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Abstract One of the most popular paradigms to use for
studying human reasoning involves the Wason card
selection task. In this task, the participant is presented with
four cards and a conditional rule (e.g., “If there is an A on
one side of the card, there is always a 2 on the other side”).
Participants are asked which cards should be turned to
verify whether or not the rule holds. In this simple task,
participants consistently provide answers that are incorrect
according to formal logic. To account for these errors,
several models have been proposed, one of the most
prominent being the information gain model (Oaksford &
Chater, Psychological Review, 101, 608–631, 1994). This
model is based on the assumption that people independent-
ly select cards based on the expected information gain of
turning a particular card. In this article, we present two
estimation methods to fit the information gain model: a
maximum likelihood procedure (programmed in R) and a
Bayesian procedure (programmed in WinBUGS). We
compare the two procedures and illustrate the flexibility
of the Bayesian hierarchical procedure by applying it to
data from a meta-analysis of the Wason task (Oaksford &
Chater, Psychological Review, 101, 608–631, 1994). We
also show that the goodness of fit of the information gain
model can be assessed by inspecting the posterior predic-
tives of the model. These Bayesian procedures make it easy
to apply the information gain model to empirical data.

Supplemental materials may be downloaded along with this
article from www.springerlink.com.

Keywords Wason card selection task . Optimal data
selection . Probabilistic reasoning . Bayesian parameter
estimation .Maximum likelihood estimation

The Wason card selection task (Wason, 1966) has become a
classic task in research on human reasoning (Evans & Over,
2004; Oberauer, Wilhelm, & Diaz, 1999; Stenning & van
Lambalgen, 2008). The Wason task was originally
designed to highlight the tendency of people to search
for confirmatory evidence and ignore potentially falsifying
evidence. In the most common version of the Wason task,
the participant is shown four cards; each card has a letter
on one side and a number on the other. Two cards have the
letter side facing upward, and two cards have the number
side facing upward—for example, A, K, 2, 7. The
participant is then presented with a conditional rule such
as “If there is an A on one side of the card, there is always
a 2 on the other side.” Participants must determine which
cards they need to turn in order to verify whether or not
this conditional rule holds.

The antecedent of the rule (in this example, the A card) is
generally called p, and the consequence of the rule (in this
example, the 2 card) is called q. Figure 1 shows the
selection probabilities of the four cards in the Wason task
from a meta-analysis by Oaksford and Chater (1994). This
analysis confirms that most people turn the p card and the q
card (Oaksford & Chater, 1994). Turning the q card
confirms the rule if a p is found on the other side. This
confirmatory strategy is not logically sound, though. Finding
example cards that correspond to the rule does not prove the
rule to be generally true. Propositional logic dictates that the
not-q card (in this case, the 7 card) should be turned instead
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of the q card. To see this, note that the only violation of the
rule is a (p, not-q) card. So, to falsify the rule, it is necessary
to turn both the p card and the not-q card.

Two types of explanations for this confirmatory bias can
be distinguished (Klauer, Stahl, & Erdfelder, 2007).1 On the
one hand, heuristic models claim that the variation in card
selections is caused by different interpretations of the
conditional rule. For example, if the rule is accidentally
interpreted as bidirectional, both p and q need to be turned,
the answer pattern that is chosen most frequently. Proba-
bilistic models, on the other hand, assume that people select
each card independently with a certain probability.

The most prominent probabilistic model of the Wason
task is the information gain model (Oaksford & Chater,
2003). This model is a Bayesian model in the sense that it
produces card selections that are rational and optimal given
the available information and background knowledge.
Although the information gain model itself is Bayesian,
Oaksford and Chater (2003) used a maximum likelihood
procedure to estimate the model’s parameters. This means
that a rational model for human reasoning makes contact
with the data in a nonrational manner. Thus, the participant
in the Wason task is assumed to draw coherent and optimal
conclusions from uncertain information, but the researcher
who analyzes the data is satisfied with conclusions that are
incoherent and suboptimal (Kruschke, 2010).

The goal of this article is to resolve this paradoxical tension
between models for human reasoning and models for
statistical inference by providing researchers with an easy-
to-use Bayesian fitting routine for the information gain model.

Our Bayesian fitting routines use WinBUGS,2 a general-
purpose program for implementing Bayesian models (Lunn,
Spiegelhalter, Thomas, & Best, 2009; Lunn, Thomas, Best,
& Spiegelhalter, 2000). We compare estimators from a
nonhierarchical and a hierarchical Bayesian model with a
maximum likelihood estimation procedure implemented in
R.3 All three methods are illustrated with data from a meta-
analysis by Oaksford and Chater (1994). We also show how
the goodness of fit of the Bayesian information gain models
can be assessed by inspecting the posterior predictives for
card selection probabilities. All WinBUGS and R code is
available from the the Psychonomic Society supplemental
archive, as well as from the first author’s website.4

The information gain model

The information gain model is Bayesian and provides a
probabilistic, rational explanation for why participants tend
to select the logically incorrect p and q cards in the Wason
task (Chater & Oaksford, 1999; Hattori, 1999, 2002;
Klauer, 1999; Klauer, Stahl, & Erdfelder, 2007; Oaksford
& Chater, 1994, 2001, 2003; Oberauer, Wilhelm, & Diaz,
1999). The model was motivated by the theory of optimal
experimental design (e.g., Cavagnaro, Myung, Pitt, &
Kujala, 2010; Cavagnaro, Pitt, & Myung, in press; Lindley,
1972; for a discussion, see Klauer, 1999), and its basic
principles generalize to several other paradigms in human
reasoning research that emphasize probability and rational-
ity (Nelson, 2005; Oaksford & Chater, 2007).

