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Abstract

In recent years increasing evidence appeared that breast cancer may not constitute a single disease at the molecular level,
but comprises a heterogeneous set of subtypes. This suggests that instead of building a single monolithic predictor, better
predictors might be constructed that solely target samples of a designated subtype, which are believed to represent more
homogeneous sets of samples. An unavoidable drawback of developing subtype-specific predictors, however, is that a
stratification by subtype drastically reduces the number of samples available for their construction. As numerous studies
have indicated sample size to be an important factor in predictor construction, it is therefore questionable whether the
potential benefit of subtyping can outweigh the drawback of a severe loss in sample size. Factors like unequal class
distributions and differences in the number of samples per subtype, further complicate comparisons. We present a novel
experimental protocol that facilitates a comprehensive comparison between subtype-specific predictors and predictors that
do not take subtype information into account. Emphasis lies on careful control of sample size as well as class and subtype
distributions. The methodology is applied to a large breast cancer compendium involving over 1500 arrays, using a state-of-
the-art subtyping scheme. We show that the resulting subtype-specific predictors outperform those that do not take
subtype information into account, especially when taking sample size considerations into account.

Citation: Sontrop HMJ, Verhaegh WFJ, Reinders MJT, Moerland PD (2011) An Evaluation Protocol for Subtype-Specific Breast Cancer Event Prediction. PLoS
ONE 6(7): e21681. doi:10.1371/journal.pone.0021681

Editor: Pan-Chyr Yang, National Taiwan University Hosipital, Taiwan

Received April 14, 2011; Accepted June 5, 2011; Published July 8, 2011

Copyright: � 2011 Sontrop et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Philips Research, Delft University of Technology, and the Academic Medical Center, The Netherlands. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: p.d.moerland@amc.uva.nl

Introduction

Breast cancer event prediction is an important yet challenging

classification problem in which one attempts to predict whether a

certain type of event will happen within a given time frame or not,

e.g. whether a breast tumor will metastasize or not, based on gene

expression data obtained from microarrays. A well-known

example of such a predictor is the 70-gene signature by van’t

Veer et al. [1]. In recent years increasing evidence appeared

implying that breast cancer may not constitute a single disease at

the molecular level, but that breast cancers comprise a diverse and

heterogeneous set of diseases [2].

Various breast cancer subtyping schemes have been proposed,

mostly inspired by the intrinsic gene list approach from the landmark

publication by Perou et al. [3]. The latter introduced a breast

cancer subtype taxonomy that classifies breast cancers as either

luminal A (lumA), luminal B (lumB), basal, Her2 or normal-like,

based on hierarchical clustering. A more recent example is a

subtyping scheme based on a biology-inspired module-driven

approach [4], that identifies the subtypes lumA, lumB, basal, and

Her2 through model-based clustering. The precise definition of

the subtypes themselves and of a standardized geneset to classify

samples to a specific subtype is still subject of debate. Several

studies indicated stability issues with the intrinsic gene list

approach [5–7]. Furthermore, doubts have been casted on the

existence of the normal-like tumors as a genuine breast cancer

subtype [8]. Despite this debate, it is widely accepted that over

large sample sets breast cancer subtypes are associated with a

difference in survival time. This suggests that instead of using a

single monolithic predictor, better prognostic predictors might be

constructed that solely target samples of a designated subtype.

However, only few studies couple subtyping directly to breast

cancer event prediction [8–10]. In this paper we address the

question whether predictors targeting a specific subtype, referred

to as typed predictors, can outperform untyped predictors that do not

take subtype into account. The main contribution of this work is

the definition of a novel experimental protocol which explicitly

addresses three main problems of such a comparison, i.e. subtype

definition, sample size, and class imbalance.

Subtype definition
In this paper we are interested in the possibilities of improving

microarray breast cancer event prediction by exploiting subtype

information. A core ingredient of our protocol is the construction

of a sequence of subtype-specific predictors that via systematic

pooling steps gradually transform into an untyped baseline

predictor.

A conceptual overview of the stratification of subtypes is

provided by Figure 1. From the application of a given subtyping

scheme, e.g. the module-based approach of Desmedt et al. [4],

each sample is associated with a specific subtype. These subtype

labels are subsequently used to construct various partitions of the

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e21681



available data. For each part of a partition a separate predictor is

constructed, which targets a specific subset of samples. The most

refined partition contains one subtype per part. From this partition

a sequence of alternative partitions is created by systematic pooling

of individual parts. Ultimately, this leads to a partition with a

single part. The performance of this partition serves as a natural

baseline as its associated predictor is essentially untyped and is

constructed on the largest sample set available, which simulta-

neously represents the most heterogenous set w.r.t. to the selected

subtyping scheme. For a given partition, of interest are the

performance per part, as well as the overall performance

associated with it, that is, the performance as evaluated over all

available samples. We note that, even though the set of subtypes

used to construct partitions is of great interest, its precise makeup is

of a lesser concern in this paper, as we are mainly concerned in

setting up a proper comparison between partitions.

Sample size
The sample size problem manifests itself in different ways.

Firstly, stratification by subtype drastically reduces the size of the

sample set available for the construction of typed predictors

(Figure 1). As numerous studies have shown that a larger sample

size leads to better performance [11–13] it is therefore non-trivial

if the potential benefit of subtyping can outweigh a severe loss in

sample size. Secondly, differences in sample size per subtype also

complicate the comparison between typed predictors. This

imbalance is clearly illustrated by the application of a state of

the art model-based subtyping scheme [4] to a compendium of

892 breast cancer samples (Table 1) used in this paper. Our

experimental protocol strongly controls these sample size effects to

enable a systematic comparison of typed and untyped predictors.

