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Abstract This article presents an extended case study in

the application of neuroevolution to generalized simulated

helicopter hovering, an important challenge problem for

reinforcement learning. While neuroevolution is well sui-

ted to coping with the domain’s complex transition

dynamics and high-dimensional state and action spaces, the

need to explore efficiently and learn on-line poses unusual

challenges. We propose and evaluate several methods for

three increasingly challenging variations of the task,

including the method that won first place in the 2008

Reinforcement Learning Competition. The results demon-

strate that (1) neuroevolution can be effective for complex

on-line reinforcement learning tasks such as generalized

helicopter hovering, (2) neuroevolution excels at finding

effective helicopter hovering policies but not at learning

helicopter models, (3) due to the difficulty of learning

reliable models, model-based approaches to helicopter

hovering are feasible only when domain expertise is

available to aid the design of a suitable model represen-

tation and (4) recent advances in efficient resampling can

enable neuroevolution to tackle more aggressively gen-

eralized reinforcement learning tasks.

Keywords Neural networks � Neuroevolution �
Reinforcement learning � Helicopter control

1 Introduction

The field of reinforcement learning (RL) [40, 82] aims to

develop methods for solving sequential decision problems,

typically formulated as Markov decision processes (MDPs)

[9], wherein agents interact with unknown environments

and seek behavioral policies that maximize their long-term

reward. Developing effective RL methods is important

because many challenging and realistic tasks (e.g., robot

control [78], game-playing [86], and system optimization

[89]) can be naturally cast in this framework.

In recent years, researchers have begun organizing RL

Competitions [93] in an effort to stimulate the development

of practical methods. To encourage robust methods, many

competition events are formulated as generalized tasks

[91]. A generalized task is not a single MDP but a distri-

bution over related MDPs that vary along certain dimen-

sions (e.g., sensor noise or environment size). A few

training MDPs drawn from this distribution are available to

competition participants in advance. However, the com-

petition is decided by performance on test runs that use

independently sampled MDPs. Since the agent does not

know a priori which MDP it faces in each test run, it must

learn on-line in order to maximize performance.1

One such generalized task is based on the problem of

helicopter hovering [6], in which a 3-dimensional simu-

lated helicopter strives to hover as close as possible to a

fixed position. As in many other robotics applications,

learning or evolving a control system for a helicopter is an

appealing way to reduce the time and effort of manually
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1 The term ‘on-line’ has many meanings. In this article, we use it

only to refer to the fact that the agent’s performance is evaluated

during learning. It is not meant to imply other constraints (e.g., scarce

battery power or computational resources) that a deployed agent

might face.
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engineering a solution. As Bagnell and Schneider write,

‘‘Learning control entices us with the promise of obviating

the need for the tedious development of complex first

principle models and suggests a variety of methods for

synthesizing controllers based on experience generated

from real systems‘‘ [6]. Doing so is particularly useful in

helicopter control since manually designing controllers is

notoriously difficult due to their inherent instability, espe-

cially at low speeds [57]. As a result, helicopter control is a

well-studied problem for which a wide range of solution

approaches have been proposed, e.g., [34, 60, 66].

Numerous methods based on apprenticeship learning [1, 2,

3, 84] and policy-search reinforcement-learning [6, 49, 57],

including evolutionary approaches [18, 19], have been

developed.

However, the formulation of the helicopter control

problem used in the competition poses two new chal-

lenges. First, the agent must explore a dangerous envi-

ronment safely and efficiently in order to perform well. In

previous work, learning relied on data gathered while a

human expert controlled the helicopter. In contrast, no

such expert is available in the competition task. Instead,

the agent must explore its environment and thereby risk

crashing the helicopter in order to gather such data.

Second, the task is generalized such that wind velocities

vary from one learning run to the next. Because wind

greatly affects the helicopter’s control dynamics, no sin-

gle policy performs well across tasks. Consequently, the

agent must learn on-line to find a policy specialized to

each MDP it faces. Generalized helicopter hovering is

thus an important challenge problem for RL, as it com-

bines the difficulties of the original task (e.g., complex

transition dynamics and high-dimensional state and action

spaces) with the need to explore efficiently and learn on-

line.

The problem also represents an interesting application

domain for neuroevolution [72, 99], in which evolutionary

methods [27] are used to optimize neural networks. On the

one hand, such methods have proven effective in difficult

RL tasks [28, 29, 43, 55, 76, 88, 89, 94]. In fact, since large

state and action spaces can be troublesome for traditional

temporal-difference methods [80], helicopter hovering may

be particularly well suited to direct-optimization methods

like neuroevolution. On the other hand, the task poses

unusual challenges for neuroevolution. Most work in neu-

roevolutionary RL focuses on off-line tasks that assume

access to an environment simulator in which the agent can

safely try out candidate policies. In contrast, generalized

helicopter hovering is an on-line task. The agent must learn

by direct interaction with each test MDP, during which the

rewards it receives count towards its final score. While

some methods exist for applying neuroevolution to on-line

tasks [14, 89, 90], they would still require an unrealistic

number of samples (i.e., interactions with the environment)

for a high-risk task like helicopter hovering.

This article presents an extended case study in the

application of neuroevolution to generalized helicopter

hovering. We propose several methods, examine the

practical issues involved in their construction, and analyze

the trade-offs and design choices that arise. In particular,

we describe and evaluate methods for three versions of

generalized helicopter hovering.2

First, we consider 2008 generalized helicopter hovering

(GHH-08), the task used in the 2008 RL Competition. We

describe the simple model-free strategy with which we won

first place in the competition. Furthermore, we describe a

more complex model-based approach developed later and

compare several ways of learning helicopter models.

Finally, we present a post-competition analysis showing

that, under some circumstances, the model-based approach

can substantially outperform the model-free approach.

Second, we consider 2009 generalized helicopter hov-

ering (GHH-09), the task used in the 2009 RL Competi-

tion. In this variation, wind is generalized in a more

complex way that renders unreliable the model-based

methods that excel in GHH-08. To address this, we propose

a hybrid approach that synthesizes model-free and model-

based learning to minimize the risk of a catastrophic crash.

We present the competition results, in which this method

performed best in 19 of 20 test runs but crashed on the

twentieth, earning a second place finish. We also present a

post-competition analysis that isolates the cause of the

crash and assesses whether the competition results are

representative of the method’s efficacy.

Finally, we propose a third variation on the task, which

we call fully generalized helicopter hovering (FGHH). Our

results on both GHH-08 and GHH-09 demonstrate that safe

exploration is feasible in both variations. It is easy to find a

generic policy that, while suboptimal, is robust enough to

avoid crashing on any MDP. Such a policy can then be

used to safely gather the flight data needed to learn a

model. FGHH complicates exploration by generalizing the

entire helicopter environment, rather than just wind

velocities. As a result, it is infeasible to find a fully robust

generic policy and computationally expensive to find one

that minimizes the risk of crashing. To address this chal-

lenge, we propose and evaluate an extension to our model-

based method that adapts recently developed methods for

efficient resampling [32] to minimize the computational

cost of discovering a good generic policy.

This article makes four main contributions. First, we

demonstrate that neuroevolution can be an effective tool

for complex, on-line reinforcement-learning tasks. While a

2 Source code for all the tasks and methods described in this article is

available at http://staff.science.uva.nl/*whiteson/helicopter.zip.
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naı̈ve approach has prohibitive sample costs, we propose

and validate model-free and model-based methods that use

neuroevolution as an off-line component to minimize the

cost of on-line learning. Second, our results provide new

evidence about the strengths and limitations of neuroevo-

lution: while neuroevolution excels at learning the weights

of fixed-topology neural networks, it does not discover

effective topologies for helicopter policies and is less

efficient at learning helicopter models than linear regres-

sion. Third, our results offer insight about the pros and cons

of model-free versus model-based approaches in this set-

ting. In particular, they demonstrate that, due to the diffi-

culty of learning reliable models, model-based approaches

to helicopter hovering are feasible only when a large

amount of domain expertise is available to aid the design of

a suitable model representation. However, given such a

representation, they can greatly outperform model-free

methods. Fourth, we demonstrate the potential of neuro-

evolution for solving aggressively generalized RL tasks

such as FGHH. By exploiting the latest advances in effi-

cient resampling, neuroevolution can effectively minimize

the cost of exploration in such challenging tasks.

The rest of this paper is organized as follows. Section

2 provides background on MDPs, helicopter hovering, and

generalized tasks. Sections 3, 4 and 5 describe, evaluate,

and analyze methods for GHH-08, GHH-09, and FGHH,

respectively.3 Section 6 discusses the results, Sect. 7

outlines opportunities for future work, and Sect. 8

concludes.

2 Background

In this section, we give a brief overview of MDPs, describe

the original helicopter hovering problem, and formalize the

notion of generalized tasks.

2.1 Markov decision processes

The sequential decision problems addressed in RL are

often formalized as MDPs [9], which can be described as

5-tuples hS;A; T ;R; ci where

• S is the set of all states the agent can encounter,

• A is the set of all actions available,

• T ðs; a; s0Þ ¼ Pðs0js; aÞ is the transition function,

• Rðs; a; s0Þ ¼ Eðrjs; a; s0Þ; is the reward function, and

• c 2 ½0; 1� is the discount factor.

The process evolves over a series of discrete timesteps.

In each timestep t, the agent observes its current state st 2

S (e.g., via sensors on a robot) and selects an action at 2 A
(e.g., by activating motors on a robot). Following T andR;
the agent receives an immediate reward rt and transitions to

a new state st ? 1.