A fundamental assumption in the information gain
model is that people, when faced with the Wason task, pit
two models against each other: an independence model and
a dependence model. A priori, each model is assumed to be
equally likely. The independence model assumes that the
two sides of the cards are unrelated. In contrast, the
dependence model assumes that cards conform to the
conditional rule. However, the dependence model does
involve an exception parameter ε that represents the
probability of the rule occasionally failing. This parameter
is typically set at .1, allowing for a 10% exception rate
(Oaksford & Chater, 2003). This parameter is fixed in order
to limit the number of free parameters.

0.0

0.2

0.4

0.6

0.8

1.0

Cards

S
el

ec
ti

o
n

 P
ro

p
o

rt
io

n

p not-p q not-q

Fig. 1 Typical choice behavior in the Wason card selection task.
Participants most often select the p and q cards, whereas formal logic
dictates that the only correct selections are the p and not-q cards. Error
bars indicate one standard deviation from the mean. Data are based on
a meta-analysis reported by Oaksford and Chater (1994). See the text
for details

1 Klauer et al. (2007) combined inferential processes and independent
processes in a single, comprehensive quantitative model.

2 WinBUGS can be obtained from www.mrc-bsu.cam.ac.uk/bugs.
3 R is a free software environment for statistical computing that can be
obtained from www.r-project.org.
4 www.springerlink.com and www.svenstringer.com, respectively.
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The dependence and independence models predict differ-
ent probabilities of finding a particular symbol (p or not-p and
q or not-q, respectively) on the other side of a card. Although
no cards are actually turned in the Wason task, the expected
information gain of turning a particular card can be
calculated. The selection probabilities of the cards are
proportional to the expected information gain. Appendix A
contains the mathematical details of the information gain
model as discussed in Oaksford and Chater (2003).

The information gain model contains two free parameters:
a and b, which are the prior probabilities of a p or q symbol
on a card. If these probabilities are relatively low, the model
predicts that people will select the p and q cards instead of
the logically correct p and not-q cards. Figure 2 shows the
probabilities of selecting the p and q cards as a function of
the prior probabilities a and b. The selection probabilities for
cards p and q are high when prior probabilities a and b are
low. The assumption that the prior probabilities for p and q
are low is called the rarity assumption (Oaksford & Chater,
2003), an assumption that is based on the notion that in a
world with many objects, the probability of encountering a
particular object is relatively low.

When the rarity assumption holds, the information gain
model provides a rational explanation for why people tend
to select cards that should not be selected according to
propositional logic. Thus, the information gain model
shows that people’s choice behavior in the Wason task
may not come about because of inherent cognitive
limitations and an unhealthy bias for confirmatory evi-
dence; instead, the model shows that people may behave
adaptively in an uncertain world. Note that the same results

can be interpreted completely differently, depending on
whether one uses propositional logic (e.g., “people make
logically incorrect decisions and search primarily for
confirmatory evidence”) or Bayesian reasoning (e.g.,
“people respond optimally given uncertain information”).

Parameter estimation

In the information gain model, only a and b, the
respective prior probabilities of p and q, need to be
estimated. The third parameter, ε—the exception parame-
ter—is fixed to .1 (Oaksford & Chater, 2003). It is
important to note that a and b are not independent in the
information gain model. Under the dependence assump-
tion, b cannot be much smaller than a, due to the 90%
probability that q is on the other side of a p side. Since a =
Pr(p) and b = Pr(q), it is evident that given this rule, b is
restricted by a. To be precise, b > a(1 – ε). A convenient
way to circumvent this problem is to reparameterize b as c
using c ¼ b� a 1� "ð Þ½ �= 1� að Þ, as suggested by Klauer
et al. (2007). This reparameterization ensures that c can
vary freely between zero and one, irrespective of a. The
estimate of b can be now be computed deterministically
from the estimates of a and c.

Maximum likelihood estimation

Parameters can be estimated in different ways. A popular
method is maximum likelihood estimation (MLE; Myung,
2003), which provides the parameter values that maximize
the probability of the observed data: ða; cÞMLE ¼
arg max a; cð Þ2 0; 1½ �2 Pr D a; cjð Þ. The probability of the data
given the parameter values are computed from the selection
probabilities of the model (see Appendix A).

