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Abstract Most bottom-up models that predict human eye

fixations are based on contrast features. The saliency model

of Itti, Koch and Niebur is an example of such contrast-

saliency models. Although the model has been successfully

compared to human eye fixations, we show that it lacks

preciseness in the prediction of fixations on mirror-sym-

metrical forms. The contrast model gives high response at

the borders, whereas human observers consistently look at

the symmetrical center of these forms. We propose a sal-

iency model that predicts eye fixations using local mirror

symmetry. To test the model, we performed an eye-track-

ing experiment with participants viewing complex photo-

graphic images and compared the data with our symmetry

model and the contrast model. The results show that our

symmetry model predicts human eye fixations significantly

better on a wide variety of images including many that are

not selected for their symmetrical content. Moreover, our

results show that especially early fixations are on highly

symmetrical areas of the images. We conclude that sym-

metry is a strong predictor of human eye fixations and that

it can be used as a predictor of the order of fixation.

Keywords Eye movements � Covert visual attention �
Local symmetry � Saliency models

Introduction

Humans continuously make eye movements to investigate

the visual environment in an efficient manner. Interesting

parts of the visual field are focused on and inspected with

high acuity. Eye movements are influenced both top–down,

for instance based on the task at hand or past experiences, and

bottom-up, based on properties of the stimulus. Although

both influences play a role, we are only interested in the role

of the stimulus in guiding eye fixations. The questions that

we address in this paper are the following: what are prop-

erties of the stimulus that attract overt visual attention and

can we predict human eye fixations with bottom-up models?

More specifically, we will investigate the role of local

symmetry as an alternative to contrast for the prediction of

eye fixations. We propose saliency models that calculate

the conspicuousness in an image on the basis of mirror

symmetry and discuss the results of comparing these

models to human eye fixations recorded in an eye-tracking

experiment. The main result shows that mirror symmetry is

a better predictor of human gaze than contrast.

The paper is organized as follows. We first discuss the

backgrounds of the presented research. Then, the symmetry-

saliency models are presented, along with the performed eye-

tracking experiment and the methods to compare the models

with the human data. Next, the experiments and results are

presented, and we end with a discussion on these results.

When we use the word symmetry in the paper, we refer to

mirror symmetry, unless explicitly stated differently.

Background

In this section, we discuss the backgrounds of the control of

eye movements and the prediction of eye fixations using

G. Kootstra (&)

CAS/CVAP, Royal Institute of Technology (KTH),

100 44 Stockholm, Sweden

e-mail: kootstra@kth.se

B. de Boer

University of Amsterdam, Amsterdam, The Netherlands

L. R. B. Schomaker

University of Groningen, Groningen, The Netherlands

123

Cogn Comput (2011) 3:223–240

DOI 10.1007/s12559-010-9089-5



saliency models. We furthermore introduce the role of

symmetry in natural vision and computer vision.

Bottom-Up Control of Eye Movements

There are definitely top-down influences on the control of

eye movements [1–11]. However, in this paper, we focus

on bottom-up visual attention. The role of the stimulus in

the guidance of eye movements has been pointed out in

many studies. Teeuwes [12, 13], for instance, showed that

in a search task, a salient distractor could capture attention.

Even after extended practice, the irrelevant stimulus

influenced the eye movements, and complete top-down

guidance was not possible [14]. Also for more complex

photographic stimuli, overt attention is attracted toward

contrast-manipulated parts of the images [15]. Since the

contrast enhancement did not change the meaning of the

stimulus, this is a clear bottom-up effect on attention.

Mannan et al. [16] concluded that eye movements made

during brief presentation of photographic images are a

response to the spatial features of the image.

We are interested in the role of the stimulus in the

guidance of eye movements. We are specifically interested

in the visual features that can be used to predict human eye

fixations. This gives us insight into the inherent properties

of the stimulus that attract attention. To investigate this, we

propose a saliency model that determines the salient

regions in an image and compare the model to human eye

fixations on the same images. Whereas most existing sal-

iency models focus on contrast features to determine parts

of the image that stand out from their local environment,

we use local symmetry to predict the eye movements.

Saliency models

Although saliency models exist that combine bottom-up

and top-down factors [17–21], in this paper we will focus

on saliency models that base their prediction on the stim-

ulus. Most existing bottom-up saliency models use contrast

features to determine the saliency in an image. The influ-

ential saliency model of Itti, Koch and Niebur, for instance,

calculates the saliency of an image on the basis of contrast

in three different feature channels: intensity, color and

orientation [22, 23]. The model is based on a biologically

plausible architecture for visual attention [24] and is an

implementation of the feature-integration theory of human

visual search [25]. It can correctly predict human behavior

in visual pop-out experiments [26]. Parkhurst et al. [27]

compared the model to human eye fixations on complex

photographic images. They showed that the saliency at the

points of human fixation, as measured by the model, is

significantly higher than expected by chance. Similarly,

Ouerhani et al. [28] found a positive correlation between

the resulting saliency maps and human fixations.

Other saliency models, like the model of Le Meur et al.

[32] are also based on contrast calculations. They found a

positive correlation between their model and human data,

which was slightly higher than the performance of Itti and

Koch’s model. The saliency model of Bruce and Tsotsos

[33] compares the distribution of features in the center to

the surround and defines the saliency based on the contrast

between the two. The center-surround structure also

emerged as the most representative receptive fields when

fitting a non-parametric model to human eye-fixation data

[34]. However, the model used was limited in the way that

it could not result in the concept of symmetry, as we

propose in this paper. Privitera and Stark [35] investigated

a set of simpler contrast-saliency operators. These opera-

tors were also found to predict human fixation points to

some extent.

Although contrast has been the dominant feature for

saliency models, we can see a clear deficiency in the cur-

rent visual attention models when we look at Fig. 1. For the

images that are shown in the first column, our participants

had a clear preference to fixate on the center of these

symmetrical objects (last column). The response of the

contrast-saliency model [23] shown in the second column,

however, is much more spread out, and not focused so

much on the center of the objects, but on the borders where

the objects contrast with the backgrounds. The saliency

model based on local symmetry that we present in this

paper, on the other hand, does more specifically predict the

fixations on the center (third column). In this paper, we

show that this is true not only for photographic images that

are selected explicitly to contain symmetrical objects as

shown in the figure, but more generally for a wide variety

of images containing natural and man-made content. Local

symmetry calculations can be used to predict human gaze.

Symmetry in Vision

Symmetry is an abundant visual feature. Not only man-

made objects but also most natural living creatures have a

high degree of symmetry, most commonly left–right mirror

symmetry in frontal encounters. This symmetry is even an

indication of the fitness of the individual. For instance,

manipulated images of faces with enhanced symmetry are

judged more attractive than the original faces [36, 37]. Also

in architecture and art, symmetry is usually preferred over

asymmetry [38]. According to the Gestalt theory of visual

perception, symmetry improves the figural goodness, that

is, the subjective notion of how nice, simple, or elegant a

form is [39]. Since there is this abundance of symmetry, it

is likely that it plays a role in the human visual system.
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Humans very rapidly detect mirror-symmetrical pat-

terns, especially when the pattern contains multiple axes of

symmetry [40]. Similarly, recognition performance

increases when symmetrical patterns are presented [41].

