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ABSTRACT

Context. A small number of young stellar objects show signs of a halo-like structure of optically thin dust, in addition to a circum-
stellar disk. This halo or torus is located within a few AU of the star, but its origin has not yet been understood.
Aims. A dynamically excited cloud of planetesimals colliding to eventually form dust could produce such a structure. The cause of
the dynamical excitation could be one or more planets, perhaps on eccentric orbits, or a migrating planet. This work investigates an
inwardly migrating planet that is dynamically scattering planetesimals as a possible cause for the observed structures. If this mecha-
nism is responsible, the observed halo-like structure could be used to infer the existence of planets in these systems.
Methods. We present analytical estimates on the maximum inclination reached owing to dynamical interactions between planetesi-
mals and a migrating planet. In addition, a symplectic integrator is used to simulate the effect of a migrating planet on a population
of planetesimals. Collision time scales are estimated for the resulting population of planetesimals and the size distribution of the dust
created in catastrophic collisions is determined.
Results. It is found that an inwardly migrating planet is only able to scatter the material it encounters to highly-inclined orbits if the
material is on an eccentric orbit. Such eccentric orbits can be the result of resonance trapping and eccentricity pumping. Simulations
show that for a certain range of migration rates and planet masses, resonance capture combined with planetary migration indeed
causes the planetesimals to reach eccentric orbits and subsequently get scattered to highly-inclined orbits. The size distribution of the
resulting dust is calculated determined to find the total mass and optical depth, which are found to compare reasonably well with the
observed structures.
Conclusions. Dynamical scattering of planetesimals caused by a planet migrating in, followed by the grinding down of these plan-
etesimals to dust grains, appears to be a promising explanation for the inferred circumstellar dust clouds. Further study is needed to
see if the haloes can be used to infer the presence of planets.

Key words. protoplanetary disks – planets and satellites: dynamical evolution and stability – planet-disk interactions –
circumstellar matter

1. Introduction

The vast majority of stars are born with a circumstellar disk.
Observations show that in young clusters the percentage of stars
with disks is close to 100%. The typical life times for disks ap-
pear to be around 6 Myr (Haisch et al. 2001). Circumstellar disks
around young stars are believed to be the sites of planet forma-
tion. Solids in the disk grow to form larger objects, planetes-
imals, and eventually planets. Eventually, after the gas disap-
pears, a planetary system will remain, containing planets and, if
there is room in the dynamical structure, a debris belt.

Observations of protoplanetary disks at ever higher spatial
resolution have provided promising indirect indications of on-
going planet formation (e.g. Thalmann et al. 2010; Jang-Condell
& Kuchner 2010). Another strong indication of the presence of
planets comes from structure observed in the dust that is still
visible at later times in debris disks (Wilner et al. 2002; Wyatt
2003, 2008).

However, since most of the disks are difficult to resolve, stud-
ies also focus on understanding the system’s spectral energy dis-
tribution (SED). Comparing the shape of the SED to radiative
transfer models gives information on the geometry of the disk

and on the temperatures and particles found in the different parts
of the circumstellar disk (Dullemond et al. 2007).

Over the past two decades, studying SEDs has improved
our knowledge of circumstellar disks significantly and has made
us aware of structures as flaring disks, puffed up inner rims,
gaps, and holes (e.g. Dullemond et al. 2001, 2007). Holes and
gaps are considered to be possible signposts of planet formation
(Armitage 2010).

Recent studies of (pre-)transitional disks indicate a possible
new structure. Several young stellar objects (YSOs) appear to
show signs of an optically thin population of dust with a large
scale height close to the star. These structures appear to be opti-
cally thin, but they still absorb and reprocess a significant frac-
tion of the stellar light, which requires the dust to be distributed
in a structure with high scale height, and not compressed toward
the midplane of the disk. Such a large height of the structures is
puzzling, since disks that are in hydrostatic equilibrium should
be quite flat close to the star (Kenyon & Hartmann 1987; Chiang
& Goldreich 1997). In this paper we study the possibility that
the large height of the halo-like structure may be reached in a
dynamical way by scattering planetesimals. This idea is inspired
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by the fact that planetesimals in the Solar System (in the aster-
oid belt and the Kuiper belt) can have substantial inclinations,
caused by interactions with planets. If this mechanism is found
to be capable of explaining the observed optically thin structures,
their presence could be used to infer the existence of planets in
these systems. This work will focus on the question of whether a
inwardly migrating planet could be responsible for creating such
an optically thin halo-like structure.

Section 2 discusses three YSOs that show this new structure.
Section 3 discusses high inclinations in our own Solar System,
and quantitatively formulates a mechanism that could cause
highly-inclined orbits in a system with one planet. In Sect. 4
numerical simulations of the effect of a migrating planet on a
planetesimal population are presented. The grinding down of the
resulting planetesimal population to form small dust grains is
covered in Sect. 5. Finally, a discussion and conclusions are for-
mulated in Sects. 6 and 7.

2. Optically thin dust

Recently, a number of transitional disks have indications of pos-
sessing optically thin dust with large scale height: LkCa 15,
HD 142527 and HD 163296. These systems are discussed be-
low.

2.1. LkCa 15

LkCa 15 is a low-mass pre-main-sequence star located at about
140 pc in the Taurus star-forming region (Espaillat et al. 2007).
Espaillat et al. (2007) compared different models to SEDs ob-
tained with the Infra-red Array Camera (IRAC) aboard Spitzer
to study LkCa 15. An optically thick outer disk is found to have
an inner radius of 46 AU, containing about 0.1 M�. The inner
region of the disk is a bit more complex and Espaillat et al. pro-
vide two options which could explain the shape of the SED in
the near-IR: an optically thick disk from 0.12 to 0.15 AU com-
bined with 4× 10−11 M� of optically thin dust between 0.15 and
4 AU, or, 5 × 10−11 M� of optically thin dust between 0.12 and
4 AU. The first option is said to give the better fit. Both scenarios
include an optically thin part, but it is stressed no dust can exist
further out than ∼5 AU since the contribution at 20 μm becomes
too strong (Espaillat et al. 2007).

In 2009, Mulders et al. investigate the inner region of
LkCa 15 in more detail and find an optically thick inner disk
will influence the outer disk as well. Because the optically thick
inner disk will obscure the outer disk, the outer disk needs to
be blown up in the vertical direction in order for it to fit the
observed SED. Alternatively, the inner disk could be optically
thin, but this is only possible if the material is distributed over a
large solid angle, virtually making it a halo. Mulders et al. (2010)
used the 2D radiative transfer code MCMax (Min et al. 2009) to
model the observed SED. Mulders et al. conclude it is hard to
explain the large scale height of the inner dust material. One of-
fered explanation is the violent scattering and disruption of plan-
etesimals, which would end up in them colliding and filling the
inner region with dust.

Espaillat et al. (2010) use new observations of the near-IR
excess and find it to have the spectral shape of a blackbody,
leading them to prefer the option of an optically thick inner disk
and a blown-up outer disk. The inner disk is found to lie within
0.19 AU and the upper limit for the mass it contains is found to
be 2 × 10−4 M�.

Whether the inner disk of LkCa 15 contains an optically thin
dust component remains a matter of debate, but if optically thin

dust is responsible for the near-IR flux, the scale height of the
material has to be very large.

2.2. HD 142527

Another interesting system is that of HD 142527. The star was
categorized as an F6III star by Houk (1978) and later classified
as a Herbig star (Waelkens et al. 1996). HD 142527 is about
20 times as luminous as the sun, has a mass of 2.2± 0.3 M�, and
shows a huge IR-flux (FIR = 0.92F∗) which indicates there must
be a considerable amount of circumstellar material (Verhoeff
et al. 2011).

