
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Efficient memory copy operations on the 48-core Intel SCC processor

van Tol, M.W.; Bakker, R.; Verstraaten, M.; Grelck, C.; Jesshope, C.R.

Publication date
2011
Document Version
Author accepted manuscript
Published in
3rd Many-core Applications Research Community (MARC) Symposium

Link to publication

Citation for published version (APA):
van Tol, M. W., Bakker, R., Verstraaten, M., Grelck, C., & Jesshope, C. R. (2011). Efficient
memory copy operations on the 48-core Intel SCC processor. In D. Göhringer, M. Hübner, &
J. Becker (Eds.), 3rd Many-core Applications Research Community (MARC) Symposium (pp.
13-18). KIT Scientific Publishing. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/efficient-memory-copy-operations-on-the-48core-intel-scc-processor(8810055a-84e7-4580-9269-bdd0f7000b47).html
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937


1

Efficient Memory Copy Operations on the 48-core
Intel SCC Processor

Michiel W. van Tol, Roy Bakker, Merijn Verstraaten, Clemens Grelck and Chris R. Jesshope
Informatics Institute, University of Amsterdam

Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Abstract—The Single-chip Cloud Computer (SCC) is a 48-
core experimental processor created by Intel Labs targeting the
many-core research community. It has hardware support for
sending short messages between cores, while large messages have
to go through off-chip shared memory. However, memory copy
operations on this chip are expensive and inefficient. In this
paper we provide insight in the SCC’s memory architecture and
describe and evaluate a few memory copy methods. We propose
a novel method, unique to the SCC, which we believe achieves
the maximum possible throughput for a single core on this chip.
In order to efficiently implement this approach we introduce
dedicated cores that run a memory copy service which can be
used asynchronously by other cores.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core concept vehicle created by Intel Labs
as a platform for many-core software research. It provides
an on-chip message passing network, a non cache-coherent
off-chip shared memory and dynamic frequency and voltage
scaling. We are investigating possible implementations on
this platform of SVP [2], a hierarchical concurrent execution
model, and S-NET [3], an asynchronous stream processing co-
ordination language. The dataflow-style execution properties
of both models would provide us with a handle for adaptive
power management.

As the SCC effectively is an on-chip distributed system,
we can already run the two available distributed implemen-
tations [4], [5] of the models without any modification. As
these are based on more coarse grained communication prim-
itives such as TCP/IP sockets and MPI, we plan to rewrite
them to optimally use the hardware messaging support on
the SCC. However, the on-chip message passing buffers are
only efficient for relatively small messages; up to 8KB using
RCCE [6], or 128KB using the pipelined iRCCE [7] approach.
This is sufficient for many message passing programs that only
need to communicate small updates on every iteration, but in
SVP and S-NET we potentially move a lot more data around
between cores. Therefore we have investigated efficient ways
to copy large pieces of data on the SCC.

In this paper we make an analysis of several approaches to
implement efficient memory copy operations between cores on
the SCC. We do this by first giving an overview of its relevant
hardware features and performance properties (Section II),
then we discuss existing communication libraries and several
approaches using different memory access methods in Sec-
tion III. We present a novel method to copy memory, unique to

the SCC, in Section IV. We believe that this method achieves
the highest possible throughput for a single core copying
blocks of memory larger than 256KB. This requires dedicated
copy cores which support copy offloading that we discuss
in Section V. We conclude with comparing the discussed
approaches and our experience with the SCC platform in
Section VI.

II. SCC PLATFORM

The SCC is a single chip with 48 Intel IA-32 P54C cores
connected by an on-chip mesh network which has a 256 GB/s
bisection bandwidth [8]. Its features are intended to allow
CPUs scaling up to hundreds and potentially thousands of
cores. The mesh is organized as six voltage islands containing
four tiles with two cores per tile, creating a 6x4 mesh with
24 tiles total. Each tile has its own mesh router to access the
mesh for memory access and inter-core communication.

