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Abstract

In this paper we study Stein equations where the coefficient matrices are
in companion form. Solutions to such equations are relatively easy to
compute as soon as one knows how to invert a Vandermonde matrix (in
the generic case where all eigenvalues have multiplicity one) or a confluent
Vandermonde matrix (in the general case). As an application we present
a way to compute the Fisher information matrix of an ARMA process.
The computation is based on the fact that this matrix can be decomposed
into blocks where each block satisfies a certain Stein equation.
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1 Introduction

In this paper we investigate some properties of (confluent) Vandermonde and
some related matrices aimed at and motivated by application of them to a prob-
lem in time series analysis. Specifically we show how to apply results on these
matrices to obtain a simpler representation of the (asymptotic) Fisher informa-
tion matrix of an ARMA process. The Fisher information matrix prominently
features in the asymptotic analysis of estimators and in asymptotic testing the-
ory, e.g. in the classical Cramer-Rao bound on the variance of unbiased estima-
tors. See [10] for general results and for time series models, see for example [2].
However, the Fisher information matrix has also attracted considerable atten-
tion in the signal processing literature, e.g. [6], [19] and [12]. We have previously
shown, see [14], that the Fisher information matrix of an ARMA process is the
solution of a so-called Lyapunov equation. Let us be a little bit more precise,
although we don’t go into details on ARMA processes until Section 5. The
Fisher information matrix in this case can be decomposed into blocks that are
solutions of equations like

X +MXN> = R.

The coefficients M and N in this equation turn out to be in companion form in
the given context of time series analysis and the right hand side R is another
given matrix.

The plan of attack that we follow to solve such an equation is to break up
the solution procedure into a number of steps that are each relatively easy to
perform. First we replace by a basis transformation the coefficient matrices
with their Jordan forms, thereby also changing the variable matrix X and the
right hand side R. Since a basis of (generalized) eigenvectors of companion
matrices can be represented as the columns of a (confluent) Vandermonde ma-
trix, the basis transformation needed for this can be expressed in terms of the
just mentioned Vandermonde matrices. Performing the basis transformation
requires knowledge on how to compute inverses of confluent Vandermonde ma-
trices. One of the aims of our paper is to derive rather simple, but explicit,
representations for these inverses. Of course this whole procedure would be
meaningless if the equation in the new coordinate system is more complex than
the original one. In Section 4 we will see that fortunately the resulting equation
is much easier to solve than the original one, especially in a generic case, where
the solution becomes almost trivial. By applying the developed procedure to
the computation of the Fisher information matrix for an ARMA process, we
reach our goal of giving an alternative way to represent this Fisher informa-
tion matrix. This application motivates also from a statistical perspective the
interest of analyzing (confluent) Vandermonde matrices.

The remainder of the paper is organized as follows. In Section 2 we introduce
the basic notations that we use throughout the paper. Section 3 is devoted to
technical results on companion matrices and confluent Vandermonde matrices,
the main results concerning inversion of confluent Vandermonde matrices. In
Section 4 we apply these results to describe solutions to Stein equations where
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the coefficient matrices are in companion form. Finally in Section 5 we inves-
tigate the special case where the solutions to certain Stein equations are given
by blocks of the Fisher information matrix of an ARMA process.

2 Notation and preliminaries

Consider the matrix A ∈ Rn×n in the following companion form.

A =



0 1 0 · · · 0
... 0 1

...
...

. . . . . . 0
0 0 1
−an −a2 −a1

 (1)

Let a> = (a1, . . . , an), u(z)> = (1, z, . . . , zn−1) and u∗(z)> = (zn−1, . . . , 1)
(where > denotes transposition). Define recursively the Hörner polynomials
ak(·) by a0(z) = 1 and ak(z) = zak−1(z) + ak. Notice that an(z) is the charac-
teristic polynomial of A. We will denote it by π(z), occasionally by πA(z) if we
want to emphasize the role of the A-matrix.
Write a(z) for the n-vector (a0(z), . . . , an−1(z))>. Furthermore S will denote
the shift matrix, so Sij = δi,j+1 and P the backward or antidiagonal identity
matrix, so Pij = δi+j,n+1 (assuming that P ∈ Rn×n). As an example we have
Pu(z) = u∗(z). The matrix P has the following property: if M is a Toeplitz
matrix, then PMP = M>, in particular P 2 = I, the identity matrix.
We associate with the vector a the matrix Ta ∈ Rn×n given by

Ta =


1 0 · · · 0

a1
. . .

