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Long-range strain
4 correlations in sheared
colloidal glasses

Glasses behave as solids due to their long relaxation time; the origin of
this slow response remains a puzzle. Growing dynamic length scales due
to cooperative motion of particles are believed to be central to the un-
derstanding of such slow response and the emergence of rigidity [93, 94].
However, for quiescent glasses, the size of the cooperatively rearrang-
ing regions has never been observed to exceed a few particle diameters
(95, 96], and the observation of long-range correlations that are signatures
of an elastic solid has remained elusive. Here, we provide direct exper-
imental evidence of long-range correlations in a dense colloidal glass by
imposing an external stress on the system, forcing structural rearrange-
ments that make the glass flow. We identify long-range correlations in
the fluctuations of microscopic strain, and elucidate their scaling and
spatial symmetry. The long-range correlations are observed to lead to
inhomogeneous flow when the flow becomes so fast that the structural
rearrangements can no longer occur through spontaneous thermal fluc-
tuations.
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Figure 4.1: Static structure factor of liquid (7" = 270K) and glassy (T' = 160K,
T = 4) polybutadiene at ambient pressure is plotted vs. wave-vector, as
obtained from the neutron scattering measurement [97, 98].

4.1 Correlations in glasses

4.1.1 Static two point correlations

Various atomic or polymeric liquids, when cooled rapidly form an amor-
phous solid known as a glass [1]. On approach to the glass transition,
a liquid does not display any perceptible change in structure, however,
the dynamics slows down dramatically [9]. A simple static measure of
the structure is the two-point correlation function or the structure factor,
which is defined as

S(q) = <%pqp—q> : (4.1)

where the Fourier component of density is written as p, = Zj\;l exp (iq.r;),
with N the number of particles and r; the position of the particle j.
The structure factor gives information about the density fluctuations on
length scales 27/|q|. However, the change of S(¢) in the vicinity of the
glass transition is unremarkable, with no hint of a growing length scale.
In real space, this correlation function is referred as pair correlation func-
tion, which was introduced in Chap. 2. A direct measurement of S(q)
at different temperatures in a polybutadiene polymer glass former using
neutron scattering is shown in Fig. 4.1 [97, 98].
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4.1.2 Dynamic four-point correlations

Simple static correlations, such as the ones discussed in the previous sec-
tion, are not helpful in understanding the slowing down of the system.
Major changes at the glass transition, however, do occur in the dynamics
of the particles. The determination of dynamic quantities requires mea-
surement in both time and space. To understand the spatio-temporal
dynamics, an observable called mobility ¢;(t,0) is defined to measure
how far a particle i moves in a time interval ¢ [7, 99]. A corresponding
mobility field is conveniently defined as :

c(rit,0) = ci(t,0)8(r — ). (4.2)

7

Then, the spatial correlations of the mobility are naturally captured
through the correlation function

Ga(r;t) = (c(r;1,0)e(0;t,0)) — (c(r;1,0))”, (4.3)

which is dependent only on a single time ¢t and a separation distance
r = |r|, as long as the average is taken at equilibrium in a translational
invariant system [7]. The analogy with fluctuations in critical systems
becomes clear in Eq.4.3 if one considers the mobility field c¢(r;¢,0) as
playing the role of the order parameter for the glass transition. The
mobility ¢;(¢,0) can often be expressed as a two-point function over a
distance 27 /q

¢i(t,0) = 0;(q,t)0;(—q,0), (4.4)

where 0;(q,t) = exp(ig.r;(t)) is the Fourier component of the density of
the system. Moving from a particle notation o0;(q,t) to a field notation
0i(x;t,0), one arrives at [7, 99]

Ga(r;t) = (o(r; q, t)o(r; —q,0)o(0; q, t)o(0; —q, 0))—(o(r; q, t)o(r; —q, 0))* .