This suggests that symmetry perception works pre-atten-

tively [42]. The improvement in performance might be

explained by the intrinsic redundancy present in symmet-

rical forms, which gives rise to simpler representations

[43]. Not only humans display this sensitivity to symmetry,

it is also found in other animals [e.g., pigeons, 44].

Mirror symmetry also influences eye movements. Fix-

ations on symmetrical forms are concentrated at the center

of the form or at the crossing points of the symmetry axes

[45]. In free-viewing photographic images, the amount of

symmetry is significantly higher at the points of human

fixation than on average in the image. This effect is

stronger for symmetry than for contrast at the fixation

points [46]. Among other operators, Privitera and Stark

compared a simple symmetry operator to human fixation

data and found a positive correlation [35]. Açik et al. [47]

propose that visual attention is guided by a hierarchy of

features in which higher-level features like symmetry

precede lower-level features like contrast. Similar to the

influence of symmetry, a center-of-gravity effect or global

effect is reported, showing the tendency of eye saccades to

land at the geometric center of a target object or target

configuration [48–50]. Bindemann et al. [51] showed that

the first eye movements to human faces land on the center

of gravity of the face independent of the three-dimensional

orientation of the face. The subsequent fixations focus on

more detailed facial features like eyes and nose. Especially

when a pattern has multiple symmetry axes, the center-of-

gravity of a pattern will usually be approximately its center

of symmetry. We propose that the center-of-gravity effect

can thus be predicted on the basis of local symmetry, with

the advantage that there is no need for prior segmentation

of the object. Furthermore, for images containing a single

axis of symmetry, the fixations are concentrated along this

axis, whereas they are more spread out on non-symmetrical

images [52].

It can be concluded that humans are sensitive to sym-

metry and that symmetry influences overt visual attention.

In addition, symmetry plays a role in early object segmen-

tation. According to the Gestalt law of Prägnanz, symmetry

is one of the principles to find the simplest and most likely

interpretation of the sensory input [53, 54]. This hypothesis

is supported by the fact that symmetry is a cue for figure-

ground segregation. Humans usually see the symmetrical

areas of an image as foreground on the asymmetrical

regions as background [55], although it must be noted that

in some cases, convexity, another Gestalt principle, can be a

stronger figure-ground cue [56]. This property of symmetry

suggests that it can be used for context-free object seg-

mentation, and since visual attention is likely to be object-

oriented [57], symmetry might play an important role in the

bottom-up guidance of eye movements. All these findings

motivated us to further investigate the influence of sym-

metry on human visual attention to see whether local

symmetry can be used to predict human eye fixations.

Symmetry in Computer Vision

Although also in computer-vision research contrast features

have received most attention [e.g., 58, 59], symmetry is

successfully used in a number of studies. In earlier work,

for instance, Marola [60] used symmetry for detection and

localization of objects in planar images. Symmetry has also

been used to control the gaze of an artificial vision system

[61] and to guide the attention of a robot [62]. Furthermore,

a context-free symmetry operator has been proposed for the

detection of facial features [63]. In [64], a hierarchical

representation of local symmetry is proposed, with larger

and more salient symmetrical structures at the top and

smaller symmetrical structures at the bottom of the hier-

archy. A number of symmetry operators have been pro-

posed in the literature. The mirror-symmetry operator of

Reisfeld et al. [65] compares gradients of neighboring

pixels to determine the amount of local symmetry at a

given location in the image. Heidemann [66] extended this

Image
Human
fixations

Contrast
model

Symmetry
model

Fig. 1 Examples of images containing symmetrical objects. The

human fixation-density maps are shown in the last column. It can be

appreciated that the human fixations are concentrated at the centers of

the flowers. The second column shows the response of the contrast-

saliency model. The response of the symmetry-saliency model is

given in the third column. The preference of humans to fixate on the

center of symmetry of the flowers is correctly reproduced by the

symmetry model, whereas the response of the contrast model is less

specific and more focused on the edges of the forms. The saturated

regions in the images show the areas of the contrast, symmetry, and

fixation-density maps that are above 50% of their maximum value
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work to the color domain. Reisfeld et al. also proposed a

radial-symmetry operator that is more sensitive to sym-

metrical patterns containing multiple symmetry axes.

These symmetry operators are used as the basis of the

symmetry-saliency models proposed in the presented work.

Fixation sequence

When humans view an image for a couple of seconds, they

make a sequence of saccades to investigate the interesting

regions of the image. Since we focus on bottom-up com-

ponents of eye movements, we will not consider top-down

mechanisms, such as scan paths [6, 67], in this paper.

Parkhurst et al. [27] compared human eye fixations in a

free-viewing experiment with the contrast-saliency model

[23]. Investigating the amount of contrast near the point of

fixation, they found that it drops over the fixation sequence.

Earlier fixations are on parts of the image containing more

contrast than the later fixations. Tatler et al. [68], however,

claim that this finding is an artifact of the analysis method

used. With a method that compensates for center biases,

they find no drop in contrast at the points of fixation over

the sequence. However, we show in this paper, using the

same analysis method, that the amount of local symmetry

at the point of fixations does gradually drop over the fix-

ation sequence. The reason for the drop of symmetry at the

points of fixation might be that the early fixations are more

stimulus-driven than the later, since context then plays a

larger role in the guidance of the eyes. However, it is also

possible that all attended parts of the scene have above-

average local symmetry, and the sequence is based on the

strength of the feature. Local symmetry can then be used to

predict the sequence of fixations. It must be noted, how-

ever, that this is only true in free-viewing conditions with

no particular target. When participants are engaged in a

search task, bottom-up saliency is not a good predictor of

overt visual attention [69].

Methods

In this section, we first present the symmetry-saliency

model and give a short overview of the contrast-saliency

model of Itti et al. [23] with which we compare the results

as a point of reference. Subsequently, the eye-tracking

experiment is explained, and the data presented. The sec-

tion ends with a description of the two methods used to

compare the human data with the saliency models.

Symmetry-Saliency Model

We developed three saliency models based on local sym-

metry calculations. The models are built upon the basic

symmetry operators developed by Reisfeld et al. [65] and

Heidemann [66]. We extended the operators to multi-scale

symmetry-saliency models in a similar fashion as the

contrast-saliency model [23]. We first describe the basic

symmetry operators, followed by the multi-scale symmetry

models.

Basic Symmetry Operator

The isotropic symmetry operator [63] calculates the

amount of local symmetry at a given pixel, p ¼ ðx; yÞ:, in

an image by applying a symmetry kernel to this pixel. The

symmetry is calculated for all pixels in the image. The

amount of local symmetry at p is calculated based on the

intensity gradients of the surrounding pixels in the kernel.