...
...

. . . . . .
an−1 · · · a1 1

 .

Notice that the matrices Ta and S commute and that a(z) = Tau(z).
Denoting the k-th basis vector in Rn by ek, we can write

A = −ena>P + S>. (2)

If q(·) is a polynomial and if for some natural number k the term (z − α)k is
a factor of q(z) (which happens if α is a zero of q(·) with multiplicity greater
than or equal to k), then we define the polynomial qk(·;α) by qk(z;α) = q(z)

(z−α)k
.

Notice the following identity: qk(α;α) = q
(k)
k (α)/k!. In the sequel we will often

use D for differentiation (w.r.t. z). For instance, instead of d
dz qk(z;α) we then

write Dqk(z;α) and Dqk(z;α) in z = α is denoted by Dqk(α;α). Notice also
the formula

π(z)− π(α) = (z − α)u∗(z)>a(α), (3)
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which follows from the definition of the Hörner polynomials by a direct compu-
tation.

We also need some results on Lagrange and Hermite interpolation problems. As-
sume to be given s pairwise different complex numbers α1, . . . , αs (so αi 6= αj iff
i 6= j) and we want to find n polynomials p1, . . . , pn of degree at most n−1 such
that the pj(αi) take on certain given values. Notice that we have n2 unknown
parameters to determine, but only ns conditions. Therefore we add constraints
by prescribing certain values of the derivatives p(k)

j (αi) for k = 1, . . . ,mi − 1,
where the mi are such that

∑s
i=1mi = n. In this way we obtain n2 constraints.

The total set of prescribed values of the polynomials pj and their derivatives
that we consider are given by the following equations:

p
(k−1)
j (αi)
(k − 1)!

= δPi−1
l=1 ml+k,j

,

where j = 1, . . . , n, i = 1, . . . , s, k = 1, . . . ,mi and δ denotes the Kronecker
symbol. Notice that in the case where s = n all mi are equal to 1, and we only
require pj(αi) = δij .
In order to give the solution to this interpolation problem an elegant form we
present the conditions as described below. We need some notation. First we
denote by p(z) the column vector (p1(z), . . . , pn(z))>. For each i we denote by
Π(i) the n×mi matrix with columns Π(i)k = p(k−1)(αi)

(k−1)! , with k = 1, . . . ,mi. The
constraints are now given in compact form by the equality (Π(1), . . . ,Π(s)) = I,
where I is the n× n identity matrix.
Write π(z) =

∏s
i=1(z − αi)mi =

∑n
j=0 ajz

n−j and let A be the associated
companion matrix of equation (1), so that π is its characteristic polynomial.
Let Ui(z) be the n×mi matrix with k− th column equal to 1

(k−1)!u
(k−1)(z) and

write Ui = Ui(αi). We define the n × n matrix V (often called the confluent
Vandermonde matrix associated with the eigenvalues of A) by V = (U1, . . . , Us).
Similar interpolation problems involving one polynomial only are known to have
a unique solution, see e.g. [17, p. 306] or [5, p. 37]. Here the situation is similar
and as an almost straightforward result from the current setup we have

Proposition 2.1 The unique solution to the interpolation problem is p(z) =
V −1u(z).

Write p∗(z) = zn−1p( 1
z ) and notice that we use multiplication with the same

power of z for all entries of p( 1
z ).

Let Π∗ be defined by Π∗ = V −1PV . Then the matrix Π∗ is involutive, i.e.
(Π∗)2 = I.

Proposition 2.2 The polynomials p and p∗ are related by

p∗(z) = V −1PV p(z) = Π∗p(z). (4)

In particular, p∗(0) = V −1en.
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Proof. This follows from

p∗(z) = zn−1V −1u(
1
z

) = V −1Pu(z) = V −1PV p(z).

3 Confluent Vandermonde matrices

The main topic of this section is to give some formulas for the inverse of a
confluent Vandermonde matrix. We need some auxiliary results. First we give
an expression for adj(z − A), where A is a companion matrix of the form (2).
The next proposition is an alternative to formula (31) on [7, page 84].