A policy p(s, a) = P(a|s) indicates the probability of

selecting each action in each state. An optimal policy

p*(s, a) is one that maximizes the expected discounted

return:

Rt ¼ rtþ1 þ crtþ2 þ c2rtþ3 þ � � � ¼
X1

k¼0

ckrtþkþ1 ð1Þ

For every MDP there exists at least one deterministic

optimal policy p*(s) which directly maps states to actions

[82]. In this article, we consider only deterministic

policies.

When T and R are known to the agent, the result is a

planning problem, which can be solved using dynamic

programming methods [8]. When T and R are initially

unknown, the agent faces a reinforcement learning prob-

lem. Such a problem can be solved using temporal-differ-

ence methods [80], which extend principles of dynamic

programming to the learning setting. However, in many

tasks, better performance can be obtained using a policy

search approach [28, 41, 94], in which optimization

methods such as evolutionary computation are used to

directly search the space of policies for high performing

solutions. This article focuses on neuroevolutionary policy

search approaches.

2.2 Helicopter hovering

In the helicopter hovering task, an RL agent seeks a policy

for controlling a 3-dimensional simulated helicopter. The

dynamics of the task are based on data collected during

actual flights of an XCell Tempest helicopter. The goal is

to make the helicopter hover as close as possible to a fixed

position for the duration of an episode. Helicopter hovering

is challenging for several reasons. First, the transition

dynamics are complex. Second, both the state and action

spaces are continuous and high dimensional. Third, the task

involves high risk, as bad policies can crash the helicopter,

incurring catastrophic negative reward. Here we give a

brief description of the helicopter hovering problem; more

details can be found in [6, 57].

A helicopter episode lasts 10 min. During this time, the

helicopter simulator operates at 100 Hz, i.e., the helicopter

state is updated 100 times per second, yielding 60,000

simulator timesteps per episode. However, helicopter

control occurs at only 10 Hz, yielding 6,000 control

timesteps per episode. Throughout this article, we refer to

the current simulator timestep as ts and the current control

timestep as tc.

3 The work presented in Sect. 3 appeared earlier in the form of a

conference paper [47].
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At each control timestep, the agent receives a

9-dimensional state vector4 (see Table 1) and responds by

specifying a 4-dimensional action (see Table 2). Although

the transition function is stochastic (i.e., the agent does not

know to what state it will transition before its action is

complete), there is no noise in the agent’s state signal (i.e.,

the state is fully observable and thus the Markov property

holds). While this assumption would not strictly hold in a

real helicopter, it is a reasonable approximation for a

simulator, as modern systems often have access to

sophisticated hardware and software for highly accurate

state estimation. For example, several examples of control

for real helicopters have relied on the well-known VICON

motion-capture technology [19, 34, 60].

Together with the state vector, the agent also receives a

negative immediate reward equal to the sum, over all state

features, of the squared difference between that state fea-

ture and the fixed target position in which the helicopter

wishes to hover. Since the target position is the origin, this

is simply:

R ¼ �
X

i

s2
i

where si is the current value of the ith state feature. Reward

is not discounted, i.e., c = 1.

The helicopter begins each episode at the origin, i.e.,

si = 0 for all i. An episode ends prematurely if the heli-

copter crashes, which occurs if the velocity along any of

the main axes exceeds 5 m/s, the position is off by more

than 20 m, the angular velocity around any of the main

axes exceeds 4 p rad/s, or the orientation is more than p/

6 rad from the target orientation. Crashing results in a large

reward penalty equal to the most negative reward achiev-

able for the remaining time.

2.3 Generalized tasks

To discourage participants from overfitting to a single

MDP and to encourage them to develop methods capable

of robust, on-line learning, many events in the RL Com-

petitions are formulated as generalized tasks [91, 92]. A

generalized task G : H 7! ½0; 1� is simply a probability

distribution over a set of tasks H: In the RL Competitions,

G is not known to the participants. Instead, only a few

MDPs sampled from this distribution are released for

training. The competition is then decided by averaging the

performance of each participant’s agent across multiple test

runs, with each run i conducted using a single task hi

sampled independently from G; where hi 2 H is an MDP.

At the beginning of each test run, the agent does not

know which task has been sampled from G: Except in

degenerate cases, no fixed policy will perform well across

H: Consequently, the agent must learn on-line during each

test run in order to perform well in expectation across the

test runs.

3 The 2008 generalized helicopter hovering task

The problem of generalized helicopter hovering was first

introduced in the 2008 RL Competition. In this variation,

which we refer to as GHH-08, wind was added to the

helicopter simulator, significantly altering the transition

dynamics. The details of how the task was generalized

were kept secret during the competition. However, after the

competition, the software, based on RL-Glue [85], was

made public.5 Each possible task h is defined by two

parameters:

• windu 2 ½�5; 5�; wind velocity in m/s in the x-axis, and

• windv 2 ½�5; 5�; wind velocity in m/s in the y-axis.

The probability distribution G is uniform over the set H
of all possible values of this pair of parameters.

The presence of wind changes the way the helicopter

responds to the agent’s actions, in turn altering the control

policy needed to hover. Therefore, to excel in the gen-

eralized version of the problem, an agent must reason about

the level of wind in each MDP it faces and adapt its

behavior accordingly.

Table 1 The 9-dimensional state vector

x x-axis position

y y-axis position

z z-axis position

u x-axis velocity

v y-axis velocity

w z-axis velocity

/ Rotation around x-axis (roll)

h Rotation around y-axis (pitch)

x Rotation around z-axis (yaw)

Table 2 The 4-dimensional action vector

a1 Longitudinal cyclic pitch (aileron)

a2 Latitudinal cyclic pitch (elevator)

a3 Tail rotor collective pitch (rudder)

a4 Main rotor collective pitch

4 The simulator actually offers three additional state features

describing angular velocities but we omit these from the state

representation because they can be derived from the other nine state

features. 5 Available at http://rl-competition.googlecode.com.
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Before the competition, 10 MDPs sampled from G were

released for training. The competition itself was decided

based on average performance across 15 runs, each con-

sisting of 1,000 episodes on an MDP sampled indepen-

dently from G:
This section describes the solution methods we devel-

oped to tackle GHH-08. We first describe and evaluate, in

Sects. 3.1 and 3.2, component methods that enable the

agent to find policies and models for individual MDPs.

Then, in Sects. 3.3 and 3.4, we describe and evaluate

complete solution methods, one model-free and one model-

based, for the generalized task.

3.1 Evolving helicopter policies

Before addressing the challenges of generalized helicopter

hovering, we first consider how to evolve policies for a

single helicopter MDP with fixed wind parameters. This

process is a central component in each of the methods

presented in Sects. 3.3 and 3.4 for tackling the full, gen-

eralized problem.

We use a neuroevolutionary approach, i.e., we evolve

policies represented as neural networks. Given its numer-

ous successes in difficult RL tasks [28, 29, 43, 55, 76, 88,

89, 94], especially those that are large, noisy, and contin-

uous, neurevolution is well suited to this task. Other opti-

mization methods, such as cross-entropy [17] or covariance

matrix adaptation evolutionary strategies (CMA-ES) [30],

could also be used. We do not include empirical compar-

isons against such alternatives in this article because our

purpose is not to identify the best algorithm for optimizing

helicopter policies. Instead, our goal is to investigate how

to construct complete methods for generalized helicopter

hovering. To this end, we employ neuroevolution as a

representative optimization method for the subproblem of

evolving policies.

In the helicopter problem, each neural network generated

by evolution represents a different policy mapping states to

actions. To find a good policy, we employ a simple steady-

state neuroevolutionary method that builds its initial popu-

lation off a given prototype network. The details of this

algorithm, as well as the parameter settings used for all our

experiments on GHH-08 and GHH-09 (i.e., those presented

throughout Sects. 3 and 4), are specified in Appendix A.

The fitness function consists of the reward that the agent

accrues during a single episode when using the policy

specified by the network. Because of stochasticity in the

transition function, the resulting fitness function is noisy.

Therefore, we also tried using longer fitness evaluations in

which reward is averaged over multiple episodes but found

no performance improvement.

We consider four approaches to evolving neural net-

works using this method. In the first approach, we evolve

fully-connected single-layer perceptrons (SLPs), i.e., neu-

ral networks without any hidden nodes. In the initial pro-

totype network, all weights are set to 0.0.

In the second approach, we evolve SLPs but starting

from a prototype network whose weights correspond to a

baseline policy provided with the competition software.

This baseline policy is robust in that it never causes the

helicopter to crash. However, its performance is weak, as it

is unable to consistently hover near the target point. This

approach can be viewed as a simple form of population

seeding, which has proven advantageous in numerous

applications of evolutionary methods, e.g., [33, 38, 62].

In the third approach, we evolve multi-layer perceptrons

(MLPs) using a topology manually constructed by human

experts [57]. The topology, shown in Fig. 1, employs both

sigmoid and linear activation functions.

In the fourth approach, we evolve MLPs but seed the

initial weights such that it is equivalent to the baseline

policy. To implement the linear baseline policy in this

nonlinear topology, all links from the hidden nodes to the

outputs are set either to 1.0, to propagate the input signal

without modification, or to 0.0, so that they have no

influence on the network’s output.

All networks have nine inputs, corresponding to the state

features described in Table 1, and four outputs, one for

each action feature. In all four approaches, evolution

optimizes only the weights of fixed-topology networks.