Pixel pairs in the symmetry kernel contribute to the local

symmetry value. A pixel pair consists of two pixels, pi and

pj, so that p ¼ ðpi þ pjÞ=2 (see Fig. 2a-I). In other words,

the two pixels forming a pair are point symmetric in the

center of the kernel. The contribution of the pixel pair to

the local symmetry of p is calculated by comparing the

intensity gradient gi at pi and gradient gj at pj. The intensity

gradients are obtained by approximating the image deriv-

atives in the horizontal, Ix, and vertical, I-y, directions using

Sobel filters:

Ix ¼
1 0 �1

2 0 �2

1 0 �1

2
4

3
5 � I; Iy ¼

1 2 1

0 0 0

�1 �2 �1

2
4

3
5 � I:

ð1Þ

The gradient vector gi ¼ ðIxðpiÞ; IxðpiÞÞT , with the

magnitude, mi, and orientation, hi determined as:

mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IxðpiÞ2 þ IyðpiÞ2

q

hi ¼ atan2 IyðpiÞ; IxðpiÞ
� �

:
ð2Þ

Based on the orientation of the gradients at point i and j, the

symmetry is measured by:

cði; jÞ ¼ 1� cosðci þ cjÞ
� �

� 1� cosðci � cjÞ
� �

; ð3Þ

where ci ¼ hi � a is the angle between the orientation of

the gradient, hi, and the angle, a, of the line between pi and

pj (see Fig. 2a-II). The first term in Eq. 3 has a maximum

value when ci þ cj ¼ p, which is true for gradient orien-

tations that are mirror symmetric with respect to the sym-

metry line a (see Fig. 2a-II). Using only this term would

also respond to symmetry values for two pixels that have

the same gradient orientation and thus lie on a straight

edge. Since we are not interested in detecting edges, but in

finding the centers of symmetrical patterns, the second term

in the equation demotes pixel pairs with similar gradient

orientations.
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The symmetry measurement is weighed by a distance

function and the magnitudes of the gradients to get the

local symmetry contribution of the pixel pair:

sði; jÞ ¼ dði; j; rÞ � cði; jÞ � logð1þ miÞ � logð1þ mjÞ; ð4Þ

where mi is the magnitude of the gradient, and d(i,j,r) is a

Gaussian weighting function on the distance between pi

and pj with a standard deviation of r. The multiplication

with the gradient magnitudes assures that only strong edges

contribute to the local symmetry value, since these are

likely to belong to objects in the scene. The logarithm is

used to attenuate the influence of large magnitude values.

The total symmetry value at point p is calculated by

summing the contributions of all symmetrical pixel pairs in

the kernel, CðpÞ. The symmetry kernel has a size of

r 9 r pixels (see Fig. 2a-II). We used r = 24 in our

experiments. The amount of local symmetry calculated by

the isotropic symmetry operator is then:

Siso
l ðpÞ ¼

X
ði;jÞ2CðpÞ

sði; jÞ; ð5Þ

where Siso
l is the resulting isotropic symmetry map at scale

l. The use of different scales to acquire a multi-scale

symmetry-saliency model is discussed in the next section.

Based on this isotropic symmetry operator, Reisfeld

et al. [65] also developed a radial symmetry operator that is

extra sensitive to patterns containing multiple axes of

symmetry. Due to the summation in Eq. 5, the isotropic

operator has already a higher activation for patterns with

multiple axes of symmetry. However, the radial operator

promotes such patterns even more. To achieve this, the

orientation of the symmetry contribution of every pixel pair

is calculated by

uði; jÞ ¼ ðhi þ hjÞ=2: ð6Þ

Next, the pixel pair that contributed most to the symmetry

value at point p is determined by:

ði0; j0Þ ¼ arg max
ði;jÞ2CðpÞ

sði; jÞ ð7Þ

and the symmetry orientation at point p is established:

/ðpÞ ¼ uði0; j0Þ: ð8Þ

This orientation is then used to promote the contributions

of pixel pairs with dissimilar orientations:

Srad
l ðpÞ ¼

X
ði;jÞ2CðpÞ

sði; jÞ � sin2 uði; jÞ�/ðpÞð Þ: ð9Þ

Both the isotropic and the radial symmetry operators are

based on the intensity of the pixels only. Heidemann [66]

extended the basic operator to a color symmetry operator.

This operator compares pixels in three color channels, red,

green, and blue, to determine the symmetry value:

Scol
l ðpÞ ¼

X
ði;jÞ2CðpÞ

X
ðki;kjÞ2K

cði; j; ki; kjÞ; ð10Þ

where K contains all combinations of two color channels,

K = {(red,red),(red,green),…(blue,blue)}. cði; j; ki; kjÞ is

the symmetry contribution calculated by comparing pixel

pi in color channel k-i with pixel pj in color channel kj.

Besides the addition of color, Eq. 3 is altered so that the

function gives the same results for gradients that are rotated

by 180� in order to account for patterns on gradually

changing background:

ccolði; jÞ ¼ cos2ðci þ cjÞ � cos2ðciÞ � cos2ðcjÞ
� �

: ð11Þ

The first term in the equation is a 180�-periodic symmetry

term. The second term has a similar role as the second term

in Eq. 3, to discount for pixels that lie on an edge.

The basic symmetry operators have two parameters,

which have been set to r = 24 and r = 32. The symmetry

kernel size thus coincides with the difference-of-Gaussian

kernel size at the surround scale in the contrast-saliency

model [23].

α
θi

pi

mi

a mj

pj
γi

γj

θj

p

pi

pj

(a)
I II

(b) image pyramid symmetry maps

saliency map

r

N

N

N

... ... ...

p

Fig. 2 The multi-scale symmetry-saliency model. a shows the basic

symmetry operator. All pixel pairs in the symmetry kernel contribute

to the local symmetry value of the central pixel (I). The contribution

of a pixel pair is calculated using the intensity gradients at the pixel

locations (II). b gives the layout of the multi-scale symmetry model.

A Gaussian image pyramid of five scales is constructed. The

symmetry operator is applied to all images in the pyramid, resulting

in symmetry maps at different scales. The maps are normalized and

added to form the symmetry-saliency map
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Multi-Scale Symmetry Model

The three basic symmetry operators discussed in the pre-

vious section calculate the symmetry response on one

scale. Although a larger kernel size could in theory be able

to detect larger symmetrical structures, there are two

problems with that approach. Firstly, since two pixels at

opposite sides of the kernel’s center are compared, the

pattern needs to be perfectly symmetrical to have matching

gradients at pixels far from the center. This will cause

problems when using complex stimuli of real-world scenes

like we do in our study. Secondly, larger symmetry kernels

greatly increase the computational load of the algorithm.

To be able to detect larger symmetrical patterns and to

allow for small deviations from perfect symmetry and

speed-up of calculation, we apply a multi-scale approach

using Gaussian image pyramids (see Fig. 2b), similarly to

[23].

The image, I0, at scale zero is at its original resolution

(1,024 9 768 pixels in our experiments). At subsequent

scales, the image is first convolved with a Gaussian kernel,

G, for low-pass filtering, and then down sampled to obtain

an image that is half the width and height of the original

image:

I0l�1 ¼Il�1 � G

Ilðx; yÞ ¼I0l�1ð2x; 2yÞ:
ð12Þ

In our experiments, we used five different scales (L = 5),

accordingly spanning approximately the same scale space

as the contrast-saliency model. The resolution of the first

scale, I0, was 1,024 9 768 pixels and that of the highest

scale, I4, was 64 9 48.

To determine the saliency map, the symmetry operator

is applied to all Gaussian images in the pyramid. This

results in L symmetry maps at different scales. These maps

are combined by first normalizing the maps, then resizing

them to the same scale (l = 2, also used by the contrast-

saliency model), and finally adding the different maps:

S ¼ �
L�1

l¼0
NðSlÞ; ð13Þ

where � is the summation operator that first resizes all

elements to the same scales and then sums the maps pixel-

wise.