Class imbalance
Imbalance with respect to the class label distribution is another

important characteristic of many cancer related datasets. Also in

our breast cancer compendium the positive class, i.e. the poor

prognosis group, is much smaller than the negative class, i.e. the

good prognosis group (Table 1, column D). Such imbalance often

negatively affects the performance of a predictor for the minority

class. The literature offers several solutions for the class imbalance

problem. Popular approaches are to either undersample the

majority class, to oversample the minority class, or to adapt the

cost structure [14,15]. This is especially important in a subtyping

setting where a proper comparison of predictors is affected by a

Figure 1. Conceptual overview of the stratification protocol. 1) toy sample set, comprised of three subtypes (blue, red and green), lighter
(darker) shades indicate positive (negative) cases. 2) stratified split (by class label and subtype) of the data into a training set T and a validation set V .
For each set separately various partitions are created. The yellow dashed line illustrates the strict separation of training (top) and validation (bottom)
parts. 3) the most refined partition involves a single subtype per part. The typed version (tp) partitions T by parts stratified by class label and subtype.
The untyped (un) counterpart involves parts stratified by class label only, however, each untyped part involves an identical number of positive and
negative training samples as its typed counterpart. Here lighter (darker) open circles represent positive (negative) cases. Alternative partitions can be
constructed by pooling some or all of the initial parts, as depicted in 4) and 5). On each training part a separate predictor is constructed, which is
evaluated on a specific set of validation samples. Note that paired typed and untyped predictors are evaluated on the same set of validation samples.
5) presents a special case for which typed and untyped training sets are identical and equal the overall training set T . This set is used to construct the
baseline predictor. The untyped predictors associated with partitions 1 and 2 represent down-scaled versions of the baseline and serve to assess the
influence of sample size.
doi:10.1371/journal.pone.0021681.g001

Table 1. Compendium subtype distribution.

lumA lumB basal Her2 D

Ns 273 (41.2) 216 (32.8) 100 (15.1) 74 (11.2) 663
(100)

Ps 42 (18.3) 94 (41.0) 57 (24.9) 36 (15.7) 229
(100)

total 315 (35.3) 310 (34.8) 157 (17.6) 110 (12.3) 892
(100)

ratio 6.5 2.8 1.8 2.1 2.9

Distribution of class labels and subtypes for the 892 samples with a proper class
label. Ns and Ps denote the number of negative (good prognosis) and positive
(poor prognosis) cases of for each subtype s, total and ratio represent the sum
and ratio of Ns and Ps , respectively. Entries in brackets indicate percentages
w.r.t. the entire compendium (column D).
doi:10.1371/journal.pone.0021681.t001
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class imbalance inherent to the subtyping itself. Note that, if the

subtype has a profound impact on the survival rate, we expect

distinct subtypes to be associated with different negative to positive

class ratios. In our compendium, we see that this is indeed the case

(Table 1). Comparisons between predictor performances using

frequently adopted performance measures like accuracy, positive

and negative predicted value, can easily be obscured by a

difference in the class ratio. For these reasons, proper balancing

is essential.

In this paper, we present an experimental evaluation protocol

that highly facilitates the comparison between typed and untyped

predictors, in which sample size as well as class and subtype

distributions are controlled and by which their individual

contributions can be properly studied. In order to facilitate a

proper comparison, besides working with the complete (unbal-

anced) compendium, we also consider performance on a set of

balanced compendia which have the same sample size and negative-

positive class ratio for each subtype and are obtained via

undersampling of the majority class. Although here applied to

microarray breast cancer event prediction, the methodology is also

applicable to other types of diseases or data obtained by alternative

measurement techniques.

Materials and Methods

In the following we present a predictor construction and

evaluation protocol to investigate the potential of typed prediction

and its relation to sample size. The protocol produces a sequence

of predictors that via systematic pooling steps gradually transform

into an untyped baseline predictor. As appropriate choices for a

prediction rule, ranking, subtyping strategy, and performance

measure are domain-specific, for the moment we assume they are

given.

Partitioning scheme
Let D denote the set of all available samples with proper event

data, that are associated with a set of n elementary subtypes

Se~ft1, � � � ,tng. The elementary subtypes form the most obvious

candidates to consider for typed prediction. In this case one would

partition the available sample set D into exactly n parts. Less

refined partitions, however, can be considered by pooling

members of several elementary subtypes, ultimately leading to a

single part, that is essentially untyped. Let S denote the collection

of distinct parts over all partitions, that is, the powerset of Se minus

the empty set with cardinality jSj~2n{1. We will refer to the set

Sc~S{Se as the set of compound subtypes, the members of which

are comprised of several of the elementary subtypes. In general,

the number of distinct partitions is given by the nth Bell number

[16], denoted by Bn, where n represents the number of elementary

subtypes. The complete set of partitions can be conveniently

arranged into a Hasse diagram, see Figure 2, which shows an

example for n~4 elementary subtypes.

Evaluation protocol and predictor construction
In essence our evaluation protocol can be seen as an extension

of the protocol proposed by Wessels et al. [17]. Our protocol

consists of a repeated stratified cross-validation scheme for the

typed predictors, after which we deliberately randomize the

corresponding training sets w.r.t. subtype distribution, in order to

obtain results for the untyped predictors. Below we give a formal

description of the protocol.

Notation. Let Ps and Ns denote the sets of positive and

negative samples of subtype s. For each s[Se we divide the

corresponding sets Ps and Ns into Kout folds of approximately the

same size. Let F denote the set of all folds, with jF j~Kout, let Ps,f

(Ns,f ) denote fold f of Ps (Ns) and let Ps,{f (Ns,{f ) denote the

union of all folds but fold f . Now we can define the training and

validation sets for typed and untyped predictors. A detailed toy

example clarifying the sets as defined in the following two

subsections is provided by Figure 3.