Proposition 3.1 Let A be a companion matrix with π as its characteristic
polynomial. The following equation holds true.

adj(z −A) = u(z)a(z)>P − π(z)
n−1∑
j=0

zjSj+1. (5)

Proof. First we show that

a(z)>P (z −A) = π(z)e>1 . (6)

Using (2), we have

a(z)>P (z −A) = a(z)>P (z − S> + ena
>P )

= a(z)>(z − S + Pena
>)P

= (π(z)e>n − a> + a(z)>Pena>)P
= π(z)e>nP,

which gives (6). Multiply the right hand side of (5) by (z−A). First we consider
a(z)>P (z −A). In view of (6), this is just

π(z)e>1 . (7)

Then we consider
∑n−1
j=0 z

jSj+1(z−A) =
∑n−1
j=0 z

j+1Sj+1+
∑n−1
j=0 z

jSj+1(−S>+
ena
>P ). Since Sen = 0, this reduces to

∑n−1
j=0 z

j+1Sj+1−
∑n−1
j=0 z

jSj+1S>. Use
now the equality SS> = I − e1e

>
1 to rewrite this as

∑n−1
j=0 z

jSj(zS − I + e1e
>
1 ),

which equals
∑n−1
j=0 z

jSj(zS − I) +
∑n−1
j=0 z

jej+1e
>
1 . But this is equal to −I +

u(z)e>1 , because the first summation is just −I and the latter one equals u(z)e>1 .
Hence

n−1∑
j=0

zjSj+1(z −A) = −I + u(z)e>1 . (8)

So we obtain from equations (7) and (8) that the right hand side of (5) multiplied
by z −A is equal to

u(z)π(z)e>1 + π(z)(I − u(z)e>1 ),
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which is π(z)I, precisely what we have to prove. �
For the application to time series that we have in mind, as explained in the intro-
duction, we need the inverse of a (confluent) Vandermonde matrix. Especially
in the 1970’s this was a popular topic and many papers appeared on the sub-
ject. Quite often attention has been paid to the finding of efficient procedures to
carry out the inversion numerically. Recently, there has been a renewed interest
to a related subject, the inversion of Cauchy-Vandermonde matrices. These ap-
pear in rational interpolation problems and are beyond the scope of the present
paper.
Further down we provide inversion formulae for confluent Vandermonde matri-
ces. Some of these can be found in the older literature, but the derivation below
is different. Of the many possible references we mention [11], [4] that give re-
sults for the relatively simple case of a genuine Vandermonde matrix, or in the
spirit of our Proposition 3.3 (but obtained by different methods) for a confluent
Vandermonde matrix and [20] who has elementwise expressions. Related results
of a different nature can be found in e.g. [9], [3] or [18].
We need the Jordan decomposition of A. We use the notation Smi to denote
the shift matrix of size mi ×mi. Recall that the confluent Vandermonde ma-
trix as we defined is such that the columns are independent eigenvectors of A.
The Jordan form of A is determined by the relation V −1AV = JA and JA is
block diagonal with i-th block given by αiImi + S>mi . As a first step towards
expressions for the inverse of a Vandermonde matrix we will use

Proposition 3.2 Let JA be the Jordan form of the companion matrix A. Then

adj(z − JA) = p(z)a(z)>PV − π(z)V −1
n−1∑
j=0

zjSj+1V. (9)

In particular

adj(αk − JA) = π(αk)a(αk)>PV. (10)

Proof. This follows from Propositions 3.1 and 2.1. �
Next we proceed with some results of general nature. Let M be the block
diagonal matrix with s blocks M(i) of size mi ×mi specified by

M(i)kl =
{ 1

(k+l−mi−1)!D
k+l−mi−1πmi(αi;αi) if k + l −mi − 1 ≥ 0

0 else.
(11)

Notice that the M(i) are symmetric Hankel matrices and that the M(i)kl are
zero for k + l ≤ mi. We have for the matrices M(i) the following alternative
expression:

M(i) =
mi−1∑
l=0

δlS
lP, where δl =

1
l!
Dlπmi(αi;αi).
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Here we denoted by S the mi×mi shift matrix and by P the mi×mi backward
identity matrix.