The normalization function, N, is adopted from [23] and

has the purpose to promote symmetry maps at scales with

only a few outstanding points, as opposed to symmetry

maps that contain many similarly symmetrical patterns.

The normalization function first scales the values in the

map to the range [0, 1], so that the global maximum has a

value of 1.0, and then multiplies all values in the map with

ð1� �mÞ2, where �m is the average value of all local maxima

in the map that have a value greater than or equal to 0.10. If

there are many comparably symmetrical patterns, �m will be

large, and the map will thus be multiplied by a small value.

If, on the other hand, there is one clear global maximum, �m

will be small, and the map will be weighed more strongly

in calculating the total saliency map. Finally, the resulting

saliency map will be normalized so that the total sum of all

its elements is 1.0. Another normalization procedure based

on lateral inhibition is discussed in [26]. However, in our

experience, that procedure results in too few salient loca-

tions. We try to predict eye fixations in a free-view

experiment with complex photographic stimuli where

participants have many potentially interesting locations to

focus on.

We designed our multi-scale symmetry-saliency model

to be similar to the multi-scale implementation of the

contrast-saliency model [23] in order to provide a fair

comparison of both methods.

Contrast-Saliency Model

We compare our symmetry-saliency model with the con-

trast-saliency model [23]. In this section, a short overview

of the contrast model is given to give the reader an idea of

the mechanisms. For a full description, we refer to [23, 26].

The contrast-saliency model calculates saliency based

on contrast in three different feature channels: intensity,

color, and orientation. Contrast is calculated by center-

surround operations. The center is excited by the presence

of a given feature, whereas the surround is inhibited or vice

versa. In the intensity channel, this corresponds to bright on

dark or dark on bright. In the color channel, contrast is

calculated using chromatic double-opponency channels,

red on green, blue on yellow or vice versa. Both color and

intensity contrasts are implemented by using Gaussian

image pyramids. The center-surround calculations are done

by subtracting the image at different scales. The center is

then taken as a pixel on a certain scale and the surround as

the corresponding pixel on a coarser scale. For the calcu-

lation of orientation contrast, the Gaussian intensity images

are convolved with Gabor filters in four different orienta-

tions. Again, an image pyramid is constructed, and the

center-surround orientation contrast is calculated by sub-

tracting the Gabor-filtered images at different scales.

To obtain a multi-scale contrast-saliency model, contrast

is calculated on three different scales, 2, 3, 4 (0 being the

original resolution) and with a difference of both 3 and 4

scales between the center and the surround scales. The

resulting feature maps on the different scales are normal-

ized and combined similar to Eq. 13, to form three con-

spicuity maps, for intensity, color, and orientation. To

calculate the total contrast-saliency map, the conspicuity

maps are first normalized using the earlier discussed nor-

malization method, and then the average over the three
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maps is taken. Different from Itti, Koch, and Niebur’s

implementation, the resulting saliency map is at scale two,

so that it is comparable with our symmetry-saliency map.

Itti et al. [23] discuss a procedure to select a fixation

location using winner-takes-all and inhibition-of-return

operators. These operators are useful for modeling visual

search or to integrate bottom-up and top-down influences.

However, since we are interested in the influences of saliency

per se, we do not use this selection procedure, but rather

compare the human fixations with the full saliency maps.

Some examples of saliency maps resulting from the

symmetry models and the contrast model for artificial

stimuli are given in Fig. 3. There is a large difference

between the symmetry and the contrast responses. Whereas

the symmetry models specifically highlight the center of the

objects, the contrast model gives a much more spread-out

activation. For the circle and the square, the most salient

points are even near the corners of the forms instead of at

the center. The saliency map of the radial symmetry model

is a little more focused on the center than those of the other

symmetry models. Apart from that, the differences among

the three symmetry models are relatively modest.

Eye-Tracking Experiment

To test the performance of both the symmetry and the

contrast-saliency model, we conducted an eye-tracking

experiment to record eye fixations while participants

viewed complex photographic images. The experiment was

approved by the ethical committee of the psychology

department of the University of Groningen and in accor-

dance with the Helsinki Declaration.

Participants

Thirty-one students (15 men, 16 women) of the University

of Groningen took part in the experiment for credit points.

The age of participants ranged from 17 to 32. All had

normal or corrected-to-normal vision. All participants were

naı̈ve to the aims and hypotheses of the study.

Stimuli

A total of 99 photographic images in five different cate-

gories were presented to the participants. Nineteen images

were in the natural-symmetry category. These images were

selected explicitly for containing symmetrical natural

objects. To test whether our methods are not only valid for

scenes containing explicit symmetrical forms, but more

generally for a wide range of images, we included four

other categories in the image set: 12 images of animals in a

natural setting, 12 images of street scenes, 16 images of

buildings, and 40 images of natural environments. Figure 4

gives examples of the different categories included in the

Isotropic
symmetry

Radial
symmetry

Color
symmetryStimulus Contrast

0.0

max

response

Fig. 3 Examples of saliency maps produced by the three symmetry

models and the contrast model. The color maps show the responses of

the models to the artificial stimuli. The contrast model has high response

for the complete shape. For the circle and square, the highest points of

activation are, respectively, near the edges and corners. The symmetry

models, on the other hand, respond more specifically to the symmetrical

center of the form, with the highest specificity for the radial-symmetry

model. The bottom row shows the response to a color image with two

squares, one being almost isoluminant to the background (top-left
corner) and the other with a larger difference in luminance. The color

model is able to detect both symmetrical shapes. The color model also

responses to the black-and-white images, because the response is

calculated on the red, green, and blue color channels
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dataset. The five categories span a wide variety of images,

containing natural symmetries and natural and cultural

scenes, with organic and rectilinear shapes. All these

images were taken from the McGill calibrated color image

database [70].

The images were displayed full-screen with a resolution

of 1,024 9 768 pixels on an 1800 CRT monitor of 36 by

27 cm at a distance of 70 cm from the participants. The

visual angle was approximately 29� horizontally by 22�
vertically.

Experimental Setup

Since we are interested in the bottom-up components of

visual attention, the participants were asked to freely view

the images. We did not give them a task, since that would

give a strong bias on the eye movements. Still, the eye

movements are likely to be also controlled top-down, by

interests and experiences of the participants.

The images were presented in random order to the

participants. Each image was displayed for 5 s. After each

presented image, the participant could decide when to

continue. The experiment was split up in sessions of

approximately 5 min. Between the sessions, the partici-

pants had a short break, in which the experimenter had a

relaxing conversation to keep the participants motivated

and focused.

Eye Tracker and Data Acquisition

We used the Eyelink I head-mounted eye-tracking system

(SR research) to record the gaze of the participants. Fixa-

tions were extracted using the accompanying software. At

the beginning of the experiment, the eye tracker was cali-

brated using the SR-research software. Before every ses-

sion, the calibration was verified and the experiment

continued when the system was correctly calibrated. If not,

the eye tracker was recalibrated. Before every trial, i.e.,

before every presentation of an image, drift was measured

by letting the participant focus on a cross displayed in the

center of the screen, and the estimation corrected if nec-

essary. Because of the drift correction method, the first

fixation was strongly biased. We therefore eliminated this

fixation from the data. Using the eye tracker, we acquired

99 trials of 5 s for all 31 participants. A few trials were not

used in the data analysis due to interruptions or other

incidents.