MLE has several attractive properties. First of all, it is
asymptotically unbiased, meaning that for large samples,
the bias approaches zero. MLE is also efficient, meaning
that it asymptotically has the lowest mean squared error of
all unbiased estimators. Furthermore, it can be shown that
the MLE is also asymptotically better than any regular
biased estimator (van der Vaart, 1998). There are several
ways to obtain confidence intervals for the MLE. One
option is bootstrapping (Efron & Tibshirani, 1993). In
bootstrapping, the estimation procedure is repeated many
times on randomly selected samples from the data, drawn
with replacement. These repeatedly calculated measures
can then be used to compute a bootstrap confidence
interval. Alternatively, one could compute the square roots
of the diagonals of the inverted negative Hessian in order to
obtain standard errors for the MLE.

One of the limitations of MLE is that it is sensitive to
local optima. One solution to this problem is to use a grid
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Fig. 2 Predictions from the information gain model for the probabil-
ity of selecting both the p and q cards as a function of prior
probabilities Pr(p) and Pr(q). The rarity assumption [i.e., low prior
probabilities for Pr(p) and Pr(q)] results in a high probability of
selecting cards p and q. The black dot indicates the ML estimate of the
prior probabilities based on data from a meta-analysis reported by
Oaksford and Chater (1994)
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of initial values, a technique that works well for parameter
spaces that are fairly regular. Each initial value is a different
starting point in the parameter space that can result in a
different local optimum. By using the estimate with the
highest maximum, incidental local optima can be avoided. Of
course, there is no guarantee that the global maximum will be
found. However, for fine grids and regular parameter spaces,
this should not be a problem in practice.

Bayesian estimation

An alternative estimation method is Bayesian. In Bayesian
inference, uncertainty with respect to parameters is—at any
point in time—quantified by probability distributions. This
means that a distribution needs to be specified for all
parameters in advance. These prior distributions reflect the
a priori expectations with respect to the parameter values.
Using Bayes’s rule to update the distribution of param-
eters a and c based on data D, we obtain posterior
probability p a; cjDð Þ ¼ C � p Dja; cð Þp a; cð Þ, where C is a
normalizing constant. Since a and c are assumed to
be independent, the posterior can be rewritten as
p a; cjDð Þ ¼ C � p Dja; cð ÞpðaÞpðcÞ. Prior distributions
p(a) and p(c) reflect any prior knowledge about the
parameters. The likelihood p(D | a, c) is the probability of
the observed data given a and c. The posterior distribution
p(a, c | D) expresses our uncertainty with respect to the
parameters of interest after seeing the data. Confidence
intervals can be easily calculated from the posterior
distribution, and the maximum a posteriori estimator (i.e.,
MAP; the mode of the posterior) provides point estimates.
For uniform priors, MAP estimators equal ML estimators.

Bayesian models provide another advantage. It is relatively
easy to extend Bayesian models in order to accommodate
different levels of analysis. In the standard information gain
model, trials in the Wason task are all assumed to be
independent. In a meta-analysis, this is often not a valid
assumption. A meta-analysis of different experiments intro-
duces two levels of analysis: an experiment level and a trial
level. Trials are only independent conditional on a participant.
Hierarchical models are a natural solution for analyzing such
multilevel data in a single model, since they explicitly account
for conditional independences present in the hierarchical
structure (Lee, in press). We have implemented both a
nonhierarchical and a hierarchical Bayesian estimation
procedure for the information gain model.

Although in some cases closed-form expressions of the
posterior distribution exist, this is often not the case.
Fortunately, it is now possible to approximate these
distributions numerically using Markov chain Monte Carlo
methods (MCMC; e.g., Gamerman & Lopes, 2006; Gilks,
Richardson, & Spiegelhalter, 1996). With MCMC tech-
niques such as Gibbs sampling or the Metropolis–Hastings

algorithm, researchers can now directly sample sequences
of values from the posterior distribution of interest,
foregoing the need for closed-form analytic solutions.

Implementation of Bayesian models

Hand-coding MCMC algorithms can be effortful and error-
prone, and the end result may be difficult for other
researchers to understand or adjust. Therefore, we use the
general-purpose WinBUGS program, which allows the user
to specify and fit Bayesian models without having to hand-
code the MCMC algorithms (Lunn et al., 2009; Lunn et al.,
2000; an introduction for psychologists is given by Lee &
Wagenmakers, 2010, Sheu & O’Curry, 1998; Wetzels, Lee,
& Wagenmakers, 2010, discuss how to implement user-
defined functions in WinBUGS). Although WinBUGS is
flexible, it is not guaranteed to work for every application;
problems with convergence may arise when the model is
grossly misspecified or relatively complicated (e.g., mixture
models with crossed random effects), especially when the
data are relatively sparse. Nevertheless, WinBUGS will work
for most applications in the field of psychology.

WinBUGS requires the user to provide a model specifica-
tion, initial values for the model parameters, and of course the
data. To implement the information gain model, we specified
(1) a uniform prior distribution for parameters a and c, (2) a
binomial distribution on all four card selection frequencies,
with the respective card selection probabilities and sample
size as parameters, and (3) a deterministic relation between
the parameters a and c and the four card selection
probabilities specified by the model. In this article, we
present a nonhierarchical and a hierarchical Bayesian version
of the information gain model.