However, we also tested two neuroevolutionary methods,

NeuroEvolution of Augmenting Topologies (NEAT) [76]

and Alternating Extension and Optimization of Neural

Networks (AEONN) [46], that can simultaneously opti-

mize network topologies and weights. Unfortunately, nei-

ther of these methods discovered topologies that

outperformed the manually designed topology. We suspect

this result is due to both the quality of the topology, which

Fig. 1 The manually designed topology of a neural network

helicopter policy, indicating which nodes use sigmoid activation

functions and which use linear summations
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was highly engineered, and the size of the topology space,

which makes it difficult for evolution to search.

To compare these four approaches, we conducted 10

independent runs of each approach in each of the 10

training MDPs, i.e., 100 runs per approach and 400 runs

total. The results, averaged over all 100 runs for each

method, are shown in the left side of Fig. 2. Student’s t

tests confirmed that the differences in final performance

between all approaches (except between the two SLP

approaches, which converge to nearly identical scores) are

statistically significant (p \ 0.0026).

The results demonstrate that seeding the population with

the baseline policy enables evolution to begin in a rela-

tively fit region of the search space and therefore can sig-

nificantly speed evolution. This is consistent with many

earlier results confirming the efficacy of population seed-

ing, e.g., [33, 38, 62]. The results also show that, when the

baseline policy is used, the manually designed MLP per-

forms substantially better than the SLP. This is not sur-

prising since the topology was carefully engineered for

helicopter control. More surprising is the poor performance

of the MLP when beginning from scratch, without popu-

lation seeding. This strategy appears to perform the worst.

However, a closer examination of the individual runs

revealed that the vast majority achieve performance similar

to the MLP using the baseline policy, albeit more slowly

(as in the best runs shown in the right side of Fig. 2). The

remaining few runs converge prematurely, performing

badly enough to greatly skew the average.

All the approaches described in this section evolve

policies only for a single training MDP, with no attempt to

generalize across MDPs with different wind settings. To

determine the robustness of the resulting policies, we

compared their average performance across all 10 training

MDPs to their performance on the particular MDP for

which they were trained. Specifically, we selected the best

single-layer and multi-layer policy evolved for each MDP

from the baseline policy and tested it for 10 episodes in

every training MDP. The results are shown in Table 3.

This comparison demonstrates that the MLP policies are

far more robust, achieving much better average perfor-

mance and lower variance across the training MDPs. In

fact, no specialized multi-layer policy crashes the heli-

copter on any of the 10 MDPs. By contrast, the single-layer

policies frequently crash on MDPs other than those they

trained on, with catastrophic effects on average reward.

Nonetheless, even the MLPs see an order of magnitude

performance drop when tested across all training MDPs.

This result underscores the challenges of achieving high

performance in the generalized version of the task, which

we address in Sects. 3.3 and 3.4.

3.2 Learning helicopter models

The results presented above demonstrate that neuroevolu-

tion can discover effective policies for helicopter hovering.

However, doing so incurs high sample costs because it

requires evaluating tens of thousands of policies through

interactions with the environment. Many of these policies

yield poor reward or even crash the helicopter. Conse-

quently, directly using evolution to find policies on-line is

infeasible for the competition because participants are

evaluated on the cumulative reward their agents accrue

during learning. Even if methods for improving the on-line

performance of neuroevolution [14, 89, 90] were used,

such an approach would not be practical.

One way to reduce sample costs is to use a model-based

approach. If the agent can learn a model of the environment
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Fig. 2 Average (left) and best (right) performance of the population champion over time on GHH-08 (lower is better)

Table 3 Performance of best SLP and MLP policies in GHH-08

evolved from the baseline policy: average reward (r) and standard

deviation (r) on the particular MDPs for which they were trained and

average reward (rG) and standard deviation (rG) across all training

MDPs

Topology r r rG rG

SLP -496.22 25.00 -2.508e6 2.345e5

MLP -132.60 2.17 -2001.89 46.43
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from flight data for each testing MDP early in the run, that

model can simulate the fitness function required by neu-

roevolution. Thus, once a model has been learned, evolu-

tion can proceed off-line without increasing sample costs.

Doing so allows the agent to employ a good policy much

earlier in the run, thus increasing its cumulative reward.

Learning such a model can be viewed as a form of

surrogate modeling, also known as fitness modeling [36], in

which a surrogate for the fitness function is learned and

used for fitness evaluations. Surrogate modeling is useful

for smoothing fitness landscapes [67, 98] or when there is

no explicit fitness function, e.g., in interactive evolution

[61, 69]. However, it is most commonly used to reduce

computation costs [37, 59, 67, 68, 70] by finding a model

that is faster than the original fitness function. The use of

surrogate modeling in our setting is similar but the goal is

to reduce sample costs, not computational costs.

Recall that, as described in Sect. 2.2, helicopter state is

updated at 100 Hz while the agent observes this state and

adjusts its action only at 10 Hz. Consequently, any learned

model is necessarily an approximation, as it can only

predict the next control timestep tc ? 1 given the current

control timestep tc and action, without explicitly modeling

the simulator timesteps ts that occur in between. In prac-

tice, however, it is still possible to learn models that cor-

rectly predict how a given policy will perform in GHH-08.

During the competition, the details of the helicopter

environment were hidden. However, helicopter dynamics

have been well studied. In particular, Abbeel et al. [3]

developed a representation of the transition function of a

hovering helicopter that uses a set of linear equations to

predict accelerations given a state and action at time ts.

utsþ1 � uts ¼ Cuuts þ gu þ Du þ wu

vtsþ1 � vts ¼ Cvvts þ gv þ Dv þ wv

wtsþ1 � wts ¼ Cwwts þ gw þ Ca4
a4tc þ Dw þ ww

ptsþ1 � pts ¼ Cppts þ Ca1
a1tc þ Dp þ wp

qtsþ1 � qts ¼ Cqqts þ Ca2
a2tc þ Dq þ wq

rtsþ1 � rts ¼ Crrts þ Ca3
a3tc þ Dr þ wr

The accelerations depend on the values of the g vector,

which represent gravity (9.81 m/s) expressed in the heli-

copter frame. The values of w are zero-mean Gaussian

random variables that represent perturbations in accelera-

tion due to noise.

Integrating the accelerations produces an estimate of the

velocities at time ts ? 1. These velocities describe half the

state at time ts ? 1. The remaining half, which describes

the helicopter’s position, is estimated by adding the

velocities at time ts to the position at time ts. As described

in Sect. 2.2, reward is a simple function of the helicopter’s

current state, which can be approximated using the state

estimated with these equations.

Because this model representation was not designed for

the generalized version of the problem, it does not explicitly

consider the presence of wind. Nonetheless, it can still

produce accurate models if the amount of wind in the

helicopter frame remains approximately constant, i.e., when

the helicopter position and orientation remain fixed. Since

helicopters in the hovering problem aim to keep the heli-

copter as close to the target position as possible, this

assumption holds in practice. Therefore, wind can be treated

as a constant and learning a complete model requires only

estimating values for the weights C, D, and w.

We consider three different approaches to learning these

weights. In the first approach, we use evolutionary com-

putation to search for weights that minimize the error in the

reward that the model predicts a given policy will accrue

during one episode. This approach directly optimizes the

model for its true purpose: to serve as an accurate fitness

function when evolving helicopter policies. To do so, we

apply the same steady-state evolutionary method used to

evolve policies (see Appendix A). Fitness is based on the

error in total estimated reward per episode using a single

policy trained on an MDP with no wind, which we call the

generic policy.

In the second approach, we use evolutionary computa-

tion to search for weights that minimize error in the

model’s one-step predictions. In other words, fitness is

based on the average accuracy, across all timesteps tc in an

episode, of the state predicted at time tc ? 1. Again we use

the same steady-state evolutionary method and compute

fitness using the generic policy.

In the third approach, we still try to minimize error in

one-step predictions but use linear regression in place of

evolutionary computation. Linear regression computes the

weight settings that minimize the least squared error given

one episode of data gathered with the generic policy.

For both the second and third approaches, the flight data

must first be preprocessed by dividing it into pairs of

consecutive states and subtracting gravity g from the state

at tc ? 1. After preprocessing, evolution or linear regres-

sion is used to estimate C and D. The noise parameters

w are approximated using the average of the squared pre-

diction errors of the learned model on the flight data.

We evaluated each of these approaches by using them to

learn models for each of the 100 test MDPs that were

released after the competition ended. Then we used the

learned model to evolve policies in the manner described in

Sect. 3.1 Finally, we took the best policy discovered in

each evolutionary run and averaged its performance over 5

episodes in the MDP on which the corresponding model

was trained.

The results, shown in Table 4, demonstrate that mini-

mizing error in one-step predictions yields much more

useful models. They also demonstrate that, when
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minimizing one-step error, linear regression is more

effective than evolution. Furthermore, linear regression

requires vastly less computation time than evolution. This

difference is not surprising since evolution requires on

average approximately 2000 evaluations to evolve a model.

By contrast, linear regression requires only one sweep

through the flight data to estimate model weights.

3.3 Model-free approach

In this section, we describe the simple model-free approach

for tackling GHH-08 that won first place in the 2008 RL

Competition.

The robustness analysis presented in Sect. 3.1 shows

that, while it is possible to evolve a policy that will not

crash on an arbitrary MDP, such a policy will not perform

as well as one optimized for that MDP. Thus, excelling in

the competition requires learning on-line in order to adapt

to each test MDP. At the same time, a good agent must

avoid crashing the helicopter and must minimize the time

spent evaluating suboptimal policies during learning.