Verhoeff et al. used MCMax to model the circumstellar
disk and find a model which accurately describes Spitzer and
ISO IR spectra. A complicated structure is found for the system;
an inner and an outer disk as well as an optically thin halo-like
structure. The inner disk stretches from 0.3 to 30 AU and has a
puffed up inner rim which shadows the rest of the disk. The small
dust grains in the inner disk have a total mass of 2.5 × 10−9 M�.
It is argued most of the other material is already locked up in
planetesimals or even planets. The degree of sedimentation also
indicates an advanced state of evolution (Verhoeff et al. 2011).

Then there is the optically thin halo, which stretches from 0.3
to 30 AU and has an estimated dust mass of 1.3× 10−10 M�. The
origin of this halo is unclear and again the dynamical scattering
of planetesimals is offered as a speculative explanation.

There is a gap in the disk stretching from 30 to 130 AU.
Verhoeff et al. explain why photo-evaporation is unlikely to be
the cause of this gap and speculates about the presence of Jupiter
or Earth-like planets as the origin of the gap. Lastly there is the
outer disk, located between 120 and 200 AU, and with a rim
height of 60 AU. Such a large rim height can be reached in hy-
drostatic equilibrium, but only if the disk is illuminated by the
nearly unattenuated stellar radiation. A physical explanation for
the high rim therefore requires the warm dust to remain optically
thin and, therefore, to be spread out to large scale heights. The
total mass in small dust grains is estimated to be 1.0 × 10−3 M�.

2.3. HD 163296

HD 163296 is an isolated Herbig Ae star located at about
122 pc, which shows a NIR excess indicating a circumstel-
lar disk Hillenbrand et al. (1992). In 2010, Benisty et al.
present long-baseline spectro-interferometric observations using
the AMBER instrument on VLTI. They find that the inner rim
of a disk alone cannot reproduce their observations in the NIR
and need an additional emission component between 0.10 and
0.45 AU, with a temperature of 1600 K and an optical depth of
∼0.2.

Benisty et al. discusses whether hot gas could be held re-
sponsible for the emission between 0.10 and 0.45 AU but con-
clude that this is probably not the case. They argue that more
detailed, non-LTE models that include the transition from opti-
cally thin to optically thick layers in a dust-free environment are
needed to completely rule out the possibility of hot gas being the
main contributor to the NIR flux.

The existence of refractory dust grains is explored as another
possibility for the emission. An optically thin layer of dust grains
is assumed to lie between an inner and outer radius, which are
both inside the inner rim of the optically thick disk. The vertical
optical depth of the dust is assumed to be proportional to 1/r,
with r the distance to the star. Benisty et al. find the observed
SED is reproduced best with the dust between 0.1 and 0.45 AU.
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The total mass in small dust between is calculated and found to
be 8.7 × 10−8 M⊕ for Graphite grains of 0.05−2 μm, and 9.5 ×
10−7 M⊕ for Iron grains of 0.02−2 μm in size.

3. Direct scattering to reach highly-inclined orbits

3.1. Highly-inclined orbits in our Solar System

How do we build a population of planetesimals on highly-
inclined orbits from a nearly flat transitional disk? Hints for a
mechanism can be found in the Kuiper belt in our own Solar
System. The Kuiper belt can be split up into three dynamical
classes (Jewitt & Luu 2000): the classical Kuiper belt, the reso-
nant Kuiper belt, and the scattered Kuiper belt. Classical Kuiper
belt Objects (KBOs) have low-eccentricity, low-inclination or-
bits beyond 40 AU. The resonant KBOs are trapped in a mean
motion resonance (MMR) with Neptune, and the scattered ones
have probably suffered a close encounter with Neptune in the
past and show a wide spread in inclination. Scattered KBOs tend
to have eccentric orbits with large semi-major axes. Studies on
the distribution of inclinations of bodies in these three popula-
tions (Brown 2001; Gulbis et al. 2010) show they truly are dis-
tinct classes and it is argued that the inclinations in the three
classes have different origins.

Observational studies show resonant KBOs to have inclina-
tions up to 30◦ (Brown 2001; Gulbis et al. 2010). They are com-
monly believed to have been trapped in an MMR with Neptune
when the planet was migrating outward, having their eccentric-
ity and inclination raised during the process. This mechanism
explains Pluto’s peculiar orbit (Malhotra 1993), and inclinations
of up to ∼15◦ in general for bodies outside Neptune’s orbit
(Malhotra 1995). However, only a small fraction of the reso-
nant KBOs in the simulations have their inclinations raised in
excess of 10% (Malhotra et al. 2000). Other mechanisms have
been proposed to account for the observed inclinations, includ-
ing sweeping secular resonances (Li et al. 2008), and stirring
by large planetesimals (Morbidelli & Valsecchi 1997), but no
definitive answer has been given.

Scattered KBOs show a wider spread in semi-major axes
and their inclinations are usually greater than 10◦ with a peak
around 20◦ (Gulbis et al. 2010). It is this broad distribution in or-
bital parameters that indicates that their orbits are probably the
result of a close encounter with Neptune (Brown 2001). Hahn
& Malhotra (2005) conclude from simulations that about 90%
of the KBOs in the scattered disk might not have suffered a
close encounter, but rather obtained their orbits from Neptune’s
resonances during the migration epoch. Their model is unable
to reproduce the observed abundance of KBOs with i > 15◦
however.

From studying the Kuiper belt, it appears there are 2 clear
mechanisms that are able to increase an object’s inclination
drastically; resonance trapping and close encounters. The de-
gree of inclination-raising by resonance trapping is determined,
and therefore limited by, the migration distance of the planet.
Malhotra (1995) shows a migration Neptune over a distance of
7 AU to cause an increase in eccentricity of 0.25 and in inclina-
tion of about 10◦. The inclination that can be reached by direct
scattering is limited by the relative velocity between the planet
and the object and the escape velocity at the planet’s surface, as
we shall see in Sect. 3.2. It appears direct scattering is a more
promising way to get bodies onto highly-inclined orbits, and it
is this path that we will pursue in the rest of this work.

3.2. Direct planetesimal scattering

Suppose we have a planet of mass Mpl and radius Rpl orbiting
a star of mass M∗, on a circular orbit with Keplerian velocity
vK =

√
GM∗/apl. We assume a planetesimal of mass m � Mpl

on an orbit with negligible inclination is approaching the planet
with an impact parameter b and a relative velocity vrel.

If b is small enough, the close encounter can be treated as a
2 body interaction, without having to consider the central star.
During this interaction, the magnitude of the relative velocity is
conserved but the direction is changed by a scattering angle of
(e.g. Weidenschilling 1975)

θ = 2 arctan

⎡⎢⎢⎢⎢⎣GMpl

v2relb

⎤⎥⎥⎥⎥⎦· (1)

We normalize distances to the radius of the planet and velocities
to the Keplerian velocity

v̂i =
vi
vK
, b̂ =

b
Rpl
· (2)

This allows us to rewrite Eq. (1) as follows

θ = 2 arctan

⎡⎢⎢⎢⎢⎢⎣1
2

(
v̂esc

v̂rel

)2

b̂−1

⎤⎥⎥⎥⎥⎥⎦, (3)

where vesc = (2GMpl/Rpl)1/2 is the escape velocity at the surface
of the planet.

This equation shows that a scattering angle of 90◦ is reached
for(
vrel

vesc

)2

=
1

2b̂
· (4)

Thus, for velocities vrel > vesc/
√

2, an impact parameter smaller
than the physical size of the planet is required. Such a planetesi-
mal will crash into the planet. Due to gravitational focussing any
planetesimal with an impact parameter smaller than

b̂min =

√
1 +

(
v̂esc

v̂rel

)2

, (5)

will be lost in a physical collision with the planet (Safronov
1966).

Thus, for a planet to be able to significantly scatter a plan-
etesimal out of the orbital plane, the relative velocity of the en-
counter needs to be about a factor 2 lower than the escape veloc-
ity at the planet’s surface.