The model specification can be represented graphically so
as to facilitate understanding and communication (see Gilks,
Thomas, & Spiegelhalter, 1994, for more information on
graphical modeling). A graphical model consists of nodes
connected with unidirectional arrows. Each node represents a
probabilistic variable, whose distribution depends on the
values of the parent nodes. These parent–child relations
define all conditional and joint probabilities in the model and
can be used to compute the posterior distribution.

A graphical representation of the nonhierarchical infor-
mation gain model is shown in Fig. 3. Circles reflect
continuous variables, whereas boxes reflect discrete varia-
bles. The gray boxes are the observed number of trials (N)
and the number of trials in which card i was selected (Ki).
The plate around θi and Ki denotes that the structure is
repeated for each card i. Ki is drawn from a binomial
distribution with probability θi and sample size N. The
double circles around θi indicate that this is a deterministic
latent variable whose value is computed from parameters a,
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b, and fixed error ε (see Appendix A). Parameter c is a
reparameterization of b with range [0, 1]. Unlike the
uniform prior on c, the prior on a is a function of a
uniformly distributed variable u. These priors ensure that
the prior in (a, b) space is uniform instead of being heavily
skewed due to the dependency between a and b (see
Appendix B for details). This graphical model with
corresponding distributions and deterministic relations fully
defines the information gain model and can be used to
estimate the posterior distribution of parameters a and b.

In a Bayesian framework, it is relatively easy to create a
hierarchical extension of the information gain model
(Fig. 4). Parameters a and c are now indexed, and each
pair (aj, cj) refers to a different experiment. Instead of
assigning priors directly to the experimental parameters, we
now transform a and c to an unbounded scale using the
logit function. The two transformed values are assumed to
be drawn from a normal distribution, each with its own
mean and variance. Since these intermediate means are
defined on a unbounded scale, they are transformed back
using the inverse logit function to obtain the population
parameters a0 and c0, both of which lie between 0 and 1. It

is on these population parameters that the priors are defined
in a manner analogous to the nonhierarchical model. Again,
b0 can be computed from a0 and c0. This model allows for
estimation of a and b both for the population (a0 and b0)
and for each experiment or condition (aj and bj).

Estimation procedure

In this section, we discuss the estimation procedures for
nonhierarchical Bayesian estimation, maximum likelihood
estimation, and hierarchical Bayesian estimation. Nonhier-
archical Bayesian estimation is compared with maximum
likelihood estimation at the end of the section. These
procedures require R, WinBUGS, the R package R2Win-
BUGS, and the code we have provided online.

Bayesian estimation

To allow users with no experience with WinBUGS to
estimate the information gain model, we have created a
function in R dealing with the WinBUGS calls.

The variable should be a vector
of length 4 with the number of trials that each card was
selected. The order of the cards is expected to be (p, not-
p, q, not-q). The variable is the total number of
trials. Each trial consists of doing the Wason task once.

The current model does not distinguish between trials
of the same subject and trials of different subjects.
Variable is the error probability that the conditional rule
does not hold in the dependence model, which defaults to
10%.

Fig. 3 Graphical representation
of the nonhierarchical informa-
tion gain model implemented in
WinBUGS. See the text for
details
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MCMC algorithms require long chains of iterations to
obtain reliable posterior distributions of the parameters.
Variable indicates how many iterations are
computed per chain. WinBUGS uses several chains starting
from different initial values. Because the first iterations of
each chain are not yet converged to the true solution, they
should be discarded. The variable indicates
how many iterations should be discarded.

Convergence of the estimation procedure can be checked
by visually inspecting whether the chains mix appropriate-
ly. Mixed chains increase confidence that the estimations
are insensitive to particular initial values. The variable

is the number of chains used. The default value
of 3 should be sufficient for visual inspection. The samples

from the chains form a histogram that approximates the
posterior distribution of the corresponding parameter. The
mode of this distribution provides a MAP estimate.

The function returns a list containing
the simulation results and the parameters used to run the
simulation. Functions for easy visualization of the results
are available. Example graphics are provided below. For
more details about available functions and data structures,
we refer the reader to the documentation online.

Maximum likelihood estimation

The following line of code can be used to fit the information
gain model using maximum likelihood estimation.

Again should be a vector of
length 4 with the number of trials that each card was
selected. The order of the cards is expected to be (p, not-
p, q, not-q). The variable is the number of
trials, and is the error probability that the conditional
rule does not hold in the dependence model, which
defaults to 10%.

To reduce dependence on initial values, parameters are
estimated using a grid of initial values for a and c, each
ranging from .05 to .95 with a resolution specified by

. The default resolution of .05 should
work in practice. Simulations showed that a grid resolution
of .01 did not change the final estimates.

The function uses the optimizing function in
R to maximize the likelihood function. This is done for all
initial values in the grid. returns a list with
the ML estimates of a, b, and c and the input variables
used in the ML estimation routine. Note that the b estimate
is computed deterministically from the estimates for a
and c.