(4.5)
This correlation function is quartic in the operator o, so it is known as
a four-point correlation function. It measures correlations on a length
scale r, associated with motion between time zero and time ¢; it depends
additionally on the length scale ¢ used in the definition of the particle
mobility ¢;(¢,0). Since structural relaxation typically involves particle
motion over a distance comparable to the particle size o, one typically
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chooses ¢ << 1/0 and studies the remaining ¢ and r dependence. This
function then characterizes the dynamic heterogeneity in glasses, and
allows the language of field theory and critical phenomena to be used
in studying dynamical fluctuations in glassy systems. By analogy with
critical phenomena, if there is a single dominant length scale (4 then one
expects that for large r, the correlation function decays as

Gutrit) ~ 2 exp (r/eu(r), (46)

with p an exponent whose value is discussed below. It is natural to define
the susceptibility associated with the correlation function

xa(t) = /dTG4(r;t). (4.7)

The dynamic susceptibility x4(¢) is the non-equilibrium analogue of the
thermodynamic susceptibility that measures the size of the fluctuations.
The size of the fluctuations is directly related to the size of the coopera-
tively moving clusters of particles [7, 99].

4.2 Numerical and experimental investigation
of dynamic correlations

Dynamic correlations have been studied in quiescent glasses both in simu-
lation and experiments [21, 22, 95, 100, 101, 102]. We first briefly describe
some of the results to gain an overview of the existing understanding of
dynamic correlations in various systems.

4.2.1 Simulation studies

For supercooled liquids, the dynamic susceptibility y4(¢) has been mea-
sured by molecular dynamics, Brownian and Monte Carlo simulations in
different liquids [94, 102, 103, 104, 105, 106, 107]. The qualitative behav-
ior is similar in all cases. An example of the measurement of y4(¢) and
the associated length scale &(¢) is shown in Fig.4.2(a)&(b), respectively,
for a Lennard-Jones liquid [105]. The susceptibility y4(#) and the length
scale £4(t) first increases, has a peak on a timescale close to structural
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Figure 4.2: Dynamic correlations in computer simulations of supercooled lig-
uids using Lennard-Jones interactions [105]. Time and temperature depen-
dence of (a) xa(t) and (b) &4(t). As T decreases, the peak in x4(t) and &4(t)
monotonically increases and shifts to longer time. Both y4(t) and & (t) attain
a maximum at t ~ 7/,

relaxation timescale (7,) and then decreases. The most important infor-
mation extracted from the temperature evolution of y4() is that, at least
in the range available to the numerical simulations, the value of the peak
typically increases from a high temperature value that is of order unity,
and goes up by at most 2 orders of magnitude at the lowest temperatures
for which the system can be equilibrated. This suggests that dynamics
becomes increasingly spatially correlated when 7' decreases. Dynamic
correlations were originally proposed to study cooperative motion on
the approach to the glass transition [94, 94, 100, 101, 103, 108, 109].
However, over the last decade, the four-point correlation function Gy4(r)
(Eq.4.3) has been used extensively to study the cooperative length scales
in sheared amorphous solids [49, 110, 111, 112]. An example of the four-
point correlation function measured in athermal, quasi-static simulations
of the deformation of amorphous solids is shown in Fig. 4.3 [49]. The
spatial correlations of the non-affine displacements are shown for various
system sizes in Fig. 4.3. These results indicate that there is no charac-
teristic length scale due to the elastic nature of the system, and the only
relevant scale is the system size.
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Figure 4.3: Spatial correlations of the non-affine displacements in athermal,
quasi-static simulation of deformation in amorphous solids [49]. The separa-
tion distance ¢ on the x-axis is scaled by the system size Lpoy.