The basic communication paradigm for the SCC is message
passing, and therefore each tile has a local 16KB Message
Passing Buffer (MPB). The MPB is suitable for sending short
messages between cores. A special library (RCCE) to easily
use the MPBs to send/receive messages is available, as well as
an MPI channel implementation. With two cores per tile, each
core has an 8KB area in the local MPB only by convention, as
all MPBs are memory mapped and can be addressed directly
by each core.

The chip features extensive frequency and voltage control
on a per tile and voltage island basis. For all measurements in
this paper the cores were clocked at 533 MHz, and the mesh
network and memory controllers at 800 MHz.

A. Caches

Each core has both a 16KB L1 data and an instruction
cache which cache the complete address space, including the
MPBs. Therefore an extra memory type for MPB data (MPBT)
was added to the virtual memory system, together with an
instruction to invalidate all cachelines in the L1 D-cache that
are flagged with this type. As the P54C core originally only
supports a single outstanding write request, a Write Combine
Buffer (WCB) has been added to combine adjacent writes up
to a whole cacheline which can then be written back at once.
However, this is only used for MPBT flagged writes.

Each SCC core has a private unified 256KB L2 cache which
does not feature a cache coherency protocol. Also, in contrast
to the L1 cache, there is no native way to flush or invalidate the



2

L2 cache; the WBINVD/INVD instructions that can be used
to flush or invalidate L1 do not affect the L2 cache. To solve
the cacheability issues, users can turn off the L2 cache on a
per-core basis. It is also possible to set the cacheability for
each individual virtual memory page. This can be done with
the standard PCD cache disable flag to disable both caches,
or with the MPBT flag to bypass L2 and use the WCB. The
L2 cache can be reset separately from the core using a special
control register, which initializes all lines into invalid state.
However, this operation halts the core and therefore can not
be used to invalidate the cache during execution.

Both the L1 and the L2 are 4-way set associative with a
cacheline size of 32 bytes, are write back, and do not allocate
on write miss, i.e. are write around.

B. Memory structure and look-up tables

The individual P54C cores have a 32 bit core-physical ad-
dress space, while the chip has four DDR3 memory controllers
which each use 34 bits addressing. Combining the 34 bits with
the memory controller address, the system can address 64GB
in total. The translation of core-physical addresses to system-
physical addresses is done through look-up tables (LUTs).
Each core has a private LUT with 256 entries, where each
entry covers 16MB of the 4GB core-physical address space,
which we refer to as a LUT page.

The translation is done by indexing the LUT with the
highest 8 bits of a core-physical address, and then extending
it to form a 34 bit address and adding routing information for
the mesh network. An entry can map to a special memory
anywhere on the chip or to an addresses on any of the
four memory controllers. The MPB and System Configuration
Registers of each tile are examples of such special on-chip
memories, but also the LUT itself. The LUTs are usually set
up when booting a core, but can be changed dynamically when
the system is running, having effect immediately. This allows
sharing data between cores without having to copy it. A core
can map system-physical memory used by any other core at
the granularity of these 16MB LUT pages.

C. Memory subsystem properties

In the standard configuration, each memory controller runs
at 800 MHz, corresponding with a theoretical peak transfer
rate of 6.4 GB/s. Figure 1 shows the measurements of the
maximum memory throughput for a single core. This bench-
mark reads or writes data in 4-byte operations from/to memory
areas ranging in size from 8KB to 2MB, where each area is
prefetched before every measurement. This shows a reading
and writing bandwidth around 400 MB/s for the L1 cache for
size 8-16KB, 285 MB/s for reading the L2 cache at size 32-
256KB and 107 MB/s for reading external memory. Writes
to the L2 cache perform at 116 MB/s, or 130 MB/s when
using the write-combine buffer (WCB) by flagging the data as
MPBT. Writing to external memory shows the real benefit of
the WCB where MPBT flagged data is written at 125 MB/s
against 22 MB/s for non-MPBT writes. MPBT tagged reads do
not benefit from the L2 cache as it is bypassed, but therefore
perform slightly better than non MPBT writes to memory.

