the development of comparable

links for ARMAX processes but with an alternative and more generalized approach when compared

with [12]. The ARMAX processes are of common use in signal processing, control and system theory,

statistics and econometrics, see e.g. [1], [18], [2], [3]. The concept of the Fisher information plays a

vital role in estimation theory, various algorithms have been developed for computing the information

matrix, e.g. [6], [9] and [20]. In [9] two algorithms have been proposed for a fast computation of

the Fisher information matrix of a SISO process, detailed comments of these type of processes can

be found in [18], a SISO process is a generalized version of the ARMAX process which is considered

in this paper. Since more recently there is also an increasing interest for the Fisher information in

physics taking into account that ”all things physical are information-theoretic in origin and this a

participatory universe... Observer participancy gives rise to information and information gives rise to

physics” a quote of the famous physicist John Archibald Wheeler. A comprehensive study of the role of

the Fisher information in physics can be found in [5] where the author points out that the information

in question, referring to physical information, is surprisingly, not Shannon or Boltzman entropy but,

rather, Fisher information. However, it can be shown that the statistical information expressed by the

Fisher information can be locally interconnected with the Shannon entropy. In [19] the authors argue

that additional information measures like Kullback-Leibler and Rényi can be interconnected through

the second order Taylor series approximation and they can be similarly interconnected with the Fisher

information matrix for zero-mean stationary Gaussian univariate time series processes, which is the

case of the ARMAX process considered in this paper. Consequently, the results obtained in this paper

can also be used to express a solution of a Stein equation in terms of other information measures like

Shannon entropy, Kullback-Leibler and Rényi information measures.

The aim of this paper is to express statistical information concepts in terms of linear algebraic

concepts, in other words to build a bridge between the Fisher information of time series processes and

linear algebra and the algebra of polynomials. The latter can be directly applied since the ARMA-X

processes are described by polynomials, a treatment of the algebra of polynomials can be found in [4].

In the next section a definition of the ARMAX polynomials will be given. In [12] interconnections

between the Fisher information matrix of an ARMA process and solutions to Stein equations are set

forth by means of left inverses of appropriate matrices and these left inverses contain several forms

of Vandermonde matrices. In this paper interconnections are constructed by solving linear systems

of equations Ax = b. These forms are obtained by applying appropriate factorizations to both the

Fisher information matrix and to the corresponding solution of a Stein equation. Heinig and Rost

[8] have developed recursive fast algorithms for the solution of such linear systems for the cases when

the coefficient matrix A is square and nonsquare, the coefficient matrix A consists of a Cauchy and

a Vandermonde part. In the present paper we only have situations with nonsquare linear systems

or with a nonsquare coefficient matrix A. The structure of the coefficient matrix which is obtained

after factorization of the Fisher information matrix is composed by basis vectors associated with the

ARMAX polynomial. Whereas the coefficient matrix present in the factored form of the corresponding

solution to Stein’s equation consists of resolvant matrices which are associated with a companion

matrix used in the corresponding Stein equation. In order to find a nontrivial solution to the presented
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problem, the kernels of the appropriate coefficient matrices are studied considering that the number of

rows is much less than the number of columns for both coefficient matrices. Since the specific structure

of the Fisher information matrix of an ARMAX process is characterized by polynomials which contain

the polynomial basis vectors
¡
1, z, z2, . . . , zx−1

¢>
and

¡
zx−1, zx−2, . . . , z, 1

¢>
, it then leads to the

possibility for constructing an implementable algorithm for the appropriate stuctured kernels . This

algorithm is also used for describing the kernel of the coefficient matrix associated with the factored

form of the Stein solution. This can be realized by using an equality which interconnects elements of the

coefficient matrices associated with the Fisher information matrix and given by the polynomial basis

vectors mentioned above and the corresponding solution to the Stein equation given by adj (zI −Ch)
with Ch being a companion matrix.Two situations are considered, algebraic multiplicity of the roots

respective eigenvalues are greater than one and a situation with distinct roots, the eigenvalues originate

from the chosen companion matrix in the Stein equation and the roots of the ARMAX polynomials are

considered. Interconnections are established for a particular block of the Fisher information matrix

which contains information of the input process. The Fisher information matrix as a whole and not

decomposed is also presented for establishing appropriate interconnections, it is also expressed in terms

of Sylvester resultants. The presence of Vandermonde matrices in right inverses of coefficient matrices

of the obtained linear systems is studied, the emphasis is put on the coefficient matrices associated

with the factored form of the solution of a Stein equation and some result for the factored Fisher

information coefficient matrix is also set forth. In [12], a right inverse is evaluated for the appropriate

matrix containing adj (zI −Ch) and which is associated with the solution of a Stein equation, whereas
in this paper more elaborate and explicit results are derived, they are used to establish interconnections

between the coefficient matrices extracted from the factored forms of the Fisher information matrix

and a corresponding solution to a Stein equation. An example illustrates the structure of a solution

of a Stein equation in terms of the Fisher information matrix. An appropriate construction of the

kernel of the coefficient matrices associated with the factored forms of the Fisher information matrix

and a Stein solution is also set forth through the example. The obtained results can also be useful

from a numerical point of view, solutions of Stein equations can be computed by means of the Fisher

information matrix and the Fisher information matrix can be computed by means of a corresponding

Stein solution, for the latter singular value decomposition should be applied for obtaining the desired

pseudo inverse.

The paper is organized as follows. First we present the definitions which are followed by intercon-

nections of a Fisher information matrix block and a solution to a Stein equation, this is done for the

algebraic multiplicity of the roots respective eigenvalues greater than one as well as for distinct roots.

In section 3 a description of the kernels of the coefficient matrices associated with the linear systems

of equations obtained in section 2 is provided. In section 4 Vandermonde matrices present in some

right inverses of appropriate coefficient matrices is investigated. These results are used to construct

interconnections between the coefficient matrices associated with the Fisher information matrix and

a solution of an appropriate Stein equation. In section 5 interconnections are established between the

Fisher information matrix containing all the parameter blocks and corresponding solutions to Stein

equations and is followed by an example which is illustrated in section 6.
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2. Link solution Stein’s equation-Fisher’s information: The parameter-

block approach

2.1. General case

In this section the Fisher information matrix of an ARMAX process will be formulated where the

parameter blocks are considered, whereas in section 5 the global form will be studied.

Depending on the situation, both cases have their importance and this is the reason why the two

cases are treated separately.

Consider the ARMAX process y specified as the solution of

a∗(L)y = b∗(L)x+ c∗(L)ε (2.1)

with L the lag operator, x is the input process which is independent of the white noise sequence ε

which has σ2 as its variance.We make the assumptions that a, b and c have zeros inside the unit disc,

a, b and c are the following monic polynomials

a(z) = zp + a1zp−1 + · · ·+ ap
b(z) = zq + b1z

q−1 + · · ·+ bq
c(z) = zr + c1zr−1 + · · ·+ cr.

By a∗, b∗ and c∗ we denote the reciprocal polynomials, a∗(z) = zpa(z−1), b∗(z) = zqb(z−1) and

c∗(z) = zrc(z−1). The input process x is usually described by an ARMA process with spectral density

(2π)−1Rx(z) where Rx(z) = σ2η
¡
d(z)d(z−1)/h(z)h(z−1)

¢
. For simplicity we assume σ2 = 1 and

σ2η = 1, the latter represents the variance of the white noise sequence η which generates the process

x, and we further assume ε and η independent. For simplicity we further assume the process x to be

autoregressive so that d(z)d(z−1) = 1 and the order of the monic polynomial h(z) is v. Define the

vectors

uk(z) =
¡
1, z, . . . , zk−1

¢>
, u∗k(z) =

¡
zk−1, zk−1, . . . , 1

¢>
θ = (a1, a2, . . . , ap, b1, b2, ..., bq, c1, c2, . . . , cr)

> .

The order and roots of the ARMAX polynomials a(z), b(z) and c(z) are presented as well as the

poles resulting from the spectral density Rx(z). We assume the polynomial a(z) having p0 distinct

roots, α1, α2,..., αp0 , with algebraic multiplicity n1+1, n2+1, ..., np0+1 respectively and
p0X
i=1

(ni+1) =

p, b(z) has q0 distinct roots, β1, β2,..., βq0 , with algebraic multiplicity m1 + 1,m2 + 1, ...,mq0 + 1

respectively and
q0X
i=1

(mi+1) = q and polynomial c(z) has r0 distinct roots γ1, γ2,..., γr0 with algebraic

multiplicity s1+1, s2+1, ..., sr0 +1 respectively and
r0X
i=1

(si+1) = r. (As can be seen from the Fisher

information matrix blocks which contain Rx(z), poles are also resulting from Rx(z) and therefore have

to be taken into account for computing the corresponding circular integral). The roots resulting from

polynomial h(z) are described as follows, it is assumed to have v0 distinct roots τ1, τ2,..., τv0 with

algebraic multiplicity `1 + 1, `2 + 2, ..., `v0 + 1 respectively and
v0X
i=1

(`i + 1) = v.

4



It is known, see [10], that Fisher’s information matrix of (2.1) is F (θ) =
¡
1/σ2

¢
G(θ) with the

following block decomposition for G(θ).

G (θ) =


Gaa Gab Gac

GTab Gbb Gbc

GTac GTbc Gcc

 . (2.2)

The matrices appearing in (2.2) can be expressed as.

Gaa =
1

2πi

I
|z|=1

b(z)b(z−1)Rx(z)up(z)u>p (z−1)
a(z)a(z−1)c(z)c(z−1)

dz

z
(2.3)

+
σ2

2πi

I
|z|=1

up(z)u
>
p (z
−1)

a(z)a(z−1)
dz

z
(2.4)

Gab = − 1

2πi

I
|z|=1

b(z)Rx(z)up(z)u
>
q (z
−1)

a(z)c(z)c(z−1)
dz

z
(2.5)

Gac = − σ2

2πi

I
|z|=1

up(z)u>r (z−1)
a(z)c(z−1)

dz

z
(2.6)

Gbb =
1

2πi

I
|z|=1

Rx(z)uq(z)u
>
q (z
−1)

c(z)c(z−1)
dz

z
(2.7)

Gbc = 0 (2.8)

Gcc =
σ2

2πi

I
|z|=1

ur(z)u
>
r (z
−1)

c(z)c(z−1)
dz

z
. (2.9)

As can be seen from blocks (2.3)-(2.9) which constitute G(θ), the blocks (2.4), (2.6) and (2.9) have

forms which are the corresponding ARMA part of G(θ), whereas the remaing blocks contain infor-

mation of the input process x. In part I [12] it was sufficient to consider an appropriate left inverse

(which contains Vandermonde structures) for interconnecting Stein’s solution with the Fisher infor-

mation matrix, an interconnection derived in [12] has the following form for the ARMA (a, a) block

Saa =Mn(α)
©¡
Wn(α)

−
L vec Faa

¢
⊗ Ip

ª
where Saa and Faa are respectively the Stein solution and the Fisher information matrix, (·)−L is

a left inverse, vec A is the vector formed by stacking the columns of A into one long vector, Mn(α) is

extracted from a corresponding solution to Stein’s equation for a vector of eigenvalues denoted by α

and Wn(α) is associated with vec Faa.

The purpose of this paper is to use a different and more generalized approach for establishing

comparable links for ARMAX processes, we therefore consider solutions of linear systems of equa-

tions. The coefficient matrices associated with the obtained linear systems of equations consist of the

polynomial basis vectors uk(z) and u∗j (z) for arbitrary k and j and a combination of adj (zI −Ch)
with adj (I − zCh) where Ch is a chosen companion matrix. These coefficient matrices are obtained
by applying a factorization accordingly both for the Fisher information matrix and a correspond-

ing solution to a Stein equation. The structured kernels of the derived coefficient matrices will be

explicitely described so that the equations which interconnect the Fisher information matrix and a

corresponding solution to a Stein equation will be established in a different way than in [12]. In this
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paper the interconnections consist of the Fisher information matrix and not its vectorized form. This

will be done both for the algebraic multiplicity of the appropriate eigenvalues greater than one and

for distinct roots. We will first focus on the general case, algebraic multiplicity greater or equal to

one, followed by the special case when all the eigenvalues are distinct. The link between the Fisher

information matrix and a solution of a Stein equation for the (b, b)-block is deduced, consequently

interconnections for the remaining blocks can be established in a similar manner.

Let A ∈ Cm×m, B ∈ Cn×n and Γ ∈ Cn×m and we consider the Stein equation.

S −BSA> = Γ, (2.10)

it has a unique solution iff λµ 6= 1 for any λ ∈ σ(A) and µ ∈ σ(B). From [16] we take

Theorem 2.1 Let A and B be such that there is a single closed contour C with σ(B) inside C and for

each nonzero w ∈ σ(A), w−1 is outside C. Then the Stein equation (2.10) has a unique solution

S

S =
1

2πi

I
C

(λI −B)−1 Γ (I − λA)−> dλ.

In order to apply this theorem for linking (2.7) with a corresponding Stein solution we apply (2.10)

with B = Ch and A = Ch in

Sbb −ChSbbC>h = Γ (2.11)

where the companion matrix Ch

Ch =


0 1 · · · 0
...

. . .
...

0 1

−er+v −er+v−1 · · · −e1


and the entries ei are given by zr+v+

r+vX
i=1

eiz
r+v−i = c(z)h(z) = e(z) . The condition for uniqueness

of the solution of Stein’s equation is verified for this choice of the companion matrix. Inserting

companion matrices in (2.10) for the coefficients A and B is also suggested in [15].

Block Gbb(θ) given in (2.7) becomes

Gbb(θ) =
1

2πi

I
|z|=1

uq(z)u∗>q (z)

h(z)c(z)h∗(z)c∗(z)zl+1
dz. (2.12)

Here l + 1 = q − v − r is introduced and the cases l + 1 > 0, l + 1 = 0 and l + 1 < 0 shall be

discussed. For typographical brevity we introduce the following notation. Given a polynomial p (·)
and assuming that for some natural number j (z − β)j is a factor of p (·), and β has multiplicity

j ≥ 1 we define the polynomial pj(. ;β) by pj(z ;β) = p(z)
(z−β)j . Applying Cauchy’s theorem to (2.12)

for l + 1 > 0 yields

Gbb(θ) = g1(γ1) + g2(γ2) + · · ·+ gr0(γr0) + k1(τ1) + k2(τ2) + · · ·+ kv0(τv0) + f(0).
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Where the terms are

gi(γi) =
1

si!

Ã
∂si

∂zsi

uq(z)u∗>q (z)

csi+1(z; γi)h(z)h
∗(z)c∗(z)zl+1

!
z=γi

i = 1, . . . , r0

kj(τ j) =
1

`j !

Ã
∂`j

∂z`j
uq(z)u∗>q (z)

c(z)h`j+1(z; τ j)h
∗(z)c∗(z)zl+1

!
z=τj

j = 1, . . . , v0

f(0) =
1

l!

Ã
∂l

∂zl
uq(z)u

∗>
q (z)

c(z)h(z)h∗(z)c∗(z)

!
z=0

.

A useful factorization of Gbb(θ) can be obtained by applying Leibnitz rule to j-fold differentiation of

a product of two functions to have

Gbb(θ) =
¡
Ur(γ) Uv(τ) U l(0)

¢
(ϑ⊗ Iq) (2.13)

with

Ur(γ) =
³
Us1(γ1), Us2(γ2), ..., Usr0 (γr0)

´
Uv(τ) =

³
U`1(τ1), U`2(τ2), ..., U`v0 (τv0)

´
U l(0) =

³
U(l)l (0), U(l−1)l (0), ..., U(0)l (0)

´
.

The matrices Usi(γi) and U`j (τ j) are composed as follows
Usi(γi) =

³
U (si)si (z), U(si−1)si (z), ... ,U(0)si (z)

´
z=γi

i = 1, . . . , r0

each block being

U(si−j)si (γi) =

µ
∂si−j

∂zsi−j
¡
uq(z)u∗>q (z)

¢¶
z=γi

j = 0, . . . , si.

Whereas U`j (τj) has a similar functional form to Usi(γi) but for z = τ j and j = 1, . . . , v0.

The term U l(0) counts only one pole and each block can be expressed as

U(l−k)l (0) =

µ
∂l−k

∂zl−k
¡
uq(z)u

∗>
q (z)

¢¶
z=0

k = 0, . . . , l.

The ϑ in the second term of (2.13) is

ϑ =
³
µ>s1(γ1), µ

>
s2(γ2), . . . , µ

>
sr0
(γr0), ζ

>
`1(τ1), ζ

>
`2(τ2), . . . , ζ

>
`v0
(τv0), ξ

>
0 (0)

´>
(2.14)

with

µsi(γi) =
1

si!

³
µ
(0)
si (z), µ

(1)
si (z), . . . , µ

(si)
si (z)

´>
z=γi

i = 1, . . . , r0

and each component being

µ
(si−j)
si (γi) =

Ã
si

si − j

!µ
∂si−j

∂zsi−j
µi(z)

¶
z=γi

j = si, si − 1, . . . , 0.