Typed sets. For each elementary subtype s[Se and fold f [F
we construct a typed training set T

tp
s,f ~Ps,{f |Ns,{f and a

validation set Vs,f ~Ps,f |Ns,f . Furthermore, for each compound

subtype and fold we pool the training and validation sets of the

subtypes that comprise it, that is, for compound subtype s’[Sc

consisting of the elementary subtypes S’(Se we have T
tp
s’,f ~S

s[S’ T
tp
s,f and Vs’,f ~

S
s[S’ Vs,f .

Untyped sets. In order to construct untyped counterparts of

the typed training sets let P{f ~
S

s[Se
Ps,{f and N{f ~S

s[Se
Ns,{f . For each elementary subtype s[Se and fold f [F we

create the sets Pun
s,{f and Nun

s,{f by randomly drawing without

replacement jPs,{f j positive and jNs,{f j negative samples from the

sets P{f and N{f , respectively. Analogously to the typed scenario,

for each elementary subtype s[Se and fold f [F we next construct

an untyped training set Tun
s,f ~Pun

s,{f |Nun
s,{f , which has the same

negative to positive ratio as T
tp
s,{f . Finally, for each compound

subtype and fold we again pool the corresponding training sets of

the elementary subtypes that comprise it, that is, for compound

subtype s’[Sc consisting of the elementary subtypes S’(Se we

have Tun
s’,f ~

S
s[S’ T

un
s,f . Typed and untyped predictors are paired

and their performance is evaluated on the same validation set.

Baseline. Note that the only partition for which typed and

untyped sets are identical is the partition in which all elementary

subtypes have been pooled into one part. In this case typed and

untyped predictors for each fold f [F are associated with the same

training set Tf ~
S

s[Se
T

tp
s,f ~

S
s[Se

Tun
s,f , with corresponding

validation set Vf ~
S

s[Se
Vs,f . We will refer to these predictors

as baseline predictors.

Toy example visualizing the construction of typed and

untyped set. Consider the balanced toy dataset depicted in

Panel A) of Figure 3, which is an extension of the example

depicted in Figure 1. The sample set is again comprised of three

three elementary subtypes, Se~ffLg,fHg,fBgg, representing for

instance the subtypes luminal (blue), Her2 (red), and basal (green),

respectively. Each elementary subtype consists of three positive

(poor prognosis) cases, depicted by darker shades and three

negative (good prognosis) cases, depicted by lighter shades. Instead

of an individual sample (Figure 1), here each circle corresponds to

multiple samples. Panel B) depicts the associated Hasse diagram

w.r.t. the elementary subtype set Se with five partitions (see also

Figure 2). Panel C) presents an overview of the five typed partitions

of the Hasse diagram in the context of a Kout~3-fold cross-

validation scheme. The example depicts the sets associated with a

single fold. Validation sets are depicted at the left of the vertical

dotted line, training sets on the right. Each part in a partition is

depicted as a connected string of filled circles. For each training

part a separate predictor is constructed. Partition names are given

at the outer right, where a dot indicates pooling, and a vertical

dash is used to separate parts. Finally, Panel D) depicts five

untyped partitions for a single fold. The untyped training set for

the most refined partition (#5) is constructed from the typed

training set by randomly swapping light shaded training instances

with each other and dark shaded instances with each other. This

guarantees that the negative-positive class ratio is the same for

typed and untyped sets. Coarser partitions (#1–4) are formed by

combining parts according to the Hasse diagram of panel B. Note

that for the coarsest partition (#1), typed and untyped training sets

are identical. This set is used for the construction of the baseline

Subtype-Specific Breast Cancer Event Prediction
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predictor. Last, note that typed and untyped partitions are always

associated with the same set of validation samples. Furthermore,

training and validation samples are always strictly separated.

Training protocol. On every training set we invoke an

identical training protocol, which is a mild adaptation of the

protocol proposed by Wessels et al. [17]. Let T ’ denote the set of

available training samples. In a first step we divide T ’ into Kin folds

stratified w.r.t. class label and subtype. For each fold g we perform

a ranking using the learning set Lg~T ’g, after which we construct

a sequence of dmax predictors Cd using the top d[f1,2, . . . ,dmaxg
ranked features on Lg. We then employ these predictors to predict

the events corresponding to the evaluation set Eg~T ’g and

subsequently aggregate the results over all folds from which we

construct a performance curve, which for a performance indicator

of interest tells us the performance for a given number of features,

up to dmax. The previous training steps are repeated Rin times in

order to construct an average performance curve which for a given

set size reports the average performance over all repeats. We refer

to this loop as the inner loop of our protocol.

Let m� denote the maximum value of the average performance

curve and denote its standard deviation over Rin repeats by s�.
Since larger signatures are often more robust [18], we take the

optimal number of features to be the largest integer d�ƒdmax such

that its associated training performance p�§(m�{s�). Finally, we

use the full training set T ’ to rank the available features and

construct a predictor Cd� using the top d� ranked features on T ’
and conclude by returning p�, d�, as well as the trained predictor

Cd� . In addition to an optimized signature size d�, a fixed size can

be considered as well.

Performance evaluation. For each subtype s[S and for

each fold f [F we invoke the training protocol on the typed and

untyped training sets, T
tp
s,f and Tun

s,f , and apply both of the

resulting predictors to the same validation set Vs,f . Let A
tp
s,f and

Aun
s,f denote the assignments made on this validation set by the

typed and untyped predictors, respectively. For each subtype s we

construct a subtype-specific performance indicator for the typed

and untyped predictors by considering the aggregated

assignments over all folds Atp
s ~

S
f [F A

tp
s,f and Aun

s ~
S

f [F Aun
s,f .

Finally, for a given partition P we obtain an overall performance

estimate for typed and untyped predictors by considering the

aggregated assignments over all its parts Atp~
S

s[P Atp
s and

Aun~
S

s[P Aun
s , respectively. To compensate for sampling effects

all previous steps are repeated Rout times, after which we average

performance indicators over all repeats. We refer to this loop as

the outer loop.

