
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Dynamic handling for cooperating scientific web services

Cushing, R.; Koulouzis, S.; Belloum, A.; Bubak, M.
DOI
10.1109/eScience.2011.40
Publication date
2011
Document Version
Final published version
Published in
Proceedings 2011 IEEE Seventh International Conference on eScience: 5-8 December 2011,
Stockholm, Sweden

Link to publication

Citation for published version (APA):
Cushing, R., Koulouzis, S., Belloum, A., & Bubak, M. (2011). Dynamic handling for
cooperating scientific web services. In Proceedings 2011 IEEE Seventh International
Conference on eScience: 5-8 December 2011, Stockholm, Sweden (pp. 232-239). IEEE.
https://doi.org/10.1109/eScience.2011.40

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1109/eScience.2011.40
https://dare.uva.nl/personal/pure/en/publications/dynamic-handling-for-cooperating-scientific-web-services(084b0fdb-bb65-441b-8dcb-60755fd0a356).html
https://doi.org/10.1109/eScience.2011.40

Dynamic Handling for Cooperating Scientific Web Services

Reginald Cushing∗, Spiros Koulouzis∗, Adam Belloum∗, Marian Bubak∗†
∗University of Amsterdam, Institute for Informatics, Amsterdam

†AGH University of Science and Technology, Department of Computer Science, Kraków

Abstract—Many e-Science applications are increasingly re-
lying on orchestrating workflows of static web services. The
static nature of these web services means that workflow
management systems have no control over the underlying
mechanics of such services. This lack of control manifests
itself as a problem when optimizing workflow execution since
techniques such as data-locality aware deployment and service-
to-service communication are very difficult to achieve. In this
paper we propose a novel approach for mobilizing scientific
web services onto common distributed resources and as such
enable back-to-back communication between cooperating web
services, autonomous web service scaling through fuzzy control
and autonomous web service workflow orchestration.

Keywords-services; workflows; auto; scaling; autonomous;
orchestration; communication; fuzzy

I. INTRODUCTION

E-Science applications are increasingly becoming data-
centric and service oriented in nature. The huge volumes
of scientific data being produced creates extraordinary chal-
lenges for data processing. Current scientific web services
are not adequately equipped to deal with this data processing
influx. Web services lack the mobility and dynamics to move
closer to data sources, direct data communication between
services and replication to process data at faster rates. The
static nature of current web services also inhibits the use of
distributed resources such as grids.

The common approach for utilizing scientific web services
is through high-level systems such as Scientific Workflow
Management Systems (SWMSs). These systems rely on cat-
alogs such as BioCatalogue [1] for searching and referencing
static web services to compose workflows. Typical SWMSs
orchestrate web services by iteratively invoking the static
services and handling the data transport between services.
With complex workflows consisting of many services, the
central coordination of huge data just does not scale.

Many web service based e-Science applications can, thus,
benefit from an architecture whereby cooperating services
can be mobilized, and dynamically scaled. The goals of the
proposed framework are: (1) mobilize web services so that
they can be deployed anywhere on-demand, (2) choreograph
cooperating web services so that they can communicate
back-to-back, (3) autonomously orchestrate web service
workflows, (4) autonomously scale web services to meet
high data load, (5) a non-intrusive approach for deploying
current web services to new architectures.

This paper is organized as follows. Section III and IV
introduce the architecture that tackle the goals set out above.
Section V describes a bio-informatics sequence alignment
application that drives the prototype system. This is followed
by results from the execution profile of the application. In
section II we give an overview of the related work in the
area. Section VI discusses future work and concludes.

II. RELATED WORK

Circulate [2] is a web service choreographic and or-
chestration system which decentralizes web service chore-
ography through a system of proxies which aids the web
services to directly talk to each other without going through
a central coordinator. Orchestration is still centralized and
is only used to control the overall execution. In our system
choreography and orchestration are purely decentralized
and autonomously achieved by each web service container.
Furthermore, communication is achieved through messaging
which eliminates the need for proxies. Circulate does not
implement any scaling mechanisms for dealing with excess
load and neither provides a framework for mobile services.