Figure 1. Memory throughput benchmark result of one core reading and
writing prefetched memory areas of several sizes, showing the effect of
different memory flags.

Figure 2. Memory throughput benchmark result showing the aggregate
memory bandwidth of 1 to 48 cores performing memory reads divided over
a different number of memory controllers and ranks.

The results in Figure 1 show us that a single core can
get nowhere near saturating a memory controller. Figure 2
shows how many cores are required to saturate one or more
memory controllers, or conversely, how many cores can access
the same controller without a large impact on performance.
Each memory controller has two banks that each consist of
two ranks, and requests to different banks and ranks are
interleaved [9]. However, the controller does not interleave
the address space between the four ranks. The default LUT
mappings map the main memory address space of a core to
a contiguous physical address range on a single controller,
mapping it to only a single rank. Rank and bank conflicts
impact memory performance, so we measured what it takes to
saturate a rank, a bank, the whole controller, two controllers,
and all four controllers.

Figure 2 shows us that a single rank is saturated by 9 cores



3

Figure 3. Pingpong benchmark results using the RCCE and iRCCE
communication libraries for a range of packet sizes, showing the effect of
different memory flags on send and receive buffers.

at an aggregated bandwidth of 1.0 GB/s. A whole controller
saturates at 19 cores delivering 1.8 GB/s, two controllers at 40
cores with 3.4 GB/s and all the 48 cores together are unable
to saturate the four memory controllers, scaling linearly to
deliver a peak of 5.9 GB/s.

III. MEMORY COPY OPERATIONS

A. RCCE and iRCCE

The initial intuitive approach to copy data from one core
to another is to use the on chip message passing buffers.
This can be done by using the supplied RCCE [10], [6]
framework. However, as we can see in [6], as well as in Figure
3 where this is shown as RCCE normal->normal, it has its
peak performance at 60 MB/s only for 4KB messages. For
larger messages up to 256KB it drops to around 20 MB/s and
for even larger messages the performance collapses to 5 MB/s.

iRCCE [7] was developed by RWTH Aachen to improve
RCCE performance. It uses pipelining when sending messages
larger than the MPB so that the read/write operations do not
happen in lockstep, and prefetches the target addresses into the
L2 cache so that data is not suffering from write around for
every 4 bytes. A specialized memcpy function is used to copy
data to and from the MPBs. This improves throughput a factor
of two compared to RCCE, and with messages larger than
4KB the pipelining gives an even greater advantage. At 128KB
messages the peak performance is reached, around 145 MB/s.
However, as soon as messages are larger than the L2 cache, the
performance drops to 60 MB/s. Figure 3 shows these results
in the plot as iRCCE normal->normal.

Section II-C showed us that using MPBT flagged memory
accesses can improve throughput, therefore we ran two more
experiments with RCCE and iRCCE. In the first experiment
we flag the receive buffer as MPBT type memory, and in the
second both the send and the receive buffers. Figure 3 shows
that this improves the performance for iRCCE messages larger
than 256KB to a throughput of 84.9 MB/s, and improves the

throughput of standard RCCE from 5 to 31 MB/s. As MPBT
flagged operations bypass the L2 cache, it shows worse per-
formance in our measurements than the normal RCCE/iRCCE
for messages between 4KB and 256KB. However, this is a red
herring; the pingpong test sends the same message back and
forth many times, effectively measuring the throughput when
the message data is already present in the cache. If the data
is not in the cache, the MPBT modification would outperform
normal iRCCE, even for small messages, similarly as it does
for messages larger than 256KB.

Another issue with these message passing approaches is
that it keeps two cores busy to copy data while they can not
perform any computation. This is less of an issue in message
passing based SPMD programming paradigms, such as MPI,
where usually all processes alternate between a computation
and communication step, but it is inefficient for our dataflow
style approaches. In our case it is more beneficial for the
sending core to copy the data into a shared memory location
and then asynchronously signal the receiving core that the
data is ready to be used. In the meantime, the receiving core
can potentially do other useful work without being tied up
in the copy process. Furthermore, when we are sending large
messages, data comes from memory, goes through the MPB
and is then written back to memory again by another core.
Therefore, we expect that we can be more efficient with a
direct memory to memory copy.