Fig. 4 Graphical representation
of the hierarchical information
gain model implemented in
WinBUGS. See the text for
details
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Bayes versus maximum likelihood

With a flat prior, the ML estimator equals the mode of the
posterior distribution of the Bayesian estimate. Here we
compare the two estimation procedures on a set of
simulated data. We studied the influence of parameter
value and sample size on the quality of the estimate.
Twenty-five different parameter sets (see Table 1) and five
different sample sizes (20, 40, 60, 80, and 100) of simulated
subjects were compared, resulting in 25 different parameter
set–sample size configurations.

For each of the 25 configuration sets, 100 random
samples were generated using the corresponding parameter
values and sample size. Finally, the parameters were
estimated on all samples, using both the Bayesian and the
MLE procedures discussed above. For the Bayesian
estimation, three chains of 5,000 iterations each were
computed. Initial values of the chains were uniformly
drawn from the interval [.1, .9]. Final estimates were based
on the last 4,000 iterations of each chain, resulting in an
empirical posterior distribution of 12,000 values. The
average effective sample size of the estimates was 6,816.
Calculation of the R-hat statistic (Gelman & Rubin, 1992)
confirmed that the three chains had converged to the same
distribution (i.e., the mean value of Rhat for each batch of
1,000 samples was below 1.002). The modes of the
posterior distributions were used as final point estimates
of a and c. Again, b was calculated from the a and c
estimates. The MLE procedure used the default resolution
grid of 0.05.

As expected, the correlations between the MAP and ML
estimators are close to one for both a and b (Figs. 5 and 6).
Generally, both methods seem to have similar variances.
However, the ML estimator shows some problems for both
a and b parameters: Some of the estimates are local optima
around zero or one. The MAP estimator does not show this
problem. Table 2 shows the mean error and corresponding
standard deviation for both the ML and MAP estimators as
a function of sample size. Overall, the MAP estimator is a
reasonable choice to fit the information gain model.
However, caution should be exercised, especially when
estimating small values (e.g., a and b <.1). Simulations

have shown that accurate estimation is difficult for small
values due to a flat ridge in the likelihood space in that
region.

Hierarchical Bayes

Contrary to the nonhierarchical models, the following code
accounts for two levels in Wason task data. This is useful if
Wason card selection data come from different experiments,
for example.
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Fig. 6 Relation between MAP estimates and ML estimates for
parameter b. The solid black circles indicate the true, data-generating
values of the b parameter, whereas the open gray circles indicate the
estimated values. Note that both estimators are highly correlated, but
the MAP estimator is more robust
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Fig. 5 Relation between MAP estimates and ML estimates for
parameter a. The solid black circles indicate the true, data-generating
values of the a parameter, whereas the open gray circles indicate the
estimated values. Note that both estimators are highly correlated, but
the MAP estimator is more robust

Table 1 The b values corresponding to a and c combinations used in
MAP and MLE comparisons

a = 0.10 a = 0.25 a = 0.50 a = 0.75 a = 0.90

c = 0.10 b = 0.18 b = 0.30 b = 0.50 b = 0.70 b = 0.82

c = 0.25 b = 0.32 b = 0.41 b = 0.58 b = 0.74 b = 0.84

c = 0.50 b = 0.54 b = 0.60 b = 0.70 b = 0.80 b = 0.86

c = 0.75 b = 0.77 b = 0.79 b = 0.83 b = 0.86 b = 0.89

c = 0.90 b = 0.90 b = 0.90 b = 0.90 b = 0.90 b = 0.92
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The variable should be a matrix of
the number of trials that each card was selected, with four
columns corresponding to the four cards (p, not-p, q, not-q).
The rows of the matrix correspond to the experiment to
which the trials belong. Variable is a vector of
the total number of trials for each experiment. Again, ε is
the error probability that the conditional rule does not hold
in the dependence model.

Practical illustration

We will now illustrate the MLE and Bayesian estimation
procedures using data from the meta-analysis by Oaksford
and Chater (1994, their Table 2). Our Fig. 1 shows the
mean selection proportion and corresponding standard
deviation for each of the four cards. As discussed above,
participants most frequently select the p and q cards,
whereas they hardly select the logically correct not-q card.
The means are based on 34 conditions from a total of 28
experiments involving the abstract Wason selection task.
For each condition, the number of selected cards is
available for all four cards. In total, 845 people participated.
Although some conditions are part of the same experiment,
only two levels of analysis will be considered here:
condition and trial. We first fit the information gain with
the two nonhierarchical procedures MLE and nonhierarchi-
cal Bayes, and then apply the hierarchical Bayes model. For
the Bayesian models, we will calculate posterior predictives
in order to assess goodness of fit.

Despite the hierarchical nature of the data, both standard
MLE and nonhierarchical Bayes can only deal with one
level at a time. Our goal here is to estimate the a and b in
the population. Although the parameters could be estimated
for each of the 34 conditions separately and then combined

in a (weighted) average, here we ignore the condition level
altogether, so that estimating a and b only requires the total
number of trials (845) and the number of times each card is
selected (p, 754; not-p, 137; q, 522; not-q, 215). The code
used for this illustration is available online.