DynaSched [3] provides a framework for dynamic WSRF
service deployment on Grid resources. A central orches-
tration engine overlooks the whole workflow execution. A
scheduler is responsible for deploying services into WS-
containers. The WSRF services communicate with files
over GridFTP or RFT servers. With dynamic deployment,
DynaSched achieves service mobility. It is not clear if de-
ployed services are able to communicate back-to-back over
the file based approach. When compared to our approach,
DynaSched lacks web service scaling, autonomous orches-
tration, and possibly back-to-back communication. Further-
more, DynaShed only manages WSRF services which could
be a limitation for the system.

ServiceGlobe [4] only aims at dynamic web service de-
ployment with replication and load balancing. ServiceGlobe
differentiates between dynamic and static services. The latter
being those services which can not be moved around due to
some dependency. The architecture relies on a dispatcher
which is described as a software-based layer 7 switch. The
dispatcher balances the load on a set of replicated web
services and can initiate replicas on-demand when the load
increases. This system achieves service mobility and scaling
although scaling is not based on data load prediction. Since it

not a intended for scientific workflows, it lacks web service
back-to-back communication and orchestration.

Fuzzy logic has had wide spread use in controlling sys-
tems from hardware to software. Some recent works in the
area of distributed computing and fuzzy logic include load
balancing for a distributed service process engine [5]. In [6]
fuzzy logic is used in master/slave application approach on
MPI clusters to balance the work units among slaves. The
main difference we notice is that our system is composed of
multiple simultaneous fuzzy controllers (one for each web
service) influencing each other with their outputs thus further
adding to the complexity of the control space.

Most of the common workflow system within the scien-
tific community such as Taverna [7], Triana [8], Kepler [9],
Pegasus [10], WS-VLAM [11], [12] and GWES [13] focus
on orchestrating service-based workflows by contacting stat-
ically located services and coordinating the communication
between them. This technique involves data being passed
through the central coordinator which can easily result in a
bottleneck for large web service workflows. The reviewed
SWMSs (Table I) do not have any provisions for supporting
web service choreography and dynamic deployment. Our
system does not intend to be another workflow system since
it is not a full SWMS but a subsystem for dealing with
dynamic handling of web services. The aim of our system
is to extend current SWMSs to ameliorate their feature set
with dynamic web service handling.

Table I
O:MISSING X:SUPPORTED

Orchestration Mobile B2B Comm Auto.Orch Scaling
Taverna X O O O O
Triana X O O O O
Kepler X O O O O
GWES X O O O O
Pegasus X O O O O
WS-VLAM X O O O O
Circulate X X Proxy O O
ServiceGlobe O X O O X
DaynaShed X X O O O

III. DESIGN CONSIDERATIONS AND ARCHITECTURE

Web services are passive program objects which are
hosted in service containers such as Apache Axis2 [14].
Containers are responsible for managing the service life-
cycle including starting, stopping and invoking methods.
WSDL is a descriptive language that abstractly describes the
operations a web service exposes without any knowledge of
the underlying implementation. Web services are addressed
through an End Point Reference (EPR) which is a location-
based addressing scheme using URLs. Common methods
for invoking a web service are either using SOAP or REST.
In this paper we only consider SOAP services, though the
methods can be equally applied to REST services.

The above exposes the first two challenges for realizing
our architecture. The EPR system of addressing a web ser-
vice binds a service to a location using URLs. This hinders

Task Harness

Service
Submission

Pluggabe
Task

Task Harness

Pluggabe
Task

Axis2 Container

monitor

Submitter

monitor

Submitter

monitor

Submitter

Resources:
Grid, Cloud

Message Queues

Bootstrap
Results
Output

1

2

3 4

Service
Library

5

6

Web
Service

Figure 1. Loosely coupled core modules revolving around the message
broker. The Axis2 container is the actual entity that is submitted to
resources. The server side components are the message broker, submission
service and submitters.

the web service mobility since re-allocating a web service
will change its URL. The passive mode of communication
means that web services residing behind firewalls, as is
the case with the majority of distributed shared resources,
have no way of being accessed from outside the network as
inbound connections are usually blocked.

Both these challenges are tackled using the same ba-
sic idea of messaging. For the communication problem,
message queues allow containers to poll and pull SOAP
invocation messages off a queue which itself is accessible
outside the network. By systematically setting up different
message queues for each deployable web service, the queue
id becomes the service EPR. Queue ids replace URLs as
EPRs and de-localize web services. De-localized services
can migrate to different resource without clients being aware
of it.