B. Optimizing memcpy

Naive memory copy operations with the standard memcpy
function performs very poorly on the SCC at only 17.4 MB/s.
This is because it does not take the cache hierarchy into
account which has a write around policy on a write miss.
When copying data to a new location, it is not likely to be in
the cache, which means that every 4 byte chunk is individually
written to memory instead of whole cachelines of 32 bytes at
a time. Also, the read data is unnecessarily cached in both
L1 and L2 cache, while only the spatial locality of a single
cacheline will help for the copy throughput, as the SCC does
not use prefetching.

To improve memory write performance, the SCC has the
WCB but this is only enabled for MPBT flagged data. As
this can be set per virtual memory page it can be used to
force normal memory writes to use the WCB. By applying
this to the target buffer we achieved a dramatic improvement
in throughput up to 69.4 MB/s. Besides the largest advantage
that comes from having a single 32 byte burst instead of 8
individual 4 byte writes on the memory bus, this also removes
the delay of accessing (and then writing around as it is a miss)
the L2 cache. The latter inspired us to a further optimization;
by flagging the input buffer as MPBT as well, the data is
loaded directly into the L1 cache. This still gives us the locality
advantage for subsequent reads, but removes the delay of
allocating in L2, then moving and allocating in L1. Using
this approach we measured a throughput of up to 70.9 MB/s.

We also investigated the optimized memcpy implementation
that was developed for iRCCE. It moves data through two
registers taking advantage of the dual-issue pipeline in the



4

P54C core, in contrast to the standard memcpy which uses
the special repetition prefix and 4 byte copy instruction. This
apparently has its advantages when copying data into the MPB,
but not when copying from memory to memory. In the best
case, again achieved by flagging the source and target memory
as MPBT, it reaches a throughput of 49.7 MB/s.

C. L2 Cache flush

An important issue when communicating through shared
memory is the L2 cache. As the SCC does not have support for
flushing or invalidating the L2 cache, care has to be taken when
the receiver wants to use the data copied by the sender. There
might be address conflicts in the L1 and L2 cache causing the
receiver to read stale data. This is not a problem for the L1 as
it can be flushed with an instruction, but the L2 can only be
flushed by making sure that the contents of the entire cache are
replaced, i.e. reading in 256KB of clean data. This is not an
issue on the sending side, assuming we use the MPBT based
memcpy method; MPBT flagged data does not go to the L2
cache, and even the L1 cache can be turned off for the target
addresses at as good as no performance hit as shown earlier in
Section II-C. Of course the sender needs to make sure that the
data it wants to send is not in dirty state in its own L2 cache,
so it would require a flush before starting the copy operation,
unless it can be absolutely certain that it can not be in dirty
state in its cache. Note that the L1 cache can be used as write
through, but the L2 cache can only operate as write back.

We have worked on optimizing the L2 cache flush routine
by using on-tile MPB mapped addresses to flush the cache. As
the MPB is mapped into a single LUT-page, it only occupies
a small portion of the 16MB address space. Memory accesses
beyond the MPB within the LUT-page wrap around back into
the MPB as the logic probably ignores the higher address
bits. However, from the perspective of the L2 cache, these
are still unique addresses, so they can be used to flush the
cache. By using a 256KB region beyond the MPB to avoid
interference with normal MPB accesses, we improved the flush
operation from over 1 million cycles to around 580K cycles.
Of course this is still a heavy impact on performance, as this
takes slightly more then 1 ms.

IV. LUT BASED COPY

The disadvantage of both the message passing and memcpy
approaches discussed in the previous section is that all data
needs to go through the core, being read and written in 4 byte
quantities. The L1 cache and the WCB alleviates the problem
slightly so that beyond that point only 32-byte cachelines are
transferred, but still 8 read and 8 write operations have to be
performed individually by the pipeline of the core to transfer
the contents of each line.