Schematic representation main evaluation proto-

col. Figure 4 presents a schematic representation of the

main evaluation protocol as described above when applied to

the toy dataset example of Figure 3. For clarity the figure

depicts the scenario for a single fold f and depicts only two of

the Bn~5 partitions i.e. the coarsest (partition 1, Figure 3) and

the most refined (partition 5, Figure 3). The former partition is

associated with the baseline predictor, for which typed and

untyped are identical and involves steps 1, 4, 8, 11, and 14 of

Figure 4. The second partition contains one part for each

elementary subtype. Typed predictors involve steps 2, 5, 9, 12,

and 15, while untyped predictors involve steps 3, 6, 10, 13, and

16.

Figure 2. Partitioning scheme. The Hasse diagram depicts all possible partitions (grey ovals) w.r.t. an example breast cancer subtype set
Se~fLa,Lb,H,Bg, representing the subtypes lumA, lumB, Her2, and basal, respectively. White ovals indicate parts. The lines represent a move from
one partition to another by either merging two parts (bottom to top) or splitting one part into two parts (top to bottom). The top layer depicts the
coarsest partition in which all elementary types have been pooled into a single part, making it essentially untyped. The bottom layer represents the
most refined partition, i.e. one part for each elementary subtype. For each distinct part a separate predictor is constructed. The partition in the top
layer is used for baseline predictor construction. In this example Bn~15, jSej~4, jSj~15 and jScj~11.
doi:10.1371/journal.pone.0021681.g002

Subtype-Specific Breast Cancer Event Prediction
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Figure 3. Stratification toy example. For a detailed explanation, see the running text.
doi:10.1371/journal.pone.0021681.g003

Subtype-Specific Breast Cancer Event Prediction
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Performance measures
Class imbalance influences the choice of a suitable performance

measure. Comparison of performance by the total accuracy rate

has the disadvantage that a predictor that always guesses the

majority class is associated with a high performance, while in fact it

misclassifies the complete minority class. A more appropriate

performance measure is the area under the ROC curve, which is

insensitive to varying class proportions. Also the balanced accuracy

rate, defined as the average of the sensitivity and specificity of the

prediction rule, has been used in an imbalanced setting [12,17,19].

This measure has the advantage that we can no longer achieve a

high performance by sacrificing one class for another, as doing so

results in a performance equal to that obtained by random

guessing, i.e. a balanced accuracy rate of 50%.

Our main performance indicator is the area under the ROC

curve (auc). We also report the balanced accuracy rate (bar) and the

accuracy (acc). Since summarizing predictor performance on both

classes in a single measure causes loss of information, we also

Figure 4. Bird’s eye view of evaluation protocol. For additional details, see running text. 1) Stratified split w.r.t. class label and subtype of the
complete data set in a training set Tf and a validation set Vf . 2) Construction of typed training sets T

tp
L,f , T

tp
H,f and T

tp
B,f . 3) Construction of untyped

training sets Tun
L,f , Tun

H,f and Tun
B,f . 4) Baseline predictor construction. 5) Typed predictor construction. 6) Untyped predictor construction. 7)

Stratification of validation set by subtype. 8) Invoke baseline predictor on validation samples. 9) Invoke typed predictors on associated validation
samples. 10) Invoke matching untyped predictors on same validation sets. Steps 1–10 are repeated for all folds f [F . 11–13) Subtype-specific
performance estimation based on the aggregated event predictions (over all folds) per subtype, as made by the baseline (11), typed (12), and
untyped (13) predictors. 14–16) Overall performance estimation based on the aggregated event predictions over all folds made by the baseline (14),
typed (15), and untyped (16) predictors.
doi:10.1371/journal.pone.0021681.g004

Subtype-Specific Breast Cancer Event Prediction
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report four other frequently used performance indicators that

report performance for a proper subset of the samples: sensitivity

(sen), specificity (spc), positive predictive value (ppv), and negative

predictive value (npv). For a thorough overview of these and other

performance indictors see [20].

Balanced compendia
Since the number of samples and the negative-positive class

ratio differ considerably per subtype (Table 1), we constructed a set

of balanced compendia that are properly stratified w.r.t. the class

ratio. Note that the largest sample set that can be constructed with

the same number of samples and the same ratio qs~jNsj=jPsj for

all elementary subtypes can hold at most mN~minfjNt1
j,

. . . ,jNtn
jg negative samples and mP~minfjPt1

j, . . . ,jPtn
jg posi-

tive samples. Therefore, in order to obtain a balanced compen-

dium B, we randomly draw without replacement mN negative samples

from Ns and mP positive samples from Ps for each elementary

subtype s[Se. Let Bs denote the set of mPzmN samples drawn for

subtype s[Se, then B~
S

s Bs. Since for most elementary subtypes

the sampling can be done in multiple ways, we repeat the sub-

sampling process Rbal times. Note that, compared to the

unbalanced compendium D, the balanced compendia B are well

controlled w.r.t. subtype distribution, sample size, and class

distribution.