Therefore, a naı̈ve strategy of evolving a new policy on-

line for each test MDP is impractical. Each competition test

run lasts only 1,000 episodes but, as shown in Fig. 2, tens

of thousands of episodes are required to evolve a strong

policy. Even if evolution could find a good policy in 1,000

episodes, it would accrue large negative reward along the

way. As mentioned in Sect. 3.2, models of the environment

learned from flight data can be used to reduce the sample

complexity of on-line learning. However, at the time of the

competition, we were unable to learn models accurate

enough to serve as reliable fitness functions for evolution.

Instead, we devised a simple, sample-efficient model-

free approach. In advance of the competition, specialized

policies for each of the 10 training MDPs were evolved

using the procedure described in Sect. 3.1 Then, for each

test MDP of the competition, the first 10 episodes were

spent evaluating each of these specialized policies in that

test MDP. Finally, whichever specialized policy performed

the best was used for the remaining 990 episodes of that

test MDP. This strategy, depicted in Fig. 3, allows the

agent to adapt on-line to each test MDP in a sample-effi-

cient way, without needing an accurate model.

Figure 4 (left) shows the results of the generalized

helicopter hovering event at the 2008 RL Competition, in

which this model-free approach won first place. Of the six

entries that successfully completed test runs, only one other

entry managed to avoid ever crashing the helicopter,

though it still incurred substantially more negative reward.

In fact, all the competitors accrued at least two orders of

magnitude more negative reward than our model-free

approach. Due to these large differences, the results are

shown in a log scale. Since this scale obscures details about

the performance of the model-free method, the same results

are also reproduced in a linear scale in Fig. 4 (right),

showing how the slope rises or falls suddenly as the test

MDP changes every 1000 episodes.

However, one entry matched the performance of the

model-free approach for approximately the first third of

testing. This entry, submitted by a team from the Com-

plutense University of Madrid, also uses neuroevolution

[51]. However, only single-layer feed-forward perceptrons

are evolved. Furthermore, all evolution occurs on-line,

using the actual test episodes as fitness evaluations. To

minimize the chance of evaluating unsafe policies, their

approach begins with the baseline policy and restricts the

crossover and mutation operators to allow only very small

changes to the policy. While their strategy makes on-line

neuroevolution more feasible, three crashes still occurred

during testing, relegating it to a fourth-place finish.

3.4 Model-based approach

After the competition, we successfully implemented the

model-learning algorithms described in Sect. 3.2 and tested

a model-based approach to generalized helicopter hover-

ing, depicted in Fig. 5. Given some test MDP, one episode

of flight data is gathered using the generic policy, which

avoids crashing but may not achieve excellent reward on

that MDP. Next, a complete model of the test MDP is

learned from the flight data via linear regression, the best

performing method. Then, neuroevolution is used to evolve

a policy optimized for this MDP, using the model to

compute the fitness function. Finally, the evolved policy

controls the helicopter for all remaining episodes on that

MDP.

Table 4 Performance of models learned via evolutionary computa-

tion to minimize error in reward (EC-MER) or in the next state (EC-

MENO), or via linear regression (LR). Results compare average

computation time (t) in seconds to learn the model and the median

(rm), average (ra) and standard deviation (r) of the reward of the best

policy evolved with the model and tested in the MDP for which the

model was trained

Method t rm ra r

EC-MER 562.94 -1.55e4 -1.184e6 3.268e6

EC-MENO 611.10 -223.19 -4988.82 6722.97

LR 2.05 -142.25 -974.24 305.68

Fig. 3 The model-free approach. The dashed box occurs off-line
while the solid boxes occur on-line, during actual test episodes
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We also tested an incremental model-based approach,

depicted in Fig. 6, which works the same way but contin-

ues to evolve new policies using updated models as more

flight data is gathered. Specifically, the incremental

approach learns a new model at the end of each episode

using all the flight data gathered on that MDP. Then,

evolution is repeated using the latest model to find a new

policy for the next episode. Once the performance of the

policy in the MDP is at least as good as that predicted by

the model, learning is halted and that policy is employed

for the remaining episodes. The incremental approach is

similar to traditional methods for model-based RL (e.g.,

[54, 81]), but evolution, rather than dynamic programming

[8], is used to find a policy given the model. It is also

similar to apprenticeship learning [1–5], though the initial

flight data is gathered by the generic policy instead of a

human expert.

To test these methods, we applied them to each of the

100 test MDPs and measured the average cumulative

reward they accrued over 1,000 episodes. Figure 7 shows

the results. Student’s t tests confirmed that the differences

in final performance between the incremental model-based

approach and the other approaches are statistically signif-

icant (p \ 0.0002).

The model-free approach used in the competition gath-

ers a lot of negative reward in the first 10 episodes as it

evaluates each of the policies optimized for the training

MDPs. Thereafter, its cumulative negative reward grows

more slowly, as it uses only the best of these policies.

Surprisingly, the model-based approach performs worse

than the model-free approach. Due to noise in the flight data,

linear regression cannot always learn an accurate model

given only one episode of flight data. Thus, the policies

evolved using that model sometimes perform poorly in the

corresponding test MDP. However, the incremental model-

based approach performs better than the model-free

approach. By continually gathering flight data for learning, it

reliably finds an accurate model within a few episodes.
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GHH-08 during the 2008 RL Competition (lower is better). At right,
linear-scale cumulative reward of only the model-free approach in the

same competition, showing how the slope rises or falls suddenly as

the test MDP changes every 1,000 episodes

Fig. 5 The model-based approach. The dashed boxes occur off-line while the solid boxes occur on-line, during actual test episodes

Fig. 6 The incremental model-

based approach. The dashed
boxes occur off-line while the

solid boxes occur on-line,

during actual test episodes
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4 The 2009 generalized helicopter hovering task

For the 2009 Reinforcement Learning Competition, the

generalized helicopter hovering task was modified to create

a new challenge. The base task is the same and general-

ization is still restricted to variations in wind patterns.

However, those wind patterns are considerably more

complex. As in 2008, the details of the task were kept

secret during the competition but were revealed afterwards.

In GHH-09, two sinusoidal wind currents run along the

north-south and east-west axes. Each possible task h is

defined by four parameters describing these currents:

• amp 2 ½�5; 5�; maximum velocity,

• freq 2 ½0; 20p�; cycles per second,

• phase 2 ½0; 2p�; fraction of the wave period, and

• center 2 ½0; 5�; center amplitude of sine wave.

The probability distribution G is uniform over the set H
of all possible values of these parameters.

In GHH-08, wind is fixed for every timestep in a given

task. However, in GHH-09, wind changes over time. In

fact, at each simulator timestep, the wind velocity for the

north-south and east-west axes is computed as follows:

wtsþ1 ¼ amp� sin½freq� ðts=100Þ þ phase� þ center

Setting freq and phase to zero yields a steady wind at

center.

In the remainder of this section, we describe and eval-

uate the method we devised for GHH-09. In addition to the

2009 competition results, we present a post-competition

analysis assessing whether the competition results are

representative of our method’s efficacy.

4.1 Hybrid approach

Due to the more complex wind dynamics, neither the

model-free nor the model-based methods that excel in

GHH-08 perform well in GHH-09. The model-free

approach relies on the assumption that each specialized

policy evolved off-line is robust enough to test on-line. In

other words, while potentially suboptimal, these policies

will not incur catastrophic negative reward. This assump-

tion, which holds in GHH-08, does not hold in GHH-09.

To illustrate this effect, we conducted 80 runs testing the

performance of the model-free method in GHH-09. Since

no test MDPs were available before the competition, the

training MDPs are used both for training and testing. First,

a specialized policy was evolved for each of the 10 training

MDPs. Then, 8 test runs were conducted with each of these

MDPs. Since the agent does not know which MDP is used

in each run, it tries out each specialized policy (except the

one specifically trained for this MDP) during the initial

episodes of each test run, as per the model-free method

described in Sect. 3.3

The solid red line in Fig. 8 shows the resulting average

cumulative performance. Though this method performs

well on most runs, approximately 10% of the time the more

complex wind dynamics lead to crashes when specialized

policies evolved on one training MDP are tested on a dif-

ferent training MDP. Since even a single crash results in so

much negative reward, the overall performance of the

model-free method is poor.

Different problems arise for the incremental model-

based approach. As described in Sect. 3.2, the model rep-

resentation does not explicitly account for wind. This does

not pose a problem for GHH-08, since wind velocities are

approximately fixed in the helicopter frame. In GHH-09,

however, wind velocity changes substantially over time. As

a result, the incremental model-based approach cannot

learn accurate models and thus cannot evolve high-per-

forming policies off-line.

The dashed line in Fig. 8 illustrates this effect, showing

the average cumulative performance of the incremental
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model-based method. As before, 80 runs were conducted, 8

on each training MDP. No crashes occurred during these

runs, leading to better overall performance than the model-

free method. A Student’s t test confirmed that the final

performance difference was statistically significant

(p = 5.8 9 10-12). However, the policies produced by the

incremental model-based method perform worse on aver-

age (-448.07 per episode) than the model-free method

when it avoids crashing (-215.83 per episode).