The pull communication model and the location-agnostic
service addressing are the basic foundation for our archi-
tecture. With these two characteristics, services can be dy-
namically deployed anywhere on the Internet having at least
outbound communication capabilities. Based on the same
notion of message passing, the system is further capable
of achieving web service back-to-back communication and
elastic scaling.

The architecture depicted in Fig. 1 revolves around a
message brokering system which loosely couples all other
sub modules. The messaging system exposes two types of
queues: data transport queues and workflow control queues.
Control queues include: a global run-queue where services
awaiting execution are queued, an events queue for gathering

events from running services and other queues for describing
the workflow topology and send commands to web services.

Fig. 1 illustrates the steps in which a web service based
workflow is orchestrated. In step 1, a workflow is boot-
strapped. In bootstrapping, the first web service is put on
the run queue and the web service connections are also
made available on the messaging system. These connections
allows web services to autonomously know to whom they
are connected which in turn allows back-to-back commu-
nication. In step 2 the service submission picks up the
bootstrapped service and submits it to one of the configured
resource submitters step 3. Submitters abstract the actual
resources and are responsible for monitoring the available
free slots on the resources.

In step 4 a submitted service container lands on a worker
node. The service container is initially void of a web
service to host. The first step for the container is to check
the message queue for any available web service to host.
Runnable services are loaded from the service library step
5. The container then starts consuming SOAP messages from
the designated queues on the messaging system and pushes
them up to the web service.

Web service containers can deduce the neighboring work-
flow topology for the hosted services through control queues
on the messaging system. This information is used by the
container to transform SOAP output messages directly to
input messages for connected web services. On the fly SOAP
transformation allows web service back-to-back communi-
cation. The transformed SOAP messages are transported
through the messaging system which unburdens the central
SWMS from coordinating communication between services.

Web service orchestration is modeled on a dataflow ap-
proach. This model dictates that only those web services
having input data to consume may become active. The
advantages of such a model is that resources are not waisted
by idling services. Furthermore, by combining dataflow
models with messaging back-ends, communication between
services is decoupled in time. This reduces the need for co-
allocating resource which have been shown to degrade a
system due to increased run queue waiting times [15], [16].

A. Technologies Used

The central messaging system is the Apache ActiveMQ
[17]. ActiveMQ is an enterprise messaging system with
many features that can be used to tune the performance
of the architecture. Noticeable features include; fail-over
setup where web services can connect to different brokers
in the event that one fails, and networks of brokers where
messages travel from one broker to the next until they reach
a consumer.

The web service container used in this architecture is
the Apache Axis2 [14]. Axis2 is a lightweight extensible
container suitable for submitting container-level jobs. The
proposed architecture relies heavily on the modifications to

the default Axis2 container. Although Axis2 supports both
SOAP and REST services, we only tackled SOAP services
in our implementation.

The web service library is a simple HTTP server where
web service bundles are kept. For the rest of the architecture
including bootstrapping, submission, and results client, Java
was used as the programming language of choice.

IV. CONTAINER ARCHITECTURE

Transport
Listener

Web
Service

Scaling
Fuzzy

Controller

Command
Handler

Transport
Sender

Message
Transformer

SOAP
in

Scaling
out

Commands
in

SOAP
out

Workflow
Enactor

Next Services
out

Figure 2. Modified Axis2 container including transport handlers for pulling
messages, autonomous workflow enactor, fuzzy controlled scaling, message
transformer, and a command handler

Most of the management routines reside inside the Axis2
container which executes alongside the web service on
worker nodes. The modified Axis2 container transforms a
traditional web service into a mobile object with smart
orchestration and scaling mechanisms. Fig. 2 highlights the
main components added to a standard Axis2 container. The
customized transport handlers are the main entry and exit
points for the web service. The workflow enactor component
implements the autonomous orchestration (Section IV-B).
The message transformer implements back-to-back commu-
nication (Section IV-A) and the fuzzy controller implements
autonomous scaling (Section IV-C). The command handler
consumes command messages from the control queues.