Analogously

ζ`j (τj) =
1

`j !

³
ζ
(0)
`j
(z), ζ

(1)
`j
(z), . . . , ζ

(`j)
`j
(z)
´>
z=τj

j = 1, . . . , v0

with elements

ζ
(`j−k)
`j

(τ j) =

Ã
`j

`j − k

!µ
∂`j−k

∂z`j−k
ζj(z)

¶
z=τj

k = `j , `j − 1, . . . ,0.

The last term of ϑ becomes

ξ0(0) =
1

l!

³
ξ
(0)
0 (z), ξ

(1)
0 (z), . . . , ξ

(l)
0 (z)

´>
z=0

with
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ξ
(l−k)
0 (0) =

Ã
l

l − k

! µ
∂l−k

∂zl−k
ξ(z)

¶
z=0

k = l, l − 1, . . . , 0.

The individual components are

µi(z) =

µ
1

csi+1(z; γi)h(z)h
∗(z)c∗(z)zl+1

¶
ζj(z) =

µ
1

c(z)h`j+1(z; τj)h
∗(z)c∗(z)zl+1

¶
ξ(z) =

µ
1

c(z)h(z)h∗(z)c∗(z)

¶
.

We can return to Stein’s equation (2.10) with the appropriate insertion in (2.11).

Its solution is

Sbb =
1

2πi

I
|z|=1

(zI −Ch)−1 Γ (I − zCh)−> dz

=
1

2πi

I
|z|=1

adj (zI −Ch)Γadj (I − zCh)>

h(z)c(z)h∗(z)c∗(z)
dz.

In order to extract ϑ from Sbb we first trivially rewrite the solution as

Sbb =
1

2πi

I
|z|=1

adj (zI −Ch)Γadj (I − zCh)> zl+1
h(z)c(z)h∗(z)c∗(z)zl+1

dz. (2.15)

Then, applying Cauchy’s residue theorem to (2.15) yields,

Sbb = G1(γ1) + G2(γ2) + · · ·+ Gr0(γr0) +K1(τ1) +K2(τ2) + · · ·+Kv0(τv0) +F(0)

Gi(γi) =
1

si!

Ã
∂si

∂zsi
adj (zI −Ch)Γadj (I − zCh)> zl+1
csi+1(z; γi)h(z)h

∗(z)c∗(z)zl+1

!
z=γi

Kj(τj) =
1

`j !

Ã
∂`j

∂z`j
adj (zI −Ch)Γadj (I − zCh)> zl+1
c(z)h`j+1(z; τj)h

∗(z)c∗(z)zl+1

!
z=τj

F(0) = 1

l!

Ã
∂l

∂zl
adj (zI −Ch)Γadj (I − zCh)> zl+1

c(z)h(z)h∗(z)c∗(z)

!
z=0

.

Since the eigenvalues of Ch are within the unit disc, the conditions for a unique solution of Stein’s

equation is fulfilled. A similar factorization as in (2.13) is applied to (2.15) to obtain

Sbb =
¡
Mr(γ)Mv(τ)Ml(0)

¢
(ϑ⊗ Ir+v) (2.16)

with ϑ as in (2.14) and

Mr(γ) =
³
Ms1(γ1), Ms2(γ2), ..., Msr0

(γr0)
´

Mv(τ) =
³
M`1(τ1), M`2(τ2), ..., M`v0

(τv0)
´

Ml(0) =
³
M(l)

l (0), M(l−1)
l (0), ..., M(0)

l (0)
´
.

The blocks which formMsi(γi) andM`j (τ j) are

Msi(γi) =
³
M(si)

si (z), M(si−1)
si (z), ... ,M(0)

si (z)
´
z=γi

i = 1, . . . , r0

each block being

M(si−j)
si (γi) =

µ
∂si−j

∂zsi−j
adj (zI −Ch)Γadj (I − zCh)> zl+1

¶
z=γi

j = 0, . . . , si.

BlockM`j (τ j) has the same functional form asMsi(γi) but with z = τ j and j = 1, . . . , v0.

Note that the termMl(0) counts only one pole and each block can be expressed as
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M(l−k)
l (0) =

µ
∂l−k

∂zl−k
adj (zI −Ch)Γadj (I − zCh)> zl+1

¶
z=0

k = 0, . . . , l.

It is clear that M(l−k)
l (0) = 0 for k = 0, . . . , l so thatMl(0) = 0.

We can now proceed constructing a possible interconnection between Gbb(θ) and Sbb by solving

(ϑ ⊗ Iq) and (ϑ ⊗ Ir+v) from (2.13) and (2.16) respectively. This will happen according to the so-

lution of the linear system AX = B where A, B and X are matrices of appropriate dimension.

The matrix A will be represented by the corresponding coefficient matrices
¡
Ur(γ) Uv(τ) U l(0)

¢
and¡

Mr(γ)Mv(τ)Ml(0)
¢
in (2.13) and (2.16) respectively. It is clear that the kernels of the appropriate

coefficient matrices in both cases will be different from zero and have dimensions which are substan-

tially larger than the number of columns of X or B ( q and r + v in (2.13) and (2.16) respectively).

This argument holds for all the situations considered, l + 1 > 0, l + 1 = 0 and l + 1 < 0. The linear

system AX = B has a solution if and only if B ∈ Im (A), a solution of the linear system is given

by X = X0 + A where X0 is a particular solution of the matrix equation AX = B and A ∈ Ker
(A), the kernel of A. The matrix X0 = A+B is the best approximate solution of the linear system

of equations AX = B where A+ is the Moore-Penrose inverse of A. In general, the solution set is

a manifold of matrices obtained by a shift of Ker (A). In (2.13) and (2.16) it can be seen that B ∈
Im (A). Applying this to the linear systems (2.13) and (2.16) in order to obtain an interconnection

or equation involving the Fisher information matrix and a solution to Stein equation we consider the

particular solution of the linear systems (2.13) and (2.16) to obtain

(ϑ⊗ Iq) =
¡
Ur(γ) Uv(τ) U l(0)

¢+
Gbb(θ) +A (2.17)

where A ∈ Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
.

Similarly for Stein’s solution

(ϑ⊗ Ir+v) =
¡
Mr(γ)Mv(τ)Ml(0)

¢+
Sbb + B (2.18)

with B ∈ Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
.

Taking into consideration the fact that l + 1 > 0 or q > r + v leads to the following property

Iq =

Ã
Ir+v 0

0 Iq−(r+v)

!
and Iq ⊗ ϑ =

Ã
Ir+v ⊗ ϑ 0

0 Iq−(r+v) ⊗ ϑ

!
.

In order to obtain the forms (ϑ⊗Ir+v) and (ϑ⊗Iq) we use the following property of the Kronecker
product of two matrices. Let A be an m×n matrix and B a p× q matrix. Then there exist universal
permutation matrices Rpm and Rnq such that ∀ A,B : Rpm (A⊗B)Rnq = B ⊗A for a permutation
matrix Rxy independent of A and B, see e.g. [17]. Double application of this rule to A = ϑ and

B = Iq and with B = Ir+v results in an equation which involves the Fisher information matrix and a

Stein solution. In the next theorem we summarize the results in a formula which involves a solution

of a Stein equation Sbb with the Fisher information block Gbb(θ) for the case l + 1 > 0.

Theorem 2.2 The following equality holds true for l+ 1 > 0

Rq(r+v+l+1)
n¡
Ur(γ) Uv(τ) U l(0)

¢+
Gbb(θ) +A

o
Rq = R(r+v)(r+v+l+1)

n¡
Mr(γ)Mv(τ)Ml(0)

¢+
Sbb + B

o
Rr+v 0

0 Iq−(r+v) ⊗ ϑ
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where A ∈ Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
is such that equation (2.17) holds and likewise B ∈ Ker¡

Mr(γ)Mv(τ)Ml(0)
¢
is such that (2.18) holds.

In the next section a detailed description of Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
will be given as well as some

aspects of Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
.

The case l + 1 = 0 or q = v + r is such that equivalent forms of (2.13) and (2.16) become

Gbb(θ) =
¡
Ur(γ) Uv(τ)

¢
(ϕ⊗ Iq) (2.19)

Sbb =
³fMr(γ)

fMv(τ)
´
(ϕ⊗ Ir+v) =

³fMr(γ)
fMv(τ)

´
(ϕ⊗ Iq). (2.20)

The vector ϕ has the same form as ϑ in (2.14) but without ξ0(0), the terms µi(z) and ζj(z) do

not contain zl+1 since l + 1 = 0. The corresponding blocks composing fMr(γ) and
fMv(τ) arefM(si−j)

si (z) =
∂si−j

∂zsi−j
³
adj (zI −Ch)Γadj (I − zCh)>

´
and

fM(`j−k)
`j (z) =

∂`j−k

∂z`j−k
³
adj (zI −Ch)Γadj (I − zCh)>

´
respectively. From theorem 2.2 as well as from (2.19) and (2.20) can be seen that for a particular

solution of the linear systems (2.19) and (2.20), the particular solution of both linear systems is

associated with (ϕ⊗ Iq), the following equality holds true¡
Ur(γ) Uv(τ)

¢+
Gbb(θ) +Q =

³fMr(γ)
fMv(τ)

´+
Sbb + T (2.21)

where Q ∈ Ker
¡
Ur(γ) Uv(τ)

¢
and T ∈ Ker

³fMr(γ)
fMv(τ)

´
.

In this case the interconnection between Gbb(θ) and Sbb can be set forth in both directions where

the Fisher information matrix can be explained in terms of the Stein solution and vice versa. This

can be realized when the
¡
q × q2

¢
matrices

¡
Ur(γ) Uv(τ)

¢
and

³fMr(γ)
fMv(τ)

´
are surjective or have

full row rank. For that purpose it remains to show that the rank of the corresponding matrices is q.

This will be proved in the next propositions.

Proposition 2.3 For the coefficient matrix in (2.19) we have that

dim Im
¡
Ur(γ) Uv(τ)

¢
= q.

Proof. The case l+1 = 0 or q = r+v implies that the algebraic multiplicity of a root of an ARMAX

polynomial will always be smaller than q. Matrix
¡
Ur(γ) Uv(τ)

¢
is partitioned as mentioned above

Ur(γ) =
³
Us1(γ1), Us2(γ2), ..., Usr0 (γr0)

´
Uv(τ) =

³
U`1(τ1), U`2(τ2), ..., U`v0 (τv0)

´
.

Since the functional form of each of the blocks which build Ur(γ) and Uv(τ) is the same, a
description of a single subspace is therefore sufficient. In section 3 such a description is provided and

it can be seen that dim Ker Usi(γi) = (q− 1)(si+1) for i = 1, . . . , r0 when si+1 < q. Consequently,

dim Ker Ur(γ) = (q−1)
r0X
i=1

(si+1) = (q−1)r. Analogously for Uv(τ) where dim Ker Uv(τ) = (q−1)
v0X
i=1

(`i + 1) = (q − 1)v, can be concluded that dim Ker
¡
Ur(γ) Uv(τ)

¢
= (q − 1)(r + v) = (q − 1)q.

Since the matrix
¡
Ur(γ) Uv(τ)

¢
is q × q2 it then follows that dim Im

¡
Ur(γ) Uv(τ)

¢
= q.
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Before proving the full row rankness property of the matrix
³fMr(γ)

fMv(τ)
´
we have the following

lemma to consider. To that end we introduce some notation.

Consider the matrix A ∈ Rn×n in the following companion form.

A =



0 1 0 · · · 0
... 0 1

...
...

. . .
. . . 0

0 0 1

−an −a2 −a1


. (2.22)

Let a> = (a1, . . . , an), and we redefine u(z)> = (1, z, . . . , zn−1) and u∗(z)> = (zn−1, . . . , 1) (where >

denotes transposition). Define (Hörner recursion) recursively the polynomials ak(z) by a0(z) = 1 and

ak(z) = zak−1(z) + ak. Notice that an(z) is the characteristic polynomial of A. We will denote it by

π(z).

Write a(z) for the n-vector (a0(z), . . . , an−1(z))>. Furthermore S will denote the shift matrix, so

Sij = δi,j+1 and J the backward or antidiagonal identity matrix.

Lemma 2.4 Let A be an n× n companion matrix as in (2.22). Let Pk(z) = (adj(z −A), ddzadj(z −
A), . . . , d

k−1
dzk−1 adj(z − A)) and P = (Pk1(λ1), . . . , Pks(λs)) ∈ Rn×n2 , where the λj are all the

different eigenvalues of A, with multiplicities kj, so
Ps
j=1 kj = n. Then P has rank n.

Proof. We will use proposition 3.2 of [14], which says that the adjoint of z−A, with A a companion
matrix, is

adj(z −A) = u(z)a(z)>J − π(z)
n−1X
j=0

zjSj+1. (2.23)

If we evaluate this expression in z equal to an eigenvalue, the second term at the RHS vanishes,

and the same holds true if we consider multiple eigenvalues and compute the (k − 1)-th derivative of
adj(z −A) in an eigenvalue with multiplicity at least equal to k.
Let then λ be an eigenvalue of multiplicity k. Clearly Imadj(λ−A) is spanned by u(λ), Im d

dzadj(z−
A)|z=λ is spanned by u(λ) and u0(λ), etc. up to Im dk−1

dzk−1 adj(z −A)|z=λ which is spanned by u(λ) up
to u(k−1)(λ). As a conclusion we get for such a λ that Im (adj(z−A), ddzadj(z−A), . . . ,

dk−1
dzk−1 adj(z−

A))|z=λ is also spanned by u(λ) up to u(k−1)(λ).
It now follows from the above that ImP is spanned by all the columns of a non-singular confluent

Vandermonde matrix. Therefore P has maximal (row) rank and is thus surjective. In the next

proposition we use a symmetrizer associated with a polynomial. For a given polynomial p(z) =

zn + a1z
n−1 + · · ·+ an of degree n we write S(p) to denote the n× n matrix

S(p) =



1 0 0 · · · 0

a1 1 0
...

...
. . .

. . . 0
... 1 0

an−1 a1 1


. (2.24)
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Proposition 2.5 Let V be the confluent Vandermonde matrix associated with all the eigenvalues

of Ch and let S(e) be the symmetrizer associated to the coefficients of the characteristic polynomial

of Ch. Assume that Γ is such that none of the rows of V >S(e)Γ is the null vector. Then

R =
³fMr(γ)

fMv(τ)
´
has rank q.

Proof. The proof consists of a more elaborate reasoning as in the proof of lemma 2.4. We now

have to consider all relevant derivatives of adj(zI − Ch)Γadj(I − zCh)> evaluated at the different

eigenvalues γi and τ i, call them λi, with their multiplicities ki. It is easy to see (by computing these

derivatives and inserting the eigenvalues) that the range of R is the same as the range of R0 which

is row block matrix with blocks R0i defined by R
0
i = (u(λi), u

0(λi), . . . , u(ki−1)(λi))a(λi)>JΓ.

Since the vectors u(λi), u0(λi), . . . , u(ki−1)(λi) with varying i are independent, the only case in which

R0 has full row rank is obtained by having all a(λi)>JΓ not equal to the null vector.

Remark. The condition of this proposition can alternatively be described as follows. Let ek(λ)

be the k − th Hörner polynomial associated with the coefficients of Ch evaluated at an eigenvalue λ.
Put then ẽ(λ) = (eq−1(λ), . . . , e0(λ)). Then none of the rows of V >S(e)Γ is the null vector iff none of

the vectors ẽ(λ) belongs to the left kernel of Γ. This condition is satisfied if one chooses Γ such that

the resulting solution of the Stein equation is the Fisher information matrix.

Since the matrix
³fMr(γ)

fMv(τ)
´
is
³
r + v × (r + v)2

´
, it can be concluded in virtue of propo-

sition 2.5 that dim Ker
³fMr(γ)

fMv(τ)
´
= q2 − q.

In virtue of these propositions the properties¡
Ur(γ) Uv(τ)

¢ ¡
Ur(γ) Uv(τ)

¢+
= Iq and

³fMr(γ)
fMv(τ)

´³fMr(γ)
fMv(τ)

´+
= Iq hold, these

are the orthogonal projections onto Im
¡
Ur(γ) Uv(τ)

¢
and Im

³fMr(γ)
fMv(τ)

´
respectively. The

following interconnections can now be summarized in the next lemma.

Corollary 2.6 For l + 1 = 0 the following interconnections hold true

Sbb =
³fMr(γ)

fMv(τ)
´n¡

Ur(γ) Uv(τ)
¢+
Gbb(θ) +Q

o
Gbb(θ) =

¡
Ur(γ) Uv(τ)

¢½³fMr(γ)
fMv(τ)

´+
Sbb + T

¾
where Q ∈ Ker

¡
Ur(γ) Uv(τ) ) is such that equation (2.21) holds and likewise for T ∈ Ker³fMr(γ)

fMv(τ) ) .