Suppose the planet is able to scatter the planetesimal out
of the orbital plane by an angle of 90◦. In the frame of the planet,
the planetesimal’s total velocity is now pointing perpendicular to
the orbital plane. In the stellar frame however, the planetesimal
is also moving with the planet at the Keplerian velocity, and we
can calculate the new inclination using

i = arctan

[
vrel

vK

]
· (6)

This simple calculation shows that an inclination of 45◦ can be
reached for vrel = vK.

Summing up, planetesimals can only be scattered into
highly-inclined orbits for a particular combination of vrel, vesc
and vK. This condition can be written as

vK � vrel �
vesc

2
· (7)
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We can write the relative velocity of the collision as a function of
orbital parameters of both objects. Recall that the planet moves
on a circular orbit with semi-major axis apl. We define the orbit
of the planetesimal by its eccentricity e, semi-major axis a, and
inclination i relative to the planet. The relative velocity is then
given by (Weidenschilling 1975)

v̂2rel = 3 − 2
√

a
apl

(
1 − e2

)
cos i − apl

a
· (8)

Recalling i = 0 and taking a = apl, we need an eccentricity of
e ≥ (3/4)1/2 ≈ 0.87 to get vrel ≥ vK. Particles on orbits larger
than that of the planet reach similar relative velocities for lower
inclinations. However, if the particle is located inside the plane-
tary orbit, for instance in the 1:2 MMR, it has a/apl ≈ 0.63 and
only reaches vrel = vK for an eccentricity of 0.97.

Since this study focusses on inward planetary migration,
most of the material will have a < apl. It is obvious from Eq. (8)
that this means that the planetesimals need to be on (very) ec-
centric orbits. Section 4.3 will explore an explanation of these
highly eccentric orbits.

The remainder of this section will calculate post-encounter
inclinations in more detail and study the conditions for which
planetesimals are scattered out of the system on hyperbolic or-
bits. For simplicity, we assume the orbits of the planetesimals to
have e = 1, causing the velocities of the planet and the planetes-
imal to be perpendicular at the point of close encounter. Figure 1
shows the different quantities involved. Figure 1a depicts the
stellar frame. In this case the comet velocity points in the nega-
tive x-direction, the planet moves in the direction of the positive
y-axis, and the z-axis is perpendicular to the orbital plane.

Figure 1c shows the scattering in the frame of the planet.
In this frame the planetesimal’s velocity points in the negative
x′-direction, and has a size vrel determined by

v̂rel =

√
1 + v̂2c . (9)

The shaded area depicts the plane in which the scattering over
an angle of θ occurs, which is the (y′ − z)-plane. Unit vectors x
and x′ (and y and y′) lie in the orbital plane, but are rotated with
respect to each other by an angle of

α = arctan(v̂c). (10)

as depicted in Fig. 1b.
As a planetesimal comes in (along the x′-axis) with impact

parameter b̂, the scattering angle θ is determined by Eq. (3). We
repeat that a comet approaching with b̂ < b̂min will have a phys-
ical collision with the planet.

For the post-encounter comet1 inclination (i) and velocity
(vpost), it is not just the size of the impact parameter that matters,
but also the direction of this offset with respect to the motion of
the planet. To quantify this direction we use φ. If the planetesi-
mal is aiming at a point slightly behind the planet (φ = π), it will
be scattered in the planet’s direction of motion, and therefore ac-
celerated. If the planetesimal is aiming at a point directly above
or below the planet (φ = ±π/2), it is scattered out of the orbital
plane.

1 The words comet and planetesimal are used throughout this paper to
describe bodies of mass m � Mpl. Comet is mostly used to refer to a
particle on an orbit with a large eccentricity.

Fig. 1. a) Scattering of a planetesimal in the stellar frame. The plan-
etesimal comes in along the x-axis and the planet moves in the positive
y-direction. The z-axis is perpendicular to the orbital plane. b) Unit vec-
tors x and x′ (and y and y′) lie in the orbital plane, but are rotated with
respect to each other by an angle α. c) The scattering in the frame of
the planet. The planetesimal comes in along the x′-axis, with impact
parameter b. It is scattered in the (y′ − z)-plane over an angle θ.

If we split the post-encounter velocity of the comet into a
component in the z-direction and one in the orbital plane, v̂post,z
and v̂post,xy respectively, we can calculate the total velocity to be

v̂post =

√
v̂2post, xy + v̂

2
post, z, (11)

and the post-encounter inclination using

i = arctan

[
v̂post, z

v̂post, xy

]
· (12)

Since the escape velocity from the central star is equal to
√

2vK,
comets with v̂post >

√
2 will leave the system on a hyperbolic

orbit.
For a given combination of v̂c, v̂esc, b̂ and φ, the resulting

inclination and total velocity are uniquely defined and can be
calculated using the following prescription:

1. calculate v̂rel and b̂min from Eqs. (9) and (5);
2. determine angles α and θ;
3. in the planet frame, rotate v̂rel using θ and φ;
4. switch to the stellar frame by adding the planet’s velocity

under the correct angle α;
5. calculate v̂post using Eq. (11) and check if the particle is

ejected;
6. find the comet’s post-encounter inclination from Eq. (12).
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Fig. 2. The inclination of a comet after an encounter at v̂rel = 1.41 with a planet with v̂esc, as a function of impact parameter and φ. The white
regions mark the combinations of b̂ and φ where v̂post >

√
2. Regions where b < bmin are also coloured white.

Figure 2 shows the post-encounter inclination of a comet coming
in with v̂c = 1.41 as a function of b̂ and φ for four different values
of v̂esc. The regions where the comet is lost because of ejection
from the system or a collision with the planet are coloured white.

For a given system, ejection is more likely to happen for
comets with relatively small impact parameters, and φ ∼ π. The
latter is caused by these comets coming in behind the planet, and
thus being accelerated in the stellar frame during the close en-
counter. The value of φ that is ideal for reaching high inclinations

appears to lie between 0 and π/2, because the comet not only
gains velocity in the z-direction, but it is also slowed down in the
xy-plane.

The planet with the lowest mass can be seen not to be able
to eject bodies, nor can it scatter them to orbits with inclinations
>5◦. As the escape velocity at the planet’s surface is increased,
three things happen; 1) b̂min increases; 2) the region where par-
ticles are ejected grows larger (both in φ and in b̂); and 3) the
region where high inclinations are reached shifts towards higher
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impact parameters. Figure 2 confirms Eq. (7), as an escape ve-
locity higher than the relative velocity is needed to scatter bodies
to highly-inclined orbits.

3.3. Eccentricity pumping and migration

The relative velocity used in Fig. 2 can only be reached for very
eccentric planetesimal orbits. A possible explanation for high
eccentricities is resonance trapping, see for instance Malhotra
(1993, 1995); Malhotra et al. (2000). In our own Solar System,
the trapping and consequent dragging along of Plutinos in
Neptune’s 3:2 resonance, has raised their inclinations from
nearly 0 to up to 30◦ (see Sect. 3.1).

A planetesimal orbiting a star is in an MMR with a planet
if their mean motions are locked, and the resonant argument is
librating (see Murray & Dermott 1999, for a detailed treatment
of the resonant argument). The locations of the mean motion
resonances of a planet orbiting a star at apl are

a(p+q):p = apl

(
p + q

p

)2/3

, (13)

with p and q integers, and the ratio of an MMR depicting the
ratio of the orbital periods, so that a 1:2 resonance lies inside
the planet’s orbit while a 2:1 resonance lies outside. Resonances
with |q| = 1 are called first-order resonances and are often de-
scribed with j instead of p.