Error a Error b

MAP MLE MAP MLE

n mean SD mean SD mean SD mean SD

20 0.003 0.144 –0.010 0.152 –0.083 0.172 –0.070 0.198

40 0.004 0.139 –0.004 0.143 –0.082 0.167 –0.072 0.184

60 0.003 0.138 –0.006 0.141 –0.080 0.166 –0.074 0.180

80 0.004 0.137 –0.003 0.139 –0.082 0.164 –0.076 0.174

100 0.003 0.136 –0.004 0.138 –0.082 0.163 –0.076 0.173

Table 2 Mean error
and corresponding standard
deviation of ML and MAP
estimators for a and b parame-
ters as function of sample size

MAP shows a slightly higher
bias, but a consistently smaller
standard error than MLE.
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Fig. 7 MCMC chains for the parameters from the nonhierarchical
Bayesian model as applied to the data from the meta-analysis by
Oaksford and Chater (1994). Note that the chains are indistinguish-
able, indicating convergence to the posterior distribution
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Using the MLE procedure described above on the
meta-analysis data, we obtained point estimates a = .26
and b = .31. Although bootstrapping procedures exist to
compute MLE confidence intervals, this would require
sampling from individual trials. Next, we applied the
nonhierarchical Bayesian procedure using MCMC in
WinBUGS. The result of MCMC estimation is a number
of chains with a series of parameter values. After an initial
burn-in period, these values should converge to the
posterior distribution. It is therefore important to confirm,
before interpreting the MCMC results, whether the
MCMC chains have converged. Although convergence
cannot be proven, if chains with different starting points
become indistinguishable after an initial burn-in period,
this is a strong indication for convergence. This is the case
in Fig. 7. All three chains are both mixed and stable. After
burn-in, the different chains oscillate around the same
mean with similar variances, despite differences in starting
point. If different chains do not converge toward the same
mean (i.e., are not mixed) or show erratic behavior (i.e.,
are not stable), the results should not be trusted. In that
case, a longer burn-in period, more data, or adjustments to
the model might be in order.

As expected, the a and b MAP estimates are very similar
to the ML estimates: a = .26 and b = .31. Unlike MLE,
Bayesian estimation makes it easy to compute a 95%
confidence interval from the posterior parameter distribu-
tions: a ∈ [.24, .27], and b ∈ [.29, .33]. The bivariate

posterior distribution (Fig. 8) shows that the a and b
estimates are highly correlated (r = .87, p<.001).

To check model fit, we consider the posterior predictives
(Gelman, Carlin, Stern, & Rubin, 2004)—that is, model
predictions for card selections based on samples from the
joint posterior distribution. Since the joint posterior
distribution represents the uncertainty in the parameter
estimates, this uncertainty is reflected in the posterior
predictives. If a model fits well, the empirical data are
close to the posterior predictives. Figure 9 shows violin
plots (Hintze & Nelson, 1998) of the posterior predictives
for each card with the corresponding empirical probabili-
ties. A violin plot is similar to a box plot, but instead of
merely showing the different quartiles of a distribution, it
provides a compact mirrored image of the full distribution.

The violin plots in Fig. 9 indicate that the variance in the
posterior distribution is relatively low. Moreover, the
empirical means are contained within the posterior distri-
butions, suggesting that the model fit is acceptable.

Finally we analyze the data from Oaksford and Chater
(1994) using the hierarchical Bayes procedure. Now the
data consist of a matrix of card selections per card and
experiment, on one hand, and a vector with the number of
trials in each experiment, on the other hand. Although the
hierarchical procedure allows estimation of a and b for each
experiment individually, we focus here on the population
values a0 and b0 for ease of comparison with the
nonhierarchical methods. Because this model takes the
hierarchical structure of the data into account, the MAP
estimates are somewhat different from the estimates of the
two previous procedures: a0=.24 ∈ [.20, .27] and b0=.28 ∈

0.0

0.2

0.4

0.6

0.8

1.0

p not-p q not-q

P
os

te
rio

r 
P

re
di

ct
iv

es
 fo

r 
S

el
ec

tio
n 

P
ro

po
rt

io
n

Cards

Fig. 9 Posterior predictives from the nonhierarchical Bayesian model
as applied to the data from the meta-analysis by Oaksford and Chater
(1994). Violin plots display the predicted selection proportions for
each of the four cards. The crosses indicate the empirical values. The
model predictions match the empirical data reasonably well
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Fig. 8 Posterior distributions for the a and b parameters from the
nonhierarchical Bayesian model as applied to the data from the meta-
analysis by Oaksford and Chater (1994). The cross indicates the mean
of the bivariate distribution
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[.25, .32] (95% confidence intervals). The confidence
intervals are larger due to the extra latent variables per
experiment, which increase the uncertainty in the posterior
estimates. Figure 10 shows the posterior predictives. As in
Fig. 9, the empirical means are contained within the
posterior distributions, and this suggests that the model fit
is acceptable.