The SCC has a unique feature with the programmable LUTs
which do a second layer of address translation outside the
boundary of each core. As this happens transparently to the
core, this property can be exploited to efficiently duplicate
large blocks of memory. If two cores need to share data and
it is guaranteed to be used read-only, the receiving core can
simply map the memory anywhere (on a 16MB granularity)

Core

L2 Cache LUT Memory

System Physical Address space
per Memory Controller (34 bit)

Core-visible 'Physical'
Address space (32 bit)

Core reads/writes
single byte per
cacheline

16MB
LUT
pageSource

Area

Target
Area

Transfer
whole

cachelines

LUT
changes

to target area

Read
cacheline

Write
byte

L1 D$

LUT
maps to

source area

32 bytes

Figure 4. Memory copy operation using L2 cache and LUT remapping

into its address space by adding the correct LUT entries and
the sender only needs to make sure that the off-chip memory
is up to date with a cache flush.

Memory duplication of large blocks using the programmable
LUTs works as follows, and is illustrated in Figure 4; the core
reads in the first block of 256KB into the L2 cache. It only
needs to read a single byte per cacheline to fill the entire
cache. While doing this, it makes sure that every cacheline
is put in modified state by writing each byte it reads back
again to the L2 cache. The content of the data is unchanged,
but the L2 is unable to tell the difference. After the cache is
filled with modified lines, the core switches the LUT entry
for that core-physical address range to map to the destination
range in the system-physical address space. The core-physical
addresses that are present in the L2 cache now map onto
other system-physical addresses. Data is then pushed out of
the cache, for example with a cache flush, and is therefore
copied to the target location.

When a multiple of 256KB blocks needs to be transferred,
the copy procedure can be pipelined; Using a second address
range in the core-physical address space (i.e. another LUT
entry) the next block of 256KB is read in while it pushes out
the previous block to the target address range instead of the
cache flush. This needs to be a second core-physical range as
the first range is still used to push data out, and can therefore
not yet be reused. For the block after that, the first entry can
be used again, and so on, alternatingly using the two LUT
entries until all data has been copied.

We believe that this method achieves the highest possible
throughput for memory copy operations on a single core,
which we measured at 73 MB/s for large blocks. Similarly
to memcpy using MPBT flagged data only whole cachelines
are transferred from and to the memory controllers, most effec-
tively using the powerful on-chip network [8]. The advantage
it has over the memcpy approach is that only a single byte
per cacheline needs to pass through the core itself, resulting
in less read and write operations to copy a cacheline. Still
a whole cacheline is transferred between L2 and L1, but by
using L1 in write-through mode, only a single byte is written
back from L1 to L2. Unfortunately the L1 can not be bypassed
completely.



5

The proposed approach has a few downsides. First of all the
target address needs to be aligned at the same offset within
a 16MB LUT page within the system-physical address range,
though it does not have to be on the same memory controller.
This restriction can be compensated somewhat by the use of
virtual memory mappings, but as these map using a 4KB page
granularity, you still have to use the same offset within such
a 4KB page. A second issue is that both the source and target
areas need to be contiguous blocks in physical memory, or
at least at a granularity of the L2 cache which is 256KB.
Otherwise, conflicts would happen and as a side effect data
outside the source area would be copied as well as. A third
disadvantage is that care has to be taken that the L2 cache is
not influenced during a copy operation. This can be done by
using the MPBT flags to bypass L2 for all other memory used
by the program to avoid interference, however this impacts
performance. To keep this manageable, we can use dedicated
cores to which we delegate these memory copy operations.