Compendium construction
The compendium pools data of ten individual microarray

datasets. All datasets were measured on the same platform

(Affymetrix HG-U133A). This circumvents the need for cross-

platform normalization, which can be challenging [21]. All raw

expression data used is publicly available in the MIAME

compliant databases Gene Expression Omnibus (GEO) [22]

and ArrayExpress [23] and can be found under the following

accession numbers: GSE2034 [10], GSE5327 [24], GSE7390

[25], GSE11121 [26], GSE2603 [27], GSE6532 [28], GSE2990

[29], GSE3494 [30], GSE1456 [31], and E-TABM-158 [32]. All

accession numbers represent GEO accession numbers, with

exception of E-TABM-158 [32], the expression data of which is

stored at ArrayExpress. After removing duplicate entries and

outlier arrays, detected using the arrayQualityMetrics package [33],

1539 unique hybridizations remained. Raw expression data was

used to generate MAS5.0 expression estimates, using the affy

package, scaled to a target intensity of 600. Prior to pooling

expression data, the expression estimates were z-transformed for

each study and each gene separately, as suggested in [21,34]. For

event prediction purposes, all class labels are solely based on a

single type of survival data, being distant metastasis free survival

(dmfs). Poor prognosis cases (PP) had an event, i.e. distant metastasis

within five years, while the good prognosis cases (GP) did not have an

event during follow-up, with a follow-up time of at least five years

i.e. samples with an event after five years were removed. These

stringent criteria led to the identification of 229 PP samples and

663 GP samples, yielding a total of 892 unique samples. A list of

the individual CEL file identifiers is presented in Supporting

Information S1.

Subtyping scheme
Subtyping is based on a recently introduced biology-inspired

module-driven approach [4], that identifies the subtypes lumA,

lumB, basal, and Her2 through model-based clustering. In

contrast to the intrinsic gene list approach [3], clustering is not

performed on the expression data directly. Instead the expression

values are first projected onto a lower dimensional space, in which

each sample is represented by three module scores related to key

biological processes strongly associated with breast cancer. The

modules consist of an ER-related module, comprising 469 genes, a

Her2-related module of 28 genes, and a proliferation-related

module, referred to as AURKA, containing 229 genes. After

transformation of the expression data to module scores, a Gaussian

mixture model is fitted on the module data in order to determine

the cluster membership of each sample. ER and Her2 module

scores are used to infer the subtypes luminal, Her2, and basal,

while the AURKA module is used to further subdivide the luminal

group into a lumA and a lumB group.

In order to obtain the most likely subtype assignment for each

sample, we estimated the subtype model on the set of all 1539

available samples. This resulted in 564 (36.8%), 543 (35.4%), 246

(17.6%) and 186 (16.1%) assignments to the subtype categories

lumA, lumB, basal, and Her2, respectively. Table 1 presents an

overview of these assignments for the set of 892 samples with

properly defined class labels. The subtype distribution over the 892

sample set is similar to the subtype distribution over the complete

compendium with 35.3%, 34.8%, 17.6%, and 12.3% belonging to

the subtypes lumA, lumB, basal, and Her2, respectively (P~0:95,

Pearson’s chi-square test). Subtyping was performed using the

genefu package.

Balanced sets
From Table 1 it follows that in order to obtain a fully balanced

compendium, we can select at most mN~36 negative and mP~74
positive cases for each s[Se, which in turn implies jBsj~36z
74~110 and jBj~4|110~440.

Protocol implementation details
In this paper results are reported over a set of Rbal~100

balanced breast cancer compendia, and for an unbalanced

compendium of 892 samples. For the inner loop we employed

Kin~10-fold cross-validation, with Rin~5 repetitions. Predictors

are based on the nearest centroid (NC) rule, which despite its

simplicity often shows good performance. Furthermore, a NC is

known to be reasonably noise tolerant [17]. As a distance measure

the cosine correlation distance was used. For each separate fold of

the training set we first performed a filtering step, using the

present/absent calls from the MAS5.0 procedure and only selected

genes for which in at least one of the positive or negative sample

groups the number of present calls was at least 70% [35]. The

remaining features were ranked based on moderated-t statistics, as

implemented in the limma package [36,37]. For predictor

construction we considered average performance curves up to

dmax~200 features, similar to van Vliet et al. [12]. Finally, in the

outer loop we employed Kout~10-fold cross-validation, with

Rout~100 repetitions. ROC curves were generated by using the

difference between the distance of a sample to each of the

centroids as a continuous criterion, on which a variable threshold

was set.

Computing environment
In order to perform a comprehensive analysis many re-

samplings of the data were performed, under various conditions.

As for each re-sampling and for each part in the set of generated

partitions separate predictors were constructed and evaluated, the

complete analysis was computationally demanding. The method-

ology, however, lends itself well to parallelization. In order to

perform our computations we used a grid involving 1648 cores,

divided over 206 Dell PowerEdge blade servers, each with 2 Intel

XEON L5420 Quadcore CPU’s, with 16GiB FDB Dual Rank

memory. All computations were performed using R [38] and

Bioconductor [39].
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Results

Improved auc and bar by typed prediction
Figure 5 depicts a condensed overview of overall performance

corresponding to typed and untyped event predictors under

various partitioning schemes, involving signatures based on the

nearest centroid rule. Similar results were obtained using a signal-

to-noise ratio ranking strategy, using 3-fold, 5-fold, and leave-one-

out cross-validation instead of 10-fold cross-validation, or when

using a more complex non-linear predictor (random forest [40]),

see Supporting Information S2. A complete overview of the

performance per subtype associated with Figure 5 is given in

Supporting Information S3.

Performance on balanced compendia. The left panel in

Figure 5 shows that typed predictors generally obtain a higher

overall performance than their untyped counterparts on balanced

compendia. The typed auc and bar are consistently higher,

sometimes quite substantially. Furthermore, we see that auc and

bar are well correlated.

One of the more interesting partitions is the one that uses a

single part for each elementary subtype, which is situated at the

outer right in each panel and corresponds to the partition depicted

at the bottom of the Hasse diagram (Figure 2). In this partition

overall performance in the typed case is obtained by employing

four distinct typed predictors, each targeting a different part of the

partition. Similarly, untyped overall performance is achieved by

employing four downsized versions of the baseline predictor, in

which each predictor is constructed on an equal number of good

and poor prognosis samples as their typed counterparts. This is

indeed one of the best performing partitions, with an associated

overall auc and bar of 66.1% and 61.3% for the typed predictors,

respectively, compared to 59.4% and 56.8% for the untyped

predictors.