A new form for a solution of a Stein equation is now provided in terms of the Fisher information

matrix. However, it is can be seen that for l+1 = 0 Gbb(θ) is satisfying a Stein equation ( this is also

pinpointed in [11] and [12]),

Gbb(θ)−ChGbb(θ)C>h = Γ
and this for Γ = er+ve>r+v, where er+v is the last basis vector of Rr+v.
The case l + 1 < 0 or q < v + r yields the following equations

Gbb(θ) =
³eUr(γ) eUv(τ)´ (ϕ⊗ Iq) (2.25)

Sbb =
³fMr(γ)

fMv(τ)
´
(ϕ⊗ Ir+v). (2.26)
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The block components of eUr(γ) and eUv(τ) are composed by fU(si−j)si (z) = ∂si−j
∂zsi−j uq(z)u

∗>
q (z) zl+1

and eU (`j−k)`j (z) = ∂`j−k

∂z`j−k
uq(z)u

∗>
q (z) zl+1 respectively and evaluated at z = γj and z = τj . By solving

the linear system described above, the desired particular solution of the systems (2.25) and (2.26)

yields

(ϕ⊗ Iq) =
³eUr(γ) eUv(τ)´+Gbb(θ) +D (2.27)

where D ∈ Ker
³eUr(γ) eUv(τ)´

and

(ϕ⊗ Ir+v) =
³fMr(γ)

fMv(τ)
´+
Sbb + E (2.28)

where E ∈ Ker
³fMr(γ)

fMv(τ)
´
.

An appropriate link is given in the next corollary.

Corollary 2.7 An equation which involves Sbb and Gbb(θ) is for l+ 1 < 0

R(r+v)(r+v)
½³fMr(γ)

fMv(τ)
´+
Sbb + E

¾
Rr+v = Rq(r+v)

½³eUr(γ) eUv(τ)´+Gbb(θ) +D¾Rq 0

0 Ir+v−q ⊗ ϕ


where E ∈ Ker

³fMr(γ)
fMv(τ)

´
is such that equation (2.28) holds and likewise D ∈ Ker

³eUr(γ) eUv(τ)´
is such that equation (2.27) holds and R is a permutation matrix.

Equations which involve the remaining blocks of G(θ) and a corresponding solution to a Stein

equation can be obtained similarly.

2.2. Special case

The approach used to derive the equations and interconnections as presented in the previous section

can be similarly applied for the case of distinct roots. In this subsection we present the coefficient

matrices of the factored versions of both the Fisher information matrix and a corresponding Stein

solution for l+1 > 0, l+1 = 0 and l+1 < 0. These coefficient matrices can be used to formulate similar

interconnections as presented in the general case, we therefore will not reformulate the equivalent of

theorem 2.2 and the remaining corollaries.

For l + 1 > 0 we have

Gbb(θ) =
¡
Ur(γ) Uv(τ) U l(0)

¢
(ϑ⊗ Iq) (2.29)

Ur(γ) =
³
U1(γ1), U2(γ2), . . . Ur(γr)

´
Uv(τ) =

³
U1(τ1), U2(τ2), . . . Uv(τv)

´
.

The blocks being Ui(γi) = (
¡
uq(z)u

∗>
q (z)

¢
z=γi

i = 1, . . . , r and Uj(τj) = (
¡
uq(z)u

∗>
q (z)

¢
z=τj

j = 1, . . . v and U l(0) can be found in (2.13).
The ϑ in the second term of (2.29) is
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ϑ =
³
µ1(γ1), µ2(γ2), . . . , µr(γr), ζ1(τ1), ζ2(τ2), . . . , ζv(τv), ξ

T
0 (0)

´>
the components µi(z) and ζj(z) have the same form as µi(z) and ζj(z) but with csi+1(z; γi) and

h`j+1(z; τ j) being replaced by c1(z; γi) and h1(z; τ j) respectively as can be seen in gi(z) and kj(z).

Factorization of the corresponding Stein solution leads to the form

Sbb =
¡
Mr(γ)Mv(τ)Ml(0)

¢
(ϑ⊗ Ir+v) (2.30)

with

Mr(γ) =
³
M1(γ1), M2(γ2), . . . , Mr(γr)

´
Mv(τ) =

³
M1(τ1), M2(τ2), . . . , Mv(τv)

´
.

The blocks which formMr(γ) andMv(τ) have the following structure

Mi(γi) =
³
adj (zI −Ch)Γadj (I − zCh)> zl+1

´
z=γi

i = 1, . . . , r

Mj(τj) =
³
adj (zI −Ch)Γadj (I − zCh)> zl+1

´
z=τj

j = 1, . . . , v.

The blocks F(0) and Ml(0) are also to be found in (2.15) and (2.16) respectively. An equality

involving Gbb(θ) and Sbb given in (2.29) and (2.30) respectively can then be realized through an

equivalent form of theorem 2.2.

The case l + 1 = 0 yields

Gbb(θ) = (Ur(γ) Uv(τ)) (ϕ⊗ Iq) (2.31)

Sbb =
³fMr(γ) fMv(τ)

´
(ϕ⊗ Iq) (2.32)

with ϕ having the same form as ϑ without ξ0(0), the elements µi(z) and ζj(z) do not contain z
l+1, the

matrices appearing in (2.32) are fMr(z) = z
−(l+1)Mr(z) and fMv(z) = z

−(l+1)Mv(z). The following

equality can be verified by taking the particular solution of the linear systems (2.31) and (2.32) into

account with (ϕ⊗ Iq) as a common factor to both linear systems, to obtain
(Ur(γ) Uv(τ))+Gbb(θ) + S =

³fMr(γ) fMv(τ)
´+
Sbb + C

where the appropriate matrices S and C
S ∈ Ker (Ur(γ) Uv(τ)) and C ∈ Ker

³fMr(γ)fMv(τ)
´
.

An interconnection between the Fisher information matrix and a solution to a Stein equation can

be set forth under the condition that the matrices (Ur(γ) Uv(τ)) and
³fMr(γ) fMv(τ)

´
have full row

rank. For guaranteeing the surjectiveness of the coefficient matrices for the case l+1 = 0 proposition

2.3 can directy be applied for the coefficient matrix (Ur(γ) Uv(τ)) whereas for the coefficient matrix³fMr(γ) fMv(τ)
´
the following proposition is proved.

Proposition 2.8 For an appropriate choice of Γ in the corresponding Stein equation, the coefficient

matrix in (2.32) has the rank given by

dim Im
³fMr(γ) fMv(τ)

´
= q.

Proof. A generalization of the factorization used in (3.11) yields for the (r + v)× (r + v)2 matrix³fMr(γ) fMv(τ)
´
=
³fM(1)

r (γ) fM(1)
v (τ)

´ n
diag

³fM(2)
r (γ) fM(2)

v (τ)
´o
.
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To show full row rankness of
³fMr(γ) fMv(τ)

´
we use the following property;³fMr(γ) fMv(τ)

´
has full row rankness ⇔

³fMr(γ) fMv(τ)
´
has a right inverse.

The matrix
n
diag

³fM(2)
r (γ) fM(2)

v (τ)
´o

is square invertible as is commented in section 3.2 and in

[12] a structure for a right inverse of
³fM(1)

r (γ) fM(1)
v (τ)

´
is set forth, to obtain³fM(1)

r (γ) fM(1)
v (τ)

´
(Ir+v ⊗ er+v) = Vγτ

and ³fM(1)
r (γ) fM(1)

v (τ)
´ ¡
V −1γτ ⊗ er+v

¢
= Ir+v.

A right inverse is then ³fM(1)
r (γ) fM(1)

v (τ)
´−
R
=
¡
V −1γτ ⊗ er+v

¢
with er+v being the last standard basis vector in Rr+v and the Vandermonde matrix

Vγτ =



1 1 · · · 1 1 1 · · · 1

γ1 γ2
... γr τ1 τ2

... τv

γ21 γ22
... γ2r τ21 τ22

... τ2v
...

...
...

...
...

...
...

...

γr+v−11 γr+v−12 · · · γr+v−1r τr+v−11 τr+v−12 · · · τr+v−1v


.

An appropriate right inverse is now set forth³fMr(γ) fMv(τ)
´−
R
=
n
diag

³fM(2)
r (γ) fM(2)

v (τ)
´o−1 ¡

V −1γτ ⊗ er+v
¢
.

Consequently, the full row rankness of
³fMr(γ) fMv(τ)

´
is assured and

dim Im
³fMr(γ) fMv(τ)

´
= r + v.

For l + 1 = 0 or r + v = q the proof is completed.

Taking the dimension of Im
³fMr(γ) fMv(τ)

´
into account yields dim Ker

³fMr(γ) fMv(τ)
´
=

(r + v)2− (r + v) this is in agreement with the dimension rule. Note that the matrices (Ur(γ) Uv(τ))
and

³fM(1)
r (γ) fM(1)

v (τ)
´
have an equivalent right inverse, see also [12].

These properties entail

(Ur(γ) Uv(τ)) (Ur(γ) Uv(τ))+ = Iq and
³fMr(γ) fMv(τ)

´³fMr(γ) fMv(τ)
´+

= Iq.

The case l+1 < 0 allows an equivalent of corollary 2.7 taking into account the particular solutions

of the respective linear systems to obtain

(ϕ⊗ Ir+v) =
³fMr(γ) fMv(τ)

´+
Sbb +O with O ∈ Ker

³fMr(γ) fMv(τ)
´
and

(ϕ⊗ Iq) =
³eUr(γ) eUv(τ)´+Gbb(θ) + I with I ∈ Ker

³eUr(γ) eUv(τ)´,
with the matrix blocks eUr(z) = zl+1Ur(z) and eUv(z) = zl+1Uv(z).

3. Kernel description

In this section we will describe explicit formulas which are valid for the kernels introduced in the

previous chapter. For the kernel of
¡
Ur(γ) Uv(τ) U l(0)

¢
a description is provided as well as for the

subspace Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
.
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3.1. General case

In this subsection a description is provided for the null spaces involved in the established inteconnec-

tions between the Fisher information matrix and a corresponding Stein solution. We first focus on the

null space appearing in theorem 2.2, namely Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
, since the matrix blocks which

constitute Ur(γ), Uv(τ) and U l(0) are evaluated at distinct roots, we then have the property that Im¡
Uν(σ)

¢
∩ Im

¡
Uµ(ρ)

¢
= {0} for all the different eigenvalues σ and ρ (with corresponding algebraic

multiplicity ν and µ) which appear in Im
¡
Ur(γ)

¢
, Im

¡
Uv(τ)

¢
and Im

¡
U l(0)

¢
. Consequently, the sub-

space Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
can be decomposed into a direct sum Ker

¡
Ur(γ) Uv(τ) U l(0)

¢
= Ker¡

Ur(γ)
¢
⊕ Ker

¡
Uv(τ)

¢
⊕ Ker

¡
U l(0)

¢
, a similar decomposition can also be applied to the subspaces

on the right-hand side to obtain Ker
¡
Ur(γ)

¢
=

r0M
i=1

Ker
¡
Usi(γi)

¢
, Ker

¡
Uv(τ)

¢
=

v0M
j=1

Ker
¡
U`j (τ j)

¢
.

This property follows from the next lemma.

Lemma 3.1 Consider two matrices A and B with appropriate dimensions, then

Im A ∩ Im B = {0} iff Ker (A B) =
Ã
Ker A

0

!
⊕
Ã

0

Ker B

!
.

Proof. When moving from right to left it is clear that it holds true. From left to right,

we assume

Ã
x

y

!
∈ Ker ( A B), this implies Ax + By = 0 and since Im A ∩ Im B = {0} we

have Ax = 0 and By = 0.

Since the functional form of the individual null spaces have the same structure, it therefore suffices

to specify the null space evaluated at one single root and we therefore represent a root by σ with

algebraic multiplicity ν + 1. In the next subsections an algorithm for Ker
¡
Uν(σ)

¢
is set forth and is

followed by some properties of Ker
¡
Mν(σ)

¢
.

3.1.1. An algorithm for Ker
¡
Uν(σ)

¢
In this section we shall adapt the notations used in the previous section accordingly. Consider uq(z) =

(1, z, . . . , zq−1)> and vp(z) = zp−1up(z−1)>. Define the q× p(n+1) matrix Unqp(z) = (Unqp, · · · , U0qp)
by

Ukqp(z) =

µ
d

dz

¶k
uq(z)vp(z).

We will give an expression for Ker Unqp(z). Let x be vector belonging to this kernel and decompose

x as x> = (x>0 , . . . , x>n ), with the xk ∈ Rp. Then

Unqp(z)x =
nX
k=0

(
d

dz
)kuq(z)vp(z)xn−k

=
nX
k=0

kX
j=0

µ
k

j

¶
u
(j)
q (z)v

(k−j)
p (z)xn−k

=
nX
j=0

u
(j)
q (z)

nX
k=j

µ
k

j

¶
v
(k−j)
p (z)xn−k

=

n∧(q−1)X
j=0

u
(j)
q (z)

nX
k=j

µ
k

j

¶
v
(k−j)
p (z)xn−k.

Since the vectors u(j)q (z) are independent as long as j ≤ q − 1, we see that Unqp(z)x = 0 iff for all
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j ≤ (q − 1) ∧ n we have
nX
k=j

µ
k

j

¶
v(k−j)p (z)xn−k = 0. (3.1)

(Notice that in this summation we only have non-zero contributions for k ≤ (j + p− 1) ∧ n.)
Thus we consider a system of (q−1)∧n+1 equations of type (3.1). Clearly, this system is triangular,
which leads to a recursive solution procedure.

We introduce some more notation. Let Kp(z) be a p× (p− 1) matrix whose columns span Ker vp(z)
(later on we will specify a certain choice for Kp(z)). We proceed in steps.

First we consider the case in which n < q, so we have a system of n+ 1 equations.

Set j = n. Then the corresponding equation becomes vp(z)x0 = 0. Hence x0 = Kp(z)γ0 for an

arbitrary vector γ0 ∈ Rp−1.
Consider now (with x0 given above) the equation for j = n− 1:

vp(z)x1 + nv
0
p(z)x0 = 0.

A particular solution of this equation is x1 = −nlpv0p(z)x0, with lp the last standard basis vector
of Rp and hence the general solution is given by x1 = −nlpv0p(z)x0 +Kp(z)γ1 with arbitrary γ1, so

x1 = Kp(z)γ1 − nlpv0p(z)Kp(z)γ0.
Continuing this way, we look at the equation for j = n− 2. It is

vp(z)x2 + (n− 1)v0p(z)x1 +
1

2
n(n− 1)v00p (z)x0 = 0.

A particular solution is given by

x2 = −lp
µ
(n− 1)v0p(z)x1 +

1

2
n(n− 1)v00p (z)x0

¶
= −lp

µ
(n− 1)v0p(z)(−nlpv0p(z)Kp(z)γ0 +Kp(z)γ1) +

1

2
n(n− 1)v00p (z)x0

¶
= −lp

µ
(n− 1)v0p(z)Kp(z)γ1 +

1

2
n(n− 1)v00p (z)Kp(z)γ0

¶
,

where we used in the last equality that v0p(z)lp = 0. The general solution now becomes

x2 = Kp(z)γ2 − lq
µ
(n− 1)v0q(z)Kp(z)γ1 +

1

2
n(n− 1)v00q (z)Kp(z)γ0

¶
.

Proceeding in this way, one obtains the following recursion for the xk and then its explicit form.

xk+1 = Kp(z)γk+1 −
kX
j=1

µ
n− k + j

j

¶
lpv

(j)
p (z)xk+1−j (3.2)

xk = Kp(z)γk −
kX
j=1

µ
n− k + j

j

¶
lpv

(j)
p (z)Kp(z)γk−j . (3.3)

If we put all the xk underneath each other, we get

x = Ln(z)(In+1 ⊗Kp(z))γ, (3.4)
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with Ln(z) ∈ R(n+1)p×(n+1)p the lower triangular matrix

Ip 0

−
¡
n
1

¢
lpv

(1)
p (z) Ip 0

−
¡
n
2

¢
lpv

(2)
p (z) −

¡
n−1
1

¢
lpv

(1)
p (z) Ip 0

...

−lpv(n)p (z) −lpv(1)p (z) Ip


. (3.5)

Clearly dim Ker Unqp(z) = (n+ 1)(p− 1).
Since obviously, the image space of Unqp(z) is spanned by the vectors u

(j)
q (z), for j = 0, . . . , n (recall

that n < q), it has dimension n+1. This is in agreement with the dimension rule: (n+1)(p−1)+n+1
is the number of coulmns of Unqp(z).

A convenient choice of Kp(z) is 

−1 0 0

z −1

0 z
. . . 0

. . .
. . . −1

0 0 z


.

In particular the computation of the products v(j)p (z)Kp(z) now becomes easy. Differentiate vp(z)Kp(z)

j times. Since K has zero derivatives of order greater than 1 and since vp(z)Kp(z) = 0, we get

v
(j)
p (z)Kp(z) = −jv(j−1)p (z)K0(z). But this is nothing else than the vector −jv(j−1)p (z) without its

first element.