The computation of the inverse of an M(i) is simple because of its triangular
structure and the fact that it is Hankel. Indeed, it is sufficient to know the first
row of M(i)−1, call it r1, since all rows rj are of the form r1S

j−1. As a matter
of fact the inverses of the matrices M(i) have a particular simple structure. To
enlighten this we introduce for a given m − 1 times continuously differentiable
real function f the matrix valued function Lf (z) of size m×m be defined by

Lfkl(z) =
{ 1

(k−l)!D
k−lf(z) if k ≥ l

0 else.

Notice that the matrices Lf (z) are lower triangular and Toeplitz. One readily
verifies that (Lf (z))−1 = L

1
f (z) in the points z where f doesn’t vanish. In

particular, the last row of (Lf (z))−1 is given by

(
1

f(z)
, . . . ,

1
(m− 1)!

Dm−1(
1

f(z)
))P,

where P is as above of size m×m.
Now we apply this result to f(z) = πmi(z;αi) and m = mi to get the inverse of
M(i). We then have for this choice of f that M(i) = Lf (αi)P . The first row of
M(i)−1 is then seen to be

(
1

πmi(αi;αi)
, . . . ,

1
(mi − 1)!

Dmi−1(
1

πmi(αi;αi)
))P. (12)

Next we define a matrix N , consisting of blocks N(ij) of size mi ×mj . To do
so we need some additional notation. We write π∗(z) = znπ( 1

z ) and π∗k(z;α) =
zn−1πk( 1

z ;α). Then we define the entries of the N(ij) by

N(ij)kl =
1

(k − 1)!
Dk−1π∗l (αi;αj).

Unfortunately, the matrix N doesn’t share the nice properties (block diagonal,
block Hankel, block symmetric) with the matrix M above.

Proposition 3.3 The following equalities hold.

u∗(z)>Ta = a(z)>P (13)

u∗(z)>TaV = (π1(z;α1), . . . , πm1(z;α1), . . . , π1(z;αs), . . . , πms(z;αs)) (14)

V >PTaV = M (15)

u(z)>TaV = (π∗1(z;α1), . . . , π∗m1(z;α1), . . . , π∗1(z;αs), . . . , π∗ms
(z;αs)) (16)

V >TaV = N (17)

V −1 = M−1V >PTa = M−1(TaV )>P (18)
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Proof. The equality (13) is the result of the string u∗(z)>Ta = u(z)>PTa =
u(z)>T>a P = a(z)>P .
We continue with showing (14). Consider (3) and differentiate k times w.r.t. α.
We obtain −Dkπ(α) = u∗(z)>((z − α)Dka(α)− kDk−1a(α)).
If α is a zero with multiplicity m, then Dkπ(α) = 0 for k ≤ m−1. So we get the
system of equations 0 = u∗(z)>((z−α)Dka(α)−kDk−1a(α)) for 1 ≤ k ≤ m−1
and π(z) = (z−α)u∗(z)>a(α). Write now qk(z) = u∗(z)>Dka(α), then q0(z) =
π(z)
z−α and we have the recursive system of equations 0 = (z−α)qk(z)−kqk−1(z) for

k = 1, . . . ,m− 1. Solving this system yields qk(z) = k! π(z)
(z−α)k+1 = k!πk+1(z;α).

In other words, we find

u∗(z)>Dka(α) = k!πk+1(z;α). (19)

Consider now a(w) = Tau(w) = TaV p(w), where p is the interpolation polyno-
mial. Then we also have u∗(z)>a(w) = u∗(z)>TaV p(w). Take in this equation
derivatives w.r.t. w, substitute the αi for w and use the definition of the inter-
polation polynomial to get

u∗(z)>TaV = (a(α1), . . . ,
Dm1−1a(α1)

(m1 − 1)!
, . . . , a(αs), . . . ,

Dms−1a(αs)
(ms − 1)!