When the planet is migrating, the locations of the MMRs will
change and bodies trapped within a resonance can be dragged
along. This will not only change the dragged-along body’s semi-
major axis, but also various other orbital parameters. Malhotra
(1993) showed Pluto’s peculiar orbit could be explained by it
being stuck in Neptune’s 3:2 resonance, as Neptune migrated
out by ∼7 AU.

Wyatt (2003) provides us with an expression for the eccen-
tricity of a planetesimal orbit, that has been dragged in a (p+q):p
resonance by a planet

e2 = e2
0 +

(
q

p + q

)
ln

a
a0
, (14)

where a0 and a are the initial and current semi-major axes of
planet. Supposing a planetesimal gets captured in the 2:1 reso-
nance with e0 = 0, it would have to be dragged to a/a0 � 5 to
reach an eccentricity of 0.9.

Resonance capture is not guaranteed however. As the res-
onance of a planet moves in (or out), because of the planet
migrating, and it encounters a planetesimal, the probability of
capture depends on both eccentricities, the migration rate, and
planet mass (Mustill & Wyatt 2011). Mustill & Wyatt conclude
resonance capture is guaranteed for low eccentricity and low mi-
gration rates, impossible at fast migration rates and low eccen-
tricities, and possible for fast migration rates and high eccen-
tricities. The transitions between these regimes depend on the
planet mass. Furthermore, the critical migration rate for cap-
ture increases with j, so if the particle survives the passing of
the 2:1 resonance, it may still be captured in another resonance
closer to the planet with higher j. It is also pointed out that plan-
etesimals that are not caught, experience a small jump in e up or
down depending on the migration rate. Mustill & Wyatt (2011)
calculate capture probabilities as a function of migration rate for
different MMRs, migration rates, and planetary masses. For in-
stance, a Neptune-mass planet is found to capture all bodies in
its 3:2 resonance for migration rates �4 × 10−6 AU yr−1.

Resonance trapping followed by eccentricity-pumping ap-
pears to be needed to ensure high relative velocities. Another ar-
gument for an inwardly migrating planet is the fact it can collect
and carry material inwards. A stationary planet can only scatter
planetesimals in its direct vicinity. Since the optically thin struc-
tures are located close to their central stars and have considerable
mass in small dust grains (see Sect. 2) this build-up of material
by an inwardly migrating planet is crucial.

Assume a planetesimal disk with a mass distribution equal to
the mass in solids in a minimum mass Solar Nebula (MMSN).
The surface density of solids in a MMSN disk is given by
(Hayashi 1981)

Σs = Σ0

( r
AU

)−3/2
g cm−2. (15)

Σ0 = 7.1 for r < 2.7 AU because ices cannot survive in the hot
inner regions. Outside the snowline Σ0 = 30.

A stationary planet of Neptune-mass on a circular orbit at
5 AU can scatter planetesimals within a region the size of its
Hill sphere (e.g. Armitage 2010)

Δr = RH = a

(
Mpl

3M∗

)1/3

· (16)

The mass of planetesimals within a ring of this size is given by

Δm = 2πaΣpΔr. (17)

Using Σp = 30 g cm−2, we find Δm  4.6 M⊕.
Assume now that the planet migrated from 30 to 5 AU at

such a rate, it collected all material in between. We can integrate
Eq. (15) to find Δm  46 M⊕. This is an increase by a factor
of 10 with respect to the mass scattered by a stationary planet
at 5 AU. The difference becomes even bigger when looking at
planets closer to the star, since Δm in Eq. (17) is proportional
to a2.

4. Simulations

4.1. Introduction

The scenario for creating the highly-inclined orbits is now as fol-
lows. A planet with vesc � vK and a planetesimal population start
out on (nearly) circular orbits and in the orbital plane (Fig. 3a).
Due to for example the presence of gas the planet starts migrat-
ing inwards, and collecting material in mean motion resonances.
Planetesimals that are stuck in an MMR, have their eccentrici-
ties raised significantly. Figure 3b shows the system after some
migration has taken place. All planetesimal orbits in this figure
have the same semi-major axis (they are presumed stuck in the
same MMR) but differ in eccentricity. As the planet migrates
even further, the increasing eccentricities cause the orbits of the
planetesimals to be planet-crossing (Fig. 3c). At this point, the
inclinations are only a couple of degrees. The relative velocity
between the planet and the planetesimals grows together with the
eccentricity of the planetesimal orbit and at some point this will
lead to violent scattering events. As the planet has nearly reached
the star it will leave behind a scattered population of planetesi-
mals, which show (depending on the planet’s escape velocity) a
large spread in inclinations, Fig. 3d. This population of scattered
planetesimals, over time, will collide and grind down to form the
small dust that causes the optical depth. In this section numeri-
cal simulations are presented which show the resonance capture,
eccentricity-pumping, and scattering of planetesimals happening
simultaneously.
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Fig. 3. Illustration of the mechanism to reach a planetesimal population
with high orbits, as explored in this paper. a) both the planet orbit (dot-
ted) and planetesimal orbits (solid) start out in the orbital plane. b) As
the planet has migrated in a some distance, the planetesimals are stuck
in an MMR. As they are dragged along their orbits become increasingly
eccentric. c) At some point the planetesimal orbits become so eccen-
tric, the bodies become planet-crossing. As the eccentricity rises even
further, the relative velocity between the planet and the planetesimals
grows. d) The high relative velocity compared to the local Keplerian ve-
locity enables the planet to violently scatter the planetesimals through-
out the system, to orbits with high inclinations.

4.2. Setup

For the integrations of the migrating planet the software
package Swifter is used2. Swifter is written by Kaufmann
and based upon the Swift package developed by Levison &
Duncan. Within Swifter, the user is given the choice between
7 integrating schemes, including Wisdom-Holman Mapping
(Wisdom & Holman 1991), the Regularized Mixed Variable
Symplectic (RMVS) integrator (Levison & Duncan 1994), and
the Symplectic Massive Body Algorithm (SyMBA) (Duncan
et al. 1998; Levison & Duncan 2000). In addition, Swifter also
includes a Bulirsch-Stoer integrator (Press et al. 1992). In this
work SyMBA was used most of the time, since it can handle
close encounters correctly and is significantly faster than the
Bulirsch-Stoer method. The results of the SyMBA integrator are
checked by comparing a few cases to a Bulirsch-Stoer integra-
tion with a very small timestep.

During the integrations, a planet is pushed to migrate
inwards from 30 AU, while a population of 100 massless

2 http://www.boulder.swri.edu/swifter/

planetesimals orbits the star at circular orbits between 10 and
15 AU. The planetesimals all start out with e = i = 0, whereas
the planet is given a small inclination of 0.72◦, to ensure φ can
take on all values between 0 and 2π, and an eccentricity of 0.012.
The planet mass is varied between 0.1 and 20 Neptune masses.

For simplicity, the migration is not done in a self-consistent
fashion. We want to focus on the effect of the migrating planet
on the planetesimal population, to see if the resonance cap-
ture, eccentricity pumping, and scattering can take place. A
self-consistent migration would vastly increase the complexity
of the problem. Instead, the planet is pushed within SyMBA
to have it migrate at a constant rate ξ, which is varied be-
tween 7.3 × 10−6 AU yr−1 and 7.3 × 10−4 AU yr−1. These migra-
tion rates are based upon estimates for migration rates and time
scales for type I migration (Tanaka et al. 2002), type II migra-
tion (Armitage 2010), and migration through a planetesimal disk
(Armitage 2010). Since the migration in this work is artificial,
the system does not contain any gas or massive planetesimals
and, therefore, does not distinguish between the various types of
migration. Section 6 will discuss what effect the presence of gas
or other drivers for migration might have on the results.

For SyMBA to be able to handle close encounters be-
tween massless bodies and planets, a Hill-sphere radius, RH,
needs to be specified for every planet. This radius determines
when SyMBA will shorten the integration timestep. Since the
Hill-sphere radius is proportional to a planet’s semi-major axis
(Eq. (16)), it will decrease in time for a planet that migrates in-
wards. For simplicity, we will treat RH as a constant. This results
in the size of the Hill sphere being overestimated as the planet
migrates in, slowing down the integrations somewhat.