An obvious solution would be to improve the model

representation such that it explicitly accounts for wind

velocity that changes over time. However, since the wind

dynamics were not known during the competition, no prior

knowledge was available that would guide the selection of

a better model representation. We made several guesses,

e.g., that stationary wind had been added to the z-axis, but

were unable to find a representation that outperformed the

one used for GHH-08.

Therefore, we designed a hybrid approach to try to

minimize the weaknesses of both the model-free and

incremental model-based approaches in GHH-09. We

selected the two most reliable training MDPs6 and evolved

specialized policies for them. These MDPs are reliable in

the sense that, in the experiments shown in Fig. 8, the

specialized policies evolved for them never crashed on

the other training MDPs. At the beginning of each test run,

the hybrid method tests each of the two specialized policies

by using it to control the agent for one episode on-line, as

in the model-free approach.

Next, the flight data gathered during these two episodes

is used to learn a model with linear regression, as in Sect.

3.4 Since evolution does not always produce good policies

with such a model, the hybrid method conducts three

independent evolutionary runs using this model and tests

the resulting policies on-line for one episode each. Finally,

the policy that performs best during these five initial epi-

sodes (two for policies generated by the model-free method

and three for the incremental model-based method) is

selected and used for the remainder of the test run.

4.2 Adding safeguards

While this hybrid approach tries to minimize the weak-

nesses of the model-free and incremental model-based

approaches, it still allows some chance of a helicopter

crash. In particular, thanks to model inaccuracies, it is

possible that one of the three policies evolved from the

model will crash when tested. It is also possible that one of

these policies will perform well during its initial test but

then crash on one or more episodes later in the run. While

no crashes occurred during the evaluation of the

incremental model-based method shown in Fig. 8, our

informal experiments conducted leading up the 2009

competition showed that such crashes do occur approxi-

mately 0.5% of the time.

Since even one crash can devastate the overall perfor-

mance of a helicopter agent, we augmented the hybrid

method with safeguards designed to further reduce the

chance of a helicopter crash. In particular, the agent tries to

detect, within a single episode, whether the helicopter is

headed towards a crash. If so, it replaces the current policy

with the generic policy. As with GHH-08, the generic

policy is evolved in the absence of wind and, while its

performance is suboptimal, it never crashes the helicopter.

To detect when the helicopter is headed towards a crash,

the agent checks at each control timestep tc whether the

helicopter is in a dangerous state. We define a dangerous

state as one in which position, velocity, or angular velocity

along any axis falls outside the range [ -0.5, 0.5]. By

switching to the generic policy whenever a dangerous state

occurs, the hybrid method further reduces the chance that

any episode will result in a crash.

At the end of any episode in which a dangerous state

occurs, the policy that induced that state is discarded. A

new evolutionary run using the model is conducted to

produce a replacement policy, which is used for the

remainder of the test run or until it also induces a dan-

gerous state. The hybrid approach is depicted in Fig. 9.

The blue dotted line in Fig. 8 shows the average

cumulative performance of the hybrid method, including

this safeguard. As before, 80 runs were conducted, 8 on

each training MDP. Integrating the model-free and incre-

mental model-based methods seems to improve perfor-

mance over using either method alone. A Student’s t test

confirmed that the difference in final performance between

the hybrid and model-free approaches is statistically sig-

nificant (p = 1.4 9 10-14). However, due to high variance

resulting from infrequent crashes by the incremental

model-based method, the performance difference between

it and the hybrid method was significant only at a 90%

confidence level (p = 0.07585).

By testing only the safest specialized policies, the hybrid

method strives to minimize the chance of a catastrophic

Fig. 9 The hybrid approach. The dashed boxes occur off-line while

the solid boxes occur on-line, during actual test episodes6 MDP #4 and MDP #7 from the competition training set.
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crash. By testing the results of several independent runs of

evolution using the learned model, the hybrid method

strives to maximize the chance that a high-performing

policy will be selected for the remainder of each run. The

safeguard also proved useful: on one run, the helicopter

was headed towards a crash while using a policy evolved

with the model. The safeguard switched to the generic

policy, preventing a crash that would otherwise have erased

the hybrid method’s performance advantage.

While these results showed the safeguard’s potential to

improve performance, the results of the 2009 competition

revealed limitations in its ability prevent crashes. Further

experiments conducted after the competition showed that

the success rate of the safeguard in preventing crashes

depends critically on the choice of the fallback policy. In

the following section, we present and discuss these addi-

tional results.

4.3 Competition and post-competition analysis

Based on its superior performance on the training MDPs,

we submitted the hybrid method to the 2009 competition,

the results of which are shown in Fig. 10. Three entries

successfully completed the test runs but one incurred sev-

eral orders of magnitude more negative reward than our

entry (note the log scale in the figure). The other entry, an

updated neuroevolutionary agent submitted by the team

from the Complutense University of Madrid, was much

more competitive but still accrued 85% more negative

reward during the first 19 test runs. However, on the

twentieth test run, our entry crashed the helicopter during

the third episode, while testing one of the policies evolved

from the model. During this episode, the agent detected

that the helicopter entered a dangerous state and switched

to the generic policy. However, the helicopter was already

too close to crashing and the generic policy was unable to

stabilize it. The negative reward incurred for this crash was

great enough to relegate our entry to a second-place finish.

The crash that prevented the hybrid approach from

winning was exactly the sort of event that the safeguards

described above were designed to avert. Therefore, after

the competition, we conducted additional experiments to

analyze the cause of its failure and determine whether the

competition was representative of the method’s perfor-

mance or merely bad luck.

To do so, we tested both the model-free and hybrid

methods on the 20 MDPs used in the competition testing

runs. For each MDP, we tested each method for 3 inde-

pendent runs, for a total of 60 runs per method.

We hoped to conduct similar additional runs for the

winning agent from the Madrid team. However, we were

not able to reproduce the exact agent they submitted.

Though they shared with us the source code they used for

training, the behavior of their agent depends not only on

this code but on the neural-network weights that resulted

from an ad-hoc training regimen conducted before the

competition. Unfortunately, they were not able to provide

us with these weights or sufficient details of the training

regimen to enable reliable reproduction of their agent (José

Antonio Martin H., personal communication). However,

we can still use the winning agent’s performance during the

competition as an unbiased estimator of its expected

performance.

Figure 11 shows the average cumulative performance of

the model-free and hybrid methods during these post-

competiton runs, plotted against the average cumulative

performance of the winning agent during the competition.

As expected, the hybrid method reduces the chance of a

crash: it crashed only 1% of the time, compared to 2.67%

for the model-free method. As a result, it appears to

modestly outperform the model-free method early on,

though the difference is significant only at a 90% confi-

dence level (p = 0.08675). However, because it falls back

on the generic policy more often, it tends to accrue more

negative reward per timestep when it does not crash, such

that its final cumulative performance is only as good as that

of the model-free method.

Furthermore, the hybrid method’s cumulative perfor-

mance is not as good as that of the winning agent, sug-

gesting the outcome of the competition was not a fluke.

However, the hybrid method was moderately unlucky in

the competition: if crashes occur on 1% of runs, the

probability of one or more crashes on 20 runs is only

18.21%. It is also possible that the winning agent was lucky

and would occasionally crash if tested on all 100 MDPs.

However, this seems unlikely, since the winning agent did

not crash even on the difficult MDP that proved problem-

atic for the hybrid method in the competition.
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Fig. 10 Cumulative reward accrued by competitors in the general-

ized helicopter hovering event of the 2009 RL Competition (lower is

better). The test MDP changes every 1,000 episodes
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In any case, the results make clear that the safeguards

built into the hybrid method to minimize crashes are

inadequate. From analyzing the runs that resulted in cra-

shes, we concluded that the mechanism for determining

that the helicopter is headed towards a crash works reli-

ably, detecting a dangerous state well in advance of the

crash. Therefore, we hypothesized that the problem lies in

the generic policy to which the agent switches when such

states occur. Though not designed to exploit a particular

wind setting, the generic policy is still optimized to max-

imize performance (in the absence of wind). As a result, it

may not be robust enough to save the helicopter when it is

already in a dangerous state.

To test this hypothesis, we altered the hybrid method to

fall back on the baseline policy rather than the generic

policy. Recall from Sect. 3.1 that the baseline policy,

provided with the competition software, is designed purely

for robustness: it is not optimized for any MDP but merely

tries to minimize the chance of crashing. We tested this

method for 300 runs on the 100 test MDPs, the results of

which are also shown in Fig. 11. Using the baseline policy

improves the hybrid method’s performance such that it

approximately matches that of the winning agent. The

improvement is a result of avoiding crashes; in fact, this

method never crashed on any of the 300 test runs. How-

ever, due to high variance resulting from crashes by the

original hybrid method, the performance difference

between the two hybrid methods was significant only at a

90% confidence level (p = 0.0849).

Of course, avoiding crashes comes at a price, as the

baseline policy performs worse than the greedy policy

when the latter does not crash. We chose the generic policy

as a fallback because, in training, it seemed to achieve this

superior performance without increasing the chance of

crashing (see Fig. 8). However, the post-competition

analysis reveals that the training MDPs were misleadingly

easy and the generic policy is not safe enough to use as a

fallback. This design decision proved critical in the

competition.

5 The fully generalized helicopter hovering task

While GHH-08 and GHH-09 both pose significant chal-

lenges, they also possess simplifying characteristics that

are critical to the feasibility of the approaches described

above. First, the fitness of a policy can be reliably esti-

mated in a single episode. Stochasticity in the transition

function makes the fitness function noisy, but in practice

this noise is not large enough to necessitate resampling [7,

74], i.e., averaging fitness estimates over multiple episodes.