[—
Q._.
T

F 107 107 10" 10° 10" 10° 10° 10
i 7 (sec)
o

10"

035 040 045 050 055 060
Q@

Figure 4.4: Measurement of dynamic susceptibility in dense colloidal suspen-
sions using dynamic light scattering [13]. The peak of x4(t) is shown as a
function of the volume fractions. The inset shows the peak of x4(¢) as a
function of the structural relaxation time 7.
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4.2.2 Experimental studies

In experiments, dynamic correlations have been measured in hard-sphere
colloidal suspensions using the technique of dynamic light scattering
[13, 95]. Examples of the susceptibility x4(¢) and the associated correla-
tion length & (¢) measured by Brambilla and co-workers [13] are shown in
Fig.4.4. These results are qualitatively similar to what has been observed
in simulations [94, 102, 103, 104, 105, 106, 107]. Direct observations of
particle motion can be made in dense colloidal glasses using confocal
microscopy. The four-point correlation function G4(r) was measured us-
ing the displacement of the particles in quiescent colloidal glasses [96].
However, these authors did not discuss the dynamic nature of the corre-
lation function G4(r). Other examples of experimental determinations of
dynamic correlations are excited granular materials [21, 113] and coarsen-
ing foams [114]. The results obtained in all these cases are again broadly
similar for the time dependence of y4(t).

4.3 Probability distribution of non-affine dis-
placement fluctuations

In order to understand the correlated dynamics in glasses, we begin with
the investigation of the probability distribution function of non-affine
displacements Ar™*, which is defined according to Eq. 2.11. It suffices
to analyze only the component in the shear direction, Az"*. As dis-
cussed previously, the correlations in glasses are time dependent because
they are strongly out of equilibrium. To illustrate this time dependence,
we determine non-affine displacements over different time intervals. In
Fig.4.5(a), we show the probability distributions of non-affine displace-
ments obtained at a shear rate of ¥ = 1 x 107°s7! and ¢ = 0.60. The
probability distributions are normalized such that they have zero mean
and unit variance, and the maximum of the function is set to unity. The
circular and square symbols in Fig.4.5(a) are used to distinguish differ-
ent time intervals At = 120 s, 1440 s, respectively, that are used for
computing the non-affine displacements, and the dark dashed line is a
Gaussian distribution with zero mean and unit variance. Apparently, the
probability distributions show strong deviations from a Gaussian distri-
bution. We quantify this deviation from Gaussianity using the fourth
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Figure 4.5: (a) Probability distribution function of the non-affine displace-
ment in the shear direction Az"®, obtained at a shear rate of ¥ =1 x 107%s~!
and ¢ = 0.60. The distribution are normalized such that the mean is zero,
the variance is unity and the maximum of the function is unity. Different
symbols denote different time intervals used for computing the non-affine dis-
placements, and the dark-dashed line is a Gaussian distribution of zero mean
and unit variance. (b) The kurtosis k4 of the probability distribution functions
are presented as a function of time.

moment of the distribution, which is referred as kurtosis. The kurtosis
of a distribution is defined as :

N -4
1 3 Azr® — Agne

i=1

where Azn@ is the mean and o is the standard deviation of the dis-
tribution. For a Gaussian distribution x4 is zero. The kurtosis of the
probability distributions of the non-affine component Az™* is shown in
Fig.4.5(b) as a function of time interval. Interestingly, the kurtosis ex-
hibits a maximum at At,, = 180 s, which implies that correlations are
the strongest at short times. This is related to the fact that arrested
dynamics at short time intervals give rise to strong correlations in the
system. Similar experimental observations about the probability dis-
tribution functions have been made for quiescent and sheared colloidal
glasses in other experiments [24, 115] .
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4.4 Spatial correlations of shear strain and non-
affine displacement

In this section, we define spatial correlations of microscopic strain and
non-affine displacement to investigate the cooperative motion in sheared
colloidal glasses. The spatial correlation functions of the microscopic
fluctuations are defined as :

(A(r + 0r)A(r)) — (A(r))”
(Ar)?) = (A@)”

where A is a microscopic observable, and angular brackets denote en-
semble averages. A comparison of equations.(4.9) and (4.3) reveals the
similarities in their definitions, and also point to the fact that local strain
and non-affine displacements are the dynamic observables in our analysis.
This definition allows us to visualize the spatial correlations not only as a
function of distance o7, but also as a function of angle between two points.
It is to be noted that the spatial correlations in glasses are time dependent
because the dynamics evolve in time. They depend on the time interval
0t that is used for computing shear strain and non-affine displacements
and the local strain. The study of probability distributions, in the previ-
ous section, showed strongest correlation for short times. Therefore, we
focus on short time dynamics to study spatial correlations.

