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1. INTRODUCTION

1.1 Introduction

The propagation and scattering of acoustic 1 waves as well as the properties
of localized (resonant) modes are widely used to determine the elastic and
viscous properties of liquid and solid materials. In many materials of practical
importance (e.g. metals) acoustic waves can travel over distances much larger
than the wavelength due to the very small damping of the acoustic vibrations.
For example it is possible to hear the sound of the approaching train (tram)
in the railway track long before it actually arrives.

In homogeneous materials the propagation of acoustic waves is strongly
influenced by the boundaries, inhomogeneities, cracks etc. The mismatch
in acoustic impedance which is a product of density and sound velocity at
interfaces is in general much higher than the mismatch in the refractive index,
i.e. the corresponding property of the electromagnetic waves. Acoustic waves
also have a much smaller wavelength than electromagnetic ones at a given
frequency due to the considerably smaller wave velocity.

Because of this high sensitivity to material properties on small length
scales, acoustic waves are used in many practical applications such as nonde-
structive testing of materials and mechanical structures [1, 2]. These appli-
cations include e.g. monitoring quality and aging of construction materials
in airplanes, tuning cars, testing computer hard drives, medical imaging,
mapping the underground structures in relation with oil exploration, and all
kinds of ultrasonic imaging.

Acoustic behavior of complex (almost) closed strong wave scattering sys-
tems will be considered in this thesis. To study scattering of waves in com-
plicated structures one needs to consider statistical approaches rather than a
detailed description of a particular case. One successful statistical approach
originating from quantum mechanics [3, 4] is to describe properties of eigen-
values (i.e. resonant frequencies or energy levels) and eigenfunctions of the
complex chaotic system by modelling the Hamiltonian of the system with an

1 In this thesis the term acoustics is used for both acoustic waves in gaseous and liquid
systems and elastic waves in solid systems
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ensemble of random matrices with certain properties. Statistical properties
of the eigenvalues of this ensemble of random matrices give statistical proper-
ties of the considered resonant frequencies or energy levels. This can also be
applied to interpret the properties of acoustic waves in complex mechanical
systems.

In general the associated wavefunctions of the resonant modes belong to
several independent subspaces. E.g. each subspace may consist of wave-
functions localized in separate parts of real space or wave functions with
common symmetry as in the case of a sequence of wavefunctions in a rectan-
gular cavity described by two independent wavenumbers [3]. The combined
resonance frequencies of all the modes are then most likely uniformly dis-
tributed with a Poisson (exponential) distribution for the spacing between
neighboring resonance frequencies. This means that the statistical properties
of the resonance frequencies in a small enough frequency band with constant
density of resonance frequencies should be the same as for randomly chosen
values uniformly distributed within this frequency band.

There is an important distinction between the spectra resulting from a
combination of uncorrelated modes as described above and the spectrum of
a single chaotic system. In classical physics chaos is defined as a system
with exponentially diverging trajectories each of which tend to cover all the
available phase space. This leads to a series of modes that can be identified
by a single wavenumber in the wave system corresponding to chaotic ray
trajectories. The resonance frequencies of such a classically chaotic system
[5] should show level repelling [3] leading to a reduced probability of finding
small frequency spacings. The spectral properties of chaotic classical and
quantum mechanical systems are still studied intensely. In particular the
spectral behavior when the limit to the quantum system is obtained from
non-dissipative classical chaotic systems [6].

The statistical properties of resonance frequencies in chaotic systems can
be modelled using Random Matrix Theory (RMT) [3]. The RMT is appli-
cable to scattering of various kinds of waves, in particular also for acoustic
waves [7]. For acoustic waves the Hamiltonian corresponds to the operator
of the acoustic wave equation describing the displacement and velocity of
the elastic motion. In RMT statistical properties of the levels (resonances)
are obtained for different models of random Hamiltonian matrices with ap-
propriate symmetries. Examples of such symmetries are the time reversal
invariance of the underlying wave equation and geometrical symmetries in
the cavity. For example a thin 2D plate of irregular shape when it has one
or two symmetry planes normal to its surface, studied in [8, 9]. For more
details on RMT see part 1.2.

Time reversal invariance holds for many phenomena in physics. In partic-
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ular the standard classical wave equations display time reversal invariance.
This is strictly true only for non dissipative systems, but as long as the
dissipation is small, many features of time reversal invariance can still be
identified. The breaking of the time reversal invariance in electromagnetic
systems is well known and observed in magnetically active materials. For
example Faraday rotators consisting of active magnetic materials break the
symmetry between forward and backward propagating waves with respect
to the direction of an applied magnetic field. In acoustic systems flow and
motion of the media can break the time reversal invariance. Such phenomena
have been studied in moving liquids in acoustic experiments [10, 11, 12, 13].

The breaking of time reversal invariance should also show up in the spec-
tral properties of such systems. For example based on RMT one expects that
level repelling occurs more in systems without time reversal invariance. For
acoustic systems this has not been confirmed yet and it is of fundamental
interest in the physics of classical wave systems.

Part of this thesis will focus on resonance statistics for the elastic cavity
which has time reversal invariance broken in a controlled way. In a series of
experiments outlined in Chapter 4 we implement the breaking of the time
reversal invariance by introducing a feedback loop in a solid system instead
of a flow in a liquid system. Part of the signal recorded on an additional
transducer is amplified and re-emitted into the system through another ad-
ditional transducer. Hence, the reciprocity and the time reversal invariance
are broken (since the signal can travel in only one direction within the feed-
back loop). In these experiments we hope to identify the changes in the
spectral properties (statistics of resonances) and compare them with main
RMT models and with a novel approach to model random matrix statistics
of a system with feedback (Chapter 5).

There is a suitable experimental method to determine the degree of time
reversal invariance in the system. For a system with time reversal invariance
the evolution of a propagating pulse can be traced back by reversing all
outgoing waves in time [14]. In a time reversal experiment the scattered
signal from a single source is recorded on several transducers placed around
the source. The recorded signals are replayed then through the transducers
in the reversed order of time. A spatial and temporal reconstruction of the
original exciting pulse at the original source location occurs. However, the
reconstructed pulse is a combination of the refocused signal and the ongoing
evolution of the waves after the reconstruction.