If resampling were required, the model-free approach

would need more episodes to determine which specialized

policy to use in each test MDP, lengthening the period in

which it accrues a lot of negative reward. Resampling

would also greatly slow policy evolution, exacerbating the

computational expense of the model-based approaches.

Second, there exist policies, such as the generic and

baseline policies, that do not crash on any MDPs, regard-

less of the wind setting.7 This characteristic greatly reduces

the danger of exploration. In GHH-08, none of the spe-

cialized policies crash, making it safe to test each one on-

line and thereby identify the strongest specialized policy

for a given MDP. While not all the specialized policies are

safe in GHH-09, enough are to make a model-free

approach perform well. Without safe specialized policies, a

model-free approach would be infeasible.

Similarly, the model-based approaches require a safe

policy to gather flight data for model learning. For GHH-

08, the model-based approaches use the generic policy to

gather this data. For GHH-09, the hybrid methods use two

safe specialized policies to gather flight data, though the

generic policy is also safe. In lieu of such policies, the

model-based approaches would not be able learn models

without the risk of catastrophic negative reward.

To determine whether neuroevolutionary methods can

be developed that tackle the helicopter hovering task

without relying on these simplifying characteristics, we

devised our own, more aggressively generalized version of

the task, which we call fully generalized helicopter hov-

ering (FGHH). The main idea is to make H; the set of

possible MDPs, large enough that no single policy can

reliably avoid crashing on MDPs drawn from G:
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Fig. 11 Cumulative reward on GHH-09 of the model-free method,

hybrid method, and hybrid method with the baseline policy as

fallback instead of the generic policy, averaged over 3 runs on each of

the 20 competition MDPs. The performance of the winning agent on

the 20 competition runs is also plotted for comparison

7 The generic policy never crashes when used for an entire episode

but may, as noted in Sect. 4.3, crash when started in a dangerous state.
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In GHH-08 and GHH-09, the basic transition dynamics

are the same in every MDP and generalization occurs only

across wind settings. In contrast, FGHH generalizes across

the 12 parameters governing the transition dynamics (the C

and D variables in the equations shown in Sect. 3.2). For

simplicity, the noise parameters w are fixed and there is no

wind. The distribution G over the resulting H is formed by

setting a normal distribution over each parameter. The

mean of this normal distribution is the default value for that

parameter. These default values, shown in Table 5, corre-

spond to the transition dynamics in GHH-08 and GHH-09

when there is no wind. The variance of the normal distri-

bution is (dr)2, where d is the default value. Section 5.1

below describes how we set r, which controls the breadth

of generalization.

Generalizing the task in this way renders the model-free

approach infeasible, as trying many specialized policies is

too dangerous. Furthermore, it forces a model-based

approach to directly address the challenges of exploration,

since a generic policy must be found that minimizes the

risk of crashing while gathering the flight data needed for

model learning. Finally, it necessitates efficient methods

for resampling, as accurately assessing any candidate

generic policy requires averaging its performance over

multiple MDPs sampled from G:
The remainder of this section describes how we augment

the incremental model-based approach to address these

new challenges. Throughout, we assume full knowledge of

G: This is a practical necessity, since FGHH is not part of a

competition and there are thus no organizers to select G and

keep it hidden. Nonetheless, FGHH poses a real on-line

learning challenge: though the agent knows G; it does not

know which h sampled from G it faces on a given test run.

5.1 Fixed resampling approach

Given a suitably large value of r, the generalization in

FGHH ensures that no single policy will avoid crashing on

any MDP drawn from G: As a result, finding a suitable

generic policy with which to gather flight data for model

learning becomes more challenging. In GHH-08 and GHH-

09, it was sufficient to evolve a generic policy in the

absence of wind and simply assume it was reliable enough

to safely gather flight data across all wind settings. As we

show below, this approach fails in FGHH because a generic

policy evolved on the default settings shown in Table 5

will often crash on other MDPs drawn from G:
To address this difficulty, we augment the incremental

model-based approach to more rigorously select a generic

policy that minimizes the chance of crashing during flight

data collection. In particular, a generic policy is evolved,

not with a single MDP for the fitness evaluation, but rather

with a new MDP sampled from G each time. When this

evolutionary run completes, the best performing policy is

used as a generic policy for the incremental model-based

approach shown in Fig. 6. That is, in each test run, the

generic policy is used to gather flight data, which is used to

evolve a policy specialized to that MDP.

Sampling MDPs from G obviously introduces an enor-

mous amount of noise into the fitness function. There are

many possible ways to address this, e.g., by enlarging the

population according to population-sizing equations that

consider the variance of the fitness function [16, 25, 26,

31]. In this article, we focus on the well-known technique

of resampling, i.e., averaging performance across multiple

episodes. In this section, we consider a simple fixed

resampling approach, in which each generic policy is

evaluated for k episodes. In Sect. 5.2, we propose a more

sophisticated resampling technique.

The fixed resampling approach evolves generic policies

using a slightly different neuroevolutionary approach than

that used for GHH-08 and GHH-09. In particular, it uses a

generational algorithm rather than a steady-state one. This

change was made to create consistency with the selection

races approach (introduced below in Sect. 5.2), which

requires a generational approach. The details of the gen-

erational algorithms and parameter settings are specified in

Appendix B.

To fully specify FGHH, we must select a value for r.

Choosing r properly is critical to creating a suitable task. If

r is too low, the task will not be sufficiently generalized

and may not be any more difficult than GHH-08 or GHH-

09. If r is too high, the task will be too difficult, as even a

resampling approach will not be able to find a generic

policy stable enough to gather the flight data needed for

model learning.

Table 5 Default model parameters for FGHH

Cu -0.18 Du 0.00 wu 0.1941

Cv -0.43 Dv -0.54 wv 0.2975

Cw -0.49 Dw -42.15 ww 0.6058

Cp -12.78 Dp 33.04 wp 0.1508

Cq -10.12 Dq -33.32 wq 0.2492

Cr -8.16 Dr 70.54 wr 0.0734
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To ensure an appropriate choice, we tested the fixed

resampling approach at different values of r and k to find a

value of r where the best performing value of k is greater

than 1, indicating a need for resampling. We found that

when r\ 0.2, no resampling is required. Fig. 12 shows the

performance of the generation champion, averaged over 24

independent runs, for different values of k with r = 0.2.

Not surprisingly, there is a trade-off between the speed and

quality of learning. Lower values of k make faster progress

at the beginning because they can evaluate policies more

quickly; higher values of k plateau higher because they can

more accurately make fine distinctions between policies.

While values of k [ 1 perform best in the long run, good

performance is still possible with k = 1. In contrast,

Fig. 13 shows results when r = 0.3. In this case, k = 1

performs poorly, as a single fitness evaluation is not

enough to guide evolution. When k = 2, evolution makes

significant progress but plateaus early. To achieve good

performance, k C 5 is required.

5.2 Selection races approach

The results in the previous section make clear that a sig-

nificant amount of resampling is required to evolve a good

generic policy for FGHH. Consequently, the computational

costs of the fixed resampling approach are much higher

than those of the model-based approaches used for GHH-

08 and GHH-09, since computing each fitness estimate

requires simulating multiple episodes of evaluation. The

increased computational costs make the fixed resampling

approach less practical for a real-world setting. For

example, when computational resources are limited, it will

be necessary to terminate evolution early, before perfor-

mance plateaus. As a result, flight data for model learning

will be gathered using an inferior generic policy that

accrues more negative reward and has a higher chance of

crashing the helicopter.

To address this problem, we developed a second method

for FGHH that we call the selection races approach. Like

the fixed resampling approach, this method evolves a

generic policy that minimizes the probability of crashing

during flight data collection. As before, it evaluates each

candidate policy on multiple MDPs sampled from G:
However, the number of episodes spent evaluating each

policy is not fixed. Instead, episodes are allocated to poli-

cies dynamically, in an attempt to most efficiently deter-

mine which policies in the current generation should be

selected as parents for the next generation.

Many strategies for making resampling more efficient

have been developed, e.g., [7, 11, 12, 42, 56, 74]. For this

work, we adapt a strategy recently proposed by Heidrich-

Meisner and Igel [32] that uses selection races, a technique

originally developed by Maron and Moore [50], to deter-

mine how many episodes to spend evaluating each policy.

The main idea is to maintain confidence intervals around

the fitness estimates of each candidate policy. These

intervals are used to determine when, with probability

d, the best l of the k candidate policies in each generation

have been selected for reproduction.8

In particular, policies are sorted into three pools:

selected, discarded, and undecided. In each iteration, all the

undecided policies are evaluated for one additional epi-

sode. If, as a result of these evaluations, the lower confi-

dence bound of an undecided policy becomes larger than

the upper confidence bound of at least k - l other policies,

it is moved to the selected pool. Conversely, if the upper

confidence bound of an undecided policy is lower than the

lower confidence bound of at least l other policies, it is
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8 Note that, while [90] also proposes an approach based on

confidence intervals, it is not suitable here because it aims to

maximize the reward accrued during on-line evolution as opposed to

minimizing the computational cost of off-line evolution.
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moved to the discarded pool. This process repeats until the

selected pool contains l policies or every undecided policy

has already been evaluated for tlimit episodes. In either case,

the l policies with the highest estimated fitness at the end

of the generation are selected for reproduction.