Comparison Methods

We used two methods to compare the human eye-fixation

patterns with the predictions from the saliency models: a

correlation method similar to that used in [28, 32] and a

fixation-saliency method, similar to that used in [27, 47,

68]. Both methods are discussed in this section.

Correlation Method

To correlate the human data with the output of the saliency

models, we transform the eye-fixation data to fixation-

distance maps (see Fig. 5). These fixation-distance maps

give the probability that a fixation lands on a certain

location based on the human data. Similarly, the saliency

maps can be seen as giving the probability of a fixation on

that location based on the saliency models. To construct a

fixation-distance map from an eye-fixation pattern, the

inverse distance transform of the fixation data is calculated.

The distance transform, F0, gives the distance to the nearest

fixation for all pixels in the image. This results in values of

zero at the points of fixation with a linear increase at pixels

further away from the fixations:

F0ðpÞ ¼ p� fnk k; ð14Þ

where p ¼ ðx; yÞ is the pixel location, fn ¼ ðxn; ynÞ is the

location of the nearest human fixation point, and k k is the

Euclidian distance between the two. Next, the fixation-

distance map, F, is obtained by subtracting all values from

the maximum value in the distance transform:

FðpÞ ¼ maxðF0Þ � F0ðpÞ: ð15Þ

F is normalized so that the sum of its elements is 1.0. This

results in a map with high values at the points of fixations,

and lower values further from these points. This approach

is similar to the approach in [28, 32, 71], where a fixation-

density map is calculated using a kernel-density estimation

with Gaussian kernels. Our method puts emphasis on the

location of fixations rather than on their density. Our

method moreover has the advantage that it is non-para-

metric, whereas in the kernel-density approach the standard

Natural
symmetries Animals Street scenes

Buildings Natural scenes

Fig. 4 Image examples for all five categories used in the experiment.

In total, 99 images were used: 19 images of natural symmetries, 12 of

animals, 12 of street scenes, 16 of buildings, and 40 of natural scenes
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deviation of the Gaussian kernel needs to be set, which can

be seen as a threshold on the allowed distance between

fixation point and saliency prediction. In our approach,

there is no such threshold. The similarity will rather

gradually decrease when human data and prediction differ

more. It is worth noting that correlations using the density

method show the same patterns as the results we present

here using the fixation-distance maps.

In Fig. 6, the correlation method to compare the saliency

maps with the fixation-distance maps is depicted. The two

maps are correlated with each other to get the correlation

coefficient, q:

q ¼
P

p2P FðpÞ � lFð Þ � SðpÞ � lSð Þð Þ
N � 1ð ÞrFrS

ð16Þ

where P is the set of all pixel coordinates in the maps and

N = |P| is the number of pixels. l and r2 are, respectively,

the mean and the variance of the values in the maps. The

correlation coefficient has a value between -1 and 1. A q
of 0 means that there is no correlation between the two

maps, which is true when correlating with random fixation-

distance maps. Values for q close to zero indicate that a

model is a poor predictor of human fixation locations.

Positive correlations show that there is similar structure in

the saliency map and the human fixation map.

In the above-described correlation method, the predic-

tions of the saliency models are compared to the fixation-

distance maps of individual participants. However, the

photographic images viewed by the participants are highly

complex stimuli that generate many fixations, with sub-

stantial variation among the participants. Because of this

variation, the correlations of individual fixation-distance

maps with the saliency maps will be low. However, some

of the fixations are shared by all participants and are more

likely to be caused by bottom-up factors. Because we are

interested in general models and not in models that predict

visual attention of specific persons, we want to test how

well the saliency models predict the consensus among

participants as well. To test this, we calculate the correla-

tion coefficient for the combined fixation-distance maps

(Fig. 5). These combined maps are calculated by summing

the individual fixation-distance maps:

Fc ¼
XN

i¼1

Fi ð17Þ

where Fi is the individual fixation-distance map for par-

ticipant i, Fc is the combined fixation-distance map

showing the consensus, and N = 31. Fc is normalized so

}∑

Fixation patterns

Participant N

Participant 1

Individual Fixation
Distance Maps

Combined Fixation
Distance Map

Fig. 5 The fixation patterns of individual participants, shown by the

white circles, are transformed to individual fixation-distance maps

using the inverse distance transform. The individual maps are

summed to obtain the combined fixation-distance map. The maps

are color coded with darker colors corresponding to higher values. It

can be appreciated that there is substantial variation in the individual

fixation patterns. However, some fixations are shared among the

participants. This consensus becomes clear in the combined fixation-

distance map

Correlation

Fig. 6 The correlation method to compare the saliency models with

the human data. The fixation-distance map obtained from the human

eye fixations is correlated with the saliency map calculated from the

same image. The correlation results in a correlation coefficient that

shows how well the saliency model predicts the human data
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that the elements sum up to 1.0. The saliency maps are

compared to the combined fixation-distance maps using

Eq. 16.

Fixations-Saliency Method

The fixation-saliency method tests how the saliency at the

points of human fixation according to the saliency models

compares to the saliency at non-fixated points. This is done

by calculating the area under the receiver operating char-

acteristic (ROC) curve as proposed by Tatler et al. [68].

The area under curve (AUC) reflects how well the fixated

locations can be separated from the non-fixated locations

on the basis of their saliency. The ROC curve plots the

false-positive rate as a function of the true-positive rate. A

false positive is a non-fixated location that is falsely clas-

sified as fixated and a true positive is a fixated location that

is correctly classified as fixated. A simple threshold is used

for classification. The ROC curve is calculated by sys-

tematically changing the threshold, which changes the

false-positive and true-positive rates. If the fixated and non-

fixated locations cannot be discriminated, the ROC curve

will be diagonal, and the AUC will accordingly be 0.5.

Predictions better than chance have a value above 0.5, with

1.0 reflecting perfect discrimination. Values lower than 0.5

indicate that the model is predicting worse than chance.

This way, it is possible to get AUC scores for the complete

fixation sequence of a participant viewing an image, but we

can also analyze the individual fixations in the sequence.

The saliency at the point ðx; yÞ is calculated as:

sðx; yÞ ¼ 1

2Rþ 1ð Þ2
XR

j¼�R

XR

i¼�R

Sðxþ i; yþ jÞ; ð18Þ

where R = 28 pixels.

We calculate the fixation saliency using the AUC with

two different methods (see Fig. 7). These two models differ

in the way that the non-fixated locations are selected. The

first method selects the non-fixated locations from a uni-

form distribution, whereas the second method uses the

fixation pattern of the same participant on a different

image. The first method compares the saliency at fixation

locations to the average saliency in the image. The second

method is proposed by Tatler, Baddeley, & Gilchrist [68]

to deal with the possible biases of the saliency methods

toward the center. Since human fixations are also center

biased, incorrect high saliency might be measured at the

fixation points. By setting the non-fixations as true fixations

from another image observation, the fixations and non-

fixations are from the same distributions. This is not the

case if non-fixated locations are picked from a uniform

distribution. However, as Tatler et al. [68] remark, if the

center bias is a result from a true bias in salience, this

method underestimates the magnitude of any saliency

effect. That is, if the bias in the saliency map is a result of

more salient objects located in the center of the images due

to a bias of the photographer, saliency measures are

devaluated by this method. Moreover, the method will

more strongly penalize methods that correctly predict high

saliency of centered objects than methods that highlight

irrelevant background at the boundaries of the images. This

illustrated in Fig. 7. Other methods for the analysis of the

center bias are given below.