The system is evolved long enough for the planet to pass
through the planetesimal population, and end up close to the
star, <1 AU, where it has a negligible effect on the planetesi-
mals. The timestep for the integrations ranges between 0.5 days
and 10−1 yr, depending on the smallest perihelion distance in the
simulation, making sure all orbits are resolved. Within SyMBA,
the timestep is decreased when a planetesimal enters the Hill
sphere of the planet. During the simulations, planetesimals are
removed if they:

– come within a distance rmin from the origin. We use rmin =
0.05 AU;

– have a > rmax. In our simulations rmax = 1000 AU is used;
– come within Rpl. In this work Rpl = RNep is used.

The choice for rmin comes from the fact that very eccentric or-
bits with perihelion distances smaller than 0.05 AU are hard to
resolve without using a very small timestep, and will lead to non-
physical behaviour. Furthermore, bodies that come this close to
the central star are likely to be evaporated.

4.3. Resonance capture

An example of resonance capture in the simulations is illus-
trated in Fig. 4. The figure shows a Neptune-mass planet be-
ing pushed artificially to migrate in from 30 AU at a rate of
7.3×10−5 AU yr−1. A massless asteroid is orbiting the solar-mass
star at 13 AU on an initially circular orbit. The asteroid survives
the passing of the 1:2 ( j = 1) MMR but is eventually captured
by the 3:4 ( j = 3) MMR. For slower migration rates (or higher
planet masses) the asteroid gets trapped in the 1:2 resonance al-
ready, while for faster migration rates (or lower planet masses)
the asteroid only gets captured very close to the planet.

Figure 5 shows the evolution of a massless body as it
is dragged along in a migrating planet’s 1:2 resonance. The
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Fig. 4. A Neptune-mass planet is migrating in with ξ = 7.3 ×
10−5 AU yr−1. The asteroid survives the passing of the 1:2 resonance
but is captured in the 3:4 resonance and dragged inward.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000  250000  300000  350000

e

t [yr]

SyMBA
Bulirsch-Stoer

Eq.14

Fig. 5. Evolution of the eccentricity of a massless body stuck in the 1:2
internal mean motion resonance of a 10 MNep planet migrating inward
at a rate of 7.3 × 10−5 AU yr−1. The timestep for both the SyMBA and
Bulirsch-Stoer integration was set at 0.5 days. The dotted line shows
the expected increase in eccentricity as predicted by Eq. (14). The test
particle is captured at t ≈ 0.13 Myr and eventually lost to the central
star after about 0.32 Myr.

integration has been performed using two different integrators,
to check the consistency of SyMBA for highly eccentric orbits.
The test particle is captured at t ≈ 0.13 Myr and eventually lost
to the central star after about 0.32 Myr. During this time, the
10 MNep mass planet has travelled ∼14 AU. The results of the
SyMBA and Bulirsch-Stoer integrators are very similar, and in
both cases the massless body is eventually lost to the central star
when it reaches e ≈ 0.99. The expected increase in eccentricity,
as predicted by Eq. (14) is also plotted and seen to agree well
with the simulations. The discrepancy between Eq. (14) and the
simulations towards higher e comes from the fact Eq. (14) is a
first-order approximation.

4.4. Inclinations

Figure 6a shows the evolution of the planetesimal swarm as a
function of time. The left panels show eccentricity, the right
panels inclination, and time passes from top to bottom. The

large circle shows the location of the planet and the small cir-
cles represent massless planetesimals. Planetesimals above the
solid lines are on a planet-crossing orbit. The dotted lines show
the 1:2 and 2:3 MMR, where the 1:2 MMR is furthest from
the planet. The planet is 0.1 MNep and migrating at a rate of
7.3 × 10−5 AU yr−1. The planetesimals start out between 10 and
15 AU with e = i = 0. After 0.15 Myr (top panels), both reso-
nances have reached the planetesimal population, and both ap-
pear unable to capture planetesimals. The passing of the reso-
nances through the swarm of planetesimals is seen to have a
very small effect on their orbital parameters. After 0.3 Myr the
planet itself has migrated through the population of massless
bodies, and has scattered most of them via direct encounters.
Since the planetesimal orbits were not excited before the en-
counter, the relative velocity remained small, and the scattering
events proved unable to get the planetesimal inclinations higher
than a couple of degrees.The resulting population, shown after
0.4 Myr in the bottom panels, is very similar to the one after
0.3 Myr, i.e., the planet has little effect on the bodies once it has
migrated inside the population. During this simulation, 2% of
the planetesimals is accreted by the migrating planet.

If we increase the planet mass, this will lead to a high cap-
ture probability. Figure 6b shows a similar calculation, but for a
planet mass of 2 MNep. After 0.15 Myr the effect of the enhanced
planet mass are already visible as the passing of the 1:2 reso-
nance raises the eccentricities of the planetesimals slightly, while
the 2:3 resonance appears to be able to capture bodies, and sub-
sequently drag them along. This becomes even more visible af-
ter 0.3 Myr, where a significant fraction of the planetesimals
are stuck in the 2:3 MMR. As these bodies are dragged along,
their eccentricities are raised as described by Eq. (14). As the
eccentricity of a planetesimal goes up, it will eventually reach a
planet-crossing orbit, allowing it to have a close encounter with
the planet. This has already happened for the bodies no longer
in the 2:3 resonance. Since the close encounters happen when
the planetesimals are on eccentric orbits, the relative velocities
involved are higher, and the inclinations resulting from the scat-
tering events are much greater than for Fig. 6a. During this simu-
lation, 1% of the bodies were accreted by the central star, and 1%
by the migrating planet.

If we increase the planet mass even further, the capture prob-
ability reaches almost unity, and the vast majority of planetesi-
mals get stuck in a resonance far away from the planet. As they
are dragged along and their eccentricities go up, they are pro-
tected from a close encounter with the planet for some time,
since they are so far away. It turns out, almost all these bodies
will reach e � 0.9, and are accreted by the central star before
they have time to be scattered by the migrating planet. An ex-
ample of this scenario is shown in Fig. 5. This means, that in
the systems where you would expect to find the highest relative
velocities (and therefore the highest inclinations) the majority of
the planetesimals are actually lost to the central object. A way to
get around this, might be to put an additional, stationary planet
close to the central star, which will scatter the highly excited
planetesimals before they come too close to the central object.
This planet could not be too massive, as this would lead to it
ejecting the planetesimals on hyperbolic orbits. In this study we
have restricted ourselves to single-planet systems, but the study
of stellar systems with multiple planets, one of which is migrat-
ing, might be very interesting indeed. Another way to protect the
planetesimals from accretion by the central star would be to in-
troduce a gas drag, which would dampen the eccentricities. The
effect of gas of the results is further discussed in Sect. 6.
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Fig. 6. Evolution of the eccentricities (left) and inclinations (right) in a planetesimal swarm as a planet (large circle) migrates inwards from 30 AU
at a rate of 7.3 × 10−5 AU yr−1. The planet mass used are 0.1 MNep for a), and 2 MNep for b). Planetesimals (small circles) above the solid lines are
on a planet crossing orbit, and the dotted lines show the location of the 1:2 and 2:3 MMR.