In principle, this method could be directly applied to the

problem of selecting generic policies in FGHH. However,

in practice, we had to substantially modify the method to

produce an algorithm suitable to our setting. The first

change concerns the way confidence bounds are computed.

Both Heidrich-Meisner and Igel and Maron and Moore

propose using the Hoeffding bound, which states that with

probability d the expected fitness of policy i is

Xi ¼ X̂i � ci;t

after t episodes of evaluation. Here X̂i ¼ 1
t

Pt
j¼1 Xi;j; where

Xi,j is the fitness estimate from the jth evaluation of policy

i. Furthermore,

ci;t ¼ ða� bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2=ð1� dÞÞ

2t

r

where Xi;j 2 ½a; b�:
The Hoeffding bound is problematic in the helicopter

task because of the range of possible fitness estimates a

policy can accrue on a given episode. A perfect policy

will never accrue negative reward so a = 0. However,

the worst possible policy crashes immediately and

accrues the maximal possible negative reward on each

timestep, yielding b ^ -1 9 107. Consequently, the

confidence bounds are enormous. This would not be a

problem if the typical difference in fitness between two

policies was in a similar range. However, once evolution

discovers policies that rarely crash, differences in fitness

are typically many orders of magnitude less than a - b.

As a result, using the Hoeffding bound is infeasible, as

the conditions required to select or discard policies are

never met.

Instead, we use Bayesian confidence bounds, as also

proposed by Maron and Moore. This approach typically

produces tighter bounds but assumes that the distribution

over fitness values for each policy is normal. While this is

not necessarily true in FGHH, the Bayesian confidence

bounds still perform well in practice. As with the Hoeff-

ding bound, these bounds state that with probability d the

expected fitness of policy i is Xi ¼ X̂i � ci;t: However, in

our implementation, ci,t is now defined as:

ci;t ¼ Zdr̂

where Zd is the number of standard deviations from the

mean of a standard normal distribution required to contain

area of size d and r̂ is the estimated standard error. This

estimate is calculated using the Bayesian method, which

employs the Jeffreys prior and assumes that each of the

sampled fitness values have the same mean and variance.9

The second change concerns the way the confidence

bounds are updated. The algorithm described by Heidrich-

Meisner and Igel keeps running estimates of these bounds

and updates them only when new data makes them tighter.

That is,

LBi  maxfLBi; X̂i � ci;tg
UBi  minfUBi; X̂i þ ci;tg

where LBi and UBi are the lower and upper confidence

bounds of policy i, respectively. This approach works well

in their experiments but leads to difficulties in the heli-

copter task, again because of the large range of possible

cumulative rewards. The left side of Fig. 14 illustrates how

a sequence of episodes evaluating a given policy can lead

to a problematic scenario. In the first two episodes, the

policy performs similarly but in the third episode it per-

forms significantly worse. Since the new lower bound

would be lower than the old one, it is not updated. As a

result X̂i\LBi: In other words, the mean is below the lower

bound! This can lead to undesirable behavior in selection

races. For example, the policy may be selected even if its

expected fitness is low, because its lower bound will stay

high no matter how far the mean drops.

To address this problem, we alter the update of the

confidence bounds to incorporate new data regardless of

whether the new resulting bounds are tighter:

LBi  X̂i � ci;t

UBi  X̂i þ ci;t:

The right side of Fig. 14 shows the bounds updates that

occur on the same example using this new scheme. Since

the bounds are always updated after each episode, the mean

stays within the lower and upper bounds and the weaker

performance in the third episode produces a corresponding

drop in the lower bound.

Algorithm 1 contains pseudocode of our modified

selection races algorithms for picking l policies in a given

generation. First, each policy is given an initial evaluation

and bounds are initialized (lines 5–8). In each iteration,

each undecided policy receives another evaluation and the

corresponding bounds are updated (lines 12–17). Then,

policies are selected or discarded if appropriate (lines 18–

25). Finally, if the selected pool is still too small once tlimit

is reached, the highest ranked undecided policies are added

to it (lines 34–39).

To evaluate this method, we conducted 24 independent

runs in FGHH with r = 0.3 at each of several values of d.

9 Our implementation uses the bayes_mvs method of the SciPy

Python package.
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The other parameters were set as follows: k ¼ 50; l ¼
20; tlimit ¼ tmin ¼ tmax ¼ 10; a ¼ 0:1: Since FGHH is so

noisy, we found that setting tlimit \ tmax was pointless,

since tlimit always quickly grew to reach tmax. Hence, we set

tlimit = tmax, which effectively renders tmin and a irrelevant.

The other neuroevolutionary parameters were set the same

as with fixed resampling, as shown in Appendix B.

Figure 15 shows the resulting performance at each value

of d, compared to the fixed-resampling method at k = 5,

the best-performing setting. At every setting, the selection

races approach outperforms fixed resampling. Student’s t

tests confirmed that these performance differences are

statistically significant (p \ 1 9 10-4). By more effi-

ciently allocating episodes of evaluation to candidate pol-

icies, the selection races approach is able to find better

policies substantially more quickly.

Both these results and those presented in Sect. 5.1

measure only the performance of evolution while searching

for generic policies. We also evaluated the performance of

the incremental model-based approach in FGHH when

using the best policies produced by evolution to gather

flight data for learning models. In other words, we tested

the strategy shown in Fig. 6 with either the fixed resam-

pling or selection races method used to evolve the generic

policy.

Figure 16 shows the results of 100 runs conducted for

each method. In each run, the incremental model-based

method used the generic policy produced from a different

run of either fixed resampling or selection races, at the

best-performing settings. As a baseline, the graph also

shows the performance of the incremental model-based

method using a generic policy discovered as was done for

GHH-08 and GHH-09: by evolving it for a fixed MDP,

without explicitly selecting for robustness across many

MDPs. We used an MDP we call the zero setting, which

corresponds to the mean of G for FGHH, i.e., using the

default parameter values shown in Table 5.

The results verify the importance of evolving a generic

policy that is sufficiently robust. Since FGHH is more

aggressively generalized, generic policies evolved only

for the zero-setting are not reliable, resulting in poor

performance for the incremental model-based method.

The results also underscore the importance of efficient

resampling. Though fixed resampling explicitly searches

for robust generic policies, wasteful evaluations slow it

down. Consequently, the best generic policy found after

500,000 evaluations leads to performance for the incre-

mental model-based method that is only marginally better

than with a generic policy evolved just for the zero setting

(the difference is not statistically significant). While fixed

resampling could in principle discover better generic

policies if run longer, the computational expense of doing

so quickly becomes prohibitive. In contrast, thanks to

smarter resampling, selection races are able to discover

stronger generic policies in the same number of evalua-

tions, yielding much better performance for the incre-

mental model-based method. Student’s t tests confirmed

that the differences in final performance between the

selection-races and zero-setting methods is statistically

significant (p = 0.0402). Due to high variance resulting

from infrequent crashes by the fixed-resampling method,

the performance difference between it and selection races

was significant only at a 90% confidence level

(p = 0.0706).
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Fig. 14 At left, an example of

unwanted behavior when

always trying to tighten the

confidence bounds as much as

possible. With a confidence

level of 90%, the average fitness

drops below the lower bound at

the 3rd evaluation. At right, the

same scenario under our

alternative scheme, which

ensure that the mean stays

between the upper and lower
bounds
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6 Discussion

The experimental results presented in the preceding sec-

tions provide considerable evidence regarding the pros and

cons of various neuroevolutionary approaches to general-

ized helicopter hovering. Strictly speaking, the results do

not support any claims about how such methods might

perform in other domains. This is especially the case since,

by design, these methods were optimized for the specific

challenges and constraints of these benchmark problems.

However, we believe that these results nonetheless under-

score some broader issues in both evolutionary computa-

tion and reinforcement learning.

First, the results highlight the importance of on-line

learning for evolutionary computation. Evolutionary

approaches have seen enormous success in reinforcement

learning but the results often focus on off-line settings.

While evolution has also succeeded on-line [58, 71, 77],

especially in evolutionary robotics [20, 21, 45, 52, 64,

100], and some research has investigated customizing such

methods to on-line settings [14, 15, 21, 65, 83, 89, 90], the

problems tackled by evolutionary methods typically

assume the availability of a fitness function that requires

only computational resources to employ. Even in research

Algorithm 1 SELECT (fx1; . . .; xkg;l; tlimit; tmin; tmax; a; d)

1: S ¼ ; // selected individuals

2: D ¼ ; // discarded individuals

3: U ¼ fxi j i ¼ 1; . . .; kg // undecided individuals

4: t  1 // current iteration

5: for all xi 2 U do

6: Xi;t  evaluateðxiÞ // initial evaluation

7: LBi  0;UBi  0 // initial lower and upper bounds

8: end for

9: while t\tlimit ^ jSj\l do

10: t  t þ 1

11: // reevaluate undecided policies

12: for all xi 2 U do

13: Xi;t  evaluateðxiÞ
14: X̂i  1

t

Pt
j¼1 Xi;j

15: // update LBi and UBi using Bayesian confidence bounds

ci,t

16: LBi  X̂i � ci;t;UBi  X̂i þ ci;t

17: end for

18: for all xi 2 U do

19: if jfxj 2 U j LBi [ UBjgj� k� l� jDj then

20: S S [ xi // select

21: U U n xi

22: else if jfxj 2 U j LBi\UBjgj� l� jSj then

23: D D [ xi // discard

24: U U n xi

25: end if

26: end for

27: end while

28: // update tlimit depending on jSj
29: if jSj ¼ l then

30: tlimit ¼ maxðtmin;
1
a tlimitÞ

31: else

32: tlimit = min(tmax, a tlimit)

33: end if

34: // select best undecided policies if S is not full

35: while jSj\l do

36: xi  arg maxxj2UX̂j

37: S S [ xi

38: U U n xi

39: end while

40: return S
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on learning classifier systems [13, 35, 48, 73, 96, 97], some

of which are closely related to traditional approaches in

reinforcement learning, experiments commonly evaluate

only the speed of learning and the quality of the resulting

policy.