Fig. 3 illustrates the round trip path of events for a SOAP
message through the container. On reception of a SOAP
message the transport listener processes the message such
as adding timestamp information and moves it up the to the
Axis2 stack. The container unmarshals the SOAP message
and invokes the web service method with the parameters
extracted from the message. The container stack returns the
SOAP response to the transport sender. The latter updates
the message round trip time. Message round trip times are
used by the service replication routine to deduce the load on
the service. The message transformer transforms response
messages to input SOAP messages for successor services.
The workflow enactor checks if any successor services need
to be initiated. Finally, the transport sender sends out the
transformed messages or the default response message if
no transformation took place to the designated queues. The

fuzzy controller and the command handler continuously
execute in a loop. The former elastically scales the service
instances while the latter listens for commands.

Transport
Listener

Fuzzy
Controller

Command
Handler

Transport
Sender

Message
Transformer

Workflow
Enactor

Axis2
Stack

Web
Service

SOAP in
Service
Invocation

SOAP response

SOAP trans

Enact service

Update Msg
Processing Time

Fuzzy
Scaling

Handle
Cmd

Figure 3. Sequence of SOAP message processing on the modified Axis2
container. Most of the processing is done on the SOAP response path as it
triggers the message transformer, workflow enactor and fuzzy controller.

A. Back-to-back Communication

In cooperating web services such as those in pipelines or
workflows it is often advantageous to allow web services to
directly talk to each other without the need for a client to
coordinate the communication. This is especially the case for
complex workflows where it is not feasible to manage all the
inter-service communication. For this reason the modified
Axis2 container allows web services to directly talk to each
other through the message broker.

At the bootstrapping stage, the topology of the workflow
is known. The topology is synthesized into messages on
dedicated connection queues thus, in the pipeline topol-
ogy depicted in Fig. 4, there exists a connection between
A.method1() and B.method1(). The connection would trans-
late into a message on A.method1.connections queue. This
designated queue is used by service A to deduce to whom
it is connected hence giving A the knowledge of its neigh-
bors. The messages on the connections queue describe the
SOAP template expected by the successor (in this case
B.method1()).

When A.method1() returns a SOAP message it is picked
up by the message transformer inside the Axis2 container
(see Fig. 2). The SOAP template present on the connections
queue is used to transform the response message from
A.method1() to the input of B.method1(). This transformed
message is then written directly to B.method1.input queue
by the transport sender for A.method1().

Since B.method1() has no successor connections, any
output by this method is written to the method’s default
output queue B.method1.output which can then be consumed
by a client waiting for output from the pipeline.

In the scenario of a fan-in topology, multiple services
connected to B, write their messages to the same input queue
for B. Similarly in a fan-out approach where A is connected
to multiple services, the message transformer transforms the

Service B

method1()

A.method1() B.method1()

Service A

method1()

B.method1.input

B.method1.output

A.method1.input

A.method1.connections

Pipeline

Back-to-Back Communication

Figure 4. Back-to-back communication for a two service pipeline. Service
A knows about the connection between A.method1() and B.method1()
through the connections queue. Any output from A.method1() is sent
directly to B.method1().

SOAP response for each successor. In both cases message
ordering is not guaranteed but can be accomplished through
message sequence ids on the container. Message ordering
is a very expensive operation and can lead to memory
exhaustion due to buffering messages in order to re-sequence
them.

B. Autonomous Orchestration

The connections queues described for back-to-back com-
munication are also used to enable autonomous orchestra-
tion. Connections between services represent a data depen-
dency thus from Fig. 4 service B is data dependent on
service A. The dataflow model approach dictates that service
B should only become active when it has data to process.
This model is enforced autonomously by the individual
containers.

From Fig. 4, A.method1() produces data for B.method1().
This satisfies the dataflow model that B.method1() should
become active since data is now available. The workflow
enactor component in the container for service A can deduce
if any instance of B is running. This is done by checking the
number of consumers on B.method1.input. If no consumer
is active on the queue, the workflow enactor submits and
instance of B to the global run queue. The instance is picked
up by the service submission (Fig. 1) and submitter to a
resource. In the case that service A has multiple successors
the procedure is repeated for every successor. This approach
differs from the common scenario of having a central
SWMS which has to orchestrate the whole workflow. Typical
SWMS are far-sighted i.e. they have knowledge of the whole
workflow and hence have to maintain the whole workflow
which could be a limitation for large complex workflows.
With autonomous orchestration, services are myopic as they
only have knowledge of their immediate successors thus no
central entity is coordinating the whole workflow execution.