Center-Bias and Sub-Image Analysis

Center-Bias Analysis

In free-viewing conditions, the human eye fixations are

expected to be biased toward the center of the image [72].

This might be a result of both the tendency of photogra-

phers to place the important objects near the center and the

tendency of humans to center the eyes. To investigate the

role of a center bias on the comparison between the sal-

iency models and the human data, we include a center bias

in the models similar to [27]. To do so, the values in the

saliency map, S, are weighted with a two-dimensional

Gaussian distribution with its mean at the center of the

image, and a standard deviation, rb, that determines the

strength of the center bias, with small values corresponding

with strong center bias:

S0ðpÞ ¼ SðpÞ � e� p�lk k2=ð2r2
b
Þ; ð19Þ

where p is the location of a pixel in the map and

l = (512.5, 384.5) is the center of the image. The resulting

center-biased saliency map, S0, is normalized so that the

total sum is 1.0.

Sub-Image Analysis

By selecting human fixations on other images as non-fixa-

tions, the fixation-saliency method compensate for the center

bias in human fixations. This is a good method when the

saliency models are incorrectly biased toward the center as

well. However, as pointed out, this method devaluates good

predictions of saliency on objects center in the image. To

distinguish between correctly and incorrectly biased sal-

iency maps, we perform a sub-image analysis (see Fig. 8).

The original 1,024 9 768 pixels image is cropped to an

800 9 600 sub-image. The crop window is randomly

positioned according to the distribution given in Fig. 8a.

This assures that most sub-images are located at the corners

and, to a lesser extend, at the borders of the original image.

This decentralizes the content and the related eye fixations.

A saliency method that incorrectly biases the saliency at
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the center of the image irrespective of the image content

will therefore fail to predict the eye fixations on the sub-

images. We calculate the correlation scores to measure the

performance of the symmetry and contrast model.

Results

In this section, we discuss the results of the comparison of

the symmetry and contrast-saliency models with human

eye fixations. We firstly show the results of the correlation

and fixation-saliency methods on the fixation patterns of

individual participants viewing an image. Secondly, we

discuss the results of the correlation comparison with the

fixations of all participants combined. Next, the saliency

over the fixation sequence is shown. Finally, an analysis of

the center bias is discussed.

Individual Fixation Patterns

Correlation

In Fig. 9, the results of the correlation between the indi-

vidual fixation-distance maps and the saliency maps are

given. The five groups of bars contain the results for the

different image categories. The bars show the mean cor-

relation coefficients, q, over all participants and images in

the category for the different saliency models. The error

bars give the 95% confidence intervals on the mean. The

scores of the saliency methods are plotted along with the

inter-participant correlation and the correlation of the

human data with random fixations. The first, which indi-

cates how well one person’s fixations correlate with those

of the others, is depicted by the horizontal gray bar with a

solid mid-line, giving the mean and 95% confidence

interval. The correlation with random fixations is depicted

Human fixations Human fixationsUniformly distributed
non-fixations

Non-fixations from human
fixations on other image

(a) (b)

Fig. 7 The fixation-saliency method to compare the saliency models

with the human data. The saliency, as calculated by the saliency

models, is measured in a patch around the human fixation points (gray
circles). The area under the ROC curve (AUC) is calculated by

comparing the human fixations to non-fixations (gray circles). This is

done in two different ways. a Non-fixations are selected from a

uniform distribution. This compares the saliency at the human fixation

points with the average saliency. b Non-fixations are selected as the

fixations of the same participant but on another image. This assures

that fixations and non-fixations are from the same distribution. This

method compensates for possible center biases in the saliency maps

that have influence on the fixation saliency, since the human fixations

are center biased (see Fig. 5). However, this second method

devaluates correct predictions on objects located in the center as

can be seen in the image: the saliency map gives a good prediction in

the center, but since the non-fixations are also center biased, the

resulting AUC will be relatively low
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(a) (b)Fig. 8 a Sub-images are taken

from the original image at

random positions. b The

distribution of the offset (upper-

left corner) of the sub-image.

This gives high probabilities to

position the crop window at the

corners and edges of the original

image, thereby decentralizing

the content of the images
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by the horizontal dashed line, which is, as expected, vir-

tually zero for all categories. All means and confidence

intervals in this paper are calculated using multi-level

bootstrapping. Significant differences can be appreciated

by looking at the 95% confidence intervals.

The inter-participant correlation is calculated for every

image by correlating the fixation-distance maps of every

participant with those of all other participants, resulting in

a similarity measure among participants. The plot shows

that there is variability among the participants. The sal-

iency methods are also faced with this variability, which

pulls down the correlation values. The inter-participant

correlation can therefore be used to put the scores of the

saliency methods into perspective. It must be noted that the

correlation scores of the models can be higher than the

inter-participants scores when the variation among partic-

ipants is high. The models can then predict the consensus

among the participants better than the participants them-

selves can. Consider for instance two participants, one that

fixates on A and B and one that fixates on A and C. Assume

that the model predicts A. The correlation between the two

participants will now be lower than the correlation between

the model and the participants

Figure 9 clearly shows that the symmetry models com-

pare significantly better with the human data than the con-

trast models for the images containing natural symmetries.

This is as expected, since the images were selected on the

basis of symmetry. Moreover, also for the other categories,

the correlation scores are significantly higher for the sym-

metry models than for the contrast model. This suggests that

the symmetry models have general validity. The perfor-

mance of the symmetry models is in the same range as the

inter-participant correlations. The performance of the

contrast model correlates with the inter-participant score.

High inter-participant scores reflect that the individual fix-

ation patterns are more similar, presumably because there

are fewer interesting locations for the participants to focus

on. The contrast model scores better in these cases than it

does when there is more variability among the participants.

The performance of the symmetry models, on the other

hand, is significantly better for all image categories, and

they seem to predict the consensus among participants

better even when there is more variability. Among the three

symmetry models, isotropic, radial, and color, we do not see

significant differences in performance.

Fixation Saliency

If we look at the fixation AUC scores in Fig. 10a, we see

that both the symmetry and contrast models can be used to

separate the human fixations from uniformly selected non-

fixations. All models have AUC scores that are signifi-

cantly higher than 0.5, showing that they can predict eye

fixations above chance level. Especially for the natural-

symmetry category, the symmetry models score signifi-

cantly better than the contrast model. Also for the other

categories, except for the animal category, symmetry

scores significantly better than contrast.

Figure 10b shows the AUC scores when the non-fixa-

tions are true fixations on different images. Also here both

the symmetry and the contrast models score significantly

better than chance. On the images containing natural

symmetries, the symmetry models score significantly bet-

ter. On the animal images, on the other hand, the contrast

model scores better. In the other categories, there are no

significant differences. It is apparent that the scores in

general are lower than for the randomly selected non-fix-

ations. Especially, the scores for the symmetry models are

lower. Since the non-fixations used by this method are

center biased, the results show that the contrast-saliency

model and especially the symmetry-saliency models give

higher saliency values toward the center. However, it is

important to notice that this analysis method underesti-

mates the effect of saliency. Since most of the images

contain foreground content that is more or less centered in

the image, a center bias in the saliency map is not neces-

sarily false. As discussed earlier, especially saliency

models that correctly predict saliency at objects centered in

the image are devaluated. The results of further analyses of

the influence on the center bias are given on page 27.