However, many reinforcement learning problems are

on-line, in which case the amount of reward accrued during

learning is more important. In such cases, the agent does

not have an a priori model of its environment and evalu-

ating a policy’s fitness requires testing it in the real world

or learning a model to use as a fitness function, both of

which incur sample costs in addition to computational

costs.

The results presented here illustrate how evolutionary

methods can also excel in a challenging on-line setting.

Rather than constituting a complete solution, evolutionary

methods can serve as a policy-evolving component of a

larger model-free or model-based solution. However, the

results also reveal limitations in evolution’s usefulness.

While it proves an excellent means of discovering high-

performing policies, it seems less effective in other roles

such as learning helicopter models. In the particular setting

examined in this article, in which domain knowledge

allows the manual construction of a suitable model repre-

sentation, simpler supervised methods such as linear

regression appear better suited to this aspect of the task.

Second, the results illustrate how expensive exploration

in reinforcement learning in realistic problems can be.

Helicopter hovering is typical of many tasks (e.g., those

involving physical robots and/or interacting with humans;

high-risk tasks in security, surveillance, or rescue; and

financial settings such as bidding or trading) in which a

single erroneous action can have disastrous consequences.

Classical approaches to exploration in reinforcement

learning, such as �-greedy [87], softmax [82], and interval

estimation [39] all involve selecting each action in each

state multiple times to assess its value, which is out of the

question in such tasks. Even the most sophisticated meth-

ods, e.g., [10, 44, 79], which require only a polynomial

number of samples to discover an approximately correct

policy with high probability, explore much too liberally to

be feasible in high-risk problems. Though an agent can in

principle always compute a Bayes-optimal strategy for

exploration [63, 95], doing so is typically computationally

intractable. Thus, the dangerous nature of tasks such as

generalized helicopter hovering underscores the need for

heuristic methods that explore more conservatively.

The importance of efficient exploration suggests that

model-based methods may have a significant advantage, as

they can reuse samples in a way that reduces the need for

exploration. The results in this article provide examples of

that advantage, since the incremental model-based methods

for GHH-08 greatly outperform even the competition-

winning model-free approach. However, the results also

demonstrate the limitations of model-based methods. For

various reasons, including the fact that state is only

observed at 10 Hz, learning a helicopter model that accu-

rately captures the complex dynamics seems feasible only

with extensive domain knowledge. Even slight inadequa-

cies in the model representation, such as those used in

GHH-09, can render the entire model-based approach

unreliable.

Finally, the results also shed light on the challenges of

designing suitable generalized tasks for use in reinforce-

ment learning competitions and to serve as community

benchmarks. While generalized tasks are an effective way

to assess the robustness of on-line reinforcement learning

methods [91, 93], selecting the right distribution over

tasks can be tricky. Despite the best efforts of competition

designers, GHH-08 proved insufficiently generalized.

Previous work on helicopter hovering relied on data

gathered by a human expert, thereby obviating the need

for exploration. GHH-08 requires exploration but meeting

this challenge is straightforward, since it is easy to find a

generic policy with which to safely gather flight data and

a single, fixed model representation suffices for all tasks

in the distribution. While GHH-09 complicates the design

of a model representation and makes exploration more

dangerous, it is still possible to find safe policies for

exploration and to evaluate a candidate policy in a single

episode. FGHH addresses these shortcomings by making

all exploration policies inherently risky and necessitating

resampling when evaluating policies. However, selecting

the right distribution for FGHH was possible only after

extensive experiments with the fixed resampling

approach.

7 Future work

Several directions for future research follow naturally from

the work presented in this article. The performance of the

hybrid method suggests that competition agents should also

be risk sensitive, as the algorithm that accrues the most

cumulative reward in expectation may not be preferable.

When performance varies greatly from run to run, the

chance of winning the competition can be higher using a

risk-averse agent with lower expected performance but

also lower variance. Existing methods for risk-sensitive

reinforcement learning [24, 53], are not applicable to pol-

icy-search approaches like neuroevolution and require as

input a quantification of the risk sensitivity. In competition

settings, the optimal amount of risk aversion is a function

of known factors such as the number of test runs so it may

be possible to develop methods that automatically deter-

mine their own risk sensitivity.
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In addition, though neuroevolution proved ineffective in

improving on the manually designed network topology,

more sophisticated representation-learning approaches may

fare better. Recent advances in indirect encodings such as

HyperNEAT [22, 23, 75] could further improve perfor-

mance. Though the selection races approach used here

proved effective, additional efficiencies may be obtainable

using new methods for selecting multiple arms in a

k-armed bandit problem [42]. In addition, these approaches

would benefit from mechanisms that automatically select

an appropriate target confidence level, by weighing the cost

of additional evaluations against the expected long-term

benefit to the course of evolution.

Finally, the generalized helicopter hovering problem

itself could be further extended. While FGHH remedies

many of the shortcomings of GHH-08 and GHH-09, it still

contains simplifying assumptions. For example, though the

transition dynamics are noisy, the agent’s observations are

not. In some settings, noise in sensors could lead to sub-

stantial partial observability even when using sophisticated

motion-capture systems, yielding a more difficult control

problem. Also, while obtaining flight data in FGHH is

risky, it can be completed in a single episode. A more

challenging problem would require the agent to constantly

refine its model as new flight data arrives and thus integrate

exploration, learning, and acting throughout each run.

8 Conclusion

We presented an extended case study in the application of

neuroevolution to generalized simulated helicopter hover-

ing, considering three increasingly challenging variations

of the task. The results demonstrate that (1) neuroevolution

can be effective for such complex on-line reinforcement

learning tasks, (2) neuroevolution excels at finding effec-

tive policies but not at learning helicopter models, (3) due

to the difficulty of learning reliable helicopter models,

model-based approaches to helicopter hovering are feasible

only when domain expertise is available to aid the design

of a suitable model representation, (4) model-based

approaches are superior only if the domain expertise nee-

ded to design a suitable model representation is present and

(5) recent advances in efficient resampling can enable

neuroevolution to tackle more aggressively generalized

reinforcement learning tasks. The results also illustrate the

importance of on-line learning for evolutionary approaches

to reinforcement learning, how expensive exploration can

be in realistic problems, and the challenges of designing

suitable generalized tasks. Finally, this research points the

way to future work in risk-sensitive reinforcement learning,

efficient resampling, and still more challenging bench-

marks in generalized helicopter control.
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Appendix A: Neuroevolution for GHH-08 and GHH-09

To evolve policies, we employ a simple steady state

neuroevolutionary method. Each neural network is enco-

ded as a genome consisting of a vector of the network’s

weights. An initial population of size pop_size is

formed by repeatedly applying weight mutations to a

given prototype network. The fraction of weights being

mutated is given by mutate_frac, i.e., it specifies the

probability that an individual weight is altered. When

weight mutations occur, their magnitude is sampled from

a Gaussian distribution with mean 0.0 and standard

deviation mutate_std. With probability mutate_r-

epl, the weight is replaced by this value instead of added

to it. Each network in the initial population is then

evaluated using the fitness function.

Next, the elite_size best performing networks are

copied to the next generation and the rest are replaced with

new individuals. With probability crossover_prob,

each new offspring is formed via crossover between two

parents selected via roulette wheel selection. During

crossover, each offspring weight is set to the average of its

parents’ weights with probability averaging_prob.

Otherwise, it is set equal to the weight of one of the two

parents, selected randomly. With probability mutate_

prob, weight mutations are then applied in the same

manner as in the initial population. If crossover does not

occur, the new individual is created by applying such

weight mutations to a single parent, also chosen with

roulette wheel selection. Evolution continues until no new

population champion has been discovered in pla-

teau_threshold evaluations.

Table 6 lists the parameter settings of this algorithm

used in our experiments in GHH-08 and GHH-09. These

settings were chosen after an informal parameter search.

However, we found that performance was not highly sen-

sitive to these parameters and was similar at other rea-

sonable settings.

Table 6 Neuroevolution parameter settings for GHH-08 and GHH-09

pop_size 50 mutate_prob 0.75

elite_size 49 mutate_frac 0.1

plateau_threshold 1,000 mutate_std 0.8

crossover_prob 0.5 mutate_repl 0.25

averaging_prob 0.5
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Appendix B: Neuroevolution for FGHH

When evolving generic policies for FGHH, we employ a

slightly altered neuroevolutionary algorithm. The main

difference is that the algorithm is generational, instead of

steady state. This change facilitates the use of selection

races, which require a generational approach. At the end of

each generation, the select_size policies with the

highest estimated fitness are selected for reproduction.

Note that pop_size and select_size correspond to k
and l, respectively, in Algorithm 1. In addition, instead of

setting a plateau threshold for termination, evolution runs

for a fixed number of generations. Finally, all indi-

viduals are produced via crossover (crossover_prob =

1). Table 7 lists the parameter settings of this algorithm

used in all our experiments in FGHH.
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