For the case in which n ≥ q, a similar procedure as above has to be followed. The prime difference is
that we now consider the set of q equations (3.1), for j = 0, . . . , q− 1. Consider first the equation for
j = q − 1:

nX
k=q−1

µ
k

q − 1

¶
v(k−q+1)p (z)xn−k = 0.

To get a solution we choose the x0, . . . , xn−q completely free, say xk = βk with βk ∈ Rp. Then we get
for xn−q+1 the general solution

xn−q+1 = −lp
nX
k=q

µ
k

q − 1

¶
v(k−q+1)p (z)βn−k +Kp(z)γn−q+1,

with γn−q+1 an arbitrary vector in Rp−1. Continuing this way as in the case with n < q we now get
the solution x given by

x =

Ã
I(n−q+1)p 0(n−q+1)p×qp
M(z) Lq(z)(Iq ⊗Kp(z))

!Ã
β

γ

!
, (3.6)

with Lq(z) ∈ Rqp×q(p−1) like the matrix Ln(z) above, M(z) ∈ Rqp×(n−q+1)p defined by

M(z) =


−
¡
n
q−1
¢
lpv

(n−q+1)
p (z) · · ·

¡
q
q−1
¢
lpv

(1)
p (z)

...
...

−
¡
n
0

¢
lpv

(n)
p )(z) · · ·

¡
q
0

¢
lpv

(q)
p (z)
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and β = (β>0 , . . . ,β
>
n−q)>, γ = (γ>n−q+1, . . . , γ>n )>.

Since the image of Unqp(z) is now spanned by the vectors u
(j)
q (z), for j = 0, . . . , q − 1 (recall that

n ≥ q), it has dimension q. For the kernel we now have that its dimension is (n− q + 1)p (from the

first components) plus q(p− 1) (from the other other components), np+ p− q in total. Notice again
that this is in agreement with the dimension rule.

To compute Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
one proceeds as follows. It follows from the definition of¡

Ur(γ) Uv(τ) U l(0)
¢
that this kernel is the direct sum of the kernels of the Uνi(σi) for all the distinct

eigenvalues σi and hence it’s dimension is the sum of the dimensions of the summands.

3.1.2. Some property of Ker
¡
Mν(σ)

¢
Attention is also paid to the second null space appearing in theorem 2.2, namely Ker

¡
Mr(γ)Mv(τ)Ml(0)

¢
,

the subspaces Im
¡
Mr(γ)

¢
, Im

¡
Mv(τ)

¢
and Im

¡
Ml(0)

¢
have the property formulated in lemma 3.1

and this can be justified because the matrix blocks which formMr(γ),Mv(τ) andMl(0) are evaluated

at dinstinct roots. We therefore have Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
= Ker

¡
Mr(γ)

¢
⊕ Ker

¡
Mv(τ)

¢
⊕ Ker

¡
Ml(0)

¢
with Ker

¡
Mr(γ)

¢
=

r0M
i=1

Ker
¡
Msi(γi)

¢
, Ker

¡
Mv(τ)

¢
=

v0M
j=1

Ker
¡
M`j (τ j)

¢
and

since Ml(0) = 0 we have that Ker Ml(0) = Cr+v ⊕ Cr+v ⊕ · · · ⊕ Cr+v. Since the functional forms
of the individual null spaces have the same structure, it is then sufficient to consider the null space

evaluated at one single root. We denote a root by σ with algebraic multiplicity ν + 1 to represent a

general form for the subspace Ker
¡
Mν(σ)

¢
. The appropriate structure of the matrixMν(σ) can be

rewritten as

Mν(σ) =
³
M(ν)

ν (z), M(ν−1)
ν (z), ... ,M(0)

ν (z)
´
z=σ

each block being

M(ν−j)
ν (σ) =

µ
∂ν−j

∂zν−j
adj (zI −Ch)Γadj (I − zCh)> zl+1

¶
z=σ

j = 0, . . . , ν.

In order to express the appropriate subspace in a useful and practical form, an additional factor-

ization is applied on each blockM(ν−j)
ν (σ), this is realized through the application of Leibnitz rule to

j-fold differentiation of a product of two functions, this yields

M(ν−j)
ν (σ) =M(ν−j)(1)

ν (σ)M(ν−j)(2)
ν (σ)

where for j = 0, 1, . . . , ν the (r + v)× (r + v)(ν − j + 1) matrix

M(ν−j)(1)
ν (σ) =

µ
∂ν−j

∂zν−j
adj (zI −Ch) ,

∂ν−j−1

∂zν−j−1
adj (zI −Ch) , . . . , adj (zI −Ch)

¶
z=σ

and the (r + v)(ν − j + 1)× (r + v) matrix

M(ν−j)(2)
ν (σ) =



Ã
ν − j
0

!
Γadj (I − zCh)> zl+1Ã

ν − j
1

!
Γ
∂

∂z
adj (I − zCh)> zl+1

...Ã
ν − j
ν − j

!
Γ
∂ν−j

∂zν−j
adj (I − zCh)> zl+1


z=σ

.

To obtain

Mν(σ) =M
(1)
ν (σ)M(2)

ν (σ) (3.7)
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where the (r + v)× (r + v)(ν + 1)(ν + 2)/2 first matrix has the following form

M(1)

ν (σ) =
³
M(ν)(1)

ν (z), M(ν−1)(1)
ν (z), ... ,M(0)(1)

ν (z)
´
z=σ

and the (r + v)(ν + 1)(ν + 2)/2× (r + v)(ν + 1) second matrix is

M(2)
ν (σ) =


M(ν)(2)

ν (z) 0 . . . 0

0 M(ν−1)(2)
ν (z)

. . .
...

...
. . .

. . . 0

0 . . . 0 M(0)(2)

ν (z)


z=σ

.

The description of the subspace Ker
¡
Mν(σ)

¢
is reduced to the description of a subspace as-

sociated with a product of two matrices. It will be shown in lemma 3.2 that the kernels of all the

matricesM(ν−j)(2)
ν (σ) are zero so that KerM(2)

ν (σ) = {0}. This property will be used for formulating
the kernel of the product AB in terms of A and B taking into account Ker B = {0}.

Lemma 3.2 The following property holds true for an appropriate choice of Γ

Ker


M(ν)(2)

ν (z) 0 . . . 0

0 M(ν−1)(2)
ν (z)

. . .
...

...
. . .

. . . 0

0 . . . 0 M(0)(2)

ν (z)


z=σ

= {0}.

Proof. The kernels of all the block elements ofM(ν)(2)
ν (σ) are

Ker
³
M(ν−j)(2)

ν (σ)
´
= Ker



Ã
ν − j
0

!
Γadj (I − zCh)> zl+1Ã

ν − j
1

!
Γ
∂

∂z
adj (I − zCh)> zl+1

...Ã
ν − j
ν − j

!
Γ
∂ν−j

∂zν−j
adj (I − zCh)> zl+1


z=σ

=

Ker
³
Γadj (I − zCh)> zl+1

´
z=σ
∩ Ker

ÃÃ
ν − j
1

!
∂

∂z
Γadj (I − zCh)> zl+1

!
z=σ

∩ . . .∩ Kerµ
∂ν−j

∂zν−j
Γadj (I − zCh)> zl+1

¶
z=σ

= {0}.
The last result can easily be justified by taking into account the fact that the companion matrix in

the Stein equation is such that the product of the eigenvalues of (zI −Ch) and (I− zCh) are different
from one and this implies that the eigenvalues of (I−zCh) will never be σ−1. This property combined
with an appropriate choice of Γ results in

³
Γadj (I − zCh)> zl+1

´
z=σ

being an invertible matrix.

Therefore there exists a left inverse of


M(ν)(2)

ν (z) 0 . . . 0

0 M(ν−1)(2)
ν (z)

. . .
...

...
. . .

. . . 0

0 . . . 0 M(0)(2)

ν (z)


z=σ

, i.e.

a matrix K such that
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K


M(ν)(2)

ν (z) 0 . . . 0

0 M(ν−1)(2)
ν (z)

. . .
...

...
. . .

. . . 0

0 . . . 0 M(0)(2)
ν (z)


z=σ

= I(r+v)(ν+1).

We have now the property given in the next lemma.

Lemma 3.3 Let A and B be complex matrices of sizes m×n and n× p respectively and assume Ker
B = {0}. Then

Ker (AB) ' (Im B ∩Ker A).

Proof. Assume x ∈ Ker (AB) then AB x = 0 and since B x 6= 0 implies
B x ∈ (Im B ∩Ker A).

If y ∈ (Im B ∩Ker A) then there exists a x such that y = Bx and Ay = 0 and consequently AB
x = 0 or x ∈ Ker (AB).
This property can be used for expressing the rank of AB see e.g. [7] and consequently the dimension

of the kernel of AB can then be specified, to obtain

dim Im (AB) + dim (Im B ∩Ker A) = dim Im B. (3.8)

A derivation of KerM(1)
ν (σ) is now presented where

M(1)

ν (σ) =
³
M(ν)(1)

ν (z), M(ν−1)(1)
ν (z), ... ,M(0)(1)

ν (z)
´
z=σ

.

We will show that we can essentially reduce this problem to the computation of the kernel of a matrix

like Unqp(z) which we treated in section 3.1.1. We consider the block-row decomposition of this matrix

in terms of theM(ν−j)(1)
ν (σ). One easily sees that

M(ν−j)(1)
ν (σ) = Uν−j,p,p(σ)(Iν−j+1 ⊗ S(c)), (3.9)

with p = r + v. Indeed, observe first that c(z)>J = u∗(z)>S(c), with notation similar to what we

used before lemma 2.4. For instance, the vector c(z) consists of the Hörner polynomials asociated

with the characteristic polynomial π of Ch. Hence we get, like equation (2.23) that adj(z − Ch) =
u(z)u∗(z)>S(c)− π(z)

P
zjSj+1. But then, by computing the relevant k-th order derivatives in any

of the eigenvalues σ we get the simple relations
¡
d
dz

¢k
adj(z −Ch)|z=σ = Ukpp(σ)S(c), in the notation

of section 3.1.1. Doing this for the different σ’s under consideration results in equation (3.9).

Let y ∈ Ker M(1)
ν (σ) and decompose y as y> =

¡
y>0 , . . . , y>ν

¢
, with yj ∈ Rp(ν+1−j). Let zj =

(Iν+1−j ⊗ S(c))yj and z> =
¡
z>0 , . . . , z>ν

¢
. Then we have y ∈ KerM(1)

ν (σ) iff

z ∈ Ker (Uν,p,p(σ), Uν−1,p,p(σ), . . . , U0,p,p(σ)) . (3.10)

Decompose the zj further according to z>j =
¡
z>j,0, . . . , z

>
j,ν−j

¢
, with the zji ∈ Rp.

For z to be in the kernel of (Uν,p,p(σ), Uν−1,p,p(σ) . . . , , U0,p,p(σ)) it must satisfy the equation

νX
j=0

Uν−j,p,p(σ)zj = 0.
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Using the zj,i and the matrices Ukpp(σ) that we introduced before (so Uν−j,p,p(σ) =
¡
Uν−j
pp (σ), . . . , U0pp(σ)

¢
),

we obtain that the kernel equation (3.10) is equivalent to

νX
j=0

ν−jX
i=0

Uν−i−j
pp (σ)zj,i = 0.

A little bit of rearranging terms in this equation leads to

νX
l=0

Uν−l
pp (σ)

lX
j=0

zj,l−j = 0.

Denote now by xl the sum
Pl
j=0 zj,l−j . Then we see that the vector x given by x

> =
¡
x>0 , . . . , x>ν

¢
belongs to the kernel of Uν,p,p(σ). But from section 3.1.1 we know how the xl look. It follows that

for each l the vector z̃l =
³
z>0,l, . . . , z

>
l,0

´>
belongs to a subspace of dimension lp + s, where s is the

dimension of the subspace where xl lives. Moreover the zj,l−j that constitute z̃l are all independent

from the zj,l0−j that constitute z̃l0 for l 6= l0.
Working back through this procedure, one will be able to explicitly describe the space where the z

and y live. We omit the uninteresting details. However, it can be concluded that dim KerM(1)

ν (σ) is

p[(ν + 1)(ν + 2)/2 −1] if p ≤ ν and equal to p(ν + 1)(ν + 2)/2 −ν − 1 if p ≥ ν + 1.

We shall now formulate an expression for
¡
Ker (zI −Ch)∗

¢⊥
z=σ

which shall be summarized in the

next lemma and for that purpose we introduce the following polynomial

πx(z) = z
x + e1 z

x−1 + e2 zx−2 + · · ·+ ex.

Lemma 3.4 Given the companion matrix Ch used in (2.15) yields

Ker (zI −Ch)∗z=σ =



e(r+v)−1 + z π(r+v)−2(z)

e(r+v)−2 + z π(r+v)−3(z)
...

π1(z)

π0(z)


z=σ

with
¡
Ker (zI −Ch)∗z=σ

¢⊥
=

Ã
ξ

I(r+v)−1

!
where ξ = −

¡
e(r+v)−1 + z π(r+v)−2(z)

¢−1
z=σ

×¡
e(r+v)−2 + z π(r+v)−3(z), e(r+v)−3 + z π(r+v)−4(z), . . . ,π1(z),π0(z)

¢
z=σ

and π0(σ) = 1.

and dim
¡
Ker (zI −Ch)∗z=σ

¢⊥
= r + v − 1.

Where X∗ is the complex conjugate transpose of X and Y ⊥ is the orthogonal complement of Y .

Taking into consideration the property dim
¡
Ker (zI −Ch)∗

¢⊥
z=σ

= dim Ker adj (zI −Ch)z=σ =
r + v − 1 ( as can be seen from lemma 2.4 and lemma 3.4) leads to the following result.

Corollary 3.5 The following holds true¡
Ker (zI −Ch)∗z=σ

¢⊥
= Ker adj (zI −Ch)z=σ.

Proof. We use the following approach by rewriting the adjoint of (zI −Ch)z=σ as
adj (zI −Ch) (zI −Ch) = det (zI −Ch) Ir+v
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so that

adj (zI −Ch)z=σ (zI −Ch)z=σ = det (zI −Ch)z=σ Ir+v = 0.
Consequently,

Ker adj (zI − Ch)z=σ = Im (zI −Ch)z=σ =
¡
Ker (zI −Ch)∗z=σ

¢⊥
.

However, it can be seen from equation (2.23) that an alternative representation for Ker adj

(zI −Ch)z=σ can be derived.
An example is now provided for r + v = 4. Consider the companion form used in (2.15) to have

adj (zI −Ch)z=σ =


e3 + e2 z + e1 z

2 + z3 e2 + e1 z + z
2 e1 + z 1

− e4 e2 z + e1 z
2 + z3 e1 z + z

2 z

− e4 z − e4 − e3 z e1 z
2 + z3 z2

− e4 z2 − e4 z − e3 z2 −e4 − e3 z − e2 z2 z3


z=σ

an appropriate choice of a matrix A with columns in Ker(adj (zI −Ch)z=σ) is then

A =

−
1

e3+e2 z+e1 z2+z3


e2 + e1 z + z

2 e1 + z 1

1 0 0

0 1 0

0 0 1



z=σ

.

3.2. Special case

The kernels involved in the interconnections when the roots or eigenvalues are distinct shall now be

given. Attention is paid to the kernels of the coefficient matrices appearing in (2.29) and (2.30), to

have

Ker
¡
Ur(γ) Uv(τ) U l(0)

¢
= Ker (Ur(γ)) ⊕ Ker (Uv(τ)) ⊕ Ker

¡
U l(0)

¢
with

Ker (Ur(γ)) =
rM
i=1

Ker (Ui(γi)), Ker (Uv(τ)) =
vM
j=1

Ker (Uj(τj)).

It is sufficient to represent one case since the argument of linear independence holds

Ker (Ui(γi)) =
Ã
−z−(q−1)u>q−1(z)

Jq−1

!
z=γi

and dim Ker (Ui(γi)) = q − 1

and an analogous representation holds for Ker (Uj(τ j)) we further have

Ker
¡
Uδ(0)

¢
= Ker

µ
∂δ

∂zδ
¡
uq(z)u

∗>
q (z)

¢¶
z=0

=



Ã
Jq−1−δ
01+δ

!
for δ = 0, 1, . . . , q − 1Ã

02q−1−δ
Jδ−(q−1)

!
for δ = q, q + 1, . . . , 2q − 2

dim Ker
µ

∂δ

∂zδ
¡
uq(z)u

∗>
q (z)

¢¶
z=0

=

(
(q − 1)− δ for δ = 0, 1, . . . , q − 1
δ − (q − 1) for δ = q, q + 1, . . . , 2q − 2.