). (20)

Combination of equations (19) and (20) yields (14).
To prove (15) we start from equation (14). Take the appropriate j-th order
derivatives, divide by j! and substitute the αi in the resulting expression. Doing
so results in a block-diagonal matrix, with on the diagonal exactly the M(i) as
above.
Equation (16) immediately follows from (14) by definition of the polynomials
π∗k(z;α).
The proof of (17) completely parallels that of (15) and is therefore omitted.
Now we turn to (18). First we observe that all the matrices M(i) are invertible,
because of their triangular structure and the non-zero elements πmi(αi;αi) (αi
had multiplicity mi) on the antidiagonal. Therefore also M is invertible and
taking inverses in equation (15) yields the first equality of (18). The second one
then follows from PTa = T>a P . �
Remark 3.4 The most important formula of Proposition 3.3 is Equation (18)
that gives an expression for the inverse of the confluent Vandermonde matrix.
We see that the only inversion that has to be carried out is that of M . For that
we have (12) at our disposal.

Corollary 3.5 The matrices M and N are related through the following two
identities

M = N>Π∗ (21)
N = (Π∗)>M. (22)

Moreover NM−1 = MN−1 and thus NM−1 is involutive.
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Proof. From equation (17) we get V −> = TaV N
−1 and hence V >PV −>N =

V >PTaV and in view of equation (15) this equals M . Now Π∗ was defined as
Π∗ = V −1PV , so we get (Π∗)>N = M and since M is symmetric we obtain
(21). But then also N = (Π∗)−>M = (Π∗)>M , since Π∗ is involutive. For the
same reason the final assertion of the corollary follows. �
In the next proposition we present integral representations for the matrices
M and M−1. Below we use the notations umi(z)

> = (1, z, . . . , zmi−1) and
u∗mi(z)

> = (zmi−1, . . . , z, 1) and the Γαi are sufficiently small contours around
the αi.

Proposition 3.6 The following integral representations for the matrices M(i)
and M(i)−1 are valid.

M(i) =
1

2πi

∮
Γαi

u∗mi(z − αi)u
∗
mi(z − αi)

> π(z)
(z − αi)2mi

dz (23)

M(i)−1 =
1

2πi

∮
Γαi

umi(z − αi)umi(z − αi)>
1

π(z)
dz. (24)

As we have noticed before, M(i)−1 is completely determined by its first row (or
column). From Proposition 3.6 we get, using Cauchy’s theorem, that this first
row is given by

1

2πi

I
Γαi

umi(z − αi)
> 1

π(z)
dz = (

1

πmi(αi;αi)
, . . . ,

1

(mi − 1)!
Dmi−1 1

πmi(αi;αi)
)P ,

in agreement with what we already found in (12).

4 Application to Stein equations

The goal of the present section is to obtain a way to compute the solution of
Stein’s equation, where the coefficients are matrices in companion form. Apart
from its interest this is chiefly motivated by the computation of Fisher’s in-
formation matrix of an ARMA process. As we wrote in the introduction, the
blocks of Fisher’s information matrix are solutions to such a Stein equation,
see [14]. We postpone the application to ARMA processes to Section 5.

Let A be a complex matrix of size n×n (not necessarily in companion form).
If f is a Cn×l valued analytic function, then we define f(A) as

∑∞
k=0

1
k!A

kf (k)(0).
We use the following known result (see for instance [17, Section 9.9, Theorem
2]).

Lemma 4.1 Let A be a complex matrix (n × n) whose eigenvalues lie strictly
inside the unit disk Γ. Then for a Cn×l valued analytic function f one has

1
2πi

∮
Γ

(z −A)−1f(z)dz = f(A).
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As an application of Lemma 4.1 we solve the Stein equation. Given matrices
A, C and H of appropriate dimensions (we also assume that the eigenvalues of
both A and C lie inside the unit disk), we are looking for the solution for S of

S −ASC> = H. (25)

This equation is of interest in matrix and operator theory (e.g. the operator
that takes S to S − ASC is called a displacement operator, see [8]). In [15] we
study this equation further and relate solutions of various Stein equations to a
certain Fisher information matrix.
The solution to (25), see [16], is given by 1

2πi

∮
Γ
(z − A)−1f(z)dz, with f(z) =

H(I − zC)−> and hence equal to
∑∞
k=0A

kH(C>)k.
We continue with presenting an alternative way to obtaining a solution for the
special case where both the matrices A and C are in companion form. Let VA
be the Vandermonde matrix associated with A and let VC be likewise associated
with C. Let Ŝ = V −1