The imperfection of the reconstruction is caused by the fact that only a
part of the wavefront is reversed using a finite time window to record and
reverse the signals. Issues related to reconstruction of the original excitation
pulse using different parts of the recorded signal in a time reversal experiment
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and detection of the reconstructed pulse are discussed in section 1.3.
In a cavity this mechanism of reversing all outgoing waves applies to even

a single transmitter and detector pair [15]. In principle it is possible to use
even a single transducer both as source and detector in sequence [16]. For
more details on time reversal experiment see section 1.3.

1.2 Overview of the statistics of Random Matrix Theory

1.2.1 Historical background of Random Matrix Theory

RMT was originally developed to describe properties [4] of complex quantum
many body systems (nuclei). An ensemble of random Hamiltonians with
certain properties is considered in RMT instead of original Hamiltonian of
the system which is usually unknown in detail [4]. It was the only practical
way to estimate the role of different interactions in the nuclei and identify
the symmetries of such systems without actually knowing the corresponding
Hamiltonian. RMT was originally developed by the physicist Eugene Wigner
in 1950 to describe the statistics of eigenvalues and eigenfunctions of complex
quantum system (statistics of energy levels of nuclei ). Later it was realized
that RMT is applicable to scattering of various kinds of waves, in particular
also to acoustic waves [7].

RMT gives in particular a model for the distribution of the spacing be-
tween the nearest neighbor levels. The most well known statistical distribu-
tions from the RMT refer to the following cases:

a. Random division of the energy band into intervals by energy levels.
The distribution of the spacing between the nearest neighbor levels in this
case is exponential (also referred as Poisson distribution).

b. The case of the random Hamiltonian preserving the time reversal
invariance, when the Hamiltonian is modelled by the Gaussian Orthogonal
Ensemble of matrices.

c. The case of the random Hamiltonian with broken time reversal invari-
ance, when the Hamiltonian is modelled by the Gaussian Unitary Ensemble
of matrices.

Case a) predicts a distribution of the distance between nearest neighbor
levels with a high probability for the smallest separations. Cases b) and
c) are distributions with a maximum peaked around the value close to the
average spacing between the nearest neighbor levels. The difference between
cases b) and c) is that in case c) the probability of small distances between
eigenvalues (resonances, energy levels) is suppressed even more than in case
b), revealing greater level repulsion.
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We will discuss all three mentioned cases in more detail in the next sec-
tions of this chapter. In addition we also discuss the case of coexistence of
independent level (resonance) sequences in the same energy (frequency) band
and the case in which, due to finite resolution effects, an incomplete sequence
of energy levels (resonances) is observed.

1.2.2 Gaussian Orthogonal Ensemble

The Gaussian Orthogonal Ensemble (GOE) is defined in RMT [3] as an en-
semble of symmetric matrices that have identically distributed real random
Gaussian elements and their statistical properties are invariant under orthog-
onal matrix transformations.

The detailed position of the eigenvalues of these matrices are varying for
each realization. However quantities such as eigenvalue density and eigen-
value separation follow universal behavior. The distribution of the nearest
neighbor eigenvalue spacing for the members of the GOE describes the dis-
tribution of intervals between energy levels (resonant frequencies) of a class
of semiclassical Hamiltonian physical systems [17]. However, RMT models
such as GOE are applicable to systems in which an understanding in terms
of semiclassics has not been achieved yet, such as complex nuclei or other
quantum many-body systems. So modelling a Hamiltonian with a random
matrix has quite broad area of applications [4].

A symmetric matrix implies time reversal symmetry in the system. The
invariance of the statistical properties of the matrix ensemble under orthog-
onal transformations describes an ensemble of Hamiltonian matrices that
cannot be decomposed into a matrix with separated diagonal blocks. Such a
block decomposition [4] leads to additional ’quantum numbers’ and therefore
to several independent sequences of energy levels. True non-regular (chaotic)
resonances are described by only one ’quantum number’, related to the only
quantity that is conserved - energy. This holds for Hamiltonian systems with
a classical chaotic counterpart [17]. Classical trajectories in the phase space
of such systems are chaotically mixed so that energy is the only constant of
motion.

In the experiments and models presented in Chapter 2 of this thesis the
systems (elastic resonators) are in principle time reversal invariant. The
statistics of the wave resonances determined in these experiments on chaotic
cavities are expected to follow the GOE model. Deviations from this behavior
may be expected when a feedback loop is introduced (Chapter 4).

To characterize the statistics of resonances and to compare them with
RMT models we will use the nearest neighbor eigenvalue (energy level, res-
onance) spacing distribution (NNSD) and the spectral rigidity (SR). These
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are discussed in greater detail in the subsection below.
To compare the measured distributions and/or theoretical models it is

convenient to describe the distributions by a few characteristic parameters.
For example the moments of the distributions (mean, variance and higher
order moments) are well suited to compare the distributions and quantify
their differences. We will use these parameters in addition to NNSD and SR
in the analysis of the experimental and theoretical results presented in this
thesis.

1.2.3 Nearest neighbor eigenvalue spacing distribution and spectral rigidity

Nearest neighbor eigenvalue spacing distribution

The nearest neighbor eigenvalue spacing distribution, NNSD, gives the prob-
ability density of finding the value of the spacing between neighboring energy
levels (cavity resonances). NNSD is usually plotted against a variable scaled
by the average spacing in the sequence, s/savg (see nearest neighbor reso-
nance spacing sj in a schematic graph of a spectrum in Fig. 1.1). The NNSD
is normalized to unit area under the curve. If the energy levels (resonant
frequencies) divide the given energy band into intervals randomly, case a)
in 1.2.1, as in the case of regular (integrable) cavity waves, then the NNSD

is a Poisson distribution (exponential distribution), P
exp
s (s), as given below

by Eqn. 1.1. Otherwise, if the observed resonances of chaotic cavity are de-
scribed by the GOE model, case b) in 1.2.1, the NNSD has a shape with a
maximum, as shown by the dashed curve in Fig. 1.3. In this case the NNSD
is P

goe
s (s), given by Eqn. 1.2.