Discussion

We have presented two Bayesian procedures to estimate the
parameters of the information gain model and compared
them to an ML estimation procedure. One advantage of a
Bayesian estimation procedure is that it produces posterior
distributions instead of point estimates. Although confi-
dence intervals can be computed for ML estimators using
bootstrapping or the Hessian, confidence intervals are
automatically obtained in Bayesian estimation. Besides
giving an indication of the plausible range of the estimates,
the uncertainty of the parameter estimates can also be used
to compute posterior predictives for particular aspects of the
data. Posterior predictives provide the range of results that
the model is likely to produce on the basis of the estimated
parameters. The fit of a model can be assessed by
comparing the posterior predictives with the observed data.
Furthermore, Bayesian modeling in general, and the Win-
BUGS modeling language in particular, make it easy to
extend models by adding a hierarchical structure. Hierar-
chical models account for multilevel dependencies, result-
ing in estimates that are more accurate than their

nonhierarchical counterparts, provided that the hierarchical
assumptions are valid.

In Bayesian estimation, posterior distributions always
depend on the prior distributions. However, prior distributions
reflect explicit assumptions, which might be implicit in other
estimation paradigms. Assuming uniform priors, for example,
the mode of the posterior distribution (MAP) is equivalent to
the ML estimator. Consequently, if a uniform prior is deemed
unreasonable, so is the ML estimator. In addition, for the
information gain model, our MAP procedure is more robust
with respect to local optima than our MLE procedure. A
noninformative prior is not necessary, though. If knowledge
from other data sets is available, an informative prior could be
used to take this information into account. For larger sample
sizes, the exact prior distributions are less important, since in
that case they exert little influence on the analysis. Overall, the
Bayesian paradigm provides a flexible, powerful, and
transparent approach to parameter estimation.

In this article, we have focused exclusively on parameter
estimation. However, the Bayesian framework can certainly
be extended to hypothesis testing or model selection
(Dennis, Lee, & Kinnell, 2008; Jeffreys, 1961; Kass &
Raftery, 1995; Liang, Paulo, Molina, Clyde, & Berger,
2008; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010). For instance, one might want to examine whether
subgroups of participants (e.g., children with ADHD,
children with autism, and typically developing children)
perform the same on the Wason card selection task, in the
sense that these different subgroups have identical param-
eter values. This question can be formalized by contrasting
two models, a null model H0 in which the parameters are
identical across subgroups and an alternative model H1 in
which the parameters are allowed to vary. A precise
quantification of the evidence that the data provide for H0

versus H1 involves the computation of a weighted average
likelihood, a discussion of which can be found elsewhere
(see, e.g., Kass & Raftery, 1995; Wagenmakers et al., 2010).

A disadvantage of Bayesian modeling is that it is relatively
computer intensive. The extra information obtained from the
posterior distribution, as compared to a point estimate, comes
at a computational price, since many iterations are required to
ensure convergence of the MCMC chains and to obtain a
histogram of values that accurately reflects the posterior
distribution. However, with current computer power, these
limitations have become less problematic.5

We illustrated our Bayesian estimation procedure by
estimating the parameters of the information gain model
using data from a meta-analysis of the Wason task
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Fig. 10 Posterior predictives from the hierarchical Bayesian model as
applied to the data from the meta-analysis by Oaksford and Chater
(1994). Violin plots display the predicted selection proportions for
each of the four cards. The crosses indicate the empirical values. The
model predictions match the empirical data reasonably well

5 For example, on a 64-bit Windows computer with an Intel Duo Core
processor at 2.2 GHz with 4 GB RAM, it takes 126 s to estimate the
nonhierarchical information gain model with three chains of 10,000
iterations each.
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(Oaksford & Chater, 1994). As expected, the MAP
estimates were similar to the ML estimates. Furthermore,
the posterior predictives matched the observed data
reasonably well. The estimation procedure is simple,
and our code offers the first publicly accessible imple-
mentations of the information gain model. Researchers
can now easily estimate parameters of the information
gain model for their own data, using either hierarchical
or nonhierarchical specifications. We hope that the
availability of easy-to-use Bayesian estimation routines
will facilitate the application of formal models to data
from human reasoning research.
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Appendix A Mathematics of the information gain model

Here we present the mathematical details of the
information gain model as discussed in Oaksford and
Chater (2003). The probability of selecting card xi; i 2
fp; not � p; q; not � qg is

PrðxiÞ ¼ 1

1þ e2:37�9:06�SEIGðxiÞ : ð1Þ

The numbers 2.37 and 9.06 were determined from
empirical data (Hattori, 1999, as cited in Oaksford &
Chater, 2003). SEIG (xi) is the scaled expected informa-
tion gain of card xi:

SEIGðxiÞ ¼ EIGðxiÞP
xj2fp;not�p;q;not�qg EIGðxjÞ

; ð2Þ

where EIG, the expected information gain of turning a
card, depends on the card. Here we show how to compute
the expected information of the p card. The expected
information of the other cards is computed similarly.

For the p card,

EIGðpÞ ¼ PrðqjpÞIGðpqÞ þ Prðnot � qjpÞIGðpnot�qÞ: ð3Þ
where Pr(q | p) is the probability of q on one side given p
on the other side. IG(pq) is the information gained by
turning a p card and finding a q card on the other side.