V. DEDICATED COPY CORES

We introduce dedicated copy cores that run a memory
copy service. These cores can be asynchronously messaged
by writing meta-data into their MPB and sending them an
interrupt. This uses a mailbox protocol similar to what the
Barrelfish developers proposed in their report [11]. A message
tells a copy core to initiate a memory copy operation of a
given size between two addresses, and to send a notification
on completion, but not necessarily back to the requesting core.
As this requires minimal functionality, it can be implemented
as a small efficient kernel running directly on the bare metal
hardware, likely even fitting completely in the 16KB I-cache.
This makes it very suitable for our LUT based copy approach
that we just described, as it will have no cache interactions.
Furthermore, it has the advantage that we can completely
control the virtual memory types used, and therefore guarantee
that for any memory interaction required to run the code,
the L2 cache is bypassed and therefore remains untouched.
A second advantage is that such a kernel does not suffer from
the penalty of around 2K cycles to switch between kernel and
user mode on receiving interrupts, making message delivery
much cheaper taking around 600 cycles [11]. These cores are
not limited to using the LUT based copy approach, but can
implement any memcpy method discussed previously.

In an SPMD setting, these copy cores are probably not of
much use. In most cases, it would be better for the performance
to have the core participate in the computation than to have
it copy memory for other cores. However, this is not the case
in our dataflow style runtimes. Work might not be divided as
evenly as with SPMD, and in order to make more progress at
a critical point, having the aid of another core to copy memory
can be very beneficial. For example, if core A requires a copy
of a range of memory in order to start a new computation
on core B, it can ask copy core C to copy in the background
while A continues working, and C can notify B directly when
it is done. Furthermore, if a large amount of data needs to be
transferred, A could split the range and employ more than a
single copy core to copy the data, exploiting data parallelism.

Figure 5. Memory copy throughput benchmark using 1 to 8 copy cores to
copy data using either MPBT flagged memcpy or the LUT based lutcpy copy
method.

This then delivers more throughput, as a single core can get
nowhere near saturating the bandwidth of a mesh network link
or a memory controller. We measured that it takes 9 cores to
saturate a single bank, single rank on a memory controller.

A. Benchmark

Figure 5 presents some preliminary results of a copy core
implementation. This implementation is currently still running
under SCC Linux and uses polling instead of interrupts
to receive messages, but it gives us an initial idea of the
results that can be achieved with the techniques that we have
described. Our implementation supports both the LUT based
copy operation, lutcpy, and a memcpy operation that uses
MPBT flagged source and destination areas which delivers
the best memory throughput as discussed in Section II-C. It
should be noted that the LUT based copy method will not
reliably copy all the data in this environment, but the measure-
ments will still show the correct performance characteristics.
Furthermore, lutcpy can only be used to copy data larger than
256KB per copy core.

The results in Figure 5 show that lutcpy is only marginally
faster than memcpy on very large copy operations. memcpy
outperforms lutcpy because it uses uncached MPBT flagged
memory for its target address range, which means it does not
have to perform an expensive L2 cache flush at the end of
the operation. For larger copy operations this becomes a less
dominant factor for lutcpy, and then it slightly outperforms
memcpy in the way originally expected.

The most important result of our copy core benchmark
is that the technique scales very well. Even for very small
piece of data, such as 4KB, the copy operation benefits
from being split across two copy cores. However, this would
still be slower than performing the operation locally due to
the messaging latency. The advantage starts at 8KB, where
two copy cores together deliver 78.7 MB/s, that is including
messaging overhead, whereas the requesting core itself would
only be able to copy at 70.9 MB/s, see Section III-B.



6

VI. CONCLUSION

In this paper we have surveyed several options for efficiently
copying memory on the Intel SCC. Using the RCCE or iRCCE
message passing implementations has the advantage that it
does not require cache flushes, but has the disadvantage that
two cores are occupied in the copy process. It originally has
a low throughput for regions that are larger than the MPB
and/or L2 caches. We then showed how the standard memcpy
operation can be improved a four-fold by enabling the use of
the WCB with MPBT flags on virtual memory pages, and that
this also improves message passing performance.