The null spaces constituting Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
are obtained according to

Ker
¡
Mr(γ)Mv(τ)Ml(0)

¢
= Ker (Mr(γ)) ⊕ Ker (Mv(τ)) ⊕ Ker

¡
Ml(0)

¢
with

Ker (Mr(γ)) =
rM
i=1

Ker (Mi(γi)), Ker (Mv(τ)) =
vM
j=1

Ker(Mj(τ j))

and as in the general case Ker Ml(0) = Cr+v ⊕ Cr+v ⊕ · · · ⊕ Cr+v. Since there is an equivalent
functional form for all the subspaces, it suffices to consider for example
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Ker (Mr(γ)) =
rM
i=1

Ker (Mi(γi)) and the following factorization is applied

Mr(γ) =M(1)
r (γ)M(2)

r (γ) (3.11)

where

M(1)
r (γ) =

³
adj (zI −Ch)z=γ1 , adj (zI −Ch)z=γ2 , . . . , adj (zI −Ch)z=γr

´
and

M(2)
r (γ) =



Γ
³
adj (I − zCh)> zl+1

´
z=γ1

0 . . . 0

0 Γ
³
adj (I − zCh)> zl+1

´
z=γ2

0
...

... 0
. . . 0

0 . . . 0 Γ
³
adj (I − zCh)> zl+1

´
z=γr


.

Since the blocks composingM(2)
r (γ) are square invertible matrices, we then have

Ker (Mr(γ)) =
³
M(2)

r (γ)
´−1

Ker
³
M(1)

r (γ)
´

and for a similar argument as mentioned in lemma 3.1 we obtain

Ker
³
M(1)

r (γ)
´
=Ker

³
adj (zI −Ch)z=γ1

´
⊕Ker

³
adj (zI −Ch)z=γ2

´
⊕· · ·⊕Ker

³
adj (zI −Ch)z=γr

´
.

An appropriate choice of a matrix with columns in Ker
³
adj (zI −Ch)z=γi

´
( i = 1, 2, . . . , r)

can be deduced from lemma 3.4 and corollary 3.5 and from which can also be concluded that dim

Ker
³
M(1)

r (γ)
´
= r (r + v − 1), a similar argument holds for the remaining blocks. It is clear that

these results can be used for the three cases considered, l + 1 > 0, l + 1 = 0 and l + 1 < 0. The

interconnection between the Fisher information matrix and a corresponding Stein solution takes place

for the case l + 1 = 0 and this implies dim Ker (Mr(γ)Mv(τ)) = (r + v) (r + v − 1) and dim Im

(Mr(γ)Mv(τ)) = (r + v) as it is also pointed out in section 2.2 but here the results are based on

lemma 3.4 and corollary 3.5.

4. Right inverses and Vandermonde matrices

In this section some appropriate right inverses which appear in the interconnection between a Stein

solution and Fisher’s information shall be given. The presence of Vandermonde matrices will be set

forth as well as some equalities involving the matrices Uν(σ) and fMν(σ), these are derived from

equations which contain Vandermonde matrices.

A right inverse of
¡
Ur(γ) Uv(τ)

¢
will be provided for r + v = q. First the following (q × q)

generalized Vandermonde matrix is introduced

Wr,v(γ, τ) =
³
Ws1(γ1), Ws2(γ2), ..., Wsr0

(γr0), V`1(τ1), V`2(τ2), ..., V`v0 (τv0)
´

where

Wsi(γi) =
³
W (si)
si (z), W (si−1)

si (z), ... ,W (0)
si (z)

´
z=γi

and

W (si−k)
si (γi) =

µ
∂si−k

∂zsi−k
uq(z)

¶
z=γi

k = 0, 1, . . . , si.

The matrix
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V`j (τ j) =
³
V (`j)
`j

(z), V (`j−1)
`j

(z), ... ,V (0)
`j
(z)

´
z=τj

with

V (`j−k)
`j

(τ j) =

µ
∂`j−k

∂z`j−k
uq(z)

¶
z=τj

k = 0, 1, . . . , `j .

To obtain

¡
Ur(γ) Uv(τ)

¢
(Iq ⊗ eq) = Wr, v(γ, τ) (4.1)¡

Ur(γ) Uv(τ)
¢ ³
(Wr, v(γ, τ))

−1 ⊗ eq
´

= Iq. (4.2)

Consequently, an appropriate right inverse is
¡
Ur(γ) Uv(τ)

¢−
R
=
³
(Wr, v(γ, τ))

−1 ⊗ eq
´
where eq

is the last standard basis vector in Rq (which consists of one on the last position and zeros for the
remaining elements).

In [12] Vandermonde structures have been detected in the matrices of the form fMν(σ) whereas in

this study Vandermonde matrices are associated with the coefficient matrix
³fMr(γ)

fMv(τ)
´
, for the

case ` + 1 = 0 or q = r + v. As in [12] an appropriate factorization is set forth in order to separate

the terms involving adj (zI −Ch), Γ and adj(I − zCh)> . For achieving such a factorization Leibnitz
rule to j- fold differentiation of a product of two functions is applied. However, the equations set

forth in this paper are more general than the equivalent ones in [12]. The right inverses which are

derived in this study are also used to establish equations which interconnect the coefficient matrices

associated with the factored forms of the Fisher information matrix and a corresponding solution to a

Stein equation. The suggested factorization has the following form³fMr(γ)
fMv(τ)

´
= fM(1)

r, v(γ, τ)
fMΓ

r, v
fM(2)

r, v(γ, τ) (4.3)

where the q × q (δ1 + δ2) matrix
fM(1)

r, v(γ, τ) is composed asfM(1)

r, v(γ, τ) =

µfM(1)

s1 (γ1)
fM(1)

s2 (γ2) . . .
fM(1)

sr0
(γr0)

fM(1)

`1 (τ1)
fM(1)

`2 (τ2) . . .
fM(1)

`v0
(τv0)

¶
with fM(1)

si (γi) =

µfM (si) (1)

si (z) fM (si−1) (1)
si (z) . . .fM (0) (1)

si (z)

¶
z=γi

and fM(si−j) (1)
si (γi) =

µ
∂si−j

∂zsi−j
adj (zI −Ch)

¶
z=γi

j = 0, 1, . . . , si

we further have fM(1)

`j (τ j) =

µfM(`j) (1)

`j (z) fM(`j−1) (1)
`j (z) . . .fM(0) (1)

`j (z)

¶
z=τj

with fM(`j−k) (1)
`j (τj) =

µ
∂`j−k

∂z`j−k
adj (zI −Ch)

¶
z=τj

k = 0, 1, . . . , `j .

Note that

δ1 =

r0X
i=1

(si + 1) (si + 2)

2
and δ2 =

v0X
j=1

(`j + 1) (`j + 2)

2
.

The q (δ1 + δ2)× q (δ1 + δ2) block diagonal matrix
fMΓ

r,v has the following formfMΓ

r, v = diag
½fMΓ

s1
fMΓ

s2 . . .
fMΓ

sr0

fMΓ

`1
fMΓ

`2 . . .
fMΓ

`v0

¾
with
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fMΓ

si =


Γ(si) 0 · · · 0

0 Γ(si−1)
. . .

...
...

. . .
. . . 0

0 · · · 0 Γ(0)

 where Γ(si−j) =



Ã
si − j
0

!
Γ 0 · · · 0

0

Ã
si − j
1

!
Γ

. . .
...

...
. . .

. . . 0

0 · · · 0

Ã
si − j
si − j

!
Γ


and

fMΓ

`j =


Γ(`j) 0 · · · 0

0 Γ(`j−1)
. . .

...
...

. . .
. . . 0

0 · · · 0 Γ(0)

 where Γ(`j−k) =



Ã
`j − k
0

!
Γ 0 · · · 0

0

Ã
`j − k
1

!
Γ

. . .
...

...
. . .

. . . 0

0 · · · 0

Ã
`j − k
`j − k

!
Γ


the matrix fMΓ

r, v is invertible for an appropriate choice of Γ ( Γ is invertible) and j = 0, 1, . . . , si
and k = 0, 1, . . . , `j .

The q (δ1 + δ2)× q (r + v) block diagonal matrix fM(2)

r, v(γ, τ) has the form given byfM(2)

r, v(γ, τ) = diag
½fM(2)

s1 (γ1)
fM(2)

s2 (γ2) . . .
fM(2)

sr0
(γr0)

fM(2)

`1 (τ1)
fM(2)

`2 (τ2) . . .
fM(2)

`v0
(τv0)

¾
where

fM(2)

si (γi) =



fM(si) (2)

(z) 0 · · · 0

0 fM(si−1) (2)
(z)

. . .
...

...
. . .

. . . 0

0 · · · 0 fM(0) (2)

(z)


z=γi

with fM(si−j) (2)
(γi) =



adj (I − zCh)>
∂

∂z
adj (I − zCh)>

...
∂si−j

∂zsi−j
adj (I − zCh)>


z=γi

for j = 0, 1, . . . , si

fM(2)

`j (τ j) =



fM(`j) (2)

(z) 0 · · · 0

0 fM(`j−1) (2)
(z)

. . .
...

...
. . .

. . . 0

0 · · · 0 fM(0) (2)

(z)


z=τj

with fM(`j−k) (2)
(τj) =



adj (I − zCh)>
∂

∂z
adj (I − zCh)>

...
∂`j−k

∂z`j−k
adj (I − zCh)>


z=τj

for k = 0, 1, . . . , `j .
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Before deriving equations which involve Vandermonde matrices in (4.3) we first set forth appro-

priate equalities for one single block case, i.e. one block extracted from fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ)

respectively. The purpose of doing so is to ease the transition to the generalizations applied to the

matrices fM(1)

r, v(γ, τ) and fM(2)

r, v(γ, τ). Like in section 3 we denote a root by σ with corresponding

algebraic multiplicity ν + 1. A first result is set forth¡
I(ν+1)(ν+2)/2 ⊗ e>q

¢ fM(2)

ν (σ) =W ∗
q (σ) (4.4)

where the (ν + 1) (ν + 2) /2× (ν + 1) q matrix W ∗
q (σ) has the form

W ∗
q (σ) =


W ∗

ν,q(z) 0 · · · 0

0 W ∗
ν−1,q(z)

. . .
...

...
. . .

. . . 0

0 · · · 0 W ∗
0,q(z)


and the (ν − j + 1)× q generalized Vandermonde matrix is given by

W ∗
ν−j, q(z) =



u∗>q (z)
∂

∂z
u∗>q (z)

...
∂υ−j

∂zν−j
u∗>q (z)


with j = 0, 1, . . . , ν.

Since the case `+ 1 = 0 is considered, we then have that ν + 1 < q, consequently a right inverse

of the matrix W ∗
ν−j, q(z) can be constructed.

W ∗
ν−j, q(z)

Ã
Iν−j+1

0q−(ν−j+1)×ν−j+1

!
=W ∗

ν−j, ν−j+1(z)

where the (ν − j + 1)× (ν − j + 1) generalized Vandermonde matrix W ∗
ν−j, ν−j+1(z) is composed

of the first (ν − j + 1) columns (from left to right) of W ∗
ν−j, q(z), to obtain

W ∗
ν−j, q(z)

Ã
W−∗ν−j, ν−j+1(z)
0q−(ν−j+1)×ν−j+1

!
= Iν−j+1.

where W−∗ν−j, ν−j+1(z) =
¡
W ∗

ν−j, ν−j+1(z)
¢−1

.

Consequently, a right inverse of W ∗
ν−j, q(σ) is given by

W−∗R, ν−j, q(σ) =
Ã

W−∗ν−j, ν−j+1(z)
0q−(ν−j+1)×ν−j+1

!
z=σ

.

We then have W∗q (σ) W−∗R, q(σ) = I(ν+1)(ν+2)/2 or fully written as
W ∗

ν, q(z) 0 · · · 0

0 W ∗
ν−1, q(z)

. . .
...

...
. . .

. . . 0

0 · · · 0 W ∗
0, q(z)




W−∗R, ν, q(z) 0 · · · 0

0 W−∗R, ν−1, q(z)
. . .

...
...

. . .
. . . 0

0 · · · 0 W−∗R, 0, q(z)

 =

I(ν+1)(ν+2)/2.

The following equation can now be summarized in the following proposition.

Proposition 4.1 The following equality holds true

¡
I(ν+1)(ν+2)/2 ⊗ e>q

¢ fM(2)

ν (σ)W−∗R, q(σ) = I(ν+1)(ν+2)/2. (4.5)
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This equation is a variant of lemma 3.10 in [12]. We now proceed with setting forth a first step

for constructing a right inverse of the matrix fM(1)

ν (σ), to obtain

fM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eq

¢
=Wν(σ) (4.6)

where the q × (ν + 1) (ν + 2) /2 generalized Vandermonde matrix
Wν(σ) =

¡
W (ν)(z) W (ν−1)(z) . . .W (0)(z)

¢
z=σ

with

W(ν−j)(σ) =
µ

∂ν−j

∂zν−j
uq(z)

¶
z=γi

j = 0, 1, . . . , ν.

Note that¡
I(ν+1)(ν+2)/2 ⊗ e>q

¢ ¡
I(ν+1)(ν+2)/2 ⊗ eq

¢
= I(ν+1)(ν+2)/2

since e>q eq = 1, consequently a right and a left inverse of the appropriate matrices in (4.5) and

(4.6) are respectively given by their corresponding transpose.

An equation involving the matrices fM(1)

ν (σ) , fM(2)

ν (σ) and appropriate Vandermonde matrices is

obtained by combining (4.5) and (4.6) according tofM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eq

¢ ¡
I(ν+1)(ν+2)/2 ⊗ e>q

¢ fM(2)

ν (σ)W−∗R, q(σ) =fM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eq

¢
I(ν+1)(ν+2)/2 =Wν(σ)

or

fM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eqe>q

¢ fM(2)

ν (σ)W−∗R, q(σ) =Wν(σ). (4.7)

Although equations (4.6) and (4.7) give no explicit form for a right inverse of fM(1)

ν (σ), these

equations shall be used for the general case (consisting of the matrices fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ),

and for `+1 = 0 or q = r+ v), where a right inverse of fM(1)

r, v(γ, τ) is given. But first some attention

is paid for equations which involve fM(1)

ν (σ), fM(2)

ν (σ) and Uν(σ). From the
¡
Ur(γ) Uv(τ)

¢
structure

can be seen for the one block case, with a root-eigenvalue equal to σ and algebraic multiplicity ν +1,

that the following holds true

Uν(σ) (Iν+1 ⊗ eq) =W q
ν (σ) (4.8)

where the q × (ν + 1) generalized Vandermonde matrix W q
ν (σ) has the following structure

W q
ν (σ) =

µ
∂ν

∂zν
uq(z)

∂ν−1

∂zν−1
uq(z) . . . uq(z)

¶
z=σ

.

Wν(σ) which is the right-hand side of equation (4.6), fulfills the following property

Wν(σ) Eν+1 =W q
ν (σ)

where the (ν + 1) (ν + 2) /2 × (ν + 1) matrix Eν+1 has the following form

Eν+1 =



eν+11

¡
eν+11

¢>
0ν eν1 (e

ν
1)
>

0ν−1 0ν−1 eν−11

¡
eν−11

¢>
...

...
. . .

01 · · · 01 e11
¡
e11
¢>


28



where the 00is are column vectors consisting of zeros (i = 1, 2, . . . , ν) and the elements e
j
1 are the

first standard basis vectors in Rj (j = 1, 2, . . . , ν+1). An alternative transformation can be set forth
as

Wν(σ)

Ã
Iν+1

0ν(ν+1)/2×(ν+1)

!
=W q

ν (σ).

Note that the matrices Eν+1 and
Ã

Iν+1

0ν(ν+1)/2×(ν+1)

!
have a zero kernel and consequently have

left inverses which are equal to their own transpose considering their respective structure or

E−ν+1,L = E>ν+1 and
Ã

Iν+1

0ν(ν+1)/2×(ν+1)

!−
L

=

Ã
Iν+1

0ν(ν+1)/2×(ν+1)

!>
.

We can now transform (4.6) according to

fM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eq

¢
Eν+1 =W q

ν (σ). (4.9)

Combining (4.8) and (4.9) allows to present an interconnection between Uν(σ) and fM(1)

ν (σ).

Proposition 4.2 An interconnection between fM(1)

ν (σ) and Uν(σ) is verified through the following
equalityfM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eq

¢
Eν+1 = Uν(σ) (Iν+1 ⊗ eq).

A equivalent equation can be verified through equation (4.7) by rewriting it asfM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eqe>q

¢ fM(2)

ν (σ) W−∗R, q(σ) Eν+1 =W q
ν (σ)

to obtain

Proposition 4.3 An alternative interconnection between fM(1)

ν (σ) and Uν(σ) is verified through the
following equationfM(1)

ν (σ)
¡
I(ν+1)(ν+2)/2 ⊗ eqe>q

¢ fM(2)

ν (σ) W−∗R, q(σ) Eν+1 = Uν(σ) (Iν+1 ⊗ eq).