A SV −>C and Ĥ = V −1
A HV −>C . The results of Section 3 on

inverses of confluent Vandermonde matrices enable us to compute Ĥ.
Premultiplication of (25) with V −1

A together with postmultiplication with V −>C
results in

Ŝ − JAŜJ>C = Ĥ, (26)

where JA and JC are the Jordan forms of A and B respectively.
Let v = vec (Ŝ) and h = vec (Ĥ). Then it is known (see [16]) that v is given by
v = (I−JC ⊗JA)−1h under the assumption that no product of an eigenvalue of
A and an eigenvalue of C equals 1. This assumption is typically fulfilled in the
context of stationary and invertible ARMA processes, where these eigenvalues
are the zeros of both the AR and the MA-polynomial and thus lie inside the
unit circle, see Section 5.
The computation of the inverse of the matrix I−JC⊗JA can now be done in an
efficient way. Let JA,i be the Jordan block of JA associated with the eigenvalue
αi and JC,j be the Jordan block of JC associated with the eigenvalue γj . Then
I−JC⊗JA is block diagonal with diagonal blocks I−JC,j⊗JA,i. Moreover, these
blocks are upper triangular and even almost block diagonal. On the diagonal we
find the blocks I−γjJA,i and on the subdiagonal just above it the blocks −JA,i.
Therefore, (I−JC,j⊗JA,i)−1 is again upper triangular with on the diagonal the
blocks (I − γjJA,i)−1 and on the k-th subdiagonal above it (k ≤ mj − 1 with
mj the multiplicity of γj) one finds the blocks (I−γjJA,i)−k−1JkA,i. Finally the
inverses of the I − γjJA,i are upper triangular Toepliz matrices with kl-element
given by γk−lj (1− αiγj)−k+l−1 for k ≥ l.
The generic case is that where all the eigenvalues of A have multiplicity 1 and
likewise for the eigenvalues of C. Consequently the matrices JA and JC are
diagonal. In this case equation (26) has a very simple solution: Ŝ has elements
Ŝij = 1

1−αiγj Ĥij .
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5 Application to ARMA processes

Consider an ARMA(p, q) process y, a stationary discrete time stochastic process
that satisfies

yt + a1yt−1 + · · ·+ apyt−p = εt + c1εt−1 + · · ·+ cqεt−q, (27)

where ε is a Gaussian white noise sequence with unit variance. The real con-
stants a1, . . . , ap and c1, . . . , cq will be fixed throughout the rest of this section.
Introduce the monic polynomials a(z) =

∑p
i=0 ap−iz

i and c(z) =
∑q
i=0 cq−iz

i

and let a∗ and c∗ be the corresponding reciprocal polynomials, so a∗(z) =∑n
i=0 aiz

i and c∗(z) =
∑q
i=0 ciz

i. We make the common assumption that the
ARMA process is causal and invertible, meaning that a and c have their zeros
strictly inside the unit circle [2, chapter 3].
Write θ = (a1, . . . , ap, c1, . . . , cq)>. Notice that the observations y (given ran-
dom variables or their realized values) of course don’t depend on the parameter
θ, but then the noise sequence ε does. The Fisher information matrix Fn(θ) for
n observations is defined (see [1]) as the covariance matrix of the score function
and, because of the assumed Gaussian distribution of ε, it is asymptotically
equal to n times the stationary Fisher information matrix

F (θ) = Eθ ∂ε
∂θ

∂ε

∂θ

>
,

where Eθ denotes expectation under the parameter θ. Knowledge of the Fisher
information matrix is crucial for asymptotic statistical analysis. For instance, it
is known (see e.g. [2]) that maximum likelihood estimators of the parameters of
an ARMA process are consistent and have (using n observations) an asymptotic
covariance matrix that is n−1 times the inverse (provided that it exists) of the
stationary Fisher information matrix. The inverse exists if the polynomials a
and c have no common zeros, see [13].
The matrix F (θ) has a representation in the spectral domain given by the fol-
lowing block decomposition

F (θ) =
(
Faa Fac
F>ac Fcc

)
(28)

where the matrices appearing here have the following elements

F jkaa =
1

2πi

∮
|z|=1

zj−k+p−1

a(z)a∗(z)
dz, (j, k = 1, . . . , p)

F jkac =
1

2πi

∮
|z|=1

zj−k+q−1

c(z)a∗(z)
dz, (j = 1, . . . , p, k = 1, . . . , q)

F jkcc =
1

2πi

∮
|z|=1

zj−k+q−1

c(z)c∗(z)
dz, (j, k = 1, . . . , q).