From Sect. 4.3 we know that the capture probability also de-
pends on the migration rate of the planet. We have therefore con-
ducted a small parameter study, where the migration rate and
planet mass have been varied. In total we carried out 12 simu-
lations with the planet-mass ranging from 0.1−20 MNep and ξ
between 7.3× 10−4−7.3× 10−6 AU yr−1. Table 1 shows the char-
acteristics of planetesimal populations after migration has taken
place, as well as the fraction of planetesimals which have been
lost during the integration. Both higher planet mass and lower
migration rate appear to ensure high average inclinations. This

is the case because; 1) massive planets are more capable of scat-
tering planetesimals into highly-inclined orbits (see Sect. 3.2);
and 2) relatively massive planets and low migration rates in-
crease the probability of resonance capture, allowing for more
eccentricity-pumping and a higher relative velocity between the
planetesimal and the planet during the close encounter. However,
if the combination of migration rate and planet mass causes the
planetesimals to get stuck in a resonance too far, they are likely
to be lost to the central star before having a close encounter with
the migrating planet.
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Table 1. Orbital parameters of the resulting planetesimal population for a number of simulations.

Sim ξ[AU yr−1] Mpl/MNep Nej[%] Nacc[%] 〈a〉[AU] 〈e〉 〈i〉[◦] imax[◦]

S0.1 7.3 × 10−6 0.1 0 0 9.32 0.255 7.39 16.16
S1 7.3 × 10−6 1 0 100 – – – –
M0.1 7.3 × 10−5 0.1 0 0 12.72 0.047 1.39 3.98
M1 7.3 × 10−5 1 0 0 10.51 0.311 8.13 19.00
M2 7.3 × 10−5 2 0 1 8.61 0.538 14.61 35.25
M10 7.3 × 10−5 10 0 100 – – – –
M20 7.3 × 10−5 20 0 100 – – – –
F0.1 7.3 × 10−4 0.1 0 0 12.61 0.016 0.29 1.84
F1 7.3 × 10−4 1 0 0 12.59 0.082 1.84 5.92
F2 7.3 × 10−4 2 0 0 13.23 0.113 2.50 9.10
F10 7.3 × 10−4 10 0 0 12.30 0.442 9.60 27.86
F20 7.3 × 10−4 20 0 0 18.79 0.408 9.42 47.23

Notes. Nej and Nacc give the percentage of planetesimals that were lost during the integration resulting from respectively ejection from the system,
or accretion by the central star. Inclinations are given in degrees. Simulation names consist of one letter describing the migration (F= Fast,
M=Medium, S= Slow) and a number representing the planet mass.

5. Dust production

Section 4 has left us with populations of planetesimals and con-
straints on their orbital parameters. Section 5.1 will calculate
the time scales on which these planetesimals should collide and
form dust, and Sect. 5.2 will estimate the total mass and surface
area of the dust size distribution resulting from the collisional
cascade.

5.1. Collision times

Suppose we have N planetesimals of radius R, mass m and a
geometrical cross-section for collisions of σcoll = 4πR2, flying
around in some volume V . We can define the sweeping time as

ts =
V

vcollσcoll
, (18)

where vcoll is the collision velocity between the planetesimals.
Since the populations from Table 1 show pretty eccentric orbits,
the collision velocity will vary a lot between collisions, but for
the purpose of this calculation we estimate it as

vcoll = ηvK (〈a〉) , (19)

with η between 0.5 and 2. For two nearly circular orbits η is
determined by the vertical component of the individual velocities
(Dominik & Decin 2003). But since the orbits in our populations
are eccentric and randomly oriented, η will lie closer to

√
2.

If we assume the volume is wedge-shaped and lies between
an inner and an outer radius, rin and rout, and has a normalized
height of h = H/r, we can write it as

V =
4π
3

h
(
r3

out − r3
in

)
, (20)

where h = tan imax.
We have to think carefully about rin and rout. One might in-

sert the minimum and maximum values of the semi-major axis
found in the resulting populations, but this is not correct since
most comets are on pretty eccentric orbits. On the other hand,
choosing rout to be equal to amax(1 + emax) will increase the vol-
ume drastically even though only one planetesimal is able to get
to rout. It makes more sense to define something like

rout = (〈a〉 + σa)(1 + 〈e〉), (21)

rin = (〈a〉 − σa)(1 − 〈e〉), (22)

where 〈a〉 and 〈e〉 can be taken from Table 1. We approximate
σa ∼ √〈a〉, which is found to work well for most populations in
Table 1.

The collision time for the comets will become

tcoll =
ts
N
, (23)

with the number of bodies being constrained by the total mass
of the population M

N =
M
m
=

(
R

R⊕

)−3 (
ρ

ρ⊕

)−1 (
M
M⊕

)
· (24)

where ρ denotes the density of the planetesimal material. We
can now calculate the collision time scale for different popula-
tions. A promising case for creating a halo-like structure appears
to be M2, which has high inclinations but is still located rela-
tively close to the star. From Table 1 we find 〈a〉 = 8.61 AU,
〈e〉 = 0.538 and imax = 35.25◦. For this specific configuration of
comets, the collision time becomes

t(M2)
coll = 3.7 × 105

(
η

1.41

)−1 ( R
km

) (
ρ

0.5ρ⊕

) (
M

50 M⊕

)−1

yr. (25)

The collision time scale for the population in M2 is compara-
ble to the migration time itself. This means a number of aster-
oids might suffer collisions during the migration itself, which
we have not considered. The collision time is also an indication
of how long the dust can survive in the system, as new dust is
continuously formed during this period.

5.2. Dust size distribution

When planetesimals collide at sufficiently high velocities, they
will fragment and create smaller bodies. The distributions of
these bodies has the shape of a power law

f (m) ∝ m−q, (26)

with q = 11/6 (Dohnanyi 1968). Assuming spherical particles
we can rewrite this as a size distribution

f (R) = fRRγ, (27)
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with γ = 2−3q = −3.5. The proportionality factor fR depends on
the material properties of the initial population and is calculated
by Dominik & Decin (2003) as

fR = N

√
2mσcoll

(4π/3)ρε0
= NR5/2

√
8π
ε0
, (28)

with

ε0 = −πε
γ+1

γ + 1
, (29)

and

ε =
v2coll

4S
−

√
v4coll

16S 2
− v

2
coll

2S
− 1, (30)

where S is the binding energy of the material. For asteroid type
bodies S = 107 erg g−1 (Dominik & Decin 2003).

5.3. Total mass and optical depth

The size distribution can be integrated to yield the total mass

Mdust =

∫ Rmax

Rmin

4π
3

R3ρ f (R)dR, (31)

in dust grains with radii between Rmin and Rmax.
The smallest size, Rmin, is determined by comparing the

gravitational force acting on the dust grain with the radiation
pressure

β(R) =
Frad

Fgrav
=

3L∗Qpr

16πcGM∗Rρ
, (32)

with c the speed of light and Qpr the radiation pressure coefficient

Qpr ≡ Qabs + Qscat(1 − 〈cosα〉), (33)

where α denotes the scattering angle. For isotropic forward scat-
tering, 〈cosα〉 = 1 (Burns et al. 1979). Particles with β > 1/2
are ejected from the system.

Assuming Qpr = 1, a dust grain with ρ = 2.76 g cm−3 or-
biting a sun-like star reaches the critical value of β = 1/2 for a
radius of about 0.4 μm. From here on on we will assume 10 μm
to be the maximum size of a dust particle still contributing sig-
nificantly to the optical depth.

Again considering M2, we have vcoll = 14.4 km s−1. Together
with S = 107 erg g−1 this gives ε0 = 1.90 × 104. If we take the
total planetesimal mass to be 50 M⊕, and the material density of
the bodies to be 2.76 g cm−3, we find the total mass in dust grains
between 0.4 and 10 μm to be Mdust = 8.7× 10−10 M�. This mass
compares well to the mass in small dust grains quoted in Sect. 2,
but depends heavily on parameters such as the total planetesimal
mass, and is only intended as an order of magnitude estimate.