CA(5r) =

(4.9)

00 20 40 60 80

X (um)
020 . [ I |
-0.02 0 0.02 0 005 0.1

Figure 4.6: Reconstruction of shear strain €., (a) and non-affine displacement
D? (b) in a 108 x 108x ~ 5um? section. The ¢ and D? are obtained from the
displacements observed over time interval of At = 120 s.
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Figure 4.7: (a),(c) and (d) Color coded representations of the spatial correla-
tion function of the shear strain C. in various planes. A section of C. in the
xz plane at y = 0 (a), the xy plane at z = 4 (c) and the yz plane at x = 4
(d). (b) The angle dependent correlation of shear strain in the xz plane.

We first investigate the spatial correlations in the homogeneous flow
that was observed at a shear rate of ¥ = 1 x 107°s~!. For the con-
venience of understanding, we present spatial maps of the shear strain
component ¢,, and D?, in a 5 um thick section parallel to the zz plane,
in Figs.4.6(a) and (b), respectively. The network of high and low strain
regions in Fig.4.6(a) is a direct consequence of the strong spatial correla-
tions. To substantiate this point, we compute the spatial correlations of
the shear strain fluctuations using Eq.4.9. Correlations in the x-z plane

are obtained by taking ér = (dx,0,02); a corresponding color coded rep-
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resentation of the correlation function C. . is shown in Fig.4.7(a). Re-
markably, the correlation function shows a four-fold pattern at its center,
which is reminiscent of the strain response of an elastic material to an
ellipsoidal inclusion [86]. These observations strongly establish the elas-
tic nature of colloidal glass, and the fact that shear transformation zones
are similar to Eshelby’s inclusions [86]. The angular dependence of the
strain correlations in Fig.4.7(a) is apparent from the color coding. To
highlight this feature, we average C, within angular wedges around the
horizontal (circles), vertical(square), and diagonal(diamond) directions,
and plot the corresponding angle-specific correlation function versus r in
Fig.4.7(b) using different symbols.

In a similar way, we visualize the form of the correlation function C, in
the zy and yz planes. Sections of the correlation function in the xy plane
at z = 4 and the yz plane at © = 4 are shown in Figs.4.7(b) and (c),
respectively. From the various sections, it is apparent that the central
region of the correlation function, which is often referred to as inclusion,
interestingly, has an ellipsoidal shape.
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Figure 4.8: (a) A color coded presentation of the spatial correlation function of
the non-affine displacement Cp2 in the zz plane at y = 0. (b) Angle-averaged
correlation function Cp2  as a function of distance 7.

man

We now turn our discussion to the correlation of non-affine displace-
ments, whose spatial map in the zz plane is shown in Fig.4.6(b). As
discussed earlier, the non-affine displacement is representative of the dif-
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fusive motion in the system, and is a measure of plastic activity. The
localized nature of the plastic deformation in the material is evident
from the figure. We determine the spatial correlation function of the
non-affine displacement fluctuations, Cp2, using Eq. 4.9, and display a
color coded representation in Fig.4.8(a). In contrast to the shear strain,
the spatial correlation function of the non-affine component appears to
be isotropic. So, we average the correlation function over all the an-
gles in three dimensions, and present it as a function of distance dr in
Fig.4.8(b). A remarkable power-law decay is observed, which is trun-
cated at the vertical system size, dr /o ~ 50; thus the correlations span
the entire system. These results provide direct evidence of the existence
of long-range dynamic correlations in a slowly flowing glass, and high-
light the scale-free character of the non-affine rearrangements that gives
rise to plastic deformation. The scale invariance appears to be a generic
feature of elasto-plastic deformation in other materials: the dislocation
motion in crystals [116, 117, 118], and the aftershocks in earth quakes
[119] display similar scale-free patterns.