P exp
s (s) = exp(−s/savg) (1.1)

Pgoe
s (s) = (π/2)(s/savg) exp(−πs2/(4s2

avg)), (1.2)

where s is the nearest neighbor resonance spacing and savg is the average
nearest neighbor resonance spacing.

Spectral Rigidity

Another quantity characterizing the RMT (level, resonance) statistics is the
spectral rigidity, SR. It depends on the relative order of the resonances (en-
ergy levels) and not only on spacings. It is defined through the staircase
function N(E) that counts the number of levels up to a value E. The spec-
tral rigidity is a measure of the fluctuations of the staircase function N(E)
around a fitted line through N(E).
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Fig. 1.1: Top graph gives a schematic example of resonances in the spectrum x(E)
as function of energy E. The nearest neighbor energy level (resonance)
spacing sj is shown. The sequence of energy levels (top graph) is used to
define the staircase function N(E) counting the number of energy levels
below the energy E (bottom graph). The line (y(E) = A+B(E−EC)) is
the best fit of N(E) in the energy band of size 2L centered at the energy
value EC . The staircase functions determined from the experimental data
discussed further in this thesis are shown in Fig. 1.2.
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The definition of the staircase function is illustrated in Fig. 1.1. The
spectral rigidity, Δ, is defined then following [17] as:

Δ =

〈
min
A,B

1

2L

∫ L

−L
(N(EC + ε)− A− Bε)2dε

〉
(1.3)

or equivalently

Δ =<
1

4L
[2

∫ L
−L N2(EC + ε)dε− 1

L

(∫ L
−L N(EC + ε)dε

)2

− 3
L3

(∫ L
−L N(EC + ε)εdε

)2
] >, (1.4)

where A and B are free parameters chosen to minimize Δ in Eqn. 1.3, 2L
is the size of an energy band around the average energy value EC . Brackets
<> in Eqn. 1.3 and Eqn. 1.4 imply averaging over a number of energy bands
of size 2L centered at different values of EC .

Throughout this thesis we will use the function N(f), giving the number
of acoustic (elastic) resonances below frequency f (Fig. 1.2), instead of N(E).

Also note that the equivalent form of the SR (Eqn. 1.4) is similar to the
standard deviation of N(E) per interval 2L. Deviation of the function N(E)
around the best fitting line (Eqn. 1.3, Fig. 1.1) is the ’rigidity’ of the spectra,
measured by the SR. SR described by Eqn. 1.3 is the average square deviation
of the staircase function from the line (defined by parameters A and B) best
fitting the staircase function within the small energy band EC −L...EC + L,
Fig. 1.1. So the sequence of resonances (eigenvalues, energy levels) is con-
sidered to be more rigid (i.e. has a larger rigidity) if the staircase function
(resonance counting function) more significantly deviates from the best fit-
ting line. The important property of the SR is: if energy levels (resonant
frequencies) divide the given energy band into intervals randomly, then the
SR is proportional to the total size of the included small energy band 2L,
increasing exactly as 2L/(15savg). While for energy levels with statistical
properties of a sequence of eigenvalues of the GOE the SR should saturate
logarithmically (hence, remains smaller than 2L/(15savg)) with increasing L
according to the prediction [17, 18] for GOE. Spectral rigidities for the case
of random division of the energy band into intervals (or Poisson spectrum)
and for GOE model are given below by Eqn. 1.5 and Eqn. 1.6 respectively
[4]:

Δexp(L) =
2L

15savg
(1.5)

Δgoe(L) =
1

π2

(
ln(4π

L

savg
) + γ − 5

4
− π2

8

)
(1.6)



1. Introduction 17

200 250 300 350 400 4500

20

40

60

80

100

120

f (kHz)

N(f)

Fig. 1.2: Examples of the staircase functions N(f) determined in an experiment
described in Chapter 2. Top curves show the staircase function and the
smooth cubic polynomial fitting it.
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γ in Eqn. 1.6 is Euler’s constant (γ = 0.57722...). The curves given by
the above stated equations 1.5 and 1.6 are shown in Fig. 1.6.

Unlike the NNSD, the SR accounts not only for numbers of spacings larger
or smaller than average one, but also for the order in which large and small
spacings appear on the scale larger than several savg.

The NNSD and SR are not related to the natural increase in the num-
ber of resonances per frequency interval (number of energy levels per energy
band). If the observed frequency band is large enough to have different savg
at the beginning and at the end then this effect should be compensated for
by the unfolding procedure [19]. Unfolding involves fitting of the staircase
function N(f) with smooth cubic polynomial (Fig. 1.2) and then re-scaling
the frequency axis with the derivative of this polynomial so that the average
spacing savg and therefore average number of resonances per frequency inter-
val is constant in the frequency band (the same as the slope of the staircase
function). After this procedure SR and NNSD can be evaluated as described
above. Precise formulas that have been used to do the unfolding procedure
are given in Chapter 2.

1.2.4 The distributions originating from coexistence of independent energy

level sequences

The distributions originating from the coexistence of independent energy
level sequences in the same energy band can be derived analytically [20, 21]
by combining several independent energy level sequences in the observed
energy band, or obtained via statistical simulation (see Fig. 1.3).

Fig. 1.3 contains 6 curves. Three of them are smooth continuous curves
plotted using analytic formulas. NNSD for GOE (given by Eqn. 1.2) is shown
as a dashed curve. NNSD for random division of the energy band into in-
tervals by energy levels (given by Eqn. 1.1) is shown as a dash-dotted curve.
The solid continuous curve shows the solution for NNSD according to [21] for
the case of coexistence of level sequence distributed as eigenvalues of GOE
and random sequence of energy levels with a 3:1 density ratio, uniformly dis-
tributed within the same energy band. This solution is given by the following
equation [21]:

P3:1
s (s) = exp(−(s/savg)/4)erfc(3

√
π(s/savg)/8)/16 +

exp(−(s/savg)(16 + 9π(s/savg))/64)(3/8 + 27π(s/savg)/128), (1.7)

where erfc(x) is the complementary error function,
erfc(x) = (2/

√
π)