The AUC scores for the animal category are different

from the other categories for both analysis methods. The

fact that contrast results in higher AUC scores might be

explained by the fact that, in contrast to the images in the

other categories, many images contain objects—animals—

that are highly distinguishably and sharply depicted on an

natural
symmetries

animals street
scenes

buildings natural
scenes
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Fig. 9 Correlation between the saliency maps and the individual

fixation-distance maps. The groups of bars relate to the different

image categories. The bars give the mean correlation coefficients. The

error bars are the 95% confidence intervals. The horizontal gray bars
with the solid line show the mean and 95% confidence interval of the

inter-participant correlation. The correlation of the human data with

random fixations is given by the dashed lines, which are close to zero.

It can be appreciated that the symmetry models significantly

outperform the contrast model, not only on the natural-symmetry

category, also on the other categories
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out-of-focus background. The fore- and backgrounds in the

other images are less distinctly separated and more clut-

tered. In the animal images, there are fewer interesting

locations, and the background also has less contrast.

Among the different symmetry-saliency models, there are

no clear differences.

Combined fixation patterns

In Fig. 9, the saliency maps are correlated with the individual

fixation-distance maps. Because there is much variety in the

fixation patterns among the participants, the correlation

scores are relatively low. Some of the locations in the images,

however, are attended by most participants. To investigate

how well this consensus is predicted by the saliency models,

we combined the fixation-distance maps of the individual

participants. The correlation coefficients, q, of this analysis

are given in Fig. 11. The bar plots show a similar structure as

that in Fig. 9: the symmetry models significantly outperform

the contrast model. However, the correlation coefficients

went up from around 0.4 to around 0.7 for the symmetry

models. This shows that the symmetry models do a good job

in predicting the fixation consensus among the participants.

Again, this is not only true for the images containing explicit

symmetrical forms, but for all categories. This shows that the

common fixations of the participants are well captured by the

symmetry-saliency models.

Fixation Sequence

In the above, we compared the full fixation sequence with

the saliency models. In Fig. 12, the progression of the AUC

score as a function of the fixation number is shown. Fig-

ure 12a shows the scores for non-fixations randomly sam-

pled from a uniform distribution. It can be appreciated that

the symmetry is especially high for the first fixations, and

gradually drops for later fixations. This shows that the

participants first attend highly symmetrical parts of the

image. The contrast at the points of fixation, however, is

lower and is much more stable over the sequence, except

for the animal condition. The difference between the

symmetry models and the contrast model is significant for

the first fixations for all categories except for the animal

images. For later fixations, the difference is less apparent,

but still generally in favor of the symmetry models, and

significant for the nature category.

Figure 12b displays the results when eye fixations on

other images are used as non-fixations. Also with the

compensation for the center bias, early fixations have

higher symmetry than contrast scores. The symmetry at

early fixations is significantly higher than the contrast for

all categories except for animals. The symmetry values

again drop over the sequence, whereas the contrast values

are more or less constant over time, except for the animal

category. This shows that symmetry is especially a good

predictor for the first few fixations. For later fixations,

symmetry and contrast score in the same range.

The results for the animal condition are again different

in both analyses. For this category, the contrast values are

similar to the symmetry values. Contrast is also high for the

first fixations, and lower for later. As discussed earlier, this

might again be explained by the different style of the

photographs compared to the other categories.

Center-Bias and Sub-Image Analysis

Center Bias

In order to test whether the performance of the models is

influenced by the center bias of eye fixations, we added a

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

(a) (b)

Fig. 10 The fixation-saliency results. The bars give the AUC scores,

which compare the saliency at the points of fixation to the saliency at

non-fixations. The horizontal dashed line at 0.5 gives the score

expected by chance. The 95% confidence intervals on the means are

given by the error bars. a The results when the non-fixations are

randomly selected from a uniform distribution. Both contrast and

symmetry score significantly better than chance. The fixations can be

significantly better separated from non-fixations on the basis of local

symmetry, except for the animal images. b The results when human

fixations on other images are used as non-fixations. The symmetry

models score better than the contrast model on the images with

natural symmetries and worse on the animal images. The other image

categories do not show a significant difference. It must be noted that

the second fixation-saliency method devaluates saliency models that

correctly predict saliency in the center of the images
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center bias to the saliency maps as explained in the

methods section. Figure 13 shows the correlation coeffi-

cients as a function of the center-bias strength, rb, where

the combined fixation-distance maps are compared with the

center-biased saliency maps. The curves of the contrast-

saliency model show a maximum correlation value for r
between 6� and 9�. The maxima are at 6�, 7�, 9�, 8�, and 7�
for, respectively, the natural-symmetry, animal, street-

scene, building, and natural-scene category. This is similar

to results of the contrast-saliency model reported in [27].

The curves of the symmetry-saliency models, on the other

hand, do not show a maximal value. They gradually grow

when the center-bias is weakened and reach an asymptote

between 12� and 15�. The results show that the contrast

model needs a center bias to improve its performance,

whereas the symmetry models give better results without

such a bias. Even when the optimal center bias is applied to

the contrast model, the performances of the symmetry

models without center bias are significantly better. The fact

that the performance drops for the contrast model when the

center bias is weakened suggests that the model incorrectly

predicts eye fixations on irrelevant parts in the periphery of

the images. The symmetry models, on the other hand,

predict valuable fixations in the periphery, since the per-

formance increases even for standard deviations higher

than those observed in the human data (respectively, 8.0�,

8.2�, 9.0�, 9.1�, and 8.6�).
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Fig. 11 Correlation between the saliency maps and the combined

fixation-distance maps, representing the consensus among the partic-

ipants. The bars and error bars give the mean and 95% confidence

intervals on the mean of the correlation coefficients. The results show

the same pattern as for individual fixation-distance maps, with

significantly higher scores for the symmetry models. However, the

correlation coefficients are much higher, showing a better fit of the

models with the participants’ consensus
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Fig. 12 Fixation saliency over the fixation sequence. The AUC is

plotted as a function of time measured by the fixation number. The

lines give the mean AUC scores, and the error bars the 95%

confidence intervals on the mean. a shows the results when the non-

fixations are uniformly sampled. The scores for the symmetry models

are especially high for early fixations and drop for later, showing that

the fixations can be ordered on the basis of symmetry. The contrast

values are lower and are more constant over the sequence, except for

the animal category, where the contrast model shows a similar result

as the symmetry models. b shows the AUC scores when the non-

fixations are drawn from human fixations on other images. Although

the scores in general are somewhat lower than for the random non-

fixations, these plots also show that the symmetry scores are high for

early fixations. Moreover, the plots show that symmetry is a better

predictor for the early fixations than contrast. For later fixations, the

advantage of symmetry disappears and in some cases changes to a

disadvantage. The contrast scores are more or less constant over the

sequence. The animal category is again an exception
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Sub-Image Analysis

The sub-image analysis of the influence on the center bias

is given in Fig. 14. The plots show the values of the cor-

relation between the saliency maps and the fixation-dis-

tance maps for the sub-images. It can be seen that the

symmetry models significantly outperform the contrast

model. This is not only true for the images containing

explicit symmetries, but for all image categories. The

scores of the symmetry models are in line with the inter-

subject correlations. Since the sub-images decentralize the

content of the images, these results show that the good

predictions of the symmetry models are not a result of a

strong center bias of the symmetry-saliency maps in

combination with a bias of human eye fixations toward the

center. On the contrary, the symmetry models also predict

human eye fixation well on decentralized images. This

shows that the symmetry models correctly base their pre-

dictions on the image content, irrespective of the position

in the image.