20 40 60 80
x/um

Figure 4.9: Inhomogeneous flow at 4 = 1x107*s~!. (a) Particle displacements
along the shear direction during the time interval 0t = 4 min. Dashed red
lines are linear fits to the shear profiles for z < z; = 23um (low shear band)
and z > z, = 28um (high shear band). (b) A 7um thick reconstruction
of the distribution of incremental shear strain e,, during the time interval
ot =7 min.

We probe the spatial correlations of strain and non-affine displacement
fluctuations by subjecting the glass to increasing shear rates. As reported
in the previous chapter, the flow remains homogeneous over a range of low
strain rates, however, beyond a critical strain rate of 4, ~ 6 x 107°s~* we
observe a sudden transition to inhomogeneous flow. The glass separates
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into two bands that flow at different rates, as illustrated by the displace-
ment profile in Fig.4.9(a), obtained at a shear rate of ¥ ~ 1 x 1074s71. A
reconstruction of the shear strain distribution shows how the shear band
emerges: highly non-affine shear transformations accumulate in the up-
per part of the glass (Fig.4.9(b)).
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Figure 4.10: Angle-averaged correlation function C'p2  as a function of dis-
tance or, for the low shear band (blue squares), the }Tilgh shear band (yellow
diamonds), and for the homogeneous flow at 4 = 1.5 x 107°s~! (blue dots)
and 3 x 107°s~! (orange triangles). A least square fit to the data gives a slope
of  ~ —1.3+ 0.1 (dashed line).

We investigate the robustness of the scaling observed in Fig.4.8 by
determining C'p2  (0r) separately for the high and low shear bands. The
resulting angle—giyeraged correlation functions are shown together with
those of homogeneous flow in Fig.4.10. A remarkable collapse of the
data is observed. While the magnitude of fluctuations in the two bands
differs largely, the normalized correlation function shows very similar
power law decay (Fig.4.10): the same scaling exponent applies to the
low and the high shear band, as well as to homogeneous flow. We find a
scaling exponent of & = 1.340.1 from the best fit to the data. Athermal
and quasi-static shear simulations of amorphous solids [38, 39, 40, 49, 52]
have shown similar long-ranged correlations; however, the effect of finite
shear rate and finite temperature on the statistical correlations between
shear transformations was unclear so far [120, 121, 122, 123]. Our results
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conclusively show long-range correlations even at finite shear rates, and
at finite temperatures.
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Figure 4.11: (a) and (b) Angle-resolved spatial correlations of shear strain,
Ce,.(6r), in the = — z plane, for the low and the high shear bands shown
in Fig.4.9, respectively. Correlations are computed over a time interval of
ot = 3 min.

It is to be noted that the spatial correlations presented in Fig.4.10
were obtained using particle displacements observed over short durations.
This demonstrates that the bands appear similar on short time scales.
However, the fundamental difference between the two bands becomes ev-
ident when we investigate the particle dynamics as a function of time.
This aspect was exploited in chapter 3 to demonstrate shear banding as
the coexistence of dynamic phases. Here, we proceed along similar lines,
and compute the strain correlation C. for the bands separately. Remark-
ably, the strain correlation function, C, reveals a symmetry change in
the strain response. While for the low shear band, the central four-fold
symmetry is still predominant (Fig.4.11(a)), for the high shear band, this
symmetry is lost, and the pattern appears to be isotropic (Fig.4.11(b)).
This symmetry change reflects the transition from a solid to a liquid-
like response of the glass. A similar interpretation is given to fracture
surfaces of metallic glasses that display striking evidence of such a solid
to liquid transition [124]. Our colloidal glass then allows us to directly
visualize the strain correlations that cause this dynamic transition.
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Figure 4.12: Evolution of strain correlations during shear band formation.
Shear strain correlation function C¢,, before (a) and after (b) the manifesta-

tion of shear bands. The arrows in (a) indicate the strong correlation in the
direction of shear that lead to shear banding in later stages (b).