We shall now extend the obtained results to the matrices fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ) by presenting

a generalization of equation (4.6), this is given by the following equality

fM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eq) =W δ
r, v(γ, τ) (4.10)

where the q × (δ1 + δ2) generalized Vandermonde matrix W δ
r, v(γ, τ) is

W δ
r, v(γ, τ) =

³
W δ
s1(γ1) W δ

s2(γ2) . . . W δ
sr0
(γr0) W δ

`1
(τ1) W δ

`2
(τ2) . . . W δ

`v0
(τv0)

´
with

W δ
si (γi) =

³
W (si) δ
si (z) W (si−1) δ

si (z) . . . W (0) δ
si (z)

´
z=γi

with

W (si−j) δ
si (γi) =

µ
∂si − j

∂zsi − j
uq(z)

¶
z=γi

j = 0, 1, . . . , si

and

W δ
`j
(τ j) =

³
W (`j) δ
`j

(z) W (`j−1) δ
`j

(z) . . . W (0) δ
`j

(z)
´
z=τj

with
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W (`j−k) δ
`j

(τj) =

µ
∂`j−k

∂z`j−k
uq(z)

¶
z=τj

k = 0, 1, . . . , `j .

In order to successfully construct a right inverse of fM(1)

r,v(γ, τ), the following equality is set

forth

W δ
r, v(γ, τ) Iδ, r, v =Wr, v(γ, τ) (4.11)

where the (r + v) × (r + v) or q × q generalized Vandermonde matrix Wr, v(γ, τ) is given in the¡
Ur(γ) Uv(τ)

¢
case (equations (4.1) and (4.2)).

The (δ1 + δ2)× (r + v) matrix Iδ, r, v has the following form

Iδ, r, v =
Ã
Iδ1, r 0

0 Iδ2, v

!
where

Iδ1, r =



Is1+1 0 . . . 0

0((s1+1) s1 / 2 )× (s1+1)

0 Is2+1
...

0((s2+1) s2 / 2 )× (s2+1)

...
. . . 0

Isr0+1

0 . . . 0 0((sr0+1) sr0 / 2) × (sr0+1)


and

Iδ2, v =



I`1+1 0 . . . 0

0((`1+1) `1 / 2) × (`1+1)

0 I`2+1
...

0((`2+1) `2 / 2) × (`2+1)

...
. . . 0

I`v0+1

0 . . . 0 0((`v0+1) `v0 / 2) × (`v0+1)


.

Multiplying both the left and right-hand side of equation (4.10) with Iδ, r, v results in the q×(r+v)
or (r + v)× (r + v) square generalized Vandermonde matrix Wr, v(γ, τ) on the right-hand side of the

newly obtained equation according to

fM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eq) Iδ, r, v =Wr, v(γ, τ) (4.12)

so that the following proposition can be formulated

Proposition 4.4 The equation can be verified asfM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eq) Iδ, r, v (Wr, v(γ, τ))
−1 = Ir+v.

Thus an appropriate right inverse is given byµ fM(1)

r, v(γ, τ)

¶−
R

= (Iδ1+δ2 ⊗ eq) Iδ, r, v (Wr, v(γ, τ))
−1,

note that this result is a variant of lemma 5.3 in [12].
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Since the generalized Vandermonde matrixWr, v(γ, τ) also appears in the right inverse of
¡
Ur(γ) Uv(τ)

¢
expressed in the equations (4.1) and (4.2), a combination of these equations with (4.12) results in the

next equality

Proposition 4.5 An interconnection between
¡
Ur(γ) Uv(τ)

¢
and fM(1)

r, v(γ, τ) has the form¡
Ur(γ) Uv(τ)

¢
(Iq ⊗ eq) = fM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eq) Iδ, r, v.

A generalization of equation (4.10) shall now be set forth and for that purpose the following

equation is considered

(Iδ1+δ2 ⊗ e>q ) fM(2)

r, v(γ, τ) =W ∗
q (γ, τ) (4.13)

where the (δ1 + δ2)× q (r + v) block diagonal matrix W∗q (γ, τ) has the following structure
W ∗
q (γ, τ) = diag

©
W ∗
q (γ1) W ∗

q (γ2) . . .W ∗
q (γr0) W ∗

q (τ1) W ∗
q (τ2) . . .W ∗

q (τv0)
ª
.

The generalized Vandermonde matrices constituting W ∗
q (γ, τ) have a similar functional form to

the right-hand side of (4.4). A right inverse of W ∗
q (γ, τ) can be constructed accordingly to result in

the q (r + v)× (δ1 + δ2) block diagonal matrix having the following form

W−∗R, q(γ, τ) = diag
n
W−∗R, q(γ1) W−∗R, q(γ2) . . .W−∗R, q(γr0) W

−∗
R, q(τ1) W−∗R, q(τ2) . . .W−∗R, q(τv0)

o
whereW−∗R, q(γ1)W−∗R, q(γ2) . . .W−∗R, q(γr0)W

−∗
R, q(τ1)W−∗R, q(τ2) . . .W−∗R, q(τv0) are the right inverses

of W ∗
q (γ1) W ∗

q (γ2) . . .W ∗
q (γr0) W ∗

q (τ1) W ∗
q (τ2) . . .W ∗

q (τv0) respectively and have an equivalent

functional form to W−∗R, q(σ) in (4.5) and (4.7), consequently
W ∗
q (γ, τ) W−∗R, q(γ, τ) = Iδ1+δ2 .

Transforming equation (4.13) accordingly results in

(Iδ1+δ2 ⊗ e>q ) fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) = Iδ1+δ2 .

Combining fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ) as given in (4.10) and (4.13) respectively yieldsfM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eq) (Iδ1+δ2 ⊗ e>q )fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) =W
δ
r, v(γ, τ)

in virtue of equation (4.11) we obtainfM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eqe>q ) fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) Iδ, r, v =Wr, v(γ, τ)

taking the inversion of Wr, v(γ, τ) into account leads to the next proposition.

Proposition 4.6 The following equation holds truefM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eqe>q ) fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) Iδ, r, v
¡
Wr, v(γ, τ)

¢−1
= Ir+v.

A choice for a right inverse of fM(1)

r, v(γ, τ) is thenµfM(1)

r, v(γ, τ)

¶−
R

= (Iδ1+δ2 ⊗ eqe>q ) fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) Iδ, r, v
¡
Wr, v(γ, τ)

¢−1
.

Exploiting some of these results gives the possibility to set forth an equality involving
¡
Ur(γ) Uv(τ)

¢
,fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ) according to the next proposition.

Proposition 4.7 An interconnection between
¡
Ur(γ) Uv(τ)

¢
and the blocks fM(1)

r, v(γ, τ) and
fM(2)

r, v(γ, τ)

has the form¡
Ur(γ) Uv(τ)

¢
(Iq ⊗ eq) = fM(1)

r, v(γ, τ) (Iδ1+δ2 ⊗ eqe>q ) fM(2)

r, v(γ, τ) W−∗R, q(γ, τ) Iδ, r, v.
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From this section can be seen that a right inverse necessary for interconnecting the Fisher in-

formation matrix and a corresponding Stein solution is derived. A right inverse of
¡
Ur(γ) Uv(τ)

¢
is

given, it has a structured form expressed in terms of a generalized Vandermonde matrix. Whereas for

the coefficient matrix
³fMr(γ)

fMv(τ)
´
two expressions for a right inverse of fM(1)

r, v(γ, τ) are derived

as well as links involving the blocks fM(1)

r, v(γ, τ) and fM(2)

r, v(γ, τ) (obtained after factorization of³fMr(γ)
fMv(τ)

´
). Equations interconnecting the coefficient matrices extracted from the Fisher in-

formation matrix and a Stein solution respectively are provided, some of these results are summarized

in propositions 4.2 and 4.5 which also enable us to compute Ker fM(1)

ν (σ) and Ker fM(1)

r, v(γ, τ) next

to the derivation proposed in section 3.1.2.

5. Link solution Stein equation-Fisher information: The global

approach

5.1. General case

In this section an extension of previous sections is implemented by presenting interconnections where

the entire Fisher information matrix, not decomposed, is taken as one block. Fisher’s information

matrix will be interconnected not only with the corresponding Stein solution but also with Sylvester’s

resultant. Since the functional form of Fisher’s information matrix and the corresponding solutions to

Stein’s equation are similar to the structures studied for the block-(b, b), we will not derive intercon-

nections but will present them more or less under their final forms. The same holds for the appropriate

kernels which result from the solutions of the linear systems and allow the interconnections to take

its present form.

In Klein and Spreij [10] the following interconnection between Fisher’s information matrix of an

ARMAX process and Sylvester resultant matrices is verified,

G(θ) =

 −Sp(b)Sq(a)

0

Q(θ)
 −Sp(b)Sq(a)

0


>

+

 −Sp(c)0

Sr(a)

P (θ)
 −Sp(c)0

Sr(a)


>

(5.1)

where

Q(θ) =
1

2πi

I
|z|=1

Rx(z)up+q(z)u
>
p+q(z

−1)
a(z)a(z−1)c(z)c(z−1)

dz

z
(5.2)

P (θ) =
1

2πi

I
|z|=1

up+r(z)u>p+r(z−1)
a(z)c(z)a(z−1)c(z−1)

dz

z
(5.3)

and Sp(b) and Sq(a) are blocks of the Sylvester resultant matrices S(−b, a)

S(−b, a) =
Ã
−Sp(b)
Sq(a)

!
and S(−c, a) =

Ã
−Sp(c)
Sr(a)

!
.
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Where Sp(b) is formed by the top p rows of S(−b, a) and similarly for the remaining blocks. The
Sylvester resultrant S(c,−a) is the (p+ r)× (p+ r) matrix defined as

S(a, c) =



1 a1 a2 · · · ap · · · 0

. . .
. . .

. . .
. . .

0 1 a1 a2 · · · ap

1 c1 c2 · · · cr · · · 0

. . .
. . .

. . .
. . .

0 1 c1 c2 · · · cr


.

The interconnection between a Stein solution and P (θ) has been derived in [12], this will be reformu-

lated in a new form which involves appropriate kernels and a similar representation will be set forth

for Q(θ). In [12] an interconnection is constructed by means of a left inverse which involves Vander-

monde matrices whereas in this paper the general solution of the linear system AX = B involving Ker

(A) is used. The assumption is made that the polynomials involved in the Fisher information matrix

have no common roots. Application of the same approach as in section 2 results in the following

structure,

P (θ) =
³eUp(α) eUr(γ)´ (Φ⊗ Ip+r) (5.4)

where Φ is an appropriate equivalent form of ϕ in (2.19)eUp(α) = ³ eUn1(α1), eUn2(α2), ..., eUnp0 (αp0) ´
and eUr(γ) = ³ eUs1(γ1), eUs2(γ2), ..., eUsr0 (γr0) ´.
With eUni(αi) = ³ eU(ni)ni (z),

eU (ni−1)ni (z), ... , eU(0)ni (z) ´z=αi i = 1, . . . , p0

and each block has the following formeU(ni−k)ni (αi) =

µ
∂ni−k

∂zni−k
¡
up+r(z)u∗>p+r(z)

¢¶
z=αi

k = 0, . . . , ni.

Whereas eUsj (γj) = ³ eU(sj)sj (z), eU (sj−1)sj (z), ... , eU(0)sj (z) ´z=γj j = 1, . . . , r0

and each block being eU(sj−l)sj (γj) =

µ
∂sj−l

∂zsj−l
¡
up+r(z)u

∗>
p+r(z)

¢¶
z=γj

l = 0, . . . , sj .

A Stein equation and its corresponding solution are envisaged and for that purpose the following

(p+ r)× (p+ r) companion matrix is introduced

AP =


0 1 · · · 0
...

...
. . .

...

0 · · · · · · 1

−gp+r −gp+r−1 · · · −g1


where the entries gi are given by zp+r+

p+rX
i=1

giz
p+r−i = a(z)c(z) = g(z) . The condition for unique-

ness of the solution of Stein’s equation is verified. Stein’s equation and its solution are respectively,

SP −APSP
¡
AP
¢>
= ΓP
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SP =
1

2πi

I
|z|=1

¡
zI −AP

¢−1
ΓP

¡
I − zAP

¢−>
dz

=
1

2πi

I
|z|=1

adj
¡
zI −AP

¢
ΓP adj

¡
I − zAP

¢>
a(z)c(z)a∗(z)c∗(z)

dz.

An appropriate factorization similar to the one applied in section 2 yields

SP =
³fMp(α)

fMr(γ)
´
(Φ⊗ Ip+r) (5.5)

where fMp(α) =
³ fMn1(α1),

fMn2(α2), ..., fMnp0
(αp0)

´
and fMr(γ) =

³ fMs1(γ1),
fMs2(γ2), ..., fMsr0

(γr0)
´
.

With the blocks building fMp(α) and
fMr(γ) given byfMni(αi) =

³ fM(ni)

ni (z),
fM(ni−1)

ni (z), ... ,fM(0)

ni (z)

´
z=αi

i = 1, . . . , p0

each block beingfM(ni−j)
ni (αi) =

µ
∂ni−j

∂zni−j
adj

¡
zI −AP

¢
ΓP adj

¡
I − zAP

¢>¶
z=αi

j = 0, . . . , ni.

The second block consists of the following formsfMsj (γj) =
³ fM(sj)

sj (z), fM(sj−1)
sj (z), ... ,fM(0)

sj (z)

´
z=γj

j = 1, . . . , r0

each block beingfM(sj−k)
sj (γj) =

µ
∂sj−k

∂zsj−k
adj

¡
zI −AP

¢
ΓP adj

¡
I − zAP

¢>¶
z=γj

k = 0, . . . , sj .

Combining P (θ) and SP and taking into consideration the property of full row rankness of the

coefficient matrices
³eUp(α) eUr(γ)´ and ³fMp(α)

fMr(γ)
´
, proofs similar to the ones given in proposi-

tions 2.3 and 2.5 can be formulated for the new coefficient matrices, results in interconnections which

are summarized in the following lemma

Lemma 5.1 The following interconnections hold true

P (θ) =
³eUp(α) eUr(γ)´½³fMp(α)

fMr(γ)
´+
SP + V

¾
where V ∈ Ker

³fMp(α)
fMr(γ)

´
is associated with the appropriate particular solution of (5.5)

and likewise

SP =
³fMp(α)

fMr(γ)
´½³eUp(α) eUr(γ)´+ P (θ) +W¾

where W ∈ Ker
³eUp(α) eUr(γ)´ is associated with the appropriate particular solution of (5.4).

For describing the subspace Ker
³eUp(α) eUr(γ)´ the algorithm developed in section 3 can be used

and is limited to the case where the algebraic multiplicity of the chosen root respective eigenvalue is

smaller than the length of the basis vector ux(z) for an appropriate x, this is clearly the situation

here. It is a matter of fact, for the diagonal ARMA blocks of Fisher’s information matrix G(θ), the

matrix blocks which do not involve the input process expressed through Rx(z), are such that the

algebraic multiplicity of an appropriate root can never exceed the length of the corresponding basis

vector ux(z). Consequently, when an interconnection between a block expressed in (2.4) or (2.9) and

a corresponding Stein solution is envisaged, the nullspaces involved in the links can be described by

the form given in section 3 for the cases ν + 1 < q and ν + 1 = q. It is worth reminding that in [11]

and [12] we showed that P (θ) satisfies a Stein equation,
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P (θ)−APP (θ)
¡
AP
¢>
= ΓP

and this for ΓP = ep+re>p+r, where ep+r is the last basis vector of Rp+r.
Matrix Q(θ) has a similar form as Gbb, it can be rewritten as

Q(θ) =
1

2πi

I
|z|=1

up+q(z)u
∗>
p+q(z)

h(z)h∗(z)a(z)a∗(z)c(z)c∗(z)zl+1
dz

where l+ 1 = q − v − r and an efficient factorization yields
Q(θ) =

³eUv(τ) eUp(α) eUr(γ) eU l(0)´ (Ω⊗ Ip+q).
With Ω being an appropriate equivalent form of ϑ in (2.13) and (2.14) for l+1 > 0, the functional

form of each term constituting the matrix blocks eUv(z), eUp(z), eUr(z) and eU l(z) is ∂j

∂zj

¡
up+q(z)u

∗>
p+q(z)

¢
for a given j.

The following (p+ r + v)× (p+ r + v) companion matrix is proposed for Stein’s equation

AQ =


0 1 · · · 0
...

...
. . .

...

0 · · · · · · 1

−fp+r+v −fp+r+v−1 · · · −f1


where the entries fi are given by zp+r+v+

p+r+vX
i=1

fiz
p+r+v−i = a(z)c(z)h(z) = f(z).

Stein’s equation and its solution are now given,

SQ −AQSQ
¡
AQ
¢>
= ΓQ

SQ =
1

2πi

I
|z|=1

¡
zI −AQ

¢−1
ΓQ

¡
I − zAQ

¢−>
dz

=
1

2πi

I
|z|=1

adj
¡
zI −AQ

¢
ΓQ adj

¡
I − zAQ

¢>
zl+1

h(z)a(z)c(z)h∗(z)a∗(z)c∗(z)zl+1
dz.

A factored version yields

SQ =
³fMv(τ)

fMp(α)
fMr(γ)

fMl(0)
´
(Ω⊗ Ip+r+v)

where fMp(α) =
³ fMn1(α1),

fMn2(α2), ..., fMnp0
(αp0)

´
and each block of fMp(α) is given byfMni(αi) =

³ fM(ni)

ni (z),
fM(ni−1)

ni (z), ... ,fM(0)

ni (z)

´
z=αi

i = 1, . . . , p0.