C. Fuzzy Controlled Elastic Scaling

A characteristic of many e-Science applications is that
they are embarrassingly parallel and therefore can be easily
scaled up with simple data partitioning techniques. The main
goal of partitioning an embarrassingly parallel application is
to achieve better throughput and hence reduce the makespan.
This is usually done in a greedy manner where the appli-
cation consumes as many resources as possible to reduce
overall execution time. This premise is not always an ideal
solution when dealing with cooperating tasks since one’s
greed to consume as many resources as possible will result
in starvation for other tasks in the workflow.

Starving tasks can degrade the whole system because
progress is hampered and data gets piled up waiting to be
processed. For this reason we propose a fuzzy controlled
elastic scaling mechanism for individual services taking part
in a workflow. The fuzzy controller can autonomously scale
up and down the service depending on the predicted service
load and the resource load.

Through the messaging system web services can be repli-
cated as many times as needed. Every instance of the same
web service is attached to the same queues. From Fig. 4, if
multiple instances of service A are initiated then all instances
read data from A.method1.input thus the input data is said
to be partitioned amongst all instances of the same service.
This implements data parallelism. The assumption here is
that there is no causal dependency between data messages
on the input queue as this would impede data partitioning.
Similarly, all instances of the same service write data to the
same output queues. When data parallelism is not possible
such as services that need the whole data set to accomplish
their task can not exploit such replication and would have
their fuzzy controller disabled.

Within a single workflow, cooperating services are com-
peting for resources. This is especially evident when the
resource pool is apparently finite as would be the case in
many distributed shared resources. Thus to achieve adequate
workflow progress, services must not replicate themselves
greedily when not enough resources are available. Con-
versely, service scaling must take an abstemious approach
to resource consumption so as to guarantee whole workflow
progression. Such an approach is implemented by means of a
fuzzy controller whereby each Axis2 container runs a fuzzy
controller for each hosted service to scale up or down the
replicated instances of the same service. The bases of the
controller is that a web service should be able to aggressively
replicate itself when its load is high and resources are free
but scale down when its load diminishes and the resource
are quite occupied. The latter is intended to make space for
other services to take hold of the resources.

The decision of when a task is overloaded or enough
resource are available is difficult to simplify using a simple
thresholds since service load and resource load are very

dynamic especially when cooperating service are influencing
each others view of the load. For this reason, calculating the
scaling factor of a service such that it does not overuse the
resources but at the same time does not under utilize them is
a problem well suited for fuzzy logic. In fuzzy logic, terms
like high load do not represent a single threshold but a range
of thresholds with varying membership probabilities.

Fig. 5 illustrates the inputs (taskLoad, resourceLoad) and
output (replication) for the fuzzy controller. The taskLoad
input defines a set of fuzzy membership function for the
terms very low, low, ideal, high, and very high. Similarly
the same terms are defined for the resourceLoad. The output
from the fuzzy controller is the scaling count which ranges
from −15 to 15 so if the output is −10 then the number
of instances for a particular service should be scaled down
by 10. These adjustment are done at timed intervals hence
the controlling is progressive. The fuzzy output defines
membership functions for controlling how aggressive the
scaling should be done hence terms like positive aggressive,
positive slow, negative aggressive, and negative slow are
defined.

The taskLoad defines the web service load and is a
prediction-based load calculation. Given that at any point in
time we know the input queue size and the average message
processing time, we try to predict the total processing time
for the whole input data queue. For every message that exits
the container, the average message processing time is update.
A message processing time Ti is defined as the round trip
time from when the message enters the container up till it
exits the container hence Ti = (touti − tini).

The mean message processing time T avg
i is defined as the

weighted mean of the current and last message processing
time hence T avg

i = (T current
i wk + T avg

i−1wp), where i > 0,
T avg
1 = 0 and wk + wp = 1. The weights wk and

wp are always set to favor the highest load therefore if
T current
i > T avg

i−1 then T current
i has a higher weighting and

vice-versa. This smooths out flip-flop scenarios when the
message processing time continuously fluctuates between a
high and a low. Favoring the highest message processing
time in the weighted mean ensures that an increase in load is
rapidly evident while a decrease in load is gradual. Having
calculated T avg

i , the predicted processing time Pi for the
whole message queue is then calculated as Pi = (T avg

i ×Si)
where Si is the input queue size at the moment of calcula-
tion.