4.4.1 How do shear bands emerge?

To elucidate the emergence of shear bands, we follow the spatial cor-
relations of shear strain C. during the initial stages of shear banding
(Figs.4.12(a) and (b)). The strain correlation function during the tran-
sient stage, before the shear bands manifest themselves (Fig.4.12(a),
shows a strong bias in the horizontal direction. This horizontal bias
signals the excitation of additional elastic modes at higher shear rates
that cause strong correlations between shear transformation zones in the
horizontal direction. This correlation lowers the effective resistance to
flow in the direction of shear, and thereby leads to shear bands in the
later stages of deformation (Fig.4.12(b)). These results highlight the
importance of long-range correlations in the shear banding of glasses.
Various numerical studies of the elasto-plastic behavior of amorphous
solids have focused on long-range correlations to understand the origin
of shear-banding [43, 44, 125]. Bulatov and Argon [125] used a 2D model
of amorphous solids, in which the plastic flow was treated as a stochastic
sequence of local inelastic transformations. The model was based on the
assumption that plastic flow in amorphous solids is a net result of individ-
ual plastic transformations. Their study demonstrated that the evolution
of non-random internal stresses due to long-range interactions between
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the shear transformations is as important as the dilatancy induced ef-
fects for understanding the formation of shear bands. Our observation
of long-range spatial correlations in colloidal glasses are indeed direct
experimental evidences of these ideas.

4.4.2 Scaling of different definitions of non-affine dis-

placement
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Figure 4.13: Angle averages spatial correlation of the different definitions of
non-affine displacement. Different line types are used to distinguish non-affine
displacements. The thick line is D?, dash-dot line is Ar 7 and dot line is Arpg.

Various definitions of the non-affine displacement have been used in
the literature [52]. The most prominent definition of the non-affine dis-
placement (Ar™®) is based on the deviation from global deformation. The
long-range nature of the spatial correlations of non-affine displacements
have been confirmed in athermal, quasi-static shear simulations. Here, we
compare the spatial scaling of fluctuations for various definitions of non-
affine displacements. We use the definitions of non-affine displacement
introduced in Chapter 2 to compute the spatial correlation functions in
a homogeneously flowing glass (¥ = 1.5 x 107°s7!). Figure.4.13 shows
angle-averaged spatial correlations of non-affine displacement defined by
D? (thick line), (Ar"®)? (dotted line) and (Ar/)? (dash-dotted line). Sur-
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prisingly, all these definitions display a similar power-law decay that is
characterized by a unique exponent o = —1.2 4+ 0.1. These observations
further underline the robustness of our results.

4.5 Conclusions

Our results establish the existence of long-range spatial correlations in the
flow of glasses. The four-fold symmetry of the shear strain fluctuations
reveals that shear transformations are similar to Eshelby’s inclusions [86].
The long-range interaction between the shear transformations gives rise
to scale-free correlations in glasses. In addition, the scaling exponent
remains constant over a range of shear rates, which demonstrates the
robustness of our observations. These results indicate the essential im-
portance of correlations between STZs that so far have not been taken
into account in mean field theories of plasticity, which assume the random
formation of STZs [37, 42, 45].

While our results for shear banding are obtained for colloidal glasses,
they should be generic to glassy flows. The formation of shear bands has
often been linked to strain softening of the material, caused by excess
dilation, that accompanies the formation of shear transformations [41,
42]. The direct imaging of strain correlations demonstrates that long-
range elastic correlations play a central role in the manifestation of such
instabilities.

Finally, the robust scaling that we observe suggests a naturally scale-
free flow and relaxation of glasses. We propose similar analysis of shear
flows in systems like granular, foams and emulsions to test the univer-
sality of the scaling exponent, and to determine the universality class of
the flow and relaxation of amorphous materials.
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