A more detailed overview corresponding to this partitioning

with a breakdown of performance per subtype is given in Table 2.

The subtype distribution of the training data indeed has a

considerable impact on the performance of a predictor. Especially

the Her2 group benefits from using a typed prediction rule with an

auc and bar of 74.7% and 71.5%, respectively, for the typed

predictors, compared to 65.9% and 61.7% for the untyped

predictors. Results show an improvement for almost all other

performance indicators as well when using typed predictors over

untyped predictors, although for some subtypes untyped predictors

achieve a higher sensitivity.

The best overall performance is obtained by typed prediction

using a partition which has separate Her2 and basal groups, and a

combined luminal group (Figure 5, left panel, second partition

from the right). This partition gives an overall auc and bar of 66.9%

and 61.9%, respectively, compared to 60.5% and 57.7% for the

untyped predictors.

Note that coarser partitions involve predictors for compound

subtypes that are constructed on larger sample sets compared to

those in more refined partitions. Increase in sample size can

indeed be beneficial, as the baseline predictor, which is

constructed on the largest training set possible under the given

cross-validation scheme, is associated with the highest overall

performance over all untyped predictors with an auc and bar of

64.1% and 60.2%, respectively (Figure 5). However, its perfor-

mance is still lower than that obtained by using more refined typed

prediction schemes. This clearly illustrates that a predictor trained

on more samples without control for subtype distribution is not

necessarily the optimal choice.

Finally, the increase in overall performance of typed predictors,

as measured by auc and bar, is often accompanied by trading

sensitivity for specificity. Compared to untyped predictors, typed

predictors are generally associated with much higher specificity,

yet lower sensitivity. Note that the highest sensitivity is in fact

obtained by the baseline predictor.

Performance on unbalanced compendium. The right

panel of Figure 5 reveals a similar pattern for typed and

untyped prediction on an unbalanced compendium as seen in

the left panel. Note that in contrast to the balanced sets B, the set

D is unbalanced w.r.t. subtype distribution and is dominated by

luminal samples (Table 1), hence performance on these samples

drives overall performance. As expected, since most parts in the

various partitions now contain a considerably larger number of

samples compared to the balanced scenario, overall performance

in terms of auc and bar improves. Similar to the balanced case, the

highest overall performance is obtained by using a partition which

has separate Her2 and basal groups, while using a combined

luminal group. This partition has an auc and bar of 71.8% and

66.3%, respectively, which again outperforms the baseline

predictor, which has an associated auc of 69.6 and 65.1%.

Table 3 is the unbalanced counterpart of Table 2. For the typed

predictors an increase in sample size is indeed beneficial, as the auc

and bar for all subtypes but Her2 increase. Note that the Her2

group in both the balanced and unbalanced case has the same size,

hence its performance in the typed case remains unchanged.

Furthermore, the most refined typed prediction scheme again

outperforms its untyped counterpart, with an overall auc and bar of

69.9% and 64.8%, compared to 68.3% and 63.8%.

For the untyped predictors, however, the story is more complex.

Table 3 shows a substantial gain in overall performance for the

untyped predictors, compared to the untyped overall performance

of Table 2, with an auc and bar of 68.3% and 63.8%, respectively,

compared to 59.4% and 56.8% on the balanced compendia.

Although we see a substantial improvement in auc for lumA and

lumB, for basal and Her2 we observe a considerable deterioration.

However, since luminal samples dominate the subtype distribution

in the unbalanced case, overall performance for untyped

prediction still improves quite strongly compared to the balanced

scenario. In addition, a striking difference between the sensitivity

and specificity of the lumA subtype compared to the other

subtypes can be observed.

A dissection of the baseline performance
Table 4 presents a more detailed overview of how the baseline

predictor obtains its performance. The baseline predictor shows an

even more extreme difference between sensitivity and specificity,

with a very high specificity for the lumA subtype of 97.9%, yet

with a very low sensitivity of 5.8%. However, the sensitivity over

the remaining subtypes is very high with values of 87.8%, 86.8%

and 84.9% for the subtypes lumB, basal, and Her2, respectively.

Apparently, the unbalanced untyped predictors are biased to

predict a good prognosis for lumA samples, yielding a very high

specificity but very poor sensitivity for that subtype, and to predict

a poor prognosis for the other subtypes, yielding a high sensitivity

but a rather low specificity for them. Finally, we note the peculiar

behavior of the bar performance indicator in an unbalanced

setting. The overall bar is 65.1%, however, for every individual

subtype the corresponding bar is less, even though they form a

partition of the complete sample set D. The same phenomenon

can be seen for the untyped predictors of Table 3.

Discussion

Recently, van’t Veer and Bernards [41] claimed that the

intrinsic breast cancer subtypes do not contain additional
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information for determining a patient’s prognosis. They further-