The blocks constituting the matrices fMv(z),
fMr(z),

fMl(z) and
fMp(z) have the same functional

form and it is illustrated for the blocks which form fMp(α),fM(ni−j)
ni (αi) =

µ
∂ni−j

∂zni−j
adj

¡
zI −AQ

¢
ΓQ adj

¡
I − zAQ

¢>
zl+1

¶
z=αi

j = 0, . . . , ni.

A particular solution of the appropriate linear systems can be written as

(Ω⊗ Ip+q) =
³eUv(τ) eUp(α) eUr(γ) eU l(0)´+Q(θ) +F (5.6)

F ∈ Ker
³eUv(τ) eUp(α) eUr(γ) eU l(0)´

and

(Ω⊗ Ip+r+v) =
³fMv(τ)

fMp(α)
fMr(γ)

fMl(0)
´+
SQ + G (5.7)

G ∈ Ker
³fMv(τ)

fMp(α)
fMr(γ)

fMl(0)
´
.
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The case l + 1 > 0 is considered, it implies p + q > p + r + v and results in an equation which

involves Q(θ) and SQ, this is summarized in the next lemma.

Lemma 5.2 The following holds true for l + 1 > 0

R(p+q)(p+r+v+l+1)
½³eUv(τ) eUp(α) eUr(γ) eU l(0)´+Q(θ) +F¾Rp+q = R(p+r+v)(p+r+v+l+1)

½³fMv(τ)
fMp(α)

fMr(γ)
fMl(0)

´+
SQ + G

¾
Rp+r+v 0

0 Iq−(r+v) ⊗Ω

.
where F ∈ Ker

³eUv(τ) eUp(α) eUr(γ) eU l(0)´ is such that equation (5.6) holds and likewise G ∈ Ker³fMv(τ)
fMp(α)

fMr(γ)
fMl(0)

´
is such that equation (5.7) holds and R is a permutation matrix.

When l+1 = 0 or p+r+v = p+q we have the following form forQ(θ) and SQ

Q(θ) =
³eUv(τ) eUp(α) eUr(γ)´ (Θ⊗ Ip+q) (5.8)

and

SQ =

µffMv(τ)
ffMp(α)

ffMr(γ)

¶
(Θ⊗ Ip+q) (5.9)

where Θ is the appropriate equivalent form of ϕ in (2.19). The functional form of all the terms

which build the blocks
ffMr(z),

ffMv(z) and
ffMp(z) is ∂j

∂zj adj
¡
zI −AQ

¢
ΓQ adj

¡
I − zAQ

¢>
for a given

j. Equivalently with propositions 2.3 and 2.5 it can be shown that

dim Im
³eUv(τ) eUp(α) eUr(γ)´ = p+ q

and

dim Im
µffMv(τ)

ffMp(α)
ffMr(γ)

¶
= p+ q,

so that full row rankness of the appropriate matrices is guaranteed. Interconnections between the

Fisher information matrix and a corresponding solution to Stein’s equation can then be summarized

in the following lemma.

Lemma 5.3 For l + 1 = 0 the following equations are verified

SQ =

µffMv(τ)
ffMp(α)

ffMr(γ)

¶½³eUv(τ) eUp(α) eUr(γ)´+Q(θ) + E¾
where E ∈ Ker

³eUv(τ) eUp(α) eUr(γ)´ is associated with the appropriate particular solution of
equation (5.8)

and

Q(θ) =
³eUv(τ) eUp(α) eUr(γ)´(µffMv(τ)

ffMp(α)
ffMr(γ)

¶+
SQ +D

)
with D ∈ Ker

µffMv(τ)
ffMp(α)

ffMr(γ)

¶
being associated with the appropriate particular solution

of equation (5.9).

It can be seen that for l + 1 = 0 Q(θ) verifies a Stein equation given by

Q(θ)−AQQ(θ)
¡
AQ
¢>
= ΓQ

where ΓQ = ep+qe>p+q and ep+q is the last standard basis vector in Rp+q.
The case l + 1 < 0 results in the equations
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Q(θ) =

µeeUv(τ) eeUp(α) eeUr(γ)¶ (Θ⊗ Ip+q)
and

SQ =

µffMv(τ)
ffMp(α)

ffMr(γ)

¶
(Θ⊗ Ip+r+v).

The functional form of all the terms of
eeUv(z), eeUp(z) and eeUr(z) is ∂j

∂zj

¡
up+q(z)u∗>p+q(z)zl+1

¢
for

some j and a particular solution of the linear systems yields

(Θ⊗ Ip+q) =
µeeUv(τ) eeUp(α) eeUr(γ)¶+Q(θ) +X (5.10)

X ∈ Ker
µeeUv(τ) eeUp(α) eeUr(γ)¶

and

(Θ⊗ Ip+r+v) =
µffMv(τ)

ffMp(α)
ffMr(γ)

¶+
SQ + Y (5.11)

Y ∈ Ker
µffMv(τ)

ffMp(α)
ffMr(γ)

¶
.

An equation which involves SQ and Q(θ) is given in the next lemma.

Lemma 5.4 The case l + 1 < 0 results in the following equality

R(p+r+v)(p+r+v)

(µffMv(τ)
ffMp(α)

ffMr(γ)

¶+
SQ + Y

)
Rp+r+v = R(p+q)(p+r+v)

(µeeUv(τ) eeUp(α) eeUr(γ)¶+Q(θ) +X)Rp+q 0

0 Ir+v−q ⊗Θ


where Y ∈ Ker

µffMv(τ)
ffMp(α)

ffMr(γ)

¶
is such that equation (5.11) holds and likewise X ∈ KerµeeUv(τ) eeUp(α) eeUr(γ)¶ is such that (5.10) holds and R is a permutation matrix.

By inserting P (θ) and Q(θ), given in lemma 5.1 and lemma 5.3 respectively, in equation (5.1)

results in an equality where the global Fisher information matrixG(θ) is expressed in terms of Sylvester

resultant matrices and the solutions to Stein equations given by SP and SQ.

The kernels involved in all the interconnections summarized in this section can be evaluated ac-

cording to the results derived in section 3.

5.2. Special case

As in section 2.2 we present the coefficient matrices related with the Fisher information matrix and

a corresponding Stein solution for the case of distinct roots. The equations involving the Fisher

information and Stein solution, are such that their structure can be found in the previous section but

with appropriate coefficient matrices. These equations will therefore not be provided and we limit

ourselves to the presentation of the coefficient matrices obtained in the present case.

A factorized form of P (θ) also formulated in [12] but not exploited for an interconnection between

Fisher’s information matrix and a corresponding Stein solution is

P (θ) =
³eUp(α) eUr(γ)´ (Λ⊗ Ip+r)
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with eUp(α) = ³ eU1(α1), eU2(α2), ..., eUp(αp) ´eUr(γ) = ³ eU1(γ1), eU2(γ2), ..., eUr(γr) ´.
The blocks are eUi(αi) = (¡up+r(z)u∗>p+r(z)¢z=αi for i = 1, 2, . . . , p and eUj(γj) = (¡up+r(z)u∗>p+r(z)¢z=γj

for j = 1, 2, . . . , r, and Λ is an appropriate equivalent form of ϕ in (2.31). A Stein solution can now

be formulated as

SP =
³fMp(α) fMr(γ)

´
(Λ⊗ Ip+r)

where fMp(α) =
³ fM1(α1), fM2(α2), ..., fMp(αp)

´
and fMr(γ) =

³ fM1(γ1), fM2(γ2), ..., fMr(γr)
´
.

Each block being fMi(αi) =
³
adj

¡
zI −AP

¢
ΓP adj

¡
I − zAP

¢>´
z=αi

and fMj(γj) =
³
adj

¡
zI −AP

¢
ΓP adj

¡
I − zAP

¢>´
z=γj

.

Full row rankness or surjectiveness of the coefficient matrices
³eUp(α) eUr(γ)´ and ³fMp(α) fMr(γ)

´
can be proved similarly to the block case.

Note that in [12] a right inverse of
³eUp(α) eUr(γ)´ has been set forth ( the distinct root equivalent

of (4.2)), according to ³eUp(α) eUr(γ)´¡V −1αγ ⊗ ep+r
¢
= Ip+r

with ep+r being the last standard basis vector in Rp+r and Vαγ is the following Vandermonde
matrix

Vαγ =



1 1 · · · 1 1 1 · · · 1

α1 α2
... αp γ1 γ2

... γr

α21 α22
... α2p γ21 γ22

... γ2r
...

...
...

...
...

...
...

...

αp+r−11 αp+r−12 · · · αp+r−1p γp+r−11 γp+r−12 · · · γp+r−1r


.

We proceed with formulating an equality involving Q (θ) and SQ. A factored form yields

Q(θ) =

µeeUv(τ) eeUp(α) eeUr(γ) eU l(0)¶ (Υ⊗ Ip+q)
where Υ is an appropriate equivalent of ϑ in (2.29) for l + 1 > 0 and the functional form of

each term building the matrix blocks eeUv(z), eeUp(z) and eeUr(z) is ¡up+q(z)u∗>p+q(z)¢, whereas the blocks
constituting eU l(z) have the same functional form as in the general case namely ∂k

∂zk

¡
up+q(z)u

∗>
p+q(z)

¢
for a given k. A factored version of a suitable Stein solution is

SQ =

µffMv(τ)
ffMp(α)

ffMr(γ)
fMl(0)

¶
(Υ⊗ Ip+r+v),

where each block of fMl(z) has the same functional form as in the general case,
∂j

∂zj

³
adj

¡
zI −AQ

¢
ΓQadj

¡
I − zAQ

¢>
zl+1

´
for a given j, whereas the block elements of ffMv(z),ffMp(z) and

ffMr(z) have the functional form given by
³
adj

¡
zI −AQ

¢
ΓQadj

¡
I − zAQ

¢>
zl+1

´
.

When l+ 1 = 0 the following linear systems hold true
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Q(θ) =

µeeUv(τ) eeUp(α) eeUr(γ)¶ (Ξ⊗ Ip+q)
and

SQ =

µeeN v(τ)
eeN p(α)

eeN r(γ)

¶
(Ξ⊗ Ip+q)

where Ξ is the appropriate equivalent form of ϕ in (2.31). The functional form of all the terms

which build the blocks eeN r(z),
eeN v(z) and

eeN p(z) is
³
adj

¡
zI −AQ

¢
ΓQadj

¡
I − zAQ

¢>´
. As in the

block case the property of full row rankness can be shown for the matrices
µ eeN v(τ)

eeN p(α)
eeN r(γ)

¶
and

µeeUv(τ) eeUp(α) eeUr(γ)¶.
When l+ 1 < 0 the following forms are verified

Q(θ) =

µffWv(τ)
ffWp(α)

ffWr(γ)

¶
(Ξ⊗ Ip+q)

and

SQ =

µeeN v(τ)
eeN p(α)

eeN r(γ)

¶
(Ξ⊗ Ip+r+v).

The functional form of the terms building ffWv(z),
ffWp(z) and

ffWr(z) is
¡
up+q(z) u

∗>
p+q(z)z

l+1
¢
.

The kernels involved in the interconnections which are introduced in this section can be deduced

according to the development set forth in section 3.

From section 2 through section 5 can be concluded that under appropriate conditions the solution

of a Stein equation can be expressed in terms of the Fisher information matrix and vice versa. In

(5.1) P (θ) and Q(θ) can be replaced by equations which are expressed by corresponding solutions of

Stein equations so the Fisher information matrix G(θ) is explained by these solutions as well as by

Sylvester resultants (in [10] it is also shown through equation (5.1) that the Fisher information matrix

has resultant properties). This enables us to evaluate numerically a Stein solution since an algorithm

of the Fisher information matrix of a SISO process ( which is a generalized form of the ARMAX

process considered in this paper), is developed in [13]. By further taking the kernels described in

section 3 into account as well as some appropriate right inverses of corresponding coefficient matrices

set forth in section 4 should allow a numerical approach to be satisfactory. This can be a subject for

further study.

6. Example

In this section the Gbb (θ) block is illustrated for p = q = 3, r = 2 and v = 1. The polynomial

basis vectors and appropriate polynomials involved are u3(z) = (1, z, z2)>, u∗3(z) = (z2, z, 1)>, c(z) =

(z − γ)2 and h(z) = (z − τ) so the Fisher information matrix block Gbb (θ) admits the following form

Gbb (θ) =
1

2πi

I
|z|=1

 z2 z 1

z3 z2 z

z4 z3 z2

 dz

(z − τ) (z − γ)2 (1− z τ) (1− z γ)2

the components of the Toeplitz and symmetric matrix Gbb (θ) are given by means of Cauchy’s

formula according to
τ j

(τ − γ)2 (1− τ2) (1− τ γ)2
+

µ
∂

∂z

zj

(z − τ) (1− z τ) (1− z γ)2
¶
z=γ

for j = 0, 1, 2, 3, 4, to

obtain
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Gbb (θ) =
1

(γ2 − 1)3 (γ τ − 1)2 (τ2 − 1)


G11bb (θ) G12bb (θ) G13bb (θ)

G21bb (θ) G22bb (θ) G23bb (θ)

G31bb (θ) G32bb (θ) G33bb (θ)


G11bb (θ) = G

22
bb (θ) = G

33
bb (θ) = 1 + 2 γ τ − 2 γ3 τ − γ4 τ2 − γ2 (τ2 − 1)

G12bb (θ) = G
23
bb (θ) = G

21
bb (θ) = G

32
bb (θ) = 2 γ + τ − γ4 τ − 2 γ3 τ2

G13bb (θ) = G
31
bb (θ) = −γ4 + 2 γ τ − 2 γ3 τ + τ2 − 3 γ2

¡
τ2 − 1

¢
.

The matrix
¡
Ur(γ) Uv(τ)

¢
has the following structure

Ur(γ) =

 ∂

∂z

 z2 z 1

z3 z2 z

z4 z3 z2

 ,
 z2 z 1

z3 z2 z

z4 z3 z2



z=γ

and Uv(τ) =

 z2 z 1

z3 z2 z

z4 z3 z2


z=τ

.

An appropriate choice for a right inverse of
¡
Ur(γ) Uv(τ)

¢
is¡

Ur(γ) Uv(τ)
¢−
R
=
³
(Wr, v(γ, τ))

−1 ⊗ e3
´

where

e3 = (0, 0, 1)
> and (Wr, v(γ, τ)) =

(µ
∂

∂z
u3(z) u3(z)

¶
z=γ

(u3(z))z=τ

)
=


0 1 1

1 γ τ

2 γ γ2 τ2

.

We have (Wr, v(γ, τ))
−1 =

1

(γ − τ)2


γ τ (γ − τ) −

¡
γ2 − τ2

¢
(γ − τ)

(γ − τ)2 − γ2 2 γ −1
γ2 −2 γ 1


so that

¡
Ur(γ) Uv(τ)

¢−
R
=

1

(γ − τ)2



0 0 0

0 0 0

γ τ (γ − τ) −
¡
γ2 − τ2

¢
(γ − τ)

0 0 0

0 0 0

(γ − τ)2 − γ2 2 γ −1
0 0 0

0 0 0

γ2 −2 γ 1



.

Consider the subspace Ker
¡
Ur(γ) Uv(τ)

¢
= Ker Ur(γ) ⊕ Ker Uv(τ) where

Ker Uv(τ) =
Ã
−z2 u>2 (z)

J2

!
z=τ

=

 −z
−2 −z−1

0 1

1 0


z=τ

.

The following parameters which are of paramount importance for constructing the null space Ker

Ur(γ) are n = k = 1 and p = q = 3 (conforming the notations used in section 3). This results in the
following equations which belong to the subspace Ker Ur(γ), to obtain

x0 = K3(z) γ0

x1 = −l3 v,3(z) K3(z) γ0 +K3(z) γ1
or

x =

Ã
x0

x1

!
=

Ã
I3 0

−l3v,3(z) I3

!
(I2 ⊗K3(z))

Ã
γ0

γ1

!
where
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K3(z) =


−1 0

z −1
0 z

, v3(z) = (z2, z, 1), l3 = (0, 0, 1)
> and arbitrary γ0 and γ1. Let

us denote the components of γ0 and γ1 by
¡
γ10 γ

2
0

¢>
and

¡
γ11 γ

2
1

¢>
respectively, so that the vector

belonging to the subspace Ker Ur(γ) can be expressed as

x =



−1 0 0 0

z −1 0 0

0 z 0 0

0 0 −1 0

0 0 z −1
z 1 0 z


z=γ


γ10

γ20

γ11

γ21

 =



−γ10
γ10 z − γ20

γ20 z

−γ11
γ11 z − γ21¡

γ10 + γ21
¢
z + γ20


z=γ

.

A form for Ker Uv(τ) is given in section 3.2 and from section 3.1.1 and section 3.2 can be concluded
that dim Ker Ur(γ) = 4 and dim Ker Uv(τ) = 2, consequently dim Ker

¡
Ur(γ) Uv(τ)

¢
= 6. It is then

clear that the matrix
¡
Ur(γ) Uv(τ)

¢
is surjective since dim Im

¡
Ur(γ) Uv(τ)

¢
= 3, a confirmation of

proposition 2.3.