The optical depth along a line of sight dr can be written as

dτ = −κρdr = nσdz, (34)

with κ the opacity and n the number density of the particles re-
sponsible for the absorption. Assuming the dust is evenly dis-
tributed we can rewrite this as

dτ =
σdust

V
dr, (35)

where V is the volume in which the dust is located, and σdust is
the total combined cross-section for radiation of the dust grains

σdust =

∫ Rmax

Rmin

πR2 f (R)dR. (36)

Assuming the dust traces the planetesimal population, i.e.,
destructive collisions happen throughout V , we can integrate
Eq. (35) find

τ(M2) = 9.6 × 10−3
( R
km

)−0.5 (
ρ

2.76 g cm−3

)−1 (
M

50 M⊕

)
· (37)

The radial optical depth is indeed <1. Again, the derived opti-
cal depth depends a lot on the initial parameters. Since we have
assumed the dust density is constant in the volume V , the radial
optical depth is almost independent of the angle away from the
midplane.

The optical depth could be increased by making the planetes-
imal population more massive, or changing their size. This will
however also increase Mdust.

A better way to increase τ might be to confine the volume in
which the dust is located. This can be done in two ways; either
moving the entire planetesimal population closer to the star, or
by realizing the planetesimals have pretty eccentric orbits and
most destructive collisions might therefore happen near periap-
sis. Wyatt et al. (2010) showed, using a Monte-Carlo simulation,
that a population of bodies with identical semi-major axes and
eccentricities, but random mean longitudes, arguments of peri-
centre and longitudes of ascending nodes, 90% of destructive
collisions happen within a radius r/a = (1 − e2)/(1 − 0.72e),
which might be a hint in this direction, even though the bodies
in the populations in Table 1 are distributed both in a and in e.

6. Discussion

Comparing the SEDs of several YSOs to radiative transfer mod-
els and near-IR interferometric visibilities appears to indicate
the presence of an optically thin dust structure with a large
scale height (Sect. 2). We have argued that an inwardly migrat-
ing planet could explain the observed structure. The scenario is
that an inwardly migrating planet collects planetesimals in mean
motion resonances, raises their eccentricities, and subsequently
scatters them to orbits with greater inclinations (Fig. 3). Over
time, the planetesimals collide and form small dust in a colli-
sional cascade.

6.1. The role of eccentricity pumping

An important result of this study is that scattering planetesimals
efficiently into highly-inclined orbits requires the relative veloc-
ity between the planet and the planetesimal to be high, of order
of the local Keplerian speed. This is the reason why in our setup
the sequence of eccentricity pumping in resonances followed by
dynamical scattering is the most successful strategy.

The resonance capture probability of a migrating planet is
a function of migration rate, planet mass, and distance to the
star, and increases for more massive planets (Mustill & Wyatt
2011). This puts constraints on the planet mass and migration
rate. The process of eccentricity-pumping is well-defined by
Malhotra (1995); Wyatt (2003) and Eq. (14) can be used to es-
timate the distance over which a particle has to be dragged in
a particular MMR for its orbit to reach a certain eccentricity.
However, if a planetesimal gets stuck in a resonance that is too
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far from the planet, it is likely to be accreted by the central star
after its eccentricity approaches unity. This fate could possibly
be averted by introducing gas drag, or a second, stationary planet
close to the central star. In this case, the migrating planet would
excite and push the planetesimals inwards, while the stationary
planet would cause the scattering events. The mass of this second
planet should not be too high, as this would lead to the ejection
of the excited planetesimals. Systems with Neptune-mass plan-
ets within an AU of their parent stars are not uncommon (e.g.
Bouchy et al. 2009), and adding such a planet to the simulations
presented in this work could well lead to even higher planetesi-
mal inclinations.

Yu & Tremaine (2001) study resonant capture by a
Jupiter-mass planet migrating inward using analytic arguments
and three-body integrations. They find that in typical systems,
the resonance capture and subsequent eccentricity-pumping will
most likely result in accretion of the test particle by the central
star. This fate can be avoided by having a close encounter with
the migrating planet, which eventually leads to an escape from
the system. In the study presented here, systems with very mas-
sive planets show very similar behaviour.

6.2. Migration

Our numerical simulations show that the basic scenario does
work well for a certain range in planet mass and migration
rate. The migration rates used are consistent with migration time
scales for type I, type II, and migration through a planetesimal
disk. However, the migration itself is not done self-consistently
in our simulations. Because of this we have not taken into ac-
count the effect of the driver for the migration on the planetesi-
mal population.

One possible driver is gas. A planet in a gaseous disk can ex-
change energy and angular momentum with the gas. If the planet
is unable to significantly alter the disk structure it is referred to as
type I. In this scenario the exchange of angular momentum can
be written as the sum of the torques exerted by the Lindblad res-
onances of the planet on the disk (Goldreich & Tremaine 1979,
1980). The direction of the migration depends on the size of the
interior and exterior torques and is found to be inward for an
isothermal disk (Ward 1997). Paardekooper & Mellema (2006)
simulated non-isothermal disks and showed the direction of mi-
gration depends on the ability of the disk to radiate away gen-
erated heat. Tanaka et al. (2002) calculated the sizes the torques
for isothermal disks and derived migration time scales of the or-
der of 1 Myr. The migration time scale is inversely proportional
to planet mass, massive planets migrate faster (Armitage 2010).

A slightly more massive planet will be able to open up a gap
in the disk. In this case the co-rotating torque disappears. The
migration rate for type II migration is equal to the gas-inflow
velocity and found to be independent of planet mass (Armitage
2010). Type II migration is generally faster than type I and at
5 AU a typical disk results in a migration time scale of 105 yr.

Gas is not necessarily needed for migration though. A planet
embedded in a planetesimal belt can exchange angular momen-
tum with these bodies during scattering events. If the planet scat-
ters bodies inward and outward at an equal rate, the net change
in the angular momentum of the planet will be zero. If however,
the planet usually scatters bodies to larger orbits, it will slowly
loose angular momentum and migrate towards the star (Ida et al.
2000). For the change in angular momentum to have a signifi-
cant effect on the planet’s orbital radius, the mass of the planet
has to be lower or equal to the total mass of scattered bodies.
Also, for the migration not to halt the planet has to encounter

fresh planetesimals continuously. Ida et al. (2000) calculate the
migration rate to be

da
dt
= 4

Mdisk

M�

apl

Ppl
, (38)

with the disk mass equal to Mdisk = πΣa2
pl. Kirsh et al. (2009)

study the orbital evolution of an isolated planet in a planetesimal
belt and confirm this result, adding that for typical planetesimal
surface density profiles the direction of migration will generally
be inward.

It is stressed that the planetesimals that are having their ec-
centricities raised in an interior resonance are not the ones re-
sponsible for the migration. Only when these bodies reach very
eccentric orbits and suffer close encounters with the planet are
they able to contribute to the planetary migration.

Aside from planet-disk interactions, the semi-major axis of
a planet can also be changed significantly as a result of inter-
actions with other planets. Raymond et al. (2011) numerically
investigated systems with an initially unstable configuration of
giant planets within a debris disk. It was found that the dynami-
cal instability could trigger a collisional cascade.

6.3. The influence of gas in the disk

While planetesimal scattering alone can make a planet migrate,
the preferred scenario may be to have the planet migrate in the
phase when the disk is still gas-rich, while our simulations with
forced migration have ignored the effects of gas on the planetes-
imals. If we attribute the planet’s radial motion to type I, type II,
or planetesimal-driven migration in a gas-rich disk, we need to
consider the effects of the gas during the migration and scat-
tering phases. The presence of gas will cause aerodynamic gas
drag. This drag will have two main implications; it will dampen
the eccentricity and inclination of a planetesimal, and, it will
have an effect of the probability of capturing a planetesimal in
an MMR. Since the capturing of planetesimals followed by the
eccentricity-pumping plays a vital role in this work, the effects
of gas on these two mechanisms have to be addressed.