more state that their value has been surpassed by that of

prognostic gene-expression signatures such as the 70-gene

signature, however, without quantifying these claims. In the

current paper, we presented a framework for building and

quantifying the performance of typed and untyped predictors,

inspired by the protocol proposed by Wessels et al. [17]. Our

results show that the subtype distribution of the training data has a

Figure 5. Overall performance overview for all partitions. Performance overview of overall performance corresponding to the 15 distinct
partitions w.r.t. the elementary subtype set Se~fLa,Lb,H,Bg, that represents the subtypes lumA, lumB, Her2 and basal, respectively (Figure 2). The
left panel corresponds to experiments involving the balanced compendia B, while the right panel corresponds to experiments involving the full
unbalanced compendium D. In each panel the top numbers f1,2,3,4g indicate the number of different parts in each of the partitions, while the
bottom line identifies the precise makeup of the various partitions e.g. the notation BjHjLa.Lb indicates a partition into three parts, involving separate
basal and Her2 groups, while having a combined luminal group. In each panel the coarsest partition is situated at the outer left, which corresponds to
the baseline predictor (indicated in bold), that is, a single predictor that targets all samples. The most refined partition is situated at the outer right,
which uses a separate predictor for each elementary subtype. A horizontal dotted line indicates the performance of the baseline predictors. Vertical
dotted lines are used to group the partitions by their number of parts, as indicated by the top numbers. Results represent averages over 100 repeats.
Rows represent seven frequently used performance indicators: area under curve (auc), balanced accuracy (bar), sensitivity (sen), specificity (spc),
accuracy (acc), positive predictive value (ppv) and negative predictive value (npv). Performance for typed predictors is indicated with a dot,
performance for untyped predictors with a cross.
doi:10.1371/journal.pone.0021681.g005
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considerable impact on the behavior of a predictor and we provide

strong evidence that event prediction can be improved by

exploiting subtype information. The highest performance is

obtained by partitioning the samples into separate basal and

Her2 groups, while using a combined luminal group.

These results are in line with improved predictive power that

was also reported using an intrinsic gene list (IGL) approach by

Parker et al. [8], which suggests a standardized gene set (PAM50)

for subtype identification and event prediction. However, they

only compare their subtype predictor with models based on

standard clinicopathological parameters, such as estrogen receptor

status and tumor size, and not with an untyped gene expression

based predictor. The module-driven approach of Desmedt et al.

[4] has also been used to combine subtype-specific predictors in a

fuzzy way with promising results [9]. Although comprehensive, the

latter work does not address influential factors like unequal class

distributions or differences in the number of samples per subtype

and presents its case for a single model, using a single partitioning

scheme.

The module-driven approach was selected over the more

common intrinsic gene list approach of Perou et al. [3] because of

favorable stability properties, which are extensively addressed in

[42]. We stress that even though the exact method used to

generate subtype information is of interest, it is not the primary

concern of this paper, as here we are mainly interested in how

typed and untyped prediction can be properly compared given the

various forms of imbalance.

Sample size
As previously observed, stratification by subtype is accompanied

by a sharp decrease in the number of samples available for

predictor construction. Pairing typed predictors with untyped

predictors offers the possibility to separately evaluate the influence

of sample size and subtype information on classification perfor-

mance. Our protocol incorporates two alternate views on sample

size. Typed partitioning schemes involve multiple predictors, each

targeting a specific subset of the entire sample set. Each typed

predictor is paired with an untyped predictor, the construction of

which involves an identical number of samples as for the typed

predictor but with a subtype distribution that has been

randomized such that it reflects the subtype distribution of the

compendium. The advantage of matching sample size is that if

subtyping would have no added value, paired typed and untyped

predictors are expected to yield similar performance. Another view

is provided by the comparison of typed predictors with the

untyped baseline predictor in terms of overall performance. Prior

to partitioning, all training sets are equally large. Hence, both

typed and baseline predictor schemes involve the same total

number of samples. According to both views typed predictors

consistently outperform their untyped counterparts.

Table 2. Subtype-specific performance overview (balanced
compendia).

lumA lumB basal Her2 overall

auc 61.5 65.0 60.6 74.7 66.1

bar 56.3 60.8 56.7 71.5 61.3

sen 37.5 71.7 44.6 75.9 57.4

tp spc 75.1 49.8 68.8 67.2 65.2

acc 62.8 57.0 60.9 70.0 62.7

ppv 42.4 41.2 40.9 52.9 44.5

npv 71.2 78.4 72.0 85.1 75.9

auc 55.3 60.6 57.1 65.9 59.4

bar 53.8 57.0 54.7 61.7 56.8

sen 56.3 66.4 48.1 67.0 59.5

up spc 51.3 47.5 61.3 56.5 54.1

acc 52.9 53.7 57.0 59.9 55.9

ppv 36.1 38.1 37.9 43.1 38.7

npv 70.7 74.7 70.9 77.9 73.3

Performance overview per elementary subtype: typed (tp) versus untyped (un)
predictors on balanced compendia B. The highest value for a paired typed and
untyped performance measure is set in italic. If the difference is significant (two
sided paired t-test, a~0:01) the entry is set in bold. Values in the column overall
correspond to the overall performance depicted in the left panel of Figure 5.
doi:10.1371/journal.pone.0021681.t002

Table 3. Subtype-specific performance overview (unbalanced
compendium).

lumA lumB basal Her2 overall

auc 64.8 71.9 62.2 74.7 69.9

bar 56.3 64.7 58.0 71.5 64.8

sen 31.3 74.6 50.0 75.9 60.8

tp spc 81.3 54.7 66.1 67.2 68.8

acc 74.6 60.7 60.2 70.0 66.7

ppv 20.5 41.8 45.6 52.9 40.2

npv 88.5 83.2 69.9 85.1 83.5

auc 63.0 70.2 50.4 60.3 68.3

bar 54.6 62.3 50.9 57.5 63.8

sen 19.9 82.7 81.7 74.9 69.7

up spc 89.2 41.9 20.1 40.2 57.9

acc 80.0 54.3 42.4 51.5 60.9

ppv 22.4 38.3 36.8 37.9 36.4

npv 87.9 84.8 65.6 76.7 84.7

Performance overview per elementary subtype: typed (tp) versus untyped (un)
predictors on the unbalanced compendium D. The highest value for a paired
typed and untyped performance measure is set in italic. If the difference is
significant (two sided paired t-test, a~0:01) the entry is set in bold. Values in
the column overall correspond to the overall performance depicted in the right
panel of Figure 5.
doi:10.1371/journal.pone.0021681.t003

Table 4. Baseline predictor performance.