Given a time quantum Q for a web service which could
either be derived from a budget to use a resource or an
allocated time quantum by a resource manager, the web
service load can be calculated as Li = Pi/(Q− Ei) where
Ei is the elapsed time since the web service started. When
Li ≈ 1 the service is in an ideal load since it should manage
to process all the data within the allocated time quantum. A
load much lower than 1 indicates the web service is under-
loaded while a load much greater than 1 indicates the web

service is overloaded. Li is the input value for the taskLoad
in the fuzzy controller.

Rule Base
Inference Engine

Figure 5. Fuzzy controller membership functions for inputs ant output

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-15

-10

-5

 0

 5

 10

 15

R
e
p
li
c
a
ti
o
n

Service Load

Resource Load

R
e
p
li
c
a
ti
o
n

-15

-10

-5

 0

 5

 10

 15

Figure 6. Scaling fuzzy controller surface plot

The resourceLoad Ri is defined as a ratio Ri = (Ui +
Wi)/Ai where Ui is the amount of used resources, Wi is
amount of queued tasks waiting for a free resource and Ai

is total available slots. A resource pool is fully used when
Ri = 1. When Ri > 1, the resources are overbooked since
a number of tasks are queued waiting for a free slot. Ri is
the second input to the fuzzy controller.

We refer to the set of all replicated instances of the same
service as the service farm. Service replication routine is
restricted to one per service farm. The designated service
instance which is currently responsible for running the fuzzy
controller is referred to as the master of the service farm.
Since the size of the service farm starts out as one, the
first service is automatically elected to a master. The service
knows its the only instance running by querying its own
input queue and query the number of consumers on the

queue. Subsequent instances created by the master do not,
themselves, become masters since they are note the sole
consumers on their queue. Before a master terminates it
relinquishes it own mastership by putting a master token
on its own command queue.

Since all instances are consumers on the same command
queue and the message broker guarantees that only one
instance will consume the message, the instances that gets
hold of the master token elects itself as the new master. If
a master abruptly dies without relinquishing its mastership
then the only way a new master is elected is when the service
farm is reduced back to one. A better solution, although
not implemented, is for the master to elect a secondary
master who will periodically challenge the mastership by
sending a command to all instances asking who is the master.
If no master replies then it takes over the mastership and
relinquishes the secondary master.

Fig. 6 shows illustrates the surface plot for taskLoad L
and resourceLoad R. The output, replication indicates how
to scale the number of services. The plot is derived from a
set of fuzzy rules such as:

IF taskLoad IS very high AND resourceLoad IS very low
THEN replication IS positive aggressive;

IF taskLoad IS very low AND resourceLoad IS high THEN
replication IS negative aggressive;

V. EXPERIMENTS AND RESULTS

getSequenceId

localAlignment

globalAlignment htmlRender

localAlignment htmlRender

source sink

Figure 7. BioJava sequence alignment workflow

The workflow depicted in Fig. 7 illustrates a typical bio-
inforamtics workflow. The workflow consists of two inde-
pendent pipelines. The pipelines compute sequence align-
ment using data supplied by the UniProtKB [18]. Each com-
ponent is a SOAP Axis2 web service. The source represents
the bootstrapping component while the sink represents the
result gathering client. The workflow is induced with 22550
alignments for each pipeline therefore the whole workflow
computes 45100 alignments. The getSequenceIds web
service reads a list of sequence ids and returns the ac-
tual sequence data for the ids. localAlignment per-
forms a local alignment on the passed sequences while
globalAlignment performs a global alignment. Both
alignment web services use the BioJava API [19] for pro-
cessing the biological data. htmlRender transforms the

results into HTML tags which are then made accessible
through a web browser. The sink concatenates the results
into HTML pages.

As a resource pool back-end we had access to the Dis-
tributed ASCI SuperComputer 3 (DAS3) which is five wide
area distributed system. For purpose of testing the resource
competitiveness between web services we used a single
29 node cluster from the University of Amsterdam (UvA).
The UvA cluster nodes each have 2 2.2GHz AMD Opteron
DP275 processors with 4GB of main memory.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

s
e
rv

ic
e
 l
o
a
d

seconds

globalAlignment
localAlignment

getSequenceIds
htmlRender

(a) Web service load for all workflow components. A service load of 1
means that the web service is expected to complete its task within the
specified time, service load of 2 means it will take twice as much to
complete.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

s
e
rv

ic
e
 i
n
s
ta

n
c
e
s

seconds

globalAlignment
localAlignment

getSequenceIds
htmlRender

(b) Number of web service instances running for each workflow module
at any given time.

Figure 8. Results showing the calculated service load 8(a) and the number
of web service instances initialized by the fuzzy controller 8(b) to control
the service load.

The results in Fig. 8(a) and Fig.8(b) illustrate the execu-
tion pattern of the workflow in Fig. 7. Fig. 8(a) shows pre-
dicted input load for each web service during the execution
lifetime at intervals of 5 seconds. Spikes in the load graph
signify when a considerable amount of data has been queued
on the web service input queues. The spikes in the service
load are short lived since the fuzzy controller immediately

responds by initiating multiple instances to deal with the
increased load. The response to the service load spikes is
illustrated in Fig. 8(b) which shows the number of web
service instances simultaneously running at any particular
time. Thus spikes in the service-load graph 8(a) are shortly
followed by spikes in the service-instances graph 8(b).

Dissecting some notable regions within these re-
sults we can note that at the beginning of the ex-
ecution getSequenceIds starts with a load close
to 1. Since no other web service is running at this
stage, the fuzzy controller does not waist time and ag-
gressively scales the service up. This can be noted
with a spike in 8(b). With the autonomous orches-
tration feature, as soon as getSequenceIds pro-
duces output it also initiates its dependent succes-
sors. Since getSequenceIds produces output for both
localAlignment and globalAlignment, the multi-
ple instances immediately increase the input load on both
these web services. The spikes for the simultaneous load
increase is illustrated between the 50-100 second mark in
8(a). As expected, the fuzzy controllers take action and
respond by replicating the instances. At this point the
controller on getSequenceIds senses the increase in
resource load and also notes its own load has diminished
hence it downscale itself to make way for other services.
Whilst still having a light load, getSequenceIds will
tentatively replicate itself slowly when it detects dips in
resource usage. This can be noted in the region 100-200
seconds in 8(b) where sudden dips by globalAlignment
result in slow increase by both getSequenceIds and
htmlRender simultaneously.

As was the case for getSequenceIds at the start of ex-
ecution, a relative small spike in the load for htmlRender
at the end of execution triggers an aggressive replication
since it is the only running web service at that time. These
results show that the workflow of cooperating web services
cooperate on three fronts: cooperation through communi-
cation, cooperation through orchestration, and cooperation
through fair resource usage. During the whole execution, the
load on the resources was at an average of 72%. This is very
close to the ideal with regards to the fuzzy controller where
75% had the highest probability in the normal membership
function.

VI. CONCLUSION AND FUTURE WORK

Through this architecture and its implementation we have
shown how web services can be handled dynamically. Web
services have been made mobile by using queue ids as
their EPR instead of the URL based EPR. A pull model
allows web service to be deployed deep within a network.
Back-to-back communication has been achieved through a
system of message brokering. Also, autonomous scaling
has been achieved using fuzzy controllers. Autonomous
orchestration has been achieved with web services containers

having myopic view on the workflow. The implementation
of the architecture demonstrated that the above attributes
to dynamic web service handling can be achieved in a
nonintrusive manner thus not modifying the actual web
service code.Through the described architecture and the
obtained results we have shown that intelligence within
service containers can transform a web service into mobile,
replicable, and cooperative service.

A limitation in the current system is that all SOAP data
is passed through the message broker. This is not ideal as it
puts a lot of strain on the broker which has to keep track of
the huge amounts of data in the messages. A better solution
is to have the Axis2 container automatically swap out the
outgoing large SOAP data with a reference. The container
can distribute the SOAP messages to reliable dedicated data
stores. The message sent to the broker would only contain
the reference to the data and the protocol to access it. When
a containers receives a message with a reference, it can
automatically get the SOAP data and push it up to the
web service. The same techniques applied to SOAP web
services can also be applied to REST services. With minor
modifications to the Axis2 container, REST services can
also be handled dynamically in the same manner as SOAP
services.

Another area of interest is the possibility for peer-to-
peer web service communication. Rather than a technical
problem it is more of a security problem due to access
restriction on inter-cluster communication. The possibility
here is for a web service to detect which services are running
on the same network and then open direct socket connections
between services. This capability would lead to another
challenge that is locality scheduling. By profiling inter-
service communication a scheduler can decide to move both
services on the same network so that they can open direct
socket connections and therefore improve communication.

ACKNOWLEDGMENT

This research was partially funded by the COMMIT
project 1.

REFERENCES

[1] “BioCatalogue,” http://www.biocatalogue.org.

[2] A. Barker, J. Weissman, and J. van Hemert, “The Circulate
architecture: avoiding workflow bottlenecks caused by cen-
tralised orchestration,” Cluster Computing, vol. 12, pp. 221–
235.

[3] S. Shahand, S. J. Turner, W. Cai, and M. K. H., “DynaSched:
a dynamic web service scheduling and deployment frame-
work for data-intensive grid workflows,” Procedia Computer
Science, vol. 1, no. 1, pp. 593 – 602, 2010, iCCS 2010.

1www.commit-nl.nl

[4] M. Keidl, S. Seltzsam, and A. Kemper, “Reliable web service
execution and deployment in dynamic environments,” in In
Proceedings of the International Workshop on Technologies
for E-Services (TES, 2003, pp. 104–118.

[5] J. Cao, H. Zhao, and M. Li, “A fuzzy rule based load
balancing model for a distributed service process engine,”
in Grid and Pervasive Computing Workshops, 2008. GPC
Workshops ’08. The 3rd International Conference on, may
2008, pp. 9 –14.

[6] S. Sanchez-Solano, A. Cabrera, I. Baturone, F. Moreno-Velo,
and M. Brox, “Fpga implementation of embedded fuzzy
controllers for robotic applications,” Industrial Electronics,
IEEE Transactions on, vol. 54, no. 4, pp. 1937 –1945, aug.
2007.

[7] D. Hull, et al., “Taverna: a tool for building and running
workflows of services,” Nucleic Acids Research, vol. 34, no.
Web Server issue, pp. W729–W732, 2006.

[8] A. Harrison, I. Taylor, I. Wang, and M. Shields, “WS-RF
workflow in Triana,” Int. J. High Perform. Comput. Appl.,
vol. 22, no. 3, pp. 268–283, 2008.

[9] I. Altintas et al., “Kepler: an extensible system for design
and execution of scientific workflows,” in Scientific and
Statistical Database Management, 2004. Proceedings. 16th
International Conference on, june 2004, pp. 423 – 424.

[10] E. Deelman et al., “Pegasus: Mapping scientific workflows
onto the grid,” in Grid Computing, ser. Lecture Notes in
Computer Science, M. Dikaiakos, Ed. Springer Berlin /
Heidelberg, 2004, vol. 3165, pp. 131–140.

[11] V. Korkhov, D. Vasyunin, A. Wibisono, V. Guevara-Masis,
A. Belloum, C. de Laat, P. Adriaans, and L. Hertzberger, “Ws-
vlam: towards a scalable workflow system on the grid,” in
WORKS ’07: Proceedings of the 2nd workshop on Workflows
in support of large-scale science. New York, NY, USA:
ACM, 2007, pp. 63–68.

[12] A. Belloum, M. Inda, D. Vasunin, V. Korkhov, Z. Zhao,
H. Rauwerda, T. Breit, M. Bubak, and L. Hertzberger, “Col-
laborative e-science experiments and scientific workflows,”
Internet Computing, IEEE, vol. 15, no. 4, pp. 39 –47, july-
aug. 2011.

[13] A. Hoheisel, “User tools and languages for graph-based grid
workflows: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 18, no. 10, pp. 1101–1113, 2006.

[14] “Axis2,” http://axis.apache.org.

[15] E. Elmroth, F. Hernndez, and J. Tordsson, “Three fundamental
dimensions of scientific workflow interoperability: Model of
computation, language, and execution environment,” Future
Generation Computer Systems, vol. 26, no. 2, pp. 245 – 256,
2010.

[16] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced
reservations,” in Proceedings of IPDPS, 2000, pp. 127–132.

[17] “ActiveMQ,” http://activemq.apache.org.

[18] “UniProtKB,” http://www.uniprot.org.

[19] “BioJava API,” http://biojava.org.