The aerodynamic gas drag time scale is given by Adachi
et al. (1976)

τaero =
8ρR

3CDρgasvK
, (39)

with ρgas and ρ the density of the gas and planetesimal mate-
rial respectively. The drag coefficient CD is of order unity, and
a non-linear function of the planetesimal’s radius R and relative
velocity to the gas. From the equation it is clear that gas drag will
predominantly effect smaller bodies at relatively small distances
to the star.

Capobianco et al. (2011) study planetesimal driven migra-
tion in a gas disk and find the eccentricity of a planetesimal is
dampened by a factor of order itself on a time scale of

τe =
2.3 × 102 yr

f (a, e)

(
1.0
fg

) ( R
km

) ( a
AU

)13/4
, (40)

where fg = 1 corresponds to a MMSN-disk and f (a, e) is
given by

f (a, e) =

√
η2

0

( a
AU

)
+ 7.5 × 10−5

(
Mpl

M⊕

)2/3 (
e
χ

)2

, (41)
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with χ = RH/apl and η0 = 1.95×10−3 AU−1/2. The damping time
scale is smallest for small bodies since they couple to the gas bet-
ter. For a larger planetesimal of 10 km with a semi-major axis of
10 AU, the damping time scale is ∼106−7 yr and the system ap-
proaches the gas-free case (Capobianco et al. 2011). It appears
that the eccentricity-damping plays a small role for planetesi-
mals of sizes >1−10 km. For smaller planetesimals or higher gas
densities, gas drag will play an important role. From Eqs. (40)
and (41) it is obvious gas drag will affect eccentric orbits more
than circular ones. In such a regime, eccentricity-damping could
therefore protect planetesimals against accretion by the central
star. This would allow for them to be scattered by the migrating
planet, even if they are initially captured in a resonance far from
the planet.

The coupling of planetesimals to the gas has an effect on
the probability of resonance capture as well. Capobianco et al.
(2011) define a radius Rtrap for which half of the planetesimals
are captured. For a MMSN disk this radius corresponds to

Rtrap  9.2
(CD

0.5

) (
ρ

0.5 g cm−3

)−1 (
Mp

M⊕

)−0.73 ( a
AU

)−11/4
km, (42)

with CD the drag coefficient of order unity. For a Neptune-mass
planet at 15 AU, Rdrag ∼ 0.01 km. Assuming the planetesimals
are of km-size, the effect of gas on the capture probability can
thus be neglected.

Fogg & Nelson (2005) have studied the effect of a giant
planet migrating in on the process of terrestrial planet formation,
using N-body simulations. The inward migration is implemented
artificially with a prescription that is chosen to match type II mi-
gration. The disk is assumed to be gas-rich. Consequently, the
gas drag causes radial drift of planetesimals, and a damping of
eccentricities and inclinations. Fogg & Nelson find that the in-
ward migration causes the planet to capture small bodies in its
inner resonances, after which the orbits of these bodies are ex-
cited. The excitation of the orbits, followed by direct scattering
by the planet, causes the formation of an exterior scattered disk
of planetesimals, which looks very similar to the resulting pop-
ulations in Fig. 6. Depending on the initial disk properties, the
exterior disk is found to contain 30–70% of the inner disk mate-
rial. The gas damping is found to play an important role in the
inner regions of the disk. For increasingly mature disks, Fogg
& Nelson find a wider spread in the orbital parameters of the
scattered disk, caused by the increasingly smaller effect of gas
damping.

In a somewhat similar study, with the focus of forming
Earth-like planets in the habitable zone, is conducted by Mandell
et al. (2007). They find similar results for an inwardly migrat-
ing Jupiter-mass planet as Fogg & Nelson (2005), including a
scattered exterior disk. They also show that a second, station-
ary giant planet outside of the migrating one, will remove this
scattered disk by ejecting the bodies from the system. A smaller
or vanishing gas drag leads to more material ending up in the
outer disk. The spread in orbital parameters of the bodies in the
scattered disk also increases when less gas is present.

The extended scattered disks in these bodies show similar
characteristics as the populations found in Table 1, when gas
does not play a big role. However, these studies focus on gi-
ant planet migration, in relatively young disks, thus focussing
on low-velocity collisions between the planetesimals that allow
them to grow and form planet embryos and Earth-like planets.
In the study presented in this paper, we are instead focussing on
less massive planets, and interested in the orbital parameters of
planetesimals in the scattered disk.

After the migration has taken place, the planetesimals collide
on a certain time scale to form dust. The dust distribution can be
calculated under some approximations and the total mass and
radial optical depth are found to be consistent with the observed
haloes for certain values of variable parameters such as the to-
tal mass in the disk, the initial size of the planetesimals, and
the planetesimal material density. The collisional model used in
Sect. 5, and the estimates of the optical depth and total mass are
very simple and have their limitations. For instance, we assume
the dust to trace the comet population, use simple geometrical
estimates to define the volume the planetesimals occupy, and ne-
glect the effect of any gas that might be present. Because of the
nature of the discussed systems, including the spread in semi-
major axes, eccentricities and inclinations, it is difficult to avoid
these simplifications without having to make a detailed colli-
sional and radiative transfer model, which is beyond the scope
of this paper. If gas is present in the inner regions of the system,
it will have a significant effect on the small dust grains since they
couple to the gas on short time scales. Gas which is confined to
the disk might rapidly remove small dust grains from highly-
inclined orbits and reduce the scale height of the optically thin
structure. Since we are dealing with pre-transitional disks, it is
very well possible the inner regions of the system do not contain
any gas at all.

7. Conclusions

The goal of this work was to see if an inwardly migrating planet
could be the cause of the observed optically thin halo-like struc-
tures. The main findings are:

– An inwardly migrating planet is capable of capturing and
transporting material inward in mean motion resonances.
The probability of capture depends on planet mass and mi-
gration rate. Larger planet masses and lower migration rates
increase the capture probability. The presence of gas on the
capture probability can be ignored for km-sized planetesi-
mals.

– When a trapped planetesimal is pushed inwards, its eccen-
tricity will rise rapidly and in agreement with Eq. (14).
During this phase the inclination does not reach values
greater than a couple of degrees. The growing eccentricity
will eventually put the planetesimal on a planet-crossing or-
bit while increasing the relative velocity between the two.

– Simulations show that the inward migration of a planet can
lead to a population of planetesimals on highly-inclined
orbits. The average inclination of the remaining popula-
tion increases for higher planet masses and lower migration
rates. Resonance capture and subsequent eccentricity pump-
ing plays an important role in this outcome.

– The high planetesimal inclinations in these systems result
from direct scattering events, and reach significantly higher
values if the planetesimal orbits are excited prior to this
event.

– In single-planet systems where planetesimals get stuck in an
MMR far from the migrating planet, the vast majority of
planetesimals is lost to the central object. This fate could
perhaps be averted by introducing a second, stationary planet
close to the central star. This planet should not be very mas-
sive, as close encounters would then lead to ejection of the
excited planetesimals.

– The resulting population of planetesimals on highly-inclined
orbits have collisional time scales of the order of 105−6 yr
depending on the properties of the individual planetesimals
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and their combined mass. Since the relative velocities be-
tween the planetesimals are high (∼10 km s−1) the collisions
will be destructive and will start a collisional cascade that
will grind the bodies down to dust grains. The total mass and
optical depth of this dust can be estimated and found to be of
the same order as the total mass and optical depth observed
in various systems.

Future studies should focus on self-consistent migration and a
more careful description of the collisional cascade and optical
depth determination to see if this mechanism can work and con-
strain the parameter-space further. With these future studies, it
might be possible to use the optically thin structures as signposts
for planet formation and migration. The presence of an optically
thin halo-like structure could be induced from an SED, without
having to resolve the system. The properties of the halo could
then put constraints on the planet mass, migration rate, and dis-
tance it has travelled.
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