lumA lumB basal Her2 overall

auc 68.6 72.7 50.4 60.6 69.6

bar 51.8 63.2 49.5 58.1 65.1

sen 5.8 87.8 86.8 84.9 72.0

spc 97.9 38.6 12.2 31.3 58.2

acc 85.6 53.5 39.3 48.8 61.8

ppv 29.9 38.4 36.1 37.5 37.3

npv 87.1 87.9 62.1 80.9 85.8

Baseline predictor performance on the unbalanced compendium D. Values are
compared with those for the typed predictors in Table 3 and set in italic when
higher. If the difference is significant (two sided paired t-test, a~0:01) the entry
is set in bold.
doi:10.1371/journal.pone.0021681.t004

Subtype-Specific Breast Cancer Event Prediction

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e21681



The potential to increase classification performance for breast

cancer event prediction by combining data sets was recently

addressed by Van Vliet et al. [12] which identified sample size as

an important factor. In addition, it was observed that the

performance on ER negative samples was much lower than

achieved on ER positive samples, which matches well with the fact

that the former group is substantially smaller than the latter.

However, our work shows that when sample size is carefully

controlled, performance differences between subtypes persist and

cannot be ascribed solely to differences in sample size. For

instance, basal samples, which are predominantly ER negative,

appear an intrinsically more difficult set of samples to classify than

Her2 samples.

Class imbalance
We performed an analysis on a set of balanced and unbalanced

compendia by which we show that typed predictors consistently

outperform their untyped counterparts. Especially the balanced

scenario shows the potential of typed predictors. In an unbalanced

setting, however, it may be more challenging to exploit subtype

information for various reasons. Typed schemes attempt to

increase overall performance by predictors that perform well for

all distinct parts. Such a strategy is not necessarily optimal in an

unbalanced setting, as a predictor can be associated with a poor

performance over all parts separately, yet can still give a

reasonable overall performance over the union of these parts.

This phenomenon is intimately related to the negative-positive

class ratio and is perhaps easiest explained via the balanced

accuracy rate (bar).

The bar is defined as the average of the sensitivity and

specificity, that is, bar~ 1
2
:(senzspc)~ 1

2
: TP

P
z TN

N

� �
, where P

and N denote the number of positive and negative samples,

respectively, and TP and TN denote the true-positive and true-

negative assignments made by a predictor. The bar score can be

highly sensitive to the negative-positive class ratio in a subtle way.

This becomes clear when rewriting the bar as a weighted accuracy

measure

bar~
wP
:TPzwN

:TN

wP
:PzwN

:N
,

with weights wP~ N
P

for the positive instances and wN~1 for the

negative instances. Depending on the negative-positive class ratio,

an error on a positive case is weighted differently from an error on

a negative case. Hence, given the different negative-positive class

ratios for different subtypes and for the whole compendium

(Table 1), the same errors are weighted differently in the

unbalanced compendium. For instance, the negative class is

strongly overrepresented in the lumA subtype. In terms of bar the

misclassification of a positive example in this case is extremely

costly, as expressed by a bar of merely 51.8% in Table 4. The

overall bar, however, weighs its errors very differently which results

in a more optimistic bar of 65.1%. The latter example indicates the

importance of proper stratification when comparing performances

between groups.

In conclusion, we have presented a novel experimental protocol

that allows for a proper comparison between typed and untyped

predictors. We performed a comprehensive analysis of our

methodology on a large breast cancer compendium and presented

an analysis for balanced and unbalanced scenarios, which clearly

reveal the potential of typed prediction. In both scenarios the

highest overall performance was obtained by a typed partition

which had separate Her2 and basal groups, while using a

combined luminal group. In the balanced scenario it was observed

that certain subtypes appear intrinsically more challenging as

performance rates differ between subtypes. In an unbalanced

setting it can be more difficult to exploit subtype information as the

performance of certain subtypes can dominate overall perfor-

mance. In addition, in such a scenario comparisons between

predictors can be obscured by differences in sample size or class

distribution. In our protocol sample size, class and subtype

distributions are carefully controlled, which combined with the

systematic pooling steps offers a rich view on the value of subtypes

for event prediction.

Supporting Information

Supporting Information S1 Overview of the 892 samples
comprising the compendium used for event prediction.
The column CEL indicates the accession number under which

the corresponding expression data can be found for each

individual sample. Entries starting with G refer to GEO

accession numbers, while entries starting with E indicate

ArrayExpress accession numbers. The column t.dmfs indicates

distant metastasis free survival (in years), while the column

e.dmfs indicates if a patient had an event i.e. a distant metastasis

(1) or not (0). Finally, the last column indicates the class label for

each sample (Good : t.dmfsw5^e.dmfs = 0, Poor : t.dmfsƒ

5^e.dmfs = 1).

(PDF)

Supporting Information S2 Additional classification re-
sults in which the ranking strategy, the predictor, and
cross-validation scheme, respectively, have been altered
compared to the setup corresponding to Figure 5. The

ranking strategy was altered from a ranking by moderated-t
statistics to a ranking by signal-to-noise-ratio statistics (SNR).

In addition, the nearest centroid (NC) predictor was replaced

by the random forest (RF) predictor [40], which is a highly

non-linear predictor. Finally, the Kout = 10-fold cross-valida-

tion strategy was changed to 3-fold cross-validation, 5-fold

cross-validation, and leave-one-out cross-validation (LOOCV),

respectively.

(PDF)

Supporting Information S3 Complete set of performanc-
es tables (similar to Tables 2 and 3 of the main text)
corresponding to Figure 5. Each table provides a performance

overview per elementary subtype: typed (tp) versus untyped (un)

predictors, for a given partition, which is stated in the caption. The

highest value for a paired typed and untyped performance

measure is set in italic. If the difference is significant (two sided

paired t-test, a~0:01) the entry is set in bold.

(PDF)
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