Discussion

We presented saliency models for the prediction of human

eye fixations based on local symmetry and compared them

to a popular saliency model that is based on contrast fea-

tures. To test the models, we conducted an eye-tracking

experiment using a wide variety of different images. The

results show that the symmetry-saliency model compares

substantially better with the human data than the contrast-

saliency model.

The analysis of the correlation between the models’

predictions and human fixations shows significantly better

performance for the symmetry models, not only for the

images containing explicit symmetries, but for all image

categories. The comparison with the combined fixation-

distance maps shows that the models capture the fixation

consensus among the participants particularly well. This

suggests that local symmetry can be used as a general

model for the prediction of human eye fixations.

The analysis of the fixation saliency gives similar

results. The AUC scores show that the human fixation

points can be well separated from randomly selected non-

fixation points on the basis of the symmetry at these points.

The scores for the symmetry models exceed those of the

contrast model for most image categories except for the

animal images. When the non-fixations are selected by

using human eye fixations on other images, both fixations

and non-fixations come from the same distribution. In that

case, the symmetry and contrast models score similarly,

with an advantage for symmetry on images containing

natural symmetries and an advantage for contrast on the

animal images. However, although this method compen-

sates for the center bias in human fixations, it must be

noted that this analysis method underestimates the influ-

ence of saliency when the salient content of an image is

actually centered. In that case, saliency models that cor-

rectly predict high saliency in the center are devaluated.
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Fig. 13 The influence of a center bias added to the saliency maps on

the correlation coefficients. The plots give the coefficients for the

comparison of the human data with the center-biased saliency maps.

The curves give the mean correlation coefficients. The curves for the

contrast model show a clear peak for a center bias with r between 6�
and 9�. The symmetry models, on the other hand, show no peak and

even increase in correlation with the human fixation-distance maps

when the center bias is relaxed
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Fig. 14 Correlation between the saliency maps and the individual

fixation-distance maps for the sub-images. The bars give the mean

correlation coefficients, and the error bars show 95% confidence

intervals on the mean. The symmetry models significantly outperform

the contrast model on all image categories and score in line with the

inter-subject correlation. This shows that symmetry models also

perform well when the content of the images is decentralized
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One could say that there is overcompensation for the center

bias. We therefore also conducted other center-bias

analysis.

The addition of a center bias to the saliency maps results

in a maximum performance for the contrast model at a

slightly stronger bias than found in the human data. The

performance of the symmetry models, on the other hand,

does not have a maximum, but grows when the center bias

is weakened. This suggests that the symmetry models find

valuable salient points in the periphery, which are attended

to by the human observers. The contrast model, on the

other hand, suggests salient points in the periphery that do

not correspond to human fixations.

The analysis using randomly located sub-images shows

that the symmetry models also perform well when the

content of the images is decentralized. This shows that the

good performance of the symmetry models is not due to an

inherent center bias in the calculation method, but origi-

nates from a true prediction of human eye fixations based

on the content of the image.

The fixation-sequence analysis shows that the amount of

symmetry at the points of fixation is especially high for the

first fixations with gradually lower values for later fixa-

tions. This is true both when the AUC scores are calculated

using random non-fixations and when non-fixations are

based on true fixations. The contrast saliency shows a flat

curve over the fixation sequence. This suggests that

humans first attend to parts of the images with high local

symmetric. Moreover, it suggests that symmetry can be

used to order the fixation sequence.

The fixation saliency of the contrast model is different

for the images in the animal category than for the other

categories. The main difference between the categories is

that most of the images in the animal category contain one

clear subject, in contrast to the other categories, which,

apart from the natural symmetries, contain images with

multiple subjects and more visual clutter. This is quantified

by a lower spread of human eye fixations for the animal

category.

Our experiments reveal no significant difference among

the three symmetry models, whereas we expected the radial

symmetry model to perform better since humans are also

more sensitive to patterns with multiple axes of symmetry.

However, the isotropic symmetry model already results in

higher activation for these kinds of patterns, since for

multiple axes of symmetry, the contributions of multiple

pixel pairs in the symmetry kernel are summed up. The

extra promotion of multiple symmetry axes in the radial

model only slightly changes the symmetry saliency maps

and hardly influences the performance. This is reflected in

high correlation coefficients between the isotropic and

the radial symmetry maps (0.94 ± 0.03). Similarly, the

addition of color also does not result in substantial changes

in performance. In the images used, gradients in color

almost always coincide gradients in brightness. The simi-

larities between the isotropic and color saliency maps are

therefore also high (0.92 ± 0.03).

Although the performance of the contrast models in

our experiment is less than that of the symmetry models,

contrast obviously also plays a role in visual attention.

Both the correlation and the fixation saliency of the

contrast model are well above chance levels, conforming

the findings of for instance [27, 32, 73]. Moreover, by

using the image gradients, our symmetry models also

exploit contrasts to determine symmetry. The main dif-

ference between the symmetry and contrast model is the

specificity, as can be seen in Figs. 1 and 3. The contrast

model gives a more spread-out activation less focused on

the center of objects. This reduces the similarity to the

human data. In future work, we will study the combina-

tion of the symmetry and the contrast model to further

improve the prediction of eye fixations. An obvious

combination of the models is to add the symmetry map as

a fourth feature map of the contrast model. However, the

nature of the symmetry and contrast features is different

and symmetry a higher-level feature. A hierarchical

model to combine the features as discussed in [47] might

therefore be more appropriate.

All analysis methods show a positive correlation

between local symmetry and human eye fixations. How-

ever, although that does not prove that there is a causal

relation between symmetry and overt visual attention, we

think that a causal relation is likely, especially when we

consider that symmetry can be used for figure-ground

segregation. We discuss this further in the next

subsection.

In [45, 48–50], eye fixations are reported to land at the

center of gravity of objects. A center of gravity is strongly

correlated to the center of symmetry of an object. Our

research therefore suggests that the center-of-gravity effect

is not only true for simple artificial stimuli like the ones

used in the above-mentioned studies, but also for complex

photographic images of natural and man-made scenes.

We believe that the successful use of symmetry to

predict eye fixations is due to the role of symmetry in

figure-ground segregation [55] and the tendency of humans

to pay attention to the objects in that scene [57]. In more

controlled experiments, we would like to further study this

relationship.

To conclude, our results suggest that symmetry plays a

role in the guidance of eye movements, either directly or

indirectly by being a cue for the presence of objects. We

advocate the study of the role of symmetry in human

vision.
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JK, Lévy-Schoen A, editors. Eye movements: from physiology to

cognition. North-Holland: Elsevier Science Publishers B.V; 1987.
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