With k(z) = a(z)a∗(z)c(z)c∗(z), up(z) = (1, . . . , zp−1)>, uq(z) likewise and u∗p
and u∗q their reciprocal polynomials we have the following compact expression
for the whole Fisher information matrix.
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F (θ) =
1

2πi

∮
|z|=1

1
k(z)

(
c∗(z)up(z)
−a∗(z)uq(z)

)(
c(z)u∗p(z)> −a(z)u∗q(z)>

)
dz. (29)

As in Section 2 we let A ∈ Rp×p be the companion matrix associated with the
polynomial a(·) (its precise form is given by equation (1) for n = p). The matrix
C ∈ Rq×q associated with the polynomial c(·) has an analogous form.
Let the matrix Ã ∈ R(p+q)×(p+q) be given by

Ã =
(
A 0
0 C

)
.

In [14] we showed that the Fisher information matrix F (θ) is the solution of the
following Stein equation

F (θ)− ÃF (θ)Ã> = ee>, (30)

where e> = (e>pp, e
>
qq) with epp the p-th standard basis vector in Rp and eqq the

q-th standard basis vector in Rq. Using for F (θ) the block decomposition (28),
we see that each of the blocks involved satisfies a Stein equation with appropriate
coefficients. For instance for Fac ∈ Rp×q we have

Fac −AFacC> = Hac, (31)

with Hac = eppe
>
qq. As we already announced in the introduction, equation (31)

as well as the analogous equation for the other blocks of Fisher’s information
matrix motivated the study of solutions to Stein’s equation, when the coefficient
matrices are in companion form.

We apply the results of the previous sections as follows. Let VA be a matrix
whose columns are the generalized eigenvectors of A, and VC the corresponding
matrix for C. As we have seen before these matrices are confluent Vandermonde
matrices. By JA and JC we denote the Jordan forms of A and C respectively.
Let also F̂ac = V −1

A FacV
−>
C and Ĥac = V −1

A HacV
−>
C . Then we can replace (31)

with the equivalent equation

F̂ac − JAF̂acJ>C = Ĥac. (32)

A little more can be said. The matrix Ĥac here becomes V −1
A epp(V −1

C eqq)> and
we observe that both V −1

A epp and V −1
C eqq are the last columns of the inverse of a

Vandermonde matrix. We have already seen in Section 2 how these columns are
related to interpolation polynomials. We have for instance that V −1

A epp is equal
to p∗A(0), where p∗A(z) = zp−1pA( 1

z ) and pA the interpolation polynomial related
to the eigenvalues of A as described in Proposition 2.2. Likewise V −1

C eqq =
p∗C(0).
Let us finish with considering the generic case of Fisher’s information matrix,
i.e. we assume that A and C only have eigenvalues of multiplicity 1. It then
follows that F̂ac has as it’s ij-th element

p∗A(0)ip∗C(0)j
1− αiγj

.
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Now it is easy to compute Fac = VAF̂acV
>
C . To the other blocks of the Fisher

information matrix the same procedure applies.
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[4] F. G. Csáki, Some notes on the inversion of confluent Vandermonde ma-
trices, IEEE Trans. Automatic Control AC-20 (1975), 154–157.

[5] P.J. Davis, Interpolation and Approximation, Dover Publications Inc., New
York, 1975.

[6] B. Friedlander, On the computation of the Cramér-Rao bound for ARMA
parameter estimation, IEEE Trans. Acoust. Speech Signal Process. 32
(1984), no. 4, 721–727.

[7] F.R. Gantmacher, The Theory of Matrices vol. 1, AMS Chelsea Publishing,
1959.

[8] I. Gohberg and V. Olshevsky, The fast generalized Parker-Traub algo-
rithm for inversion of Vandermonde and related matrices, J. Complexity
13 (1997), 208–234.
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