∫ ∞
x exp(−ξ2)dξ.
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Fig. 1.3: The nearest neighbor spacing distribution for Gaussian Orthogonal En-
semble (dashed curve, P

goe
s (s), given by Eqn. 1.2) and Poisson distri-

bution (dash-dotted curve, P
exp
s (s), given by Eqn. 1.1). Solution for

the nearest neighbor spacing distribution according to [21] for the case
of coexistence of level sequence distributed as eigenvalues of Gaussian
Orthogonal Ensemble and random sequence of energy levels with a 3:1
density ratio, uniformly distributed within the same energy band (solid

curve, P3:1
s (s), given by Eqn. 1.7). Corresponding nearest neighbor spac-

ing histograms for random and Gaussian Orthogonal Ensemble energy
level sequences are shown as step-like functions 1 and 2 respectively. The
nearest neighbor spacing distribution obtained as statistical simulation
for the above-mentioned two level sequences coexisting is given by the
step-like function 3.
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Three other functions shown in Fig. 1.3 are histograms shown as step-like
functions. They are marked with numbers 1, 2 and 3. Step-like function
3 represents the statistical simulation of the above mentioned coexistence
of the energy level sequence due to GOE model and random energy level
sequence. To do the statistical simulation two independent sequences of
energy levels (with a given NNSD and known number of energy levels for
each sequence) have been generated using MatLab (The Mathworks, Natick,
MA, USA) routines. NNSD (histograms) for these two sequences of energy
levels are shown as step-like functions 1 and 2. It is apparent from Fig. 1.3
that these step-like functions 1 and 2 are very close to the dash-dotted and
dashed curves respectively (curves representing respectively P

exp
s (s) given

by Eqn. 1.1 and P
goe
s (s) given by Eqn. 1.2). As the next step, the NNSD

of the spectra combined (see Fig. 1.4) in the same energy band has been
evaluated. This NNSD is actually shown as step-like function 3 in Fig. 1.3.
Step-like function 3 is very close to the solid continuous curve representing
Eqn. 1.7, which confirms the outcome of the simulation.

1.2.5 Distributions for incomplete sequence of energy levels

For an accurate measurement of the spacing distribution between nearest
neighbor resonances, all resonances in the system should be carefully identi-
fied. In practice the finite resolution of the experiment causes that a fraction
of resonances are ’lost’ in determining the statistics. Also damping and
mismatch in coupling between the cavity and the transducers hampers the
identification of all modes. For example, if the amplitude of the resonance is
very small or it is located very close to another (more pronounced) resonance
and the peak is selected as a resonance on the basis of having a large enough
”peak to base” ratio, then this resonance could easily be missed.

The ability to identify the distributions when accounting for lost levels
expands the applicability of the statistical analysis in realistic situations. The
effect of lost levels on the level statistics has been studied for the quantum
mechanical problem in [22] but not yet for acoustics in 3D metal cavities.
Accounting for lost levels in [22] involved a complicated fitting procedure
using several approximations. In this thesis the effect of lost levels in 3D
metal chaotic cavities is considered by comparing the experimental data to
statistical simulations.

Acoustic experiments have been performed [3] in which the issue of the
lost levels plays an important role. However, only few quantitative descrip-
tions of the lost levels have been published until now (e.g. article [23] by
Enders et al. about states in heavy deformed nuclei and an article [24] by
Nogueira et al. about acoustic plate resonators).
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Fig. 1.4: The sequence of energy levels with nearest neighbor level spacing dis-
tributed as due to GOE model (top sequence, nearest neighbor spacing is
s
goe
j ) and the random sequence of energy levels (bottom sequence, near-

est neighbor spacing is s
exp
k ). s3:1l is the nearest neighbor spacing of

the simulated coexisting spectra. Its distribution is shown as statistical
simulation in Fig. 1.3 (step-like function 3).
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The distribution for an incomplete sequence of energy levels may be also
efficiently obtained via statistical simulation (Fig. 1.5) similar to the case
of coexisting spectra, discussed earlier in Fig. 1.3. We simulated the GOE
distribution accounting for lost levels in the detection by averaging the NNSD
over a set of generated GOE distributed level sequences. Each sequence
consisted of 100 energy levels and a given fraction of lost levels was randomly
removed before calculation of the NNSD. Distributions for the GOE model
with lost levels obtained in such simulation are shown in Fig. 1.5. These
distributions are very similar to those given in the paper [23] by Enders et
al.

From Fig. 1.3 we see that NNSD approaches the Poisson (exponential)
distribution after random levels are added to the pure GOE sequence of eigen-
values (illustrated by the step-like function 3 and solid curve in Fig. 1.3).
Similar transformation of the NNSD happens when a fraction of the eigen-
value sequence is lost in the detection (Fig. 1.5), although the intercept of the
NNSD (number of arbitrary small spacings) does not increase in this case.

These trends can also be seen in the spectral rigidity - the spectrum
becomes more random (either due to adding randomly chosen levels or ran-
domly removing the existing ones) and therefore more rigid (larger rigidity).
An example is given in Fig. 1.6 where the SR is seen to increase for an in-
complete sequence of energy levels. The dashed curve in Fig. 1.6 has been
calculated as SR for the sequence of eigenvalues of large (5000x5000) ran-
dom symmetric matrix when 25% of eigenvalues have been randomly removed
from the sequence.

1.2.6 Statistics of Random Matrix Theory for ultrasonic waves

The GOE behavior in ultrasonic wave propagation has been found in vol-
ume (3D) rectangular aluminum blocks with slits, breaking the symmetry
of the cavity [25]. The case of volume acoustic chaotic resonators with one
symmetry plane has been studied as well. Weaver et al. [25, 26] found
that the NNSD in this case is consistent with distribution for 2 independent
GOE distributed sequences of resonances (assumed related to odd and even
wavefunctions) coexisting in the frequency band. This implies that the to-
tal sequence of the resonant frequencies can be labelled with new ’quantum
number’ either np = 0 or 1 related to the conservation of parity in addition
to the mentioned ’quantum number’, related to conservation of energy.