We proposed a novel approach to copy memory, unique to
the SCC platform, by switching LUT entries to copy data
with the L2 cache using less interaction with the core. It
performed 3% faster than the fastest memcpy method in our
initial results, and we argued that this achieves the highest
possible throughput for a single P54C core. The disadvantage
of this approach is that it is cumbersome to use, with restricted
alignments and sizes for the data that is copied.

Complementary to the LUT based copy method, but or-
thogonally to the improved memcpy approach, we proposed
the introduction of copy cores to be able to asynchronously
offload copy operations, similar to DMA engines. We then
showed the benchmark results of a preliminary copy core
implementation, comparing MPBT flagged memcpy and LUT
based copy. Offloading to copy cores scales very well, but the
LUT based copy performance was not as good as we expected.
This is because a copy core requires an L2 cache flush at the
end of a LUT based copy operation, which is not required for
MPBT flagged memcpy.

The largest bottleneck for reading/writing memory, and
therefore also for inter-core message communication, as this
involves reading/writing an MPB, is the fact that a P54C core
can only have a single outstanding memory operation, and
stalls until it completes. For read operations this is partially
alleviated by the L1 cache as a few consecutive reads will
hit in the same lines. For write operations the WCB can be
used, however, as it is only enabled for MPBT flagged data
this is not easy. A solution to this could be to add one or
more programmable DMA engines capable of having multiple
outstanding memory requests to the platform. They would be
more simple than a P54C core, but could achieve a much
higher memory throughput. Now we require the combination
of multiple copy cores to achieve a higher throughput when

copying a large amount of data, possibly wasting precious
computing cycles. And to generally have a more optimal
memory and communication performance in a runtime system,
it needs to fully manage both virtual and physical memory,
applying MPBT flags where necessary to speed up operations.
This is what we are currently planning to do in the future for
our SVP and S-NET runtimes on the SCC.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” pp. 108–109, February 2010.

[2] C. R. Jesshope, “A model for the design and programming of multi-
cores,” Advances in Parallel Computing, vol. High Performance Com-
puting and Grids in Action, no. 16, pp. 37–55, 2008.

[3] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A gentle introduction
to S-Net: Typed stream processing and declarative coordination of
asynchronous components,” Parallel Processing Letters, vol. 18, no. 2,
pp. 221–237, 2008.

[4] M. W. van Tol and J. Koivisto, “Extending and implementing the self-
adaptive virtual processor for distributed memory architectures,” CoRR,
vol. abs/1104.3876, April 2011.

[5] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net: High-level
message passing without the hassle,” in 1st ACM SIGPLAN Workshop
on Advances in Message Passing (AMP’10), Toronto, Canada, 2010
(G. Bronevetsky, C. Ding, S.-B. Scholz, and M. Strout, eds.), ACM
Press, New York City, New York, USA, 2010.

[6] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on Intel’s Single-chip Cloud Computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[7] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011) – to appear, Work-
shop on New Algorithms and Programming Models for the Manycore
Era (APMM), (Istanbul, Turkey), July 2011.

[8] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar, “A 2 Tb/s 6×4 mesh network for a
Single-chip Cloud Computer with DVFS in 45 nm CMOS,” Solid-State
Circuits, IEEE Journal of, vol. 46, pp. 757–766, April 2011.

[9] Intel, “SCC extended architecture specification,” November 2010. Re-
vision 1.1.

[10] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
SCC processor: the programmer’s view,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, (Washington, DC, USA),
pp. 1–11, IEEE Computer Society, 2010.

[11] S. Peter, T. Roscoe, and A. Baumann, “Barrelfish on the Intel Single-
chip Cloud Computer,” Tech. Rep. Barrelfish Technical Note 005, ETH
Zurich, September 2010. http://www.barrelfish.org.

http://www.barrelfish.org

	Introduction
	SCC platform
	Caches
	Memory structure and look-up tables
	Memory subsystem properties

	Memory Copy Operations
	RCCE and iRCCE
	Optimizing memcpy
	L2 Cache flush

	LUT Based Copy
	Dedicated Copy Cores
	Benchmark

	Conclusion
	References