Computation of IG(pq) will be discussed later. First we
show how to compute the conditionals.

Conditionals such as Pr(q | p) can be computed by
marginalizing over both models:

PrðqjpÞ ¼ Prðqjp;MDÞPrðMDÞ þ Prðqjp;MI ÞPrðMI Þ; ð4Þ
where MD is the dependence model and MI the indepen-
dence model. The prior probabilities of the models are
assumed to be equal. So

PrðMI Þ ¼ PrðMDÞ ¼ 0:5: ð5Þ
The information gain of seeing q after turning a p card is
the difference between the uncertainty before and after
turning the p card:

IGðpqÞ ¼ IðMÞ � IðM jpqÞ; ð6Þ
where I(M) is the a priori uncertainty about the model
(dependence model MD or independence model MI) as
measured by the Shannon–Wiener information index.
I(M | pq) is the uncertainty concerning the true model
after turning the p card and finding q on the other side.
The two information values are calculated below.

IðMÞ ¼
X

i2D;I
PrðMiÞlog2

1

PrðMiÞ
� �

¼ 1; ð7Þ

where i indexes over the dependence and independence
models. Since, a priori, both models are equally probable
(e.g., PrðMI Þ ¼ PrðMDÞ ¼ 0:5), we obtain the maximum
uncertainty of 1.

The conditional information is computed similarly.

IðM jpqÞ ¼
X

i2D;I
PrðMijpqÞlog2

1

PrðMijpqÞ
� �

; ð8Þ

where the probability of model i given card pq [i.e., Pr(Mi |
pq)] can be obtained with the help of Bayes’s theorem:

PrðMijpqÞ ¼ Prðqjp;MiÞPrðMiÞP
j2D;I Prðqjp;MjÞPrðMjÞ ; ð9Þ

Table 3 Contingency table of joint probabilities of card combinations
under the dependence and independence models

q not-q

Dependence model

p a(1−ε) aε

not-p b−a(1−ε) 1−b(a−ε)
Independence model

p ab a(1 – b)

not-p b(1 – a) (1 – b)(1 – a)

a = Pr(p), b = Pr(q), ε = Pr(not − q | p)
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where the prior probability of each model is assumed to be
.5. The probability of seeing a q after turning a p card given
model i [i.e., Pr(q | p, Mi)] can be computed by
marginalizing the joint conditional probabilities:

Prðqjp;MiÞ ¼ Prðq; pjMiÞ
PrðpjMiÞ ; ð10Þ

where the joint conditional probabilities are depicted in
Table 3. The marginal probabilities Pr(x | Mi) are assumed
to be independent of the model and can therefore be easily
derived from parameters a and b, which are the prior
probabilities of p and q:

PrðpjMiÞ ¼ PrðpÞ ¼ a;
Prðnot � pjMiÞ ¼ 1� PrðpÞ ¼ 1� a;

PrðqjMiÞ ¼ PrðqÞ ¼ b;
Prðnot � qjMiÞ ¼ 1� PrðqÞ ¼ 1� b:

ð11Þ

Appendix B Uniform priors on (a, b)

Since a and b are the parameters of interest in the
information gain model, we have used an uninformative
prior for the joint distribution of (a, b). In this section, we
show that if u and c are both independent and uniformly
distributed and a ¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

1� u
p

, then p(a, b)=2 and thus is
uniformly distributed.

The definition of a is an example of inverse transform
sampling: a ¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

1� u
p ¼ F�1

a ðuÞ. The cumulative dis-
tribution function for a is therefore FðaÞ ¼ 1� 1� að Þ2.
Differentiation results in the probability density function
p(a) = 2(1 – a).

Let p(a) = 2(1 – a) and p(c) = 1. Furthermore, a and c
are assumed to be independent. Therefore, pðajcÞ ¼ pðaÞ.
Under these assumptions, the prior of p(a, b) = 2, and is
therefore uniform:

pða; bÞ ¼ R 1
0 pða; bjcÞpðcÞ dc ¼

R 1
0 pða; bjcÞ dc

¼ R 1
0 pðbja; cÞpðaÞ dc ¼

R 1
0 pðbja; cÞ2ð1� aÞ dc

ð12Þ
Although p(b | a, c) is a deterministic and therefore discrete

function, we can define it as a continuous delta Dirac function
around point c a; bð Þ ¼ ½b� að1� "Þ�= 1� að Þ. In other
words, if c ¼ ½b� að1� "Þ�= 1� að Þ, then pðbja; cÞ ¼ 1;
otherwise, pðbja; cÞ ¼ 0. Furthermore,

R1
�1 pðbja; cÞ db ¼ 1.

Substituting bðcÞ ¼ c 1� að Þ þ að1� "Þ, we obtain:

pða; bÞ ¼ 2
R 1
0 pðbðcÞja; cÞð1� aÞ dc

¼ 2
R 1�"a
að1�"Þ pðbðcÞja; cÞ db

¼ 2
R1
�1 pðbja; cÞ db

¼ 2

ð13Þ

This proves that p(a, b) is indeed uniformly distributed.
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