The difference in spectral statistics for a cubic aluminum block (cavity)
and the same cavity in which a small octant at a corner has been removed
has been experimentally detected [27]. Similarly the gradual transition from
a resonator that has a mirror-like symmetry to a fully chaotic resonator has
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Fig. 1.5: The nearest neighbor spacing distribution for random arrangement of
energy levels (exponential distribution, curve 1), Gaussian Orthogonal
Ensemble (curve 2) and Gaussian Unitary Ensemble (curve 3). Statistical
simulations shown here as step-like functions 4, 5, 6 and 7 correspond,
respectively, to 10 %, 25 %, 50 % and 75 % of energy levels lost in
generated sequence with nearest neighbor spacing distribution due to
Gaussian Orthogonal Ensemble model.



1. Introduction 24

2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

0.5

2L/savg

Δ

Δgoe, 25% lost

Δgoe

Δexp

Δgue

Fig. 1.6: Spectral rigidity for the Gaussian Orthogonal Ensemble model (solid
curve, Δgoe(L), given by Eqn. 1.6), Gaussian Unitary Ensemble model
(dotted curve, Δgue(L), given by Eqn. 1.9) and the case of random
division of the energy band into intervals by energy levels (solid line,
Δexp(L), given by Eqn. 1.5). Dashed curve shows spectral rigidity for
the case of the Gaussian Orthogonal Ensemble when 25 % of energy levels
are randomly removed from the level sequence.
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been studied and the corresponding evolution of the NNSD (approaching
the GOE model) was observed experimentally in anisotropic quartz blocks
[28]. More complex GOE based systems (2D resonators), made out of plates
were studied in [8, 9]. In particular the NNSD in [8, 9] is actually caused by
coexistence of independent GOE sequences of approximately equal densities
in the same frequency band. Identification of the modes that belong to
each subsequence (e.g. odd and even) was done by studying the sensitivities
of resonance line widths to external parameters such as temperature and
pressure [8].

This leads to the important conclusion that the symmetries (additional
classical constants of motion or additional ’quantum numbers’) of the Hamil-
tonian can be experimentally identified by observing the NNSD and the
SR. The extra symmetries cause independent eigen spectra (energy level
sequences) to overlap and the energy levels are allowed to fall closer to each
other. The associated NNSD will tend to follow the Poisson distribution.
Removing symmetries leads in general to a deviation of the NNSD from a
Poisson distribution and approaching the GOE model, where energy levels
do not tend to fall close to each other (Fig.1.3), and the SR saturates loga-
rithmically (Fig. 1.6).

1.2.7 Broken time reversal invariance

The mentioned geometric symmetries that lead to new ’quantum numbers’
are not the only symmetries involved. In principle also the time reversal
invariance can be broken. Then the system can still be described by the
random Hamiltonian approach now based on a Hermitian matrix. This ap-
plies to e.g. the cases where regular ’rotating’ disturbance enters the wave
equation [29, 10] and the system evolves in a closed cycle making the dy-
namics irreversible in time. The distribution of energy levels for this case
is described by eigenvalue statistics for the matrix ensemble with statisti-
cal measures of elements invariant under unitary transformations, Gaussian
Unitary Ensemble (GUE) [17, 18].

The NNSD and SR for the GUE model are given as follows [4]:

Pgue
s (s) = (32/π2)(s/savg)2 exp(−4s2/(πs2

avg)) (1.8)

Δgue(L) =
1

2π2

(
ln(4π

L

savg
) + γ − 5

4

)
(1.9)

γ in Eqn. 1.9 (the same as in Eqn. 1.6) is Euler’s constant (γ = 0.57722...).
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The GUE distribution (Eqn. 1.8) is shown by curve 3 in Fig. 1.5. It shows
even greater repelling of energy levels than in GOE case. The eigenspectrum
becomes less rigid, meaning also that the logarithmic saturation of the SR
occurs at the lower level (Fig. 1.6). So breaking of the time reversal invariance
leads to even greater repelling of energy levels than in all earlier mentioned
cases (GOE sequence of energy levels and several coexisting independent
GOE sequences).

1.2.8 Moments of distributions

As it was mentioned before, the moments of the distributions will be used
as well to characterize the resonance statistics in this thesis. Moments, cen-
tral moments, skewness and kurtosis of the distributions are well suited to
compare the distributions and quantify their differences. We will use these
parameters in addition to NNSD and SR used traditionally to characterize
eigenvalue statistics. In the existing literature [3, 4] moments of NNSD are
not discussed while main emphasis is made on NNSD itself and SR.

More details in regard with moments, central moments, skewness and
kurtosis for RMT distributions are given in Appendix A. All these param-
eters can be found as analytical expressions depending on the RMT model
(Poisson, GOE, GUE). These expressions are summarized in tables and fig-
ures of Appendix A to be used further in Chapters 2 and 4 for comparison
with the statistics obtained in the experiments.

1.3 Overview of time reversal experiments

1.3.1 General scheme of the time-reversal experiment

Time reversal invariance in acoustic systems leads to many experiments ex-
ploiting the reversibility of the wave solutions in the system [10, 11, 12, 13,
14, 15, 16, 30, 31, 32, 33, 34, 35, 36, 37].

In the context of this thesis time reversal experiments will be used to
characterize time-reversal invariance in the system in the time domain as a
compliment to the spectral techniques presented in the previous sections.

We will discuss the time-reversal experiment in more detail in the para-
graphs below. Imagine an array of transducers that can act as detectors of
oscillations delivered by waves and as well as sources of oscillations. Such
an array together with the electronics required to record the detected os-
cillations and then play such recordings backwards will be referred further
as time reversal mirror (TRM). Let this array surround an area around the
source of waves at certain point A. When the signal is released by the source
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Fig. 1.7: Time reversal mirror in action. Recording of the scattered wave signal
by elements of the time reversal mirror (left) and sending the signal back
reversed in time (right). Figure from [30].

the wavefront spreads around A and after scattering in surrounding media
reaches every transducer of the array. Every TRM receiver receives a long
oscillation track which is afterwards recorded, reversed in time and released
from the each TRM source at the same location in ”reversed order”, so that
oscillations that arrived first are now released last. The recording of the scat-
tered wave signal and sending it back (reversed in time) by TRM is illustrated
in Fig. 1.7.

Now the wavefront may be recreated ”propagating backwards” and due
to time reversal symmetry of the wave equation deliver the exciting signal
back to the original source location. The time reversal technique is based
upon time reversal invariance of the wave equation: if one has a solution
to the wave equation, then the time reversed solution (using negative time
instead of time) of that solution is also a solution of the wave equation. This
occurs because the standard wave equation contains only even order time
derivatives. In some media time reversal invariance of the waves can not be
assumed e.g. due to very high losses or special cases of interaction of the wave
field with the media (like in case of moving liquid media for acoustic waves
or electromagnetic isolators based on Faraday rotator for electromagnetic
waves). But in many useful cases waves can be considered approximately
time reversible including acoustic waves in metals, water or air, ultrasound
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in human bodies and electromagnetic waves in free space (air).
In a typical TR experiment [14, 30, 38] a medium is excited by a short

pulse e.g. at a source point A at time t = 0.
The resulting wave field is measured at TRM receiver points. A long

oscillation track in a time interval [t0, t1] is then time reversed electronically
and transmitted at each TRM transducer in opposite order of time. Then,
after a time delay of t1 with respect to the start of the transmitted reversed
oscillation track, the resulting wave field forms a localized peak of high in-
tensity at the original source point A. This peak is the reconstruction of the
short excitation pulse.

Possible interpretation of this effect in a ray picture is the following.
Wave energy is transported along classical rays from point A to the receiver
position B and the signal at B is a coherent superposition of waves having
the same arrival time. The time-reversed signal thus produces wave fronts
which travel back along the ray paths from B to A and, after all kinds of
chaotic bouncing around, interfere constructively at the source point A after
the time delay of t1.

Using TRM to focus the long scattered wave back into short exciting pulse
at its source turns out to be quite robust focusing technique that is able to
compensate automatically for many factors like spatial distribution of the
mass density and sound wave speed, complex anisotropy and heterogeneity
in materials as well as mode conversion between different type of waves oc-
curring in the system. That is why such an experiment can have numerous
practical applications as well as be the basis for fundamental experiments in
pure physics.

TR focusing can be used in medical treatment of tumors and removal of
kidney stones. In this treatments high-energy sound waves pass through your
body without injuring it and (when focused properly) break the stone into
small pieces. These small pieces move out of the body much more easily than
a large stone [39]. Stones in kidney and tumors can be sufficiently located us-
ing other (non acoustic) techniques [14], like X-ray. But it is still problematic
to efficiently focus the stone-destructive ultrasound waves through complex
inhomogeneous body tissue without risk of damaging the healthy tissue sur-
rounding the stones or tumors. Iterative TR procedure [14] can solve this
problem. A time-reversal mirror with a modified playback algorithm [30] can
nevertheless focus ultrasound even through complex porous dissipating skull
bone onto a small target being a tumor.

The iterative TRM experiment has been proposed [32] to develop en-
hanced medical imaging techniques.

Time reversal approach can be applied to study of the quality of building
materials, silicon wafers and hard drives, search for cracks in the railway
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tracks and improve all kinds of non destructive testing techniques [40, 33].
The detection of small defects is particulary difficult [14] when the inspected
object is composed of heterogeneous or anisotropic material. TR technique
[14] is a very promising solution in such a case.

Application of time reversal technique to acoustic communication has
been explored by Heinemann et al [35] and Derode et al [36]. Heinemann
et al [35] used time reversal technique to efficiently communicate a signal to
a desired spot within a reverberant acoustic enclosure (cavity). Derode et
al [36] showed that on the contrary to intuition, the capacity to transport
information in form of acoustic signals is enhanced in a chaotic scattering
medium compared to a ballistic channel due to the focusing property of TR
experiment.

Long-distance communication in the ocean and communication to sub-
marines [30] can benefit from introduction of time reversal techniques. Also
it is possible to use time-reversal approach to studies of the bottom of the
ocean and the earth core using seismic waves [34].

Time reversal approach to telecommunications using electromagnetic waves
in complex media is explored in [41].

And just think of the possibility of time reversal experiments on all kinds
of waves that can happen in physics, like waves on the water, electromagnetic
waves, waves in plasma and magnetic liquids, electron waves and complex
matter waves (Bose Einstein condensates).

1.3.2 From time reversal mirrors to time reversal within a closed chaotic

cavity

In an ideal TR experiment the signal is recorded over a closed surface sur-
rounding the source as shown in Fig. 1.7. Further it is possible to see that
TRM detector array not necessarily has to surround the source in all direc-
tions. It is enough to cover only a large area and collect the wavefront only
over this area. There is always a coherent part [38] of the time-reversed field
which will refocus at the source point A.

Furthermore only one receiver is enough [15] instead of an extended TRM
if the waves are confined within a chaotic cavity, where due to scattering
along chaotic (nonclosed) ray trajectories the distorted wavefront passes the
receiver again and again many times. See illustration in Fig. 1.8.

Dynamical systems are considered chaotic in classical mechanics if they
have the following properties: its dynamics is covering all the available phase
space (e.g. velocity and coordinate of the particle which is a part of chaotic
system take all possible values) and the trajectories are exponentially diverg-
ing.
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Fig. 1.8: Time reversal mirror setup (left) versus a setup enclosed in the chaotic
cavity (right), where the rays bounce around in the closed space and pass
through all possible locations inside the resonator.

This can also be seen for a closed space (cavity) from ray perspective. Let
rays travel inside the cavity. In a regular cavity e.g. square or circle we see
periodic ray trajectories. These keep the rays travelling periodically retracing
the negligibly limited part of the cavity. In case of a chaotic shape there are
no more periodic trajectories and any ray travelling inside the cavity sooner
or later will get as close as possible to any point in the cavity (Fig. 1.8).
Such situation is favorable for time reversal experiment with a single receiver
because it always allows efficient ”capture of all rays” emitted at arbitrary
source location.

Draeger and Fink [15] demonstrated that TR experiment works also in
a chaotic cavity using a single transducer. This work gives results of ex-
periments and numerical simulations of the wave field in a mono-crystalline
silicon wafer. The short excitation pulse was launched at a source point
on the surface of a silicon wafer and the response was recorded at a single
point on the boundary of the wafer. It was shown that time-reversed and
re-emitted signal focuses at the source point.
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Draeger and Fink [42] also studied the theoretical limits of time reversal
experiments efficiency when using a single source and receiver enclosed in
chaotic cavity.

1.3.3 Acoustic waves versus electromagnetic waves

Acoustics and electromagnetics probe at different time and length scales.
They also look at different material properties.

Time reversal works particularly good in acoustics due to advanced sensor
and source technology developed to handle acoustic waves specifically. It is
also important that acoustic waves are quite slow related to electromagnetic
waves. This makes it much easier to intercept the spreading acoustic waves of
experimentally accessible wavelength, record the delivered oscillations in real
time, time reverse the recorded oscillations and send them back in reversed
order of time.

For this reason (available cheap and advanced electronics to handle acous-
tic waves) an acoustic TR experiment is much more convenient. It is impor-
tant that the time dependence of the signal is fully resolved, that is, that
both the intensity and the phase are recorded. For acoustic signals in the
the MHz range, standard transducers can achieve this easily. But the same
is highly non-trivial when for example using optical signals.

A technique similar to a TR experiment used in optics is called phase con-
jugation (PC). PC refers to the case where a time-reversal effect is achieved
by reversing the sign of the phase of the optical signal. Similarities and dif-
ferences of both techniques are discussed in detail in works by Fink et al [31]
and Derode et al [43].

Furthermore, TR experiments have been done also with electromagnetic
waves as well (Strohmer et al [44], Popovski et al [45] and Tourin et al [41]).

1.3.4 Efficiency of the exciting pulse refocusing in time-reversal

experiment and time-reversal window

Here we will give a qualitative discussion. A more quantitative analysis of
the quality and the properties of the chosen window etc. have been done in
the literature (see e.g. work by Sprik and Tourin [37]).

The reconstruction of the initial short excitation pulse (TR focusing)
can never be perfect due to a finite oscillation track (time-reversal window)
recorded. By reducing the time-reversal window that is recorded and time
reversed in experiment we reduce the efficiency of TR focusing. It was found
in [15] that the time-reversed and re-emitted signal focuses at the source
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Fig. 1.9: Detecting the reconstructed exciting pulse in time reversal experiment.
Cases 1 and 2 show the spikes that are not recognized as the time reversal
reconstruction of the exciting pulse. Case 3 shows positive time reversal
reconstruction identification. Time intervals of size τd are shown with
arrows.

point with a signal-to-noise ratio proportional to the time-reversal window
δT = t1 − t0.

However, the experiment still works as far as the reconstructed exciting
pulse is still detectable on the background of the rest noisy response. At
this point various detection techniques can be used. Present work uses the
algorithm illustrated in Fig. 1.9. The reconstructed pulse is detected if there
is a window of size τd before it that does not contain any peak of the same
height.

By repeating the experiment with the same recorded oscillation time track
length (time reversal window) but with different time delay t1 of the end of
time reversal window with respect to the original exciting pulse we can see
a clear trend: detected reconstructed exciting pulse is delayed by the very
same time delay t1 (see Fig. 1.10 and Fig. 1.11). This is one more way that
we use to verify the validity of the time reversal experiment and confirm that
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Fig. 1.10: Short 2.5 μs excitation pulse (upper inset), long response of the res-
onator including different 300 μs sections (time reversal windows) that
are to be recorded and reversed in time (three of them are marked as
cases A, B and C). t1 (shown with arrows) takes values of 0.4 ms, 1.0 ms
and 2.2 ms for time reversal windows in cases A, B and C respectively.
Arbitrary waveform generator used in our experiment to generate the
recorded oscillations backwards in time (lower inset). Plotted data are
taken from experiments discussed further in Chapter 4.

the detected spike comes actually from TR focusing.

1.4 This Thesis

The possibility to study the relation between level (resonance) statistics and
time reversal invariance in a single system motivated us to perform time
reversal experiment [14] with ultrasonic waves in the aluminum volume sam-
ples. Time reversal experiments show directly how efficiently the wave dy-
namics in the model chaotic cavity (that conforms GOE statistics) can be
reversed depending on how long the excitation pulse was dispersed while
travelling along the chaotic trajectories in the cavity. We can compare then
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Fig. 1.11: Input time reversed signals marked earlier in Fig. 1.10 as cases A, B
and C (left) and corresponding response oscillation tracks with detected
reconstructions of the excitation pulse (right). Time delay t1 (shown
with arrows) takes values of 0.4 ms, 1.0 ms and 2.2 ms for time reversal
windows in cases A, B and C respectively. Plotted data are taken from
experiments discussed further in Chapter 4.
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the resonance statistics in case of different degree of time reversal invariance
measured by time reversal experiment.

As discussed before in present chapter, RMT was successful in predicting
statistical properties of resonances in the systems where complex scattering
of acoustic (elastic) waves takes place. Nevertheless there are still issues that
have been paid very little attention so far, like quantitative estimations of the
fraction of the lost resonances in analysis of elastic resonators. The fact that
not all resonances have been detected (’lost modes’) should be accounted for
in a realistic experiment.

Missing resonances in plate resonators enclosed in the vacuum chamber
(quite idealistic conditions) have been considered in [24]. But such partic-
ularly important practical case as RMT analysis of missing resonances in
experiments on volume metal resonators at normal room conditions still re-
mains unexplored. Such experiments were reported before [3] for aluminum
volume (3D) resonators, however no quantitative estimation of the number
of lost modes has been made.

Accounting for a fraction of resonances that are not detected plays an
important role in analysis of our experiment. We will see that it is still possi-
ble to identify the essential features of the underlying statistical distributions
in the experiment using simulated distributions (as in Fig. 1.5, part 1.2) for
incomplete sequences of resonances.

Breaking the time reversal invariance in acoustic systems and the conse-
quences for the spectral statistics are dealt with in this thesis by introducing
well controlled feedback. The feedback loop allows only unidirectional trans-
fer of the signal from one point on the surface of the resonator to another
point. The results can be interpreted using standard RMT models and a
novel approach to model random matrix statistics of a system with feedback
(Chapter 5). Some fundamental questions related to the influence of the
feedback loop on the RMT statistics of the elastic resonances are considered
e.g. ”can a feedback loop break the time reversal invariance of the waves
in the elastic resonator sufficiently to make an impact on RMT statistics
(NNSD and SR)?” or ”what kind of impact can feedback loop do on RMT
statistics?” So particulary interesting outcome is expected from TR experi-
ment on a cavity with a feedback loop breaking the time reversal invariance
of the system. The NNSD and SR found in experiment on such a system are
of fundamental interest.