Since γ0 and γ1 are arbitrary we take for example γ0 = (1, 1)
> and γ1 = (2, 3)

> so that a choice

for a 9× 3 matrix Q such that Q ∈ Ker
¡
Ur(γ) Uv(τ)

¢
) can be expressed as

Q =



−1 0 0

γ − 1 0 0

γ 0 0

−2 0 0

2 γ − 3 0 0

4 γ + 1 0 0

0 −τ−2 −τ−1

0 0 1

0 1 0



.

However, as specified in the corresponding corollaries and lemmas which set forth interconnections

between the Fisher information matrix and a solution to Stein’s equation, the appropriate matrix to be

chosen is such that it is associated with the particular solution common to both linear systems (2.19)

and (2.20). This results in (ϕ ⊗ Iq) being the common solution of both systems (2.19) and (2.20).
Consequently the choice of the matrix, name it A, contained in the subspace Ker

¡
Ur(γ) Uv(τ)

¢
can

then be evaluated according to

A = (ϕ⊗ Iq)−
¡
Ur(γ) Uv(τ)

¢+
Gbb(θ).

This yields the following matrices which are derived according to the notations used in (2.14) for

l + 1 = 0, to obtain

(ϕ⊗ I3) =
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1

(1− γ2)2(γ − τ)(1− γτ)
0 0

0
1

(1− γ2)2(γ − τ)(1− γτ)
0

0 0
1

(1− γ2)2(γ − τ)(1− γτ)
1 + 4γ3τ + τ2 − 3γ2(1 + τ2)

(−1 + γ2)3(−γ + τ)2(−1 + γτ)2
0 0

0
1 + 4γ3τ + τ2 − 3γ2(1 + τ2)

(−1 + γ2)3(−γ + τ)2(−1 + γτ)2
0

0 0
1 + 4γ3τ + τ2 − 3γ2(1 + τ2)

(−1 + γ2)3(−γ + τ)2(−1 + γτ)2
1

(−γ + τ)2(1− τ2)(1− γτ)2
0 0

0
1

(−γ + τ)2(1− τ2)(1− γτ)2
0

0 0
1

(−γ + τ)2(1− τ2)(1− γτ)2


and ¡

Ur(γ) Uv(τ)
¢+
Gbb(θ) =

0 0 0

0 0 0

− γ2

(−1 + γ2)2(γ − τ)(−1 + γτ)
− γ

(−1 + γ2)2(γ − τ)(−1 + γτ)
− 1

(−1 + γ2)2(γ − τ)(−1 + γτ)

0 0 0

0 0 0

γ(2τ + 2γ4τ − γ(1 + τ2)− γ3(1 + τ2))

(−1 + γ2)3(γ − τ)2(−1 + γτ)2
τ + 3γ4τ − 2γ3(1 + τ2)

(−1 + γ2)3(γ − τ)2(−1 + γτ)2
1 + 4γ3τ + τ2 − 3γ2(1 + τ2)

(−1 + γ2)3(γ − τ)2(−1 + γτ)2

0 0 0

0 0 0

− τ2

(γ − τ)2(−1 + γτ)2(−1 + τ2)
− τ

(γ − τ)2(−1 + γτ)2(−1 + τ2)
− 1

(γ − τ)2(−1 + γτ)2(−1 + τ2)


with

¡
Ur(γ) Uv(τ)

¢−
R
as an appropriate choice for

¡
Ur(γ) Uv(τ)

¢+
.

The desired matrix A is then
A = 1

(−1 + γ2)3(γ − τ)2(−1 + γτ)2(−1 + τ2)
×

−(−1 + γ2)(γ − τ)(−1 + γτ)(−1 + τ2) 0 0

0 −(−1 + γ2)(γ − τ)(−1 + γτ)(−1 + τ2) 0

γ2(−1 + γ2)(γ − τ)(−1 + γτ)(−1 + τ2) γ(−1 + γ2)(γ − τ)(−1 + γτ)(−1 + τ2) 0

(−1 + τ2)(1 + 4γ3τ + τ2 − 3γ2(1 + τ2)) 0 0

0 (−1 + τ2)(1 + 4γ3τ + τ2 − 3γ2(1 + τ2)) 0

γ(−1 + τ2)(−2τ − 2γ4τ + γ(1 + τ2) + γ3(1 + τ2)) −(−1 + τ2)(τ + 3γ4τ − 2γ3(1 + τ2)) 0

−(−1 + γ2)3 0 0

0 −(−1 + γ2)3 0

τ2(−1 + γ2)3 τ(−1 + γ2)3 0



,

the property A ∈ Ker
¡
Ur(γ) Uv(τ)

¢
holds.

The companion matrix used in the corresponding Stein equation is

42



Ch =


0 1 0

0 0 1

−e3 −e2 −e1

 where e1 = − (2 γ + τ), e2 = γ (γ + 2 τ) and e3 = −τ γ2.

With r = 2 and v = 1 equation 4.3 becomes³fM2(γ)
fM1(τ)

´
= fM(1)

2, 1(γ, τ)
fMΓ

2, 1
fM(2)

2, 1(γ, τ)

the 3×12 block fM(1)

2, 1(γ, τ) =

µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
with fM(1)

1 (γ) =

µfM(1) (1)

1 (z) fM(0) (1)

1 (z)

¶
z=γ

,

the blocks constituting fM(1)

1 (γ) arefM(1) (1)

1 (γ) =

µ
∂

∂z
adj (zI −Ch) adj (zI −Ch)

¶
z=γ

, fM(0) (1)

1 (γ) = (adj (zI −Ch))z=γ respec-

tively and fM (1)

0 (τ) = (adj (zI −Ch))z=τ . The appropriate adjoint matrices are

adj (zI −Ch) =

 z2 + e1 z + e2 z + e1 1

−e3 z2 + e1 z z

−e3 z −e2 z − e3 z2


adj (I − zCh) =


1 + e1 z + e2 z

2 z + e1 z
2 z2

−e3 z2 1 + e1 z z

−e3 z −e2 z − e3 z2 1


with the coefficients e1, e2 and e3 of the companion matrix specified above. We then obtain

fM(1)

1 (γ) =


−τ 1 0 τγ −γ − τ 1

0 −τ 1 τγ2 −γ2 − τγ γ

τγ2 −γ2 − 2τγ 2γ τγ3 −γ3 − τγ2 γ2

τγ −γ − τ 1

τγ2 −γ2 − τγ γ

τγ3 −γ3 − τγ2 γ2


and fM(1)

0 (τ) =


γ2 −2γ 1

τγ2 −2τγ τ

τ2γ2 −2τ2γ τ2

.
The approach outlined in section 3.1.2 is illustrated for describing the kernel of fM(1)

2, 1(γ, τ). The

vector x =
¡
x>0 x>1

¢>
is belonging to the kernel of Ur(γ) and its derived structure is described

above, for typographical clarity we use the following notations χ0 =
¡
χ10 χ

2
0

¢>
and χ1 =

¡
χ11 χ

2
1

¢>
for specifying the arbitrary terms of the vector x. To successfully derive the kernel of fM(1)

2, 1(γ, τ), we

first apply the algorithm as proposed in section 3.1.2 to fM(1)

1 (γ) since the eigenvalue-root γ has an

algebraic multiplicity equal to 2. This is followed by a kernel description of fM(1)

0 (τ). We start from

the sum
Pl
j=0 zj,l−j = xl for l = 0, 1, . . . , ν with algebraic multiplicity ν + 1 = 2 to obtain x0 = z 0,0

and x1 = z 0,1 + z 1,0. Taking into consideration the result obtained for the vector x yields

z 0,0 =


−χ10

χ10 z − χ20

χ20 z


z=γ

and z 0,1 =


ζ1

ζ2

ζ3


with the elements ζ1, ζ2 and ζ3 being arbitrary, consequently z 1,0 is

z 1,0 =


χ11 − ζ1

χ11 z − χ21 − ζ2¡
χ10 + χ21

¢
z + χ20 − ζ3


z=γ

.

The vector z =
¡
z>0 z>1

¢>
is constituted according to z0 =

¡
z>0,0 z>0,1

¢>
and z1 = z 1,0. The
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desired vector y =
¡
y>0 y>1

¢>
with the property y ∈ Ker fM(1)

1 (γ) can now be set forth according to

the following equations

y0 = (I2 ⊗ S(c))−1 z0 and y1 = (I1 ⊗ S(c))−1 z1
where the symmetrizer S(c) introduced in (2.24) is for the case under study given by the following

matrix

S(c) =

 1 0 0

e1 1 0

e2 e1 1

 =

 1 0 0

−2γ − τ 1 0

γ2 + 2γτ −2γ − τ 1

.
The coefficients e1, e2 and e3 of the Hörner polynomial are associated with the characteristic

polynomial of the companion matrix Ch. A general form for the vector y such that y ∈ Ker fM(1)

1 (γ)

can now be presented as

y =



−χ10
−χ20 + χ10 γ − χ10 (2γ + τ)

χ20 γ + (χ
1
0 γ − χ20)(2γ + τ)− χ10(3γ

2 + 2γτ + τ2)

ζ1

ζ2 + ζ1(2γ + τ)

ζ3 + ζ2(2γ + τ) + ζ1(3γ
2 + 2γτ + τ2)

−χ11 − ζ1

−χ21 + χ11 γ − ζ2 − (χ11 + ζ1)(2γ + τ)

χ20 + χ10 γ + χ21 γ − ζ3 + (χ
1
1 γ − χ21 − ζ2)(2γ + τ)− (χ11 + ζ1)(3γ

2 + 2γτ + τ2)



.

As can be seen from section 3.1.2 that for the case under study dimKer fM(1)

1 (γ) = 7. Consequently

a choice of a matrix B such that B ∈ Ker
µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
with Ker

µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
= Ker

fM(1)

1 (γ) ⊕ Ker fM(1)

0 (τ), the latter holds since Im
fM(1)

1 (γ) ∩ Im fM(1)

0 (τ) = {0} for γ 6= τ , can

now be introduced. However, note that the subspace Ker fM(1)

0 (τ) = Ker adj (zI − Ch)z=τ can be
evaluated according to lemma 3.4 and corollary 3.5 and its dimension is also provided, to get dim Ker

adj (zI − Ch)z=τ = 2, to obtain for the following chosen values, χ10 = 1, χ20 = 2, χ11 = 3, χ21 = 5,

ζ1 = 7, ζ2 = −4 and ζ3 = 10 the next form of the matrix B

B =



−1 0 0

−2− γ − τ 0 0

−2γ − γ2 − 2τ − γτ − τ2 0 0

7 0 0

−4 + 14γ + 7τ 0 0

10− 8γ + 21γ2 − 4τ + 14γτ + 7τ2 0 0

−10 0 0

−1− 17γ − 10τ 0 0

−8 + 4γ − 24γ2 − τ − 17γτ − 10τ2 0 0

0 2/γ −1/γ2

0 1 0

0 0 1



.

It is clear now that dim Ker
µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
= 9 so that dim Im

µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
= 3,
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consequently the surjectiveness of the matrix
µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
is confirmed, a related result is

formulated in propositions 4.4 and 4.6 where a right inverse of
µfM(1)

1 (γ)
fM(1)

0 (τ)

¶
is given.

The 12× 12 matrix fMΓ

2, 1 is
fMΓ

2, 1 = diag { Γ,Γ,Γ,Γ} whereas the 12× 9 matrix fM(2)

2, 1(γ, τ) has

the form described as fM(2)

2, 1(γ, τ) =diag
½fM(2)

1 (γ)
fM(2)

0 (τ)

¾
with

fM(2)

1 (γ) =

 fM(1) (2)

(z) 0

0 fM(0) (2)

(z)


z=γ

fM(0) (2)

(τ) = fM (2)

0 (τ) =
³
adj (I − zCh)>

´
z=τ

fM(1) (2)

(γ) =

 adj (I − zCh)>
∂

∂z
adj (I − zCh)>


z=γ

fM(0) (2)

(γ) =
³
adj (I − zCh)>

´
z=γ

, an explicit

form is

fM(1) (2)

(γ) =



1− 2γ2 + γ4 − γτ + 2γ3τ γ4τ γ3τ

γ − 2γ3 − γ2τ 1− 2γ2 − γτ −γ3 − 2γ2τ + γ4τ

γ2 γ 1

−2γ + 2γ3 − τ + 4γ2τ 2γ3τ γ2τ

1− 4γ2 − 2γτ −2γ − τ −γ2 − 2γτ + 2γ3τ
2γ 1 0


and

fM(0) (2)

(γ) =


1− 2γ2 + γ4 − γτ + 2γ3τ γ4τ γ3τ

γ − 2γ3 − γ2τ 1− 2γ2 − γτ −γ3 − 2γ2τ + γ4τ

γ2 γ 1


fM (2)

0 (τ) =


1− 2γτ − τ2 + γ2τ2 + 2γτ3 γ2τ3 γ2τ2

τ − 2γτ2 − τ3 1− 2γτ − τ2 −γ2τ − 2γτ2 + γ2τ3

τ2 τ 1

.
For this example one chooses the matrix Γ = I3 as the identity matrix, when Γ is constituted of

arbitrary elements Γij , the results become too long to be presented.

Inserting the matrices
³fMr(γ)

fMv(τ)
´
,
¡
Ur(γ) Uv(τ)

¢+
=
¡
Ur(γ) Uv(τ)

¢−
R
, Gbb(θ) and A , with

r = 2 and v = 1, in the equation

Sbb =
³fMr(γ)

fMv(τ)
´n¡

Ur(γ) Uv(τ)
¢+
Gbb(θ) +A

o
gives the following solution to the Stein equation when it is expressed in terms of the Fisher

information matrix, to obtain

Sbb =
1

(γ2 − 1)3(γ − τ)2(τ2 − 1)(−1 + γτ)2


S11bb S12bb S13bb

S21bb S22bb S23bb

S31bb S32bb S33bb


with

S11bb = −(γ − τ)2(−3 + 5γ2 − 7γ4 + γ6 + 2γτ − 14γ3τ + 10γ5τ − 2γ7τ + 2τ2 − 11γ2τ2 + 9γ4τ2 −
γ6τ2 + γ8τ2 − 4γτ3 + 8γ3τ3 − 4γ5τ3 + 4γ7τ3 + 2γ2τ4 + 4γ6τ4)
S12bb = −(γ−τ)2(−2γ−2γ5−τ−7γ4τ+4γ6τ−8γ3τ2+8γ5τ2−4γ2τ3+7γ4τ3+γ8τ3+2γ3τ4+2γ7τ4)

S13bb = −(−2γ4 − 2γ6 + 4γ3τ − 2γ5τ + 2γ9τ − 3γ2τ2 + 6γ4τ2 + 6γ6τ2 − 2γ8τ2 + γ10τ2 + 2γτ3 −
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4γ3τ3 − 4γ7τ3 − 2γ9τ3 − τ4 + 2γ2τ4 − 8γ6τ4 + 3γ8τ4 − 2γτ5 + 2γ5τ5 + 4γ7τ5 + 4γ4τ6 − 4γ6τ6)

S21bb = −(γ−τ)2(−2γ−2γ5−τ−7γ4τ+4γ6τ−8γ3τ2+8γ5τ2−4γ2τ3+7γ4τ3+γ8τ3+2γ3τ4+2γ7τ4)

S22bb = −(γ − τ)2(−2 + 2γ2 − 4γ4 − 8γ3τ + 4γ5τ + τ2 − 7γ2τ2 + 3γ4τ2 + 3γ6τ2 − 2γτ3 + 2γ3τ3 +

2γ5τ3 + 2γ7τ3 + γ2τ4 + γ4τ4 + γ6τ4 + γ8τ4)

S23bb = −(−2γ3−2γ7+3γ2τ −3γ6τ +4γ8τ +2γ5τ2+6γ7τ2−τ3+5γ4τ3−5γ6τ3−8γ8τ3+γ10τ3−
4γ5τ4 − 4γ2τ5 + 3γ4τ5 + 5γ8τ5 + 2γ3τ6 + 2γ5τ6 − 4γ7τ6)

S31bb = −(γ−τ)2(−2γ2−2γ4−6γ3τ+2γ7τ−τ2−2γ2τ2+2γ6τ2+γ8τ2−2γτ3+6γ5τ3+2γ4τ4+2γ6τ4)
S32bb = S

12
bb

S33bb = −(−γ2− γ4− γ6− γ8+2γτ +2γ9τ − τ2+3γ2τ2− 2γ6τ2+9γ8τ2− γ10τ2− 2γτ3+4γ3τ3−
4γ7τ3− 6γ9τ3− 3γ2τ4 +5γ4τ4− 5γ6τ4− 3γ8τ4+2γ10τ4− 4γ3τ5+4γ7τ5 +4γ9τ5+4γ4τ6− 4γ8τ6).
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