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calibration at the 2004 ATLAS Combined Beam Test

E. Abat , k,1 J.M. Abdallah, f T.N. Addy, ag P. Adragna, cc M. Aharrouche, ba

A. Ahmad, cm,2 T.P.A. Akesson, ay M. Aleksa, s C. Alexa, n K. Anderson, t

A. Andreazza, be,b f F. Anghinolfi, s A. Antonaki, e G. Arabidze, e E. Arik, k T. Atkinson, bd

J. Baines, c f O.K. Baker, dd D. Banfi, be,b f S. Baron, s A.J. Barr, bs R. Beccherle, a j

H.P. Beck, i B. Belhorma, aw P.J. Bell, bb,3 D. Benchekroun, q D.P. Benjamin, ac

K. Benslama, cg E. Bergeaas Kuutmann, cp,4 J. Bernabeu, cz H. Bertelsen, v S. Binet, bq

C. Biscarat, ad V. Boldea, n V.G. Bondarenko, bk M. Boonekamp, c j M. Bosman, f

C. Bourdarios, bq Z. Broklova, ca D. Burckhart Chromek, s V. Bychkov, an J. Callahan, ai

D. Calvet, u M. Canneri, bw M. Capeáns Garrido, s M. Caprini, n L. Cardiel Sas, s T. Carli, s

L. Carminati, be,b f J. Carvalho, p,by M. Cascella, bw M.V. Castillo, cz A. Catinaccio, s

D. Cauz,ak D. Cavalli, be M. Cavalli Sforza, f V. Cavasinni, bw S.A. Cetin, k H. Chen, j

R. Cherkaoui, cd L. Chevalier, c j F. Chevallier, aw S. Chouridou, cx M. Ciobotaru, cv

M. Citterio, be A. Clark, ae B. Cleland, bx M. Cobal, ak E. Cogneras, i P. Conde Muino, by

M. Consonni, be,b f S. Constantinescu, n T. Cornelissen, s,5 S. Correard, w A. Corso

Radu,s G. Costa, be M.J. Costa, cz D. Costanzo, cl S. Cuneo, a j P. Cwetanski, ai

D. Da Silva, ch M. Dam,v M. Dameri, a j H.O. Danielsson, s D. Dannheim, s G. Darbo, a j

T. Davidek, ca K. De,d P.O. Defay,u B. Dekhissi, ax J. Del Peso, az T. Del Prete, bw

M. Delmastro, s F. Derue,av L. Di Ciaccio, ar B. Di Girolamo, s S. Dita,n F. Dittus, s

F. Djama,w T. Djobava, cs D. Dobos, aa,6 M. Dobson, s B.A. Dolgoshein, bk A. Dotti, bw

G. Drake,b Z. Drasal, ca N. Dressnandt, bu C. Driouchi, v J. Drohan, cw W.L. Ebenstein, ac

P. Eerola, ay,7 I. Efthymiopoulos, s K. Egorov, ai T.F. Eifert, s K. Einsweiler, h

M. El Kacimi, as M. Elsing, s D. Emelyanov, c f,8 C. Escobar, cz A.I. Etienvre, c j A. Fabich, s

1Deceased.
2Now at SUNY, Stony Brook, U.S.A.
3Now at Université de Genève, Switzerland.
4Now at DESY, Zeuthen, Germany.
5Now at INFN Genova and Università di Genova, Italy.
6Now at CERN.
7Now at University of Helsinki, Finland.
8Now at Joint Institute for Nuclear Research, Dubna, Russia.
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K. Facius, v A.I. Fakhr-Edine, o M. Fanti, be,b f A. Farbin, d P. Farthouat, s

D. Fassouliotis, e L. Fayard, bq R. Febbraro, u O.L. Fedin, bv A. Fenyuk, cb

D. Fergusson, h P. Ferrari, s,9 R. Ferrari, bt B.C. Ferreira, ch A. Ferrer, cz D. Ferrere, ae

G. Filippini, u T. Flick, dc D. Fournier, bq P. Francavilla, bw D. Francis, s R. Froeschl, s

D. Froidevaux, s E. Fullana, b S. Gadomski, ae G. Gagliardi, a j P. Gagnon, ai M. Gallas, s

B.J. Gallop, c f S. Gameiro, s K.K. Gan, bp R. Garcia, az C. Garcia, cz I.L. Gavrilenko, b j

C. Gemme,a j P. Gerlach, dc N. Ghodbane, u V. Giakoumopoulou, e V. Giangiobbe, bw

N. Giokaris, e G. Glonti, an T. Goettfert, bm T. Golling, h,10 N. Gollub, s A. Gomes, at,au,by

M.D. Gomez,ae S. Gonzalez-Sevilla, cz,11 M.J. Goodrick, r G. Gorfine, bo B. Gorini, s

D. Goujdami, o K-J. Grahn, aq,12 P. Grenier, u,13 N. Grigalashvili, an Y. Grishkevich, bl

J. Grosse-Knetter, l ,14 M. Gruwe, s C. Guicheney, u A. Gupta, t C. Haeberli, i

R. Haertel, bm,15 Z. Hajduk, y H. Hakobyan, de M. Hance,bu J.D. Hansen, v P.H. Hansen, v

K. Hara,cu A. Harvey Jr., ag R.J. Hawkings, s F.E.W. Heinemann, bs A. Henriques
Correia, s T. Henss, dc L. Hervas, s E. Higon, cz J.C. Hill, r J. Hoffman, z J.Y. Hostachy, aw

I. Hruska, ca F. Hubaut, w F. Huegging, l W. Hulsbergen, s,16 M. Hurwitz, t

L. Iconomidou-Fayard, bq E. Jansen, ce I. Jen-La Plante, t P.D.C. Johansson, cl

K. Jon-And, cp M. Joos, s S. Jorgensen, f J. Joseph, h A. Kaczmarska, y,17 M. Kado, bq

A. Karyukhin, cb M. Kataoka, s,18 F. Kayumov, b j A. Kazarov, bv P.T. Keener, bu

G.D. Kekelidze, an N. Kerschen, cl S. Kersten, dc A. Khomich, bc G. Khoriauli, an

E. Khramov, an A. Khristachev, bv J. Khubua, an T.H. Kittelmann, v,19 R. Klingenberg, aa

E.B. Klinkby, ac P. Kodys, ca T. Koffas, s S. Kolos, cv S.P. Konovalov, b j

N. Konstantinidis, cw S. Kopikov, cb I. Korolkov, f V. Kostyukhin, a j,20 S. Kovalenko, bv

T.Z. Kowalski, x K. Krüger, s,21 V. Kramarenko, bl L.G. Kudin, bv Y. Kulchitsky, bi

C. Lacasta, cz R. Lafaye, ar B. Laforge, av W. Lampl, c F. Lanni, j S. Laplace, ar T. Lari, be

A-C. Le Bihan, s,22 M. Lechowski, bq F. Ledroit-Guillon, aw G. Lehmann, s R. Leitner, ca

D. Lelas, bq C.G. Lester, r Z. Liang, z P. Lichard, s W. Liebig, bo A. Lipniacka, g

M. Lokajicek, bz L. Louchard, u K.F. Lourerio, bp A. Lucotte, aw F. Luehring, ai

B. Lund-Jensen, aq B. Lundberg, ay H. Ma, j R. Mackeprang, v A. Maio, at,au,by

9Now at Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands.
10Now at Yale University, New Haven, U.S.A.
11Now at Université de Genève, Switzerland.
12Corresponding author.
13Now at SLAC, Stanford, U.S.A.
14Now at Georg-August-Universität, Göttingen, Germany.
15Now at Versicherungskammer Bayern, Munich, Germany.
16Now at Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands.
17Now at Université Pierre et Marie Curie (Paris 6) and Université Denis Diderot (Paris-7), France.
18Now at Laboratoire de Physique de Particules (LAPP), Annecy-le-Vieux, France.
19Now at University of Pittsburgh, U.S.A.
20Now at Physikalisches Institut der Universität Bonn, Germany.
21Now at Universität Heidelberg, Germany.
22Now at IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France.
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V.P. Maleev,bv F. Malek,aw L. Mandelli, be J. Maneira, by M. Mangin-Brinet, ae,23

A. Manousakis, e L. Mapelli, s C. Marques, by S.Marti i Garcia, cz F. Martin, bu

M. Mathes, l M. Mazzanti, be K.W. McFarlane, ag R. McPherson, da G. Mchedlidze, cs

S. Mehlhase, ah C. Meirosu, s Z. Meng,ck C. Meroni, be V. Mialkovski, an B. Mikulec, ae,24

D. Milstead, cp I. Minashvili, an B. Mindur, x V.A. Mitsou, cz S. Moed,ae,25 E. Monnier, w

G. Moorhead, bd P. Morettini, a j S.V. Morozov, bk M. Mosidze, cs S.V. Mouraviev, b j

E.W.J. Moyse, s A. Munar, bu A. Myagkov, cb A.V. Nadtochi, bv K. Nakamura, cu,26

P. Nechaeva, a j,27 A. Negri, bt S. Nemecek, bz M. Nessi, s S.Y. Nesterov, bv

F.M. Newcomer, bu I. Nikitine, cb K. Nikolaev, an I. Nikolic-Audit, av H. Ogren, ai S.H. Oh,ac

S.B. Oleshko, bv J. Olszowska, y A. Onofre, bg,by C. Padilla Aranda, s S. Paganis, cl

D. Pallin, u D. Pantea,n V. Paolone, bx F. Parodi, a j J. Parsons, bn S. Parzhitskiy, an

E. Pasqualucci, ci S.M. Passmored, s J. Pater, bb S. Patrichev, bv M. Peez,az V. Perez

Reale,bn L. Perini, be,b f V.D. Peshekhonov, an J. Petersen, s T.C. Petersen, v R. Petti, j,28

P.W. Phillips, c f J. Pina, at,au,by B. Pinto, by F. Podlyski, u L. Poggioli, bq A. Poppleton, s

J. Poveda, db P. Pralavorio, w L. Pribyl, s M.J. Price, s D. Prieur, c f C. Puigdengoles, f

P. Puzo,bq O. Røhne,br F. Ragusa, be,b f S. Rajagopalan, j K. Reeves, dc,29 I. Reisinger, aa

C. Rembser, s P.A.Bruckman de Renstrom, bs P. Reznicek, ca M. Ridel, av P. Risso, a j

I. Riu,ae,30 D. Robinson, r C. Roda,bw S. Roe,s O. Rohne, br A. Romaniouk, bk

D. Rousseau, bq A. Rozanov, w A. Ruiz, cz N. Rusakovich, an D. Rust, ai Y.F. Ryabov, bv

V. Ryjov, s O. Salto, f B. Salvachua, b A. Salzburger, al,31 H. Sandaker, g

C. Santamarina Rios, s L. Santi, ak C. Santoni, u J.G. Saraiva, at,au,by F. Sarri, bw

G. Sauvage, ar L.P. Says, u M. Schaefer, aw V.A. Schegelsky, bv C. Schiavi, a j

J. Schieck, bm G. Schlager, s J. Schlereth, b C. Schmitt, ba J. Schultes, dc

P. Schwemling, av J. Schwindling, c j J.M. Seixas, ch D.M. Seliverstov, bv L. Serin, bq

A. Sfyrla, ae,32 N. Shalanda, bh C. Shaw,a f T. Shin, ag A. Shmeleva, b j J. Silva, by

S. Simion, bq M. Simonyan, ar J.E. Sloper, s S.Yu. Smirnov, bk L. Smirnova, bl

C. Solans, cz A. Solodkov, cb O. Solovianov, cb I. Soloviev, bv V.V. Sosnovtsev, bk

F. Spanò,bn P. Speckmayer, s S. Stancu, cv R. Stanek, b E. Starchenko, cb

A. Straessner, ab S.I. Suchkov, bk M. Suk,ca R. Szczygiel, x F. Tarrade, j F. Tartarelli, be

P. Tas,ca Y. Tayalati, u F. Tegenfeldt, am R. Teuscher, ct M. Thioye, cq V.O. Tikhomirov, b j

C.J.W.P. Timmermans, ce S. Tisserant, w B. Toczek, x L. Tremblet, s C. Troncon, be

23Now at Laboratoire de Physique Subatomique et de CosmologieCNRS/IN2P3, Grenoble, France.
24Now at CERN.
25Now at Harvard University, Cambridge, U.S.A.
26Now at ICEPP, Tokyo, Japan.
27Now at P.N. Lebedev Institute of Physics, Moscow, Russia.
28Now at University of South Carolina, Columbia, U.S.A.
29Now at UT Dallas.
30Now at IFAE, Barcelona, Spain.
31Now at CERN.
32Now at CERN.
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P. Tsiareshka, bi M. Tyndel, c f M. Karagoez Unel, bs G. Unal,s G. Unel,ai G. Usai, t

R. Van Berg, bu A. Valero, cz S. Valkar, ca J.A. Valls, cz W. Vandelli, s F. Vannucci, av

A. Vartapetian, d V.I. Vassilakopoulos, ag L. Vasilyeva, b j F. Vazeille, u F. Vernocchi, a j

Y. Vetter-Cole, z I. Vichou, cy V. Vinogradov, an J. Virzi, h I. Vivarelli, bw J.B.de. Vivie, w,33

M. Volpi, f T. Vu Anh, ae,34 C. Wang,ac M. Warren, cw J. Weber, aa M. Weber,c f

A.R. Weidberg, bs J. Weingarten, l ,35 P.S. Wells, s P. Werner, s S. Wheeler, a

M. Wiessmann, bm H. Wilkens, s H.H. Williams, bu I. Wingerter-Seez, ar Y. Yasu,ap

A. Zaitsev, cb A. Zenin, cb T. Zenis, m Z. Zenonos, bw H. Zhang, w A. Zhelezko bk

and N. Zhou bn
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Cedex, France and Université Cadi Ayyad , Marrakech, Morocco
atDepartamento de Fisica, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
auCentro de F́ısica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa, Portugal
avUniversit́e Pierre et Marie Curie (Paris 6) and Université Denis Diderot (Paris-7), Laboratoire de Physique
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Morocco



 
2
0
1
1
 
J
I
N
S
T
 
6
 
P
0
6
0
0
1

ayLunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund, Swe-
den

azUniversidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Fisica Teorica, ES - 28049
Madrid, Spain
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ABSTRACT: A new method for calibrating the hadron response of a segmented calorimeter is de-
veloped and successfully applied to beam test data. It is based on a principal component analysis
of energy deposits in the calorimeter layers, exploiting longitudinal shower development informa-
tion to improve the measured energy resolution. Corrections for invisible hadronic energy and
energy lost in dead material in front of and between the calorimeters of the ATLAS experiment
were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of
pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8
area. For pion beams with energies between 20 GeV and 180 GeV,the particle energy is recon-
structed within 3% and the energy resolution is improved by between 11% and 25% compared to
the resolution at the electromagnetic scale.
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1 Introduction

In the general case of non-compensating calorimeters, the response to hadrons will be lower than
the response to particles which only interact electromagnetically, such as electrons and photons.
This is due to energy lost in hadronic showers in forms not measurable as an ionization signal, i.e.,
nuclear break-up, spallation and excitation, energy deposits arriving out of the sensitive time win-
dow (such as delayed photons), soft neutrons, and particlesescaping the detector [1–3]. Moreover,
the calorimeter response will be non-linear, since a hadronic shower has both an electromagnetic
and a hadronic component, with the size of the former increasing with shower energy [4]. In addi-
tion, the large phase space of hadronic interactions leads to substantial fluctuations in the size of the
electromagnetic shower component from event to event, degrading the measured energy resolution.

ATLAS [5] is one of the multi-purpose physics experiments at the CERNLarge Hadron Col-
lider (LHC) [6]. Scientific goals include searching for the Higgs boson andlooking for phenomena
beyond the Standard Model of particle physics, such as supersymmetry. Many measurements to be
performed by the LHC experiments rely on a correct and accurate energy reconstruction of hadronic
final-state particles. In the central barrel region, the ATLAS calorimeters consist of the lead-liquid
argon (LAr) electromagnetic calorimeter and the Tile steel-scintillator hadronic calorimeter. Both
calorimeters are intrinsically non-compensating.

Various techniques for equalizing the electromagnetic andhadronic shower response, i.e.,
achieving compensation, have been proposed. For a review, see reference [3], chapter 3. Software-
based offline calibration techniques can use the topology ofthe visible deposited energy to exploit
spatial event-by-event information on shower fluctuationsand derive energy corrections aimed at
restoring linearity in the response and improving the energy resolution. For example, the calorime-
ter cell energy density has been used for the calorimeter in the H1 experiment [7] and is planned to
be used in ATLAS [8].

In this study, a calibration technique based on Monte Carlo simulation is developed to deal
with compensating the response of a segmented calorimeter to hadrons and correcting for energy
lost in the dead material between two calorimeter systems. The correlations between longitudinal
energy deposits of the shower have been shown [9] to contain information on the electromagnetic
and hadronic nature of the shower. This information is utilized by making a principal component
analysis of the energies deposited in the different calorimeter layers. The calibration is applied to
pion beam test data, taken at the 2004 ATLAS Barrel Combined Beam Test [10–14]. The method
presented here is an alternative to the standard ATLAS calibration schemes. The application is quite
specific to ATLAS, but the framework is general and it can be tested on any segmented calorimeter.
Energy corrections based on the longitudinal shower development have been proposed by ATLAS
in the context of jet calibration [15–17].

The following section explains the basic principles of the method. Section3 details the ATLAS
Barrel Combined Beam Test, while sections4 and 5 discuss calibration to the electromagnetic
scale and event selection, respectively. The Geant4 Monte Carlo simulation used is described
in section6. Then, section7 gives the details of the implementation of the calibration method.
In section8, the method is validated based on Monte Carlo simulations ofpions. In the Monte
Carlo simulation, the effect of the compensation weights and the dead material corrections are
evaluated separately. Lastly, the linearity and resolution of the final calibrated energy is considered.
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Section9 discusses systematic uncertainties. Results of applying the method to real beam test data
are presented in section10. Finally, conclusions are drawn in section11.

2 The Layer Correlation method

The Layer Correlation calibration method (LC in the following) is aimed at calibrating the response
of a non-compensating longitudinally segmented calorimeter to hadrons. Exploiting the properties
of hadronic showers to characterize fluctuations in the deposited invisible energy, it uses a prin-
cipal component analysis [18] of the energy deposited in the calorimeter layers. Observables that
describe the shower fluctuations should be able to discriminate between different corrections to be
applied to recover invisible losses due to hadronic interactions. Through the principal component
analysis, it is possible to reduce the number of dimensions that the corrections depend on, while
still capturing a large amount of event fluctuation information and maintaining a good separation
between events with different content of invisible energy.

To derive the corrections, the interaction of the shower particles with the detector material
is simulated with the Geant4 [19, 20] Monte Carlo simulation toolkit. In the simulation the true
energy deposited in the calorimeters and the non-instrumented material is known. The covariance
matrix between the calorimeter layer energy deposits is calculated. Diagonalizing it, a new orthog-
onal basis in the space of layer energy deposits is derived. It consists of the eigenvectors of the
covariance matrix. By sorting the eigenvectors in descending eigenvalue order, the projection of
the energy deposits in the calorimeter layers along the firstfew eigenvectors are made to describe
the most important fluctuations in the longitudinal shower development.

Using this information, compensation weights — correctingfor the non-compensation of the
calorimeters — are derived in the form of two-dimensional look-up tables in the projections along
the first two eigenvectors of the covariance matrix. One table is used for each calorimeter layer.
The tables are thus functions of two different linear combinations of the observed energy deposits
in the layers.

In addition, energy losses in non-instrumented material (so-called “dead material”) will vary
depending on the shower development. In the ATLAS barrel region, these losses are primarily
in the region between the LAr and Tile calorimeters. The eigenvectors of the covariance matrix
considered above can also be used to correct for this, resulting in a unified treatment for compen-
sation and dead material correction by deriving both corrections from the same set of observables.
In this implementation, the dead material corrections havean inherent dependence on the beam
energy. This dependence is removed by employing an iteration scheme, where at each step the esti-
mated energy of the former step is used, until the returned value is stable. A detailed mathematical
description of the method is given in section7.

3 The 2004 ATLAS barrel Combined Beam Test

The energy calibration procedure is applied to data gathered in the fall of 2004 during the ATLAS
Barrel Combined Beam Test at the H8 beam line of the CERN SPS accelerator. A full slice of the
ATLAS barrel region was installed (see figure1). This included, firstly, the inner tracker with the
pixel detector, the silicon strip semiconductor tracker (SCT), and the straw tube transition radiation
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Figure 1. The layout of the 2004 Combined Beam Test.

tracker (TRT); secondly, the LAr and Tile calorimeters; andthirdly, the muon spectrometer. The
pixel and SCT detectors were surrounded by a magnet capable of producing a field of 2 T, although
no magnetic field was applied in the runs used for this study.

The pixel detector [5] comprises six modules, each consisting of a single siliconwafer with
an array of 40×400 µm2 pixels. The modules were arranged in locations mimicking the ATLAS
configuration, with an approximate angle of 20 degrees with respect to the incoming beam. The
semiconductor tracker (SCT) [5] uses sets of stereo strips for tracking. Each module gives two hits,
one in each direction. Eight modules, corresponding to those in the ATLAS end-cap, were used.
The TRT [5] forms the outermost tracking system in ATLAS. It consists of a collection of 4 mm
diameter polyimide straw tubes filled with a mixture of xenon, carbon dioxide, and oxygen [5].
Transition radiation is emitted when a charged particle crosses the interface between two media
having different refractive index. The amount of emitted radiation depends on the Lorentzγ factor
of the particle. This makes it possible to discriminate between electrons and hadrons, given the
much higherγ factor of the former at a given energy, due to their smaller mass.

Details of the ATLAS LAr electromagnetic calorimeter are described elsewhere [5, 21]. In
the beam test one calorimeter module was used. The calorimeter is made from 2.21 mm thick
accordion-shaped lead absorbers glued between stainless steel cathodes. Three-layered anode elec-
trodes are interleaved between the absorbers, spaced by 2 mmgaps over which a high voltage of
2 kV is applied. The module was placed in a cryostat containing liquid argon. The signal is read
out by capacitive coupling between the two outermost and thecentral layer of the anodes. In front
of this accordion module a thin presampler module was mounted. It consists of two straight sectors
with alternating cathode and anode electrodes glued between plates made of a fiber-glass epoxy
composite (FR4). The Tile hadronic calorimeter consists ofiron absorbers sandwiched between
organic scintillator tiles. It is described in detail elsewhere [5, 22]. The tiles and absorbers are
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Figure 2. The layout of the 2004 Combined Beam Test.

oriented parallel to the direction of incoming particles. Every cell of the calorimeter is read out by
two wavelength-shifting fibers, which in turn are grouped together and read out by photo-multiplier
tubes (PMTs).

The calorimeters were placed so that the beam impact angle corresponded to a pseudo-rapidity1

of η = 0.45 in the ATLAS detector. At this angle, the expected amount of material in front of the
calorimeters was about 0.44λI , whereλI is the nuclear interaction length [3, 23]. This includes the
LAr presampler. The LAr calorimeter proper is longitudinally segmented in three layers that ex-
tend in total for 1.35λI . The dead material between the LAr and Tile calorimeters spans about 0.63
λI . Finally the three longitudinal segments of the Tile calorimeter stretch in total for about 8.18λI .
A sketch of this setup is shown in figure2. In total there are seven longitudinal calorimeter layers
(the LAr presampler; the front, middle, and back layers of the LAr calorimeter; and the so-called
A, BC, and D layers of the Tile calorimeter). The length of theindividual calorimeter layers was
0.32, 0.96, and 0.07λI in the LAr calorimeter and 1.61, 4.53, and 2.04λI in the Tile calorimeter.

In addition, special beam-line detectors were installed tomonitor the beam position and re-
ject background events. Those include beam chambers monitoring the beam position and trigger
scintillators. Beams consisting of electrons, photons, pions, protons, and muons were studied. In
this analysis, pion beams with nominal momenta of 20, 50, 100, and 180 GeV were used (see ta-
ble 1). Data belong to the fully combined run period, where all detector sub-systems were present
and operational. No magnetic field was applied around the pixel and silicon strip detectors. The
beams were produced by letting 400 GeV protons from the SPS accelerator impinge on a beryllium
target, from which secondary pions are selected. For the runat 180 GeV, positrons were nominally
selected after the target. However, the beam still contained a contamination of positively charged
pions, which were selected and used for this analysis with the methods described in section5.1.

4 Calorimeter calibration to the electromagnetic scale

4.1 Cell energy reconstruction

The individual cells of the calorimeter are calibrated to the electromagnetic scale, i.e., with the aim
of correctly measuring the energy deposited in the cell by a purely electromagnetic shower. The

1ATLAS has a coordinate system centered on the interaction point, with the x axis pointing towards the center
of the LHC ring, they axis pointing straight up, and thez axis parallel to the beam. Pseudo-rapidity is defined as
− ln(tan(θ/2)), whereθ is the angle to the positivez axis.
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calibration of the electronics of the LAr calorimeter is described in detail in reference [24]. The
method of optimal filtering [25] is used to reconstruct the amplitude of the shaped signal, which
is sampled by an ADC (analog-to-digital converter) at 40 MHz. The amplitude is calculated as
weighted sum of the samples, after a pedestal level measuredusing random triggers is subtracted.
FµA→MeV/ fsamp, a constant factor, converts the measured current to an energy measured in MeV.
The energy deposited in the lead absorbers is taken into account by the sampling fractionfsamp. The
shaping electronics are calibrated by inserting calibration pulses of known amplitude. In the Tile
calorimeter a parameterized pulse shape is fitted to the samples. A charge injection system is used
to calibrate the read-out electronics, while a cesium source is used to equalize the cell response,
including the response of the PMTs (see, for example, reference [26]).

4.2 Topological clustering

Calorimeter cells calibrated to the electromagnetic scaleare combined by adding up the energy in
neighboring cells using a topological cluster algorithm [27]. The algorithm has three adjustable
thresholds: Seed (S), Neighbor (N), and Boundary (B). First, seed cells having an energy above the
Sthreshold are found and a cluster is formed starting with this cell. Then, neighboring cells having
an energy above theN threshold are added to the cluster. This process is repeateduntil the cluster
has no neighbors with an energy above theN threshold. Finally, all neighboring cells having an
energy above theB threshold are added to the cluster. To avoid bias, the absolute values of the cell
energies are used. TheS, N, andB thresholds are set to, respectively, four, two, and zero times the
expected noise standard deviation in the cell considered.

4.3 Pion energy reconstruction

The reconstructed energy in a calorimeter layerL is obtained by considering all the topological
clusters in the event and summing up the parts of the clustersthat are part of that calorimeter layer.
The total reconstructed energy is then derived by summing over theNlay longitudinal layers in
the calorimeter.

5 Event selection and particle identification

5.1 Event selection

A signal in the trigger scintillator and a measurement in adjacent beam chambers that is compatible
with one particle passing close to the nominal beam line are required. In addition, exactly one track,
where the sum of the number of hits in the Pixel detector and the SCT is more than six, is asked
for, as well as at least 20 hits in the TRT. The track in the TRT must be compatible with a pion
track, i.e., no more than two hits passing the high thresholdmust be present. Events with a second
track in the TRT are rejected: this ensures that the pion doesnot interact strongly before the TRT.
Furthermore, there must be at least one topological cluster(see section4.2) with at least 5 GeV
in the calorimeter. This cut rejects muons contained in the beam and does not influence the pion
energy measurement. To reject some residual electron background, events with more than 99% of
their energy in the LAr calorimeter are excluded. The same selection is applied on simulated Monte
Carlo events as on data, with the exception of cuts related tothe beam chambers and scintillators.
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Table 1. Data samples taken in the 2004 Combined Beam Test used in thepresent analysis.

Enom
beam(GeV) Emeas(GeV) No. ev. bef. cuts No. ev. after cuts fprot

20 20.16 49871 8957 < 17% (84% CL)
50 50.29 109198 29578 ( 45± 12)%

100 99.89 67220 5843 ( 61± 6)%
180 179.68 105082 11780 ( 76± 4)%

5.2 Proton contamination

This study used beams of pions with positive electric charge. These beams are known to have a
sizable proton contaminationfprot defined as the fraction of events in a sample that result from
protons impinging on the calorimeters. It varies between different beam energies. The TRT makes
it possible to measure the average proton contamination of the test beam for each beam energy,
owing to the different probabilities between pions and protons of emitting transition radiation,
although it is not possible to discriminate between the particles on an event-by-event basis. The
measured [10] contamination is reported in table1. For the 20 GeV beam energy, a one-sided
confidence interval is given. In the analysis, a proton contamination of 0% was used. Agreement
is found with measurements performed by aČerenkov counter at a 2002 beam test [28] conducted
in the same beam line.

6 Monte Carlo simulation

6.1 Hadronic shower simulation

All calibration corrections are extracted from a Geant4.7 [19, 20] Monte Carlo simulation, with an
accurate description of the Combined Beam Test geometry. The physics list— i.e., set of models —
QGSPBERT was used. It uses the QGSP [29] (Quark Gluon String Pre-compound) phenomeno-
logical model describing the hadron-nucleus interaction by the formation and fragmentation of
excited strings together with the de-excitation of an excited nucleus. The Bertini model [30–32]
of the intra-nuclear hadronic cascade is used to describe nuclear interactions at low energies. This
model treats the particles in the cascade as classical and propagates them through the nucleus,
which is modeled as a medium with a density averaged in concentric spheres. Excited states are
collected and the nucleus decays in a slower phase followingthe fast intra-nuclear cascade.

The Bertini model is applied up to an energy of 9.9 GeV, while the QGSP model applies from
12 GeV and upward. In an intermediate range of 9.5-25 GeV, thelow-energy parameterized LEP
model [33] is used. In the energy ranges where models overlap, the decision which one to use is
made stochastically using a continuous linear probabilitydistribution that goes from exclusively
using the low-energy model at the lower end of the region to exclusively using the high-energy
model at the upper end.

6.2 Detector simulation

The simulation provides not only reconstructed calorimeter cell energies at the electromagnetic
scale — including the effects of the readout electronics — but also the true deposited energy, which
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is divided into four components: electromagnetic visible,hadronic visible, invisible, and escaped.
Visible energy results from ionization of the calorimeter material. Invisible energy is energy not
directly measurable in the detector, such as break-up energy in nuclear interactions. The escaped
energy represents the small contribution from neutrinos, high-energy muons and, possibly, neutrons
and low-energy photons escaping the total simulated volume.

6.3 Event samples

Monte Carlo samples were produced by simulating both pions and protons impinging on the de-
tector setup. Two statistically independent event sampleswere produced by dividing the available
sample into two approximately equal parts: one set (“correction” samples in the following) was
used to derive compensation weights and dead material corrections, while the other set (“signal”
samples in the following) was used to validate the weightingprocedure and find the expected per-
formance. Pions and protons were simulated at 25 different beam energies, ranging from 15 GeV
to 230 GeV. In total, about 800 000 events per sample and particle type were available after event
selection. The energy spacing was 2, 3, or 5 GeV up to 70 GeV and10 or 20 GeV above 70 GeV.
This spacing was found to give satisfactory performance (see sections8 and10). Further studies of
different spacings can be pursued when applying this technique to different calorimeters to explore
possible improvement in performance.

Taking the proton beam contamination mentioned in section5.2 into account, all the available
“correction” Monte Carlo samples were used to build a “mixed” pion-proton sample, one for each
energy available in the data (see table1). Each of these samples is used as input when deriving
the corrections used for that proton fraction. In this way the corrections were tuned to the studied
proton fraction. If the samples had different numbers of events, a sample-dependent weight was
first applied to give them equal weight before selection cuts. Then, given the proton contamination
fprot at a given energy, pion and proton events for each same-energy pair of samples were assigned
a weight of 1− fprot and fprot, respectively.

7 Implementation of the Layer Correlation method

7.1 Calculation of the eigenvectors of the covariance matrix

Each event is associated with a set ofNlay layer energy deposits (Erec
1 , . . . ,Erec

Nlay
), one per calorime-

ter layer, representing a point in anNlay-dimensional vector space, referred to in the following as
the space of layer energy deposits. They are reconstructed energies at the electromagnetic scale,
formed as calorimeter layer sums of topological clusters asdescribed in section4.1. The Nlay-
dimensional covariance matrix of the layer energy depositsis calculated as

Cov(M,L) = 〈Erec
M Erec

L 〉 − 〈Erec
M 〉 〈Erec

L 〉 , (7.1)

whereM andL denote calorimeter layers andErec
M is the energy reconstructed at the electromagnetic

scale in calorimeter layerM. The averages are defined as

〈Erec
M Erec

L 〉 =
∑i E

rec
M,iE

rec
L,i

Nev
and 〈Erec

M 〉 =
∑i E

rec
M,i

Nev
. (7.2)
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Table 2. Energy thresholds per calorimeter layer.

Calorimeter layer Threshold (GeV)

0 0.032
1 0.108
2 0.030
3 0.150
4 0.039
5 0.070
6 0.042

The sums are performed over all theNev events in the sample. The eigenvectors of the covariance
matrix form a new orthogonal basis in the space of layer energy deposits. The coordinates of the
point in theNlay-dimensional vector space corresponding to an eventi can be expressed in this new
eigenvector basis as

Erec
eig,M = ∑

L
α rec

M,LErec
L , (7.3)

whereα rec
M,L are the coefficients of the transition matrix to the new basis. Projections of events

along the covariance matrix eigenvectors represent independent fluctuations. The variances of
those fluctuations are given by the corresponding eigenvalues. The eigenvectors are sorted in de-
scending order according to their eigenvalues, meaning that the first eigenvectors determine the
directions along which most of the event fluctuations take place. The layer energy covariance
matrix Cov(M,L) (equations7.1and7.2) is calculated using events from the “mixed” sample.

In any given event a symmetric energy cut is applied on each layer energy such that the energy
for that layer is re-defined asErec

L , if |Erec
L |> Ethr

L , zero otherwise. The goal of such cuts is to elim-
inate the contribution of noise-dominated layers. The energy threshold values for each calorimeter
layer can be found in table2. The cuts were optimized to obtain the best expected compensation
performance on Monte Carlo samples at 50 GeV.

A physical interpretation of the eigenvalues and normalized eigenvectors can be obtained from
figure3, which shows the components of the first three eigenvectors expressed in the original basis
of calorimeter layer energy deposits. We find that

Erec
eig,0 ≈

1√
6
(−2ELAr,middle+ETile,A +ETile,BC), (7.4)

Erec
eig,1 ≈

1√
2
(−ETile,A +ETile,BC), and (7.5)

Erec
eig,2 ≈

1√
3
(ELAr,middle+ETile,A +ETile,BC). (7.6)

So in a qualitative but suggestive way, we can make the interpretation thatErec
eig,0 corresponds to

the difference between the Tile and LAr calorimeters, sincemost of the energy deposited in the
LAr calorimeter is deposited in the middle layer.Erec

eig,1 corresponds to the difference between the

– 9 –



 
2
0
1
1
 
J
I
N
S
T
 
6
 
P
0
6
0
0
1

Calorimeter samplings
0 1 2 3 4 5 6V

ec
to

r 
co

m
po

ne
nt

s

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

Calorimeter samplings
0 1 2 3 4 5 6V

ec
to

r 
co

m
po

ne
nt

s

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Calorimeter samplings
0 1 2 3 4 5 6V

ec
to

r 
co

m
po

ne
nt

s

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 3. Eigenvector components for the first three eigenvectors expressed in the basis of the seven layers
of the ATLAS calorimeters in the Combined Beam Test for a simulated mix of protons and pions with 45%
proton contamination.

second and first layers of the Tile calorimeter, whileErec
eig,2 corresponds to most of the energy of the

event. The other eigenvectors represent individual calorimeter layers. These layers are rather thin
and appear to be uncorrelated with the other layers.

7.2 Compensation weights

The compensation weights account for the non-linear response of the calorimeters to hadrons.
There is one weight table for each calorimeter layer, i.e., three for the LAr calorimeter and three
for the Tile calorimeter. The seventh layer, the LAr presampler, which in order is the first layer, is
not used in the weighting procedure, as explained below. Thetotal reconstructed energy is the sum
of the weighted energies in each calorimeter layer:

Eweighted
L = wLErec

L (7.7)

Eweighted
tot = ∑

L

Eweighted
L . (7.8)

For each eventi, there is an ideal set ofNlay coefficients that would re-weight each recon-
structed energy deposit in layerL to the true deposited energy:

wideal
L,i = Etrue

L,i /Erec
L,i . (7.9)

The symbolErec
L,i (Etrue

L,i ) denotes the reconstructed (true) energy deposited in theLth layer in theith

event. The task is to find a set of weightswL that approximate the ideal weights. In general, for
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each layerL, the weight is anNlay-dimensional function of the layer energy deposits. Exploiting
the fluctuation-capturing properties of the eigenvector projections, the weights can in general be
derived as a function of anN-dimensional subspace of theNlay-dimensional space of layer energy
deposits, spanned by the firstN eigenvectors. In the absence of an analytic formulation, the layer
weightswL are estimated by Monte Carlo sampling: multi-dimensional cells are built, which parti-
tion theN-dimensional vector space along the directions of the base eigenvectors. In general, these
cells are multi-dimensional hyper-cubes. They are referred to as bins below.

For each bink one defines the weight as the average of the ideal weights of equation7.9:

wk,L = 〈Etrue
L,i /Erec

L,i 〉k =
1

Nev,k
∑

i

Etrue
L,i /Erec

L,i , (7.10)

where the summation is performed for theNev,k events in the bin. If each event has a weight2 pi,
the average is modified accordingly:

wk,L = 〈Etrue
L,i /Erec

L,i 〉k =
∑i piEtrue

L,i /Erec
L,i

∑i pi
. (7.11)

Using bink of the weight tables, the total reconstructed energy becomes

Eweighted
tot,k = ∑

L

wk,LErec
L . (7.12)

Here, thewk,L functions defined in equation7.11are estimated in bins of the two-dimensional space
spanned by the eigenvectors corresponding to the two highest eigenvalues, i.e.,N = 2. Thus each
layer is associated with a two-dimensional look-up table. For a given layer the average weights in
each two-dimensional bin are calculated using only the energy values that passed the cuts defined
in section7.1. The table has the same number of equally spaced bins along the two dimensions:
128×128. Bi-linear interpolation is performed between the bins. Weights for the LAr presampler
are not calculated, even if the presampler is kept in the covariance matrix. No weights are applied
to the energy deposited in the presampler layer, and energy deposited in the presampler itself is
taken as part of the upstream dead material losses.

In addition the compensation weights and corrections derived from the proton sample are
corrected by the factor

Enom
beam

Enom
beam−mproton

, (7.13)

wheremproton is the proton mass, to account for the fact that, for a proton,the sum of the total true
deposited energy in the calorimeter isEnom

beam−mproton.
Typical compensation weight tables are shown in figure4: they illustrate the look-up tables

for the second (middle) layer of the LAr calorimeter and for the first and second layer of the Tile
calorimeter for a pion-proton mixed sample with 45% contamination. The triangular shape visible
in the weight tables can be understood from the interpretation of the eigenvectors of equations7.4
and7.5. With increasing energy in the Tile calorimeter and less in the LAr calorimeter, i.e.,Erec

eig,0

is large, there are more values that can be assumed byErec
eig,1, which is the approximate difference

2For instance, to equalize the number of events for all data sets.
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between the first and second layers of the Tile calorimeter. Three lines can be seen extending from
the origin to each of the three corners of the triangle. Firstly, the line extending from the origin and
to the left corresponds to events where close to all of the energy is deposited in the LAr calorimeter.
The small slope is due to the slight dependence ofErec

eig,1 on the second layer of the LAr calorimeter.
Secondly, the line extending up and to the right correspondsto events where all energy is deposited
in the second layer of the Tile calorimeter. Along that line,weights are small for the first sampling
of the Tile calorimeter, since particles are still minimum-ionizing in that layer. Thirdly the faint line
extending down and to the right corresponds to events where close to all the energy is deposited in
the first layer of the Tile calorimeter.

7.3 Dead material corrections

Regions of dead material constitute those parts of the experiment that are neither active calorimeter
read-out material (liquid argon or scintillator), nor sampling calorimeter absorbers (mostly lead or
steel). The LC technique is used for the dead material between the LAr and the Tile calorimeters,
while a simple parameterized model is utilized for other losses.

7.3.1 Dead material between the LAr and Tile calorimeters

Most of the dead material is in the LAr cryostat wall between the LAr and Tile calorimeters. In this
0.6 λI region, pion showers are often fully developed, giving riseto large energy loss. Each event
i is associated with a point in the layer energy deposit vectorspace as explained in section7.1.
It also has a true total energy lost in the dead material between the LAr and Tile calorimeters:
EDM,true

LArTile (i). The dead material correctionEDM
LArTile for each eventi can be derived as aT-dimensional

function of the layer energy deposits. In general, the subspace chosen for deriving the dead material
correction and its dimensionT can be different from the one chosen for compensation, both in
content (spanned by different eigenvectors) and in dimension (T can be different fromN). The
value ofEDM

LArTile is estimated by Monte Carlo sampling. For anyT-dimensional binmone defines

EDM
LArTile ,m = 〈EDM,true

LArTile ,i〉m, (7.14)

where the average is performed for the events in that bin.
Here, the correction defined in equation7.14 is calculated in bins of the two-dimensional

space spanned by the eigenvectors corresponding to the firstand third eigenvalues, i.e.,T = 2.
This was the combination of eigenvectors that was found to give the best performance. As for
the compensation weights, correction tables are derived from a 128× 128 bin look-up table and
bi-linear interpolation is performed between the bins.

The three dimensions of the look-up table are all shown to scale with the beam energy, i.e.,
a table determined at a given beam energy can be turned into one at a different beam energy by
scaling all the dimensions with the ratio of the two energies. Consequently, all dimensions in the
table — the eigenvector projections and the average dead material losses — are divided by the
beam energy when filling the table. That is, the event coordinates in the space of layer energy
deposits are expressed as

Erec,norm
eig,M = Erec

eig,M/E = ∑
L

α rec
M,LErec

L /E, (7.15)
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Figure 4. Compensation weights as a function of the first two eigenvector projections for simulated pion-
proton mixed events (45% proton contamination) in the second layer of the LAr calorimeter (a), first layer
of the Tile calorimeter (b), and second layer of the Tile calorimeter (c).

where the variables have the same meaning as in equation7.3andE is the best estimate of the beam
energy of the simulated pion in that event (see below). The dead material look-up table is shown in
figure5 for a pion-proton mixed sample with 45% contamination. The figure shows the distribution
of the rescaled dead material energy as a function of the rescaled event coordinates. Regions with
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Figure 5. Look-up table for LAr-Tile dead material corrections as a function of the first and third eigenvector
projections normalized to beam energy for 45% proton contamination.

different dead material fractions can be differentiated. They range between 0 and more than 30%
of beam energy. In addition, the samples at different energies behave very similarly as a function
of the re-scaled variables.

7.3.2 Other dead material corrections

While the energy losses between the LAr and Tile calorimeters dominate, there are still other
regions where dead material losses can occur. These are losses located in the material upstream of
the LAr calorimeter, between the LAr presampler and the firstLAr calorimeter layer, and energy
leakage beyond the Tile calorimeter. To compensate for these losses the mean energy loss was
determined as a function of beam energy and the resulting data points were fitted using a suitable
functional form

EDM
other(Ebeam) =







C1 +C2
√

Ebeam if Ebeam< E0

C3 +C4(Ebeam−E0) otherwise,
(7.16)

whereE0 = 30 GeV. As an example, the fit for a proton fraction of 45% can beseen in figure6.
The resulting fitted parameters are

C1 = (−353±23) MeV, (7.17)

C2 = (8.47±0.17)
√

MeV, (7.18)

C3 = (1102±3) MeV, and (7.19)

C4 = 0.01392±0.0001. (7.20)
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Figure 6. Mean dead material losses other than those between the LAr and Tile calorimeters as a function
of the beam energy. Filled circles indicate the mean loss obtained from Monte Carlo simulation. The line
indicates a parameterization to interpolate between the beam energies.

7.4 Applying the calibration

The final energy after calibration consists of the sum of the weighted calorimeter layer energies
and the dead material corrections:

Ecorr
tot,k,m = Eweighted

tot,k +EDM
tot,m(E). (7.21)

The indexk stands for the bin in the appropriateN-dimensional space of layer energy deposits used
in the weight tables (equations7.10or 7.11), while m is the bin in theT-dimensional space of layer
energy deposits used to build the LC estimate for the energy loss in the dead material between
the LAr and Tile calorimeters obtained from equation7.14. The total dead material correction is
derived from summing the two contributions derived in sections7.3.1and7.3.2:

EDM
tot,m(E) = EDM

LArTile ,m+EDM
other(E), (7.22)

whereE is the best estimate for the total deposited pion energy usedto estimateEbeam in equa-
tion 7.16.

The events in a Monte Carlo sample are usually generated at a fixed beam energy in order
to test the calorimeter response. Corrections derived froma fixed beam energy sample are, in
principle, dependent on that information, i.e., they depend on the same quantity (pion energy) for
the reconstruction of which they should be used. For the compensation weights, this dependence is
overcome by superposing events from all the available energies. The eigenvector projections scale
approximately with the energy of the incoming particle, meaning that regions in the table that come
in use for a certain particle energy will be dominated by samples close to that energy.
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On the other hand, the look-up-table-based LAr-Tile dead material correction and the parame-
terized model for the other dead material losses have an inherent dependence on an assumed beam
energy when applying the corrections (see equations7.15and7.22). This dependence is overcome
using an iteration technique, giving the end result of depending only on the energy in the calorime-
ters. At each step the best estimate of the reconstructed energy Ecorr

tot after all corrections is used to
set both the scaling factor 1/E (equation7.15) for the LAr-Tile correction and the best pion energy
estimate in the parameterization for the other dead material corrections. Each new estimate of the
energy is used to pick up a new correction from the look-up table until the returned value is stable.
In the initial stepEcorr

tot is just the pion energy after compensation weights are applied. The iteration
cut-off is a tunable parameter.

The process of applying the calibration is as follows:

• Associate each event to a bin in both theN-dimensional compensation weight and theT-
dimensional dead material correction spaces defined in sections7.2and7.3by expressing its
electromagnetic-scale energy deposit vector in the new eigenvector basis derived from the
simulated events.

• Extract compensation corrections for the energy of each given layer and the LAr-Tile dead
material correction from the look-up tables. Apply all corrections according to equations7.21
and7.22.

• Use the iteration for dead material corrections.

8 Method validation on Monte Carlo simulation

Before applying it to beam test data, the calibration is validated on a Monte Carlo sample statis-
tically independent of the one used for extracting the corrections. First, the performance of the
compensation weights is evaluated, then the linearity and resolution of the method as a whole. The
weighting technique is validated on Monte Carlo simulationsamples in separate steps:

• Reconstruct the true deposited energy in the calorimeters (compensation validation).

• Reconstruct the full energy of the incoming particles, including dead material corrections,
and quantify the performance in terms of linearity and resolution.

The performance is evaluated in terms of bias and resolution. The weights and dead material
corrections are derived from the “correction samples” and applied on the statistically independent
“signal samples” (see section6.3). The results in this section are derived for pions only.

8.1 Compensation validation

The reconstructed pion energy after compensation correction is compared to the true deposited en-
ergy in the calorimeter. The event-by-event differenceEweighted

tot −Etrue
tot (calo) is considered, where

Etrue
tot (calo) is the true total energy deposited in the calorimeter. The bias in the energy recon-

struction is defined as the average value〈Eweighted
tot −Etrue

tot (calo)〉 and the resolution is obtained by
calculating the standard deviationσ (Eweighted

tot −Etrue
tot (calo)).
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The performance of the LC technique is compared with a simplecalibration scheme (called
fcomp in the following) which uses beam energy information: each event in the sample is weighted
with the same factorfcomp = 〈Etrue

tot 〉/〈Ereco
tot 〉, where〈Etrue

tot 〉 (〈Ereco
tot 〉) is the average true total (re-

constructed) energy deposited in the given sample in the whole calorimeter, but not in the dead
material. Thefcomp calibration scheme provides a reference scale to which the improvement in
resolution of the LC weighting can be compared.

The results of the validation procedure are shown in figure7. By construction, there is no bias
in the energy reconstruction for the calibration procedureusing a simple factor. The LC weighting
mostly gives a slight positive bias of about 0.6%. At the lower edge of the energy range studied,
the bias instead turns slightly negative. The resolution improvement increases with beam energy.
It is about 10% at 50 GeV and about 20% at 180 GeV.

8.2 Dead material corrections

Figure8 shows the bias of the weighted energy, and also the bias of thedead material corrections.
For most energies, the LAr-Tile dead material correction has a slight negative bias, while at low
energies the bias is positive. The bias is 0.5% maximally. This cancels out most of the bias from
the weighting. The final energy is reconstructed correctly within a few per mil.

8.3 Linearity and resolution in the Monte Carlo sample

The performance for the fully corrected energy reconstruction is finally assessed in terms of linear-
ity with respect to the beam energy and relative resolution.The reconstructed energy distribution
is fitted with a Gaussian distribution in the interval (µ - 2σ , µ + 2σ ), whereµ andσ are the mean
value and the standard deviation, respectively. This interval is found iteratively. The mean value
Efit and the standard deviationσfit of the fitted Gaussian are used together with the beam energy
Ebeamto define the linearity and the relative resolution.

• The linearity isEfit/Ebeamas a function ofEbeam.

• The relative resolution isσfit /Efit as a function ofEbeam.

Both linearity and relative resolution are derived for the energy distribution at four stages of the
energy reconstruction:

• at the electromagnetic scale,

• after applying the compensation weights,

• after compensation weights and application of dead material correction for losses between
the LAr and Tile calorimeters, and

• after compensation weights and all dead material corrections. This last step aims to recon-
struct the pion energy.

This is shown in figure9. At the electromagnetic scale the calorimeter response is non-linear
— as expected — and only about two thirds of the pion energy is measured. After weighting,
between 80% and 90% of the incoming pion energy is recovered,while the dead material between
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Figure 7. Bias (a) and resolution (b) of the reconstructed energy after compensation correction minus
the true deposited energy for energy deposited in the calorimeters in simulated samples for the calibration
procedure using a simple factor and LC weighting.

the LAr and Tile calorimeters accounts for an additional 8-10%. After all corrections the correct
pion energy is reconstructed within 1% for all beam energies. Each correction step makes the
calorimeter response more linear. The compensation weights give a better improvement of the lin-
earity at high energies, while the dead material effects play a more significant role at low energies,
in particular at 20 GeV where other corrections than LAr-Tile dead material are important to get
to within 1% of the beam energy. The relative resolution is improved when applying each of the
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Figure 8. Bias (reconstructed energy minus true deposited energy, divided by beam energy) for the three
individual corrections: weighted calorimeter energy, correction for dead material between the LAr and Tile
calorimeters, and other dead material corrections. Lastly, the bias of the final reconstructed energy, which is
the sum of the three.

different correction steps.3 At high beam energies (aboveEbeam= 100 GeV) the contribution of the
compensation weights to the improvement in energy resolution has the same magnitude as that of
the LAr-Tile dead material corrections. At lower beam energies dead material corrections account
for about 70% of the relative resolution improvement down toaboutEbeam≃ 30 GeV. BelowEbeam

≃ 30 GeV all the corrections account for a similar fraction of the improvement: other dead material
corrections than those for LAr-Tile account for about 20% ofthe resolution improvement, they are
marginal above that threshold.

9 Systematic uncertainties

Systematic uncertainties on the calibrated energy can be divided into

• The uncertainty of the beam energy: 0.7% [13].

• The absolute electromagnetic scale uncertainty, which is estimated to be 0.7% [13] in the
LAr calorimeter and 1.0% [26] in the Tile calorimeter. Scaling the cell energies with their
corresponding uncertainties gives a combined electromagnetic scale uncertainty of 0.9%.

3The apparent discontinuity in resolution between the results at energies below 150 GeV and those above might be
due to a geometry change in the description of the beam test setup: three centimeters of aluminum were included in the
Inner Detector system for energies larger than or equal to 150 GeV.
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Figure 9. Linearity (a) and relative resolution (b) for simulated pure pion samples at the electromagnetic
scale, with compensation weights applied, compensation weights plus LAr-Tile dead material correction
applied, and all corrections applied.

• The sensitivity of the results to the proton fraction at eachbeam energy. It was estimated by
varying the fraction used to calculate the corrections. With the assumed fraction adjusted up
or down one standard deviation of the TRT measurement, the relative variation in linearity
and resolution in data and Monte Carlo simulation was found to be of the order of 1% for
Ebeam= 20 GeV and 50 GeV and less than 0.5% for 100 GeV and 180 GeV.
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Figure 10. Distribution of the first three eigenvector components fordata (filled circles) and Monte Carlo
simulation pion-proton “mixed signal” with a proton fraction of 45% and a beam energy of 50 GeV.

Adding these contributions in quadrature gives a total systematic uncertainty of less than 2% for
each beam energy.

10 Application of the method to beam test data

Finally, the method is applied to beam test data, which is compared with Monte Carlo samples with
a weighted mixture of pions and protons to match the beam composition.

10.1 Data to Monte Carlo simulation comparison

The pion-proton “mixed signal” samples are used to compare data and Monte Carlo simulations
in terms of the distribution of the first three components of the layer energy vector along the basis
of covariance matrix eigenvectors as defined in section7.1. Figure10 shows such a comparison
for a proton fraction of 45% and a beam energy of 50 GeV. Good agreement is obtained between
data and simulation. The distribution forEeig,0 shows a double peak structure that separates events
mainly showering in the Tile calorimeter from those where the shower starts earlier.

The shapes of the energy distributions (in unit bins of energy and events) for data and Monte
Carlo simulation are compared in figure11. The corrections are successively applied. Already at
the electromagnetic scale the energy distribution is not well reproduced. The distribution in the
Monte Carlo simulation is narrower and less skewed than in the data. This effect is even larger
at 20 GeV but less pronounced at higher energies. The qualityof the initial description of data by
Monte Carlo simulation is not modified by the application of the compensation weights and dead
material corrections (see also section10.2).
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Figure 11. Normalized energy distribution forEbeam = 50 GeV after applying subsequent corrections for
compensation and dead material effects. For the Monte Carlosimulation a proton fraction of 45% is used.

10.2 Linearity and resolution on data

The performance of the method, as applied to simulation and real beam test data is shown in
figure 12. The data at the electromagnetic scale in this analysis and the one presented in refer-
ences [11, 12] are in reasonable agreement. The largest deviations of about 3% (2%) are seen at
20 GeV (180 GeV). At 20 GeV the difference can be explained by the fact that in that study, the
energy in the calorimeters — instead of using topological clustering — was determined by adding
the energiesEcell of those calorimeter cells having a pseudo-rapidity within0.2 of the beam impact
point and for whichEcell is two standard deviations above the expected noise. At 180 GeV, data in
that study were taken with a beam of negatively charged pions, which does not suffer from proton
contamination. In addition, for all beam energies data weretaken in an earlier run period with a
different material configuration upstream of the calorimeters.

The linearity and relative resolution are extracted at all beam energies for both data and “mixed
signal” Monte Carlo samples. As in section8.3 the reconstructed energy distribution is fitted with
a Gaussian distribution in the interval (µ - 2σ , µ + 2σ ), whereµ andσ are the mean value and
the standard deviation, respectively. Data (simulation) are shown with markers (horizontal lines)
at the electromagnetic scale, with compensation weights applied, with the dead material correction
for energy lost in dead material between the calorimeters applied, and lastly at the final calibrated
stage, including all dead material corrections.

After all calibration corrections, the linearity is recovered within 3% for all beam energies.
The discrepancies between data and Monte Carlo are inherited from the reconstructed energy at the
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Figure 12. Data and Monte Carlo simulation are compared for linearity(a) and relative resolution (b) at all
stages of the corrections. The markers show data, while the horizontal lines show (a) from bottom to top and
(b) from top to bottom: electromagnetic scale, compensation weights applied, weight plus LAr-Tile dead
material correction applied, and all corrections applied.See text for details.

electromagnetic scale and they are not considerably changed when the calibration is applied. The
relative resolution in data is improved by about 11% at low energy (20 GeV) and about 25% at high
energy (180 GeV) when moving from the electromagnetic scaleto the fully corrected energy scale.
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A similar relative improvement is obtained in the Monte Carlo simulation: 14% at low energy
and 24% at high energy. The relative resolution is, however,smaller in Monte Carlo simulation
than in data: the discrepancies, at each correction stage, vary between 10% and 21% depending
on the energy. The relative resolution is smaller in Monte Carlo simulation than in data already at
the electromagnetic scale, by about 10-16%, depending on beam energy. The discrepancies in the
shape of the total energy distribution are more pronounced at lower energies and they are already
present at the electromagnetic scale.

The ratio of data to Monte Carlo simulation is unchanged within 1% (4%) for linearity (res-
olution) after the corrections are applied. For linearity such changes are of the same order of
magnitude as the discrepancies between data and Monte Carlosimulation at the electromagnetic
scale: the agreement between data and Monte Carlo simulation is the same for all correction stages.
This means that the Monte Carlo simulation is able to predictthe corrections that should be applied
on the data.

The ability of the Monte Carlo simulation to reproduce the data at the electromagnetic scale
(i.e., before any correction) seems to be the most critical limiting factor. For the relative resolu-
tion the changes are small, if compared with the discrepancies at the electromagnetic scale: the
discrepancies do not get worse when the corrections are applied to the data. From preliminary
studies a newer Geant4 version (4.9) is able to provide a better, but still not good, description of
the resolution in the data.

11 Conclusions

An energy calibration technique was developed to deal in a coherent manner with both compensat-
ing the hadron response and correcting for the most significant dead material losses in a segmented
calorimeter. The technique is based on the sensitivity of the correlation between the deposited
energies in the different calorimeter layers to hadronic and electromagnetic deposits.

The calibration technique was successfully applied to the energy reconstruction of pions im-
pinging on a subset of the central ATLAS calorimeters duringthe ATLAS combined beam test in
2004. When taking into account the beam composition of pionsand protons, linearity is recov-
ered within 3% and relative resolution is improved by between 11% and 25%. Consistency with
the expectation from Monte Carlo simulation studies is goodfor both the linearity and the per-
centage improvement in relative resolution. The absolute value of the relative resolution (after all
corrections) is larger in data than Monte Carlo simulation by 10% to 21%.

The discrepancies between data and Monte Carlo simulation are inherited from the recon-
structed energy at the electromagnetic scale and they are not considerably altered when applying
the calibration. Additional improvement in the data description by Monte Carlo simulation can
help fulfill the expected absolute value for the relative resolution.
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[7] Ç. İşsever, K. Borras and D. Wegener,An improved weighting algorithm to achieve software
compensation in a fine grained LAr calorimeter, Nucl. Instrum. Meth.A 545 (2005) 803.

[8] T. Barillari et al.,Local hadronic calibration, ATL-LARG-PUB-2009-001(2009).

[9] N. Nakajima et al.,Correlation matrix method for Pb/Scint sampling calorimeter, in the proceedings
of the 2005International Linear Collider Workshop, March 18–22, Stanford U.S.A. (2005).

[10] E. Abat et al.,Response and shower topology of2 to 180GeV pions measured with the ATLAS barrel
calorimeter at the CERN test-beam and comparison to Monte Carlo simulations,
ATL-CAL-PUB-2010-001(2010).

[11] E. Khramov et al.,Study of the response of the hadronic barrel calorimeter in the ATLAS combined
test-beam to pions of energies from20 to 350GeV for beam impact points from0.2 to 0.65,
ATL-TILECAL-PUB-2009-007(2009).

[12] E. Abat et al.,Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of
energies from20 to 350GeV, Nucl. Instrum. Meth.A 621 (2010) 134.

[13] M. Aharrouche et al.,Measurement of the response of the ATLAS liquid argon barrelcalorimeter to
electrons at the2004combined test-beam, Nucl. Instrum. Meth.A 614 (2010) 400.

[14] B. Di Girolamo et al.,Beamline instrumentation in the2004combined ATLAS testbeam,
ATL-TECH-PUB-2005-001(2005).

[15] ATLAS collaboration,Response of the ATLAS calorimeters to single isolated hadrons produced in
proton–proton collisions at a center of mass energy of

√
s= 900 GeV,ATLAS-CONF-2010-017

(2010).

[16] ATLAS collaboration,ATLAS calorimeters response to single isolated hadrons andestimation of the
calorimeter jet scale uncertainty, ATLAS-CONF-2010-052(2010).

[17] ATLAS collaboration,Expected performance of the ATLAS experiment. Detector, trigger and physics,
CERN-OPEN-2008-020(2009) [arXiv:0901.0512v4].

[18] J. Jackson,A user’s guide to principal components, Wiley, Newark U.S.A. (2005), p. 505.

[19] S. Agostinelli et al.,Geant4 — A simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250.

[20] J. Allison et al.,Geant4 developments and applications, IEEE Trans. Nucl. Sci.53 (2006) 270.

[21] ATLAS collaboration,ATLAS liquid argon calorimeter: Technical design report,
CERN-LHCC-96-041(1996).

[22] ATLAS collaboration,ATLAS Tile calorimeter technical design report, CERN-LHCC-96-042(1996).

[23] PARTICLE DATA GROUPcollaboration, K. Nakamura et al.,Review of particle physics,
J. Phys.G 37 (2010) 075021.

[24] M. Aleksa et al., 2004ATLAS combined testbeam: computation and validation of theelectronic
calibration constants for the electromagnetic calorimeter, ATL-LARG-PUB-2006-003(2006).

[25] W. Cleland and E. Stern,Signal processing considerations for liquid ionization calorimeters in a high
rate environment, Nucl. Instrum. Meth.A 338 (1994) 467.

[26] P. Adragna et al.,Testbeam studies of production modules of the ATLAS Tile calorimeter,
Nucl. Instrum. Meth.A 606 (2009) 362.

[27] W. Lampl et al.,Calorimeter clustering algorithms: description and performance,
ATL-LARG-PUB-2008-002(2008).

– 26 –

http://dx.doi.org/10.1016/j.nima.2005.02.010
http://cdsweb.cern.ch/record/1112035
http://cdsweb.cern.ch/record/1263861
http://cdsweb.cern.ch/record/1172156
http://dx.doi.org/10.1016/j.nima.2010.04.054
http://dx.doi.org/10.1016/j.nima.2009.12.055
http://cdsweb.cern.ch/record/831497
http://cdsweb.cern.ch/record/1277648
http://cdsweb.cern.ch/record/1281309
http://cdsweb.cern.ch/record/1125884
http://arxiv.org/abs/0901.0512v4
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1109/TNS.2006.869826
http://cdsweb.cern.ch/record/331061
http://cdsweb.cern.ch/record/331062
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://cdsweb.cern.ch/record/942528
http://dx.doi.org/10.1016/0168-9002(94)91332-3
http://dx.doi.org/10.1016/j.nima.2009.04.009
http://cdsweb.cern.ch/record/1099735


 
2
0
1
1
 
J
I
N
S
T
 
6
 
P
0
6
0
0
1

[28] P. Adragna et al.,Measurement of pion and proton response and longitudinal shower profiles up to20
nuclear interaction lengths with the ATLAS Tile calorimeter, Nucl. Instrum. Meth.A 615 (2010) 158.

[29] G. Folger and J. Wellisch,String parton models in Geant4, in the proceedings of theComputing in
High Energy and Nuclear Physics, March 24–28, La Jolla, U.S.A. (2003),nucl-th/0306007.

[30] M. P. Guthrie, R. Alsmiller and H.W. Bertini,Calculation of the capture of negative pions in light
elements and comparison with experiments pertaining to cancer radiotherapy,
Nucl. Instrum. Meth.66 (1968) 29.

[31] H.W. Bertini and M.P. Guthrie,News item results from medium-energy intranuclear-cascade
calculation, Nucl. Phys.A 169 (1971) 670.

[32] N. Stepanov,Statistical simulation of high-excited nuclei fission. II.Calculation and comparison with
experiment, ITEP-55-88 (1988).

[33] Geant4.7 physics reference manual, http://geant4.cern.ch/support/userdocuments.shtml(2005).

– 27 –

http://dx.doi.org/10.1016/j.nima.2010.01.037
http://arxiv.org/abs/nucl-th/0306007v1
http://dx.doi.org/10.1016/0029-554X(68)90054-2
http://dx.doi.org/10.1016/0375-9474(71)90710-X
http://geant4.cern.ch/support/userdocuments.shtml

	Introduction
	The Layer Correlation method
	The 2004 ATLAS barrel Combined Beam Test
	Calorimeter calibration to the electromagnetic scale
	Cell energy reconstruction
	Topological clustering
	Pion energy reconstruction

	Event selection and particle identification
	Event selection
	Proton contamination

	Monte Carlo simulation
	Hadronic shower simulation
	Detector simulation
	Event samples

	Implementation of the Layer Correlation method
	Calculation of the eigenvectors of the covariance matrix
	Compensation weights
	Dead material corrections
	Dead material between the LAr and Tile calorimeters
	Other dead material corrections

	Applying the calibration

	Method validation on Monte Carlo simulation
	Compensation validation
	Dead material corrections
	Linearity and resolution in the Monte Carlo sample

	Systematic uncertainties
	Application of the method to beam test data
	Data to Monte Carlo simulation comparison
	Linearity and resolution on data

	Conclusions