The further chapters of this thesis will address the above mentioned ques-
tions. RMT statistical properties of the unperturbed chaotic cavity (without
influence of the feedback loop) determined from experiment and efficiency of
time reversal experiment using this cavity are discussed in detail in Chap-
ter 2. Namely NNSD (including moments, central moments, skewness and
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kurtosis of the NNSD) and SR will be studied in Chapter 2. RMT statis-
tical properties of the chaotic cavity can be determined both from cavity
responses determined in experiment and from simulation of the elastic cavity
response using simulation programs that simulate elastic equation in complex
solid materials implementing adaptive finite difference method. Analysis of
such simulation is discussed in Chapter 3. Investigation of RMT statistical
properties and efficiency of time reversal experiment in case when the time
reversal invariance of the elastic equation in the sample is broken by the feed-
back loop is discussed in Chapter 4. Chapter 5 describes possible random
matrix model of the elastic chaotic cavity influenced by the feedback loop
and outlines the statistical simulation of the corresponding NNSD as given
by this model.



2. STATISTICS OF RESONANCES AND TIME
REVERSAL RECONSTRUCTION IN ALUMINUM

ACOUSTIC CHAOTIC CAVITIES WITH TIME REVERSAL
INVARIANCE

2.1 Introduction

As pointed out in Chapter 1, statistical and time dependent (time reversal)
properties are closely related. The statistical properties of the eigenfrequen-
cies in wave systems such as the NNSD and SR are different for a system
with and without time reversal invariance. The difference in time reversal
invariance shows up in the time domain by e.g. performing Time Rever-
sal reconstruction experiments. In systems without time reversal invariance
the TR reconstruction should fail. In this chapter we investigate the spectral
statistics (NNSD and SR) based on experiment and analyze the time reversal
experiments for the same unperturbed cavity with time reversal invariance.
The experiments were performed with elastic waves in solid aluminum cav-
ities with low absorption properties. In later chapters we will extend this
approach using the same cavity when attempting to break the reversal in-
variance by introducing a feedback loop.

The main goal of this chapter is to prove that the sample(s) behave ac-
cording to the GOE model corresponding to a system with time reversal
invariance. One may also expect that the statistics is influenced by the fact
that in the experiments not all resonant modes are detected (i.e. lost reso-
nances). This will be taken into account in detail in the current chapter. A
comparison of the experimental and model distributions is carried out also
using moments of NNSD. The moments, central moments, skewness and kur-
tosis will be evaluated as well for both the GOE (GUE, Poisson) cases and
the experimentally determined distributions to obtain a full comparison of
the RMT statistics obtained from experimental data to the random matrix
models.

Two different kinds of experiments will be discussed. In the first kind
the responses of the samples (elastic waves in aluminum blocks) to a short
excitation pulse is measured. The statistical properties (such as intensity dis-
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tribution, NNSD and SR as well as moments, central moments, skewness and
kurtosis of the NNSD) will be determined from the analysis of the spectral
density of the time dependent responses by Fourier analysis. The NNSD and
SR will be compared to the GOE model accounting for the fraction of lost
levels in the detection. In the second kind of experiment - the time reversal
experiment - different parts of the cavity response will be recorded and sent
back through the system reversed in time to test the time reversal invariance.

The experimental setup is described in Sec. 2.2. Sec. 2.2 includes discus-
sion of material properties, design of the samples, sample support, transducer
holders and measurement instruments. The efficiency of the reconstruction of
the excitation pulse in the time reversal experiments is discussed in Sec. 2.3.
The statistical properties obtained from experimental data are considered in
Sec. 2.4. In particular the statistics of the division of the excitation pulse
energy between the cavity modes and the associated RMT statistics will be
studied in Sec. 2.4. Conclusions on experiments without breaking of the time
reversal invariance are given in the summary section (Sec. 2.5).

2.2 Experimental setup

2.2.1 Material properties and design of samples

A set of identical aluminum cubes with a side length of 20 mm were used
to construct different chaotic cavities. The cubes were further machined to
lower the symmetry and to make them more chaotic [3]. An asymmetrically
placed well was drilled in cavities Nr. 1 and Nr. 2 to remove the cubic
symmetry. An extra side corner was removed from cavity Nr. 2 (see Fig. 2.2
and Fig. 2.3) to lower the symmetry even further. Cavity Nr. 1 has one
symmetry plane. Cavity Nr. 2 does not have any symmetry properties like
rotation axes or reflection planes. So it is not expected to have independent
GOE sequences of resonances in RMT sense. Hopefully it will only have
chaotic sets of geometric ray trajectories due to its chaotic shape and will
turn out to be a suitable sample to study the statistics of resonances.

The longitudinal wave velocity was determined for the aluminum used by
detecting the first arrival of the acoustic pulse through the stack of plates
(cubes) of different width (Fig. 2.1). There is also an agreement between the
five lowest resonances of the symmetric cubic resonator (without the drilled
well or the removed side corner) of the same aluminum and calculations
[46]. These give values for the longitudinal and transverse sound velocities
of 6410 m/s and 3200 m/s respectively.
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Fig. 2.1: Determination of the longitudinal (fast) wave speed by fitting the first
arrival time through the aluminum sample of given width.
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Fig. 2.2: The cavities used in the experiment are made out of aluminum cubes
with a cube side size of d=20 mm. The symmetry of the cubes is broken
by additional features such as an asymmetrically placed cylindrical well
(both cavities Nr. 1 and Nr. 2) and a removed side corner (cavity Nr. 2).
The radius of the well is 5 mm and its depth is 18 mm. The center of the
well divides two orthogonal sides of the square face of the cube as 0.5:0.5
and approximately 0.6206:0.3794. The removed side corner reduces each
of two adjacent sides of the square face of the cube by 5 mm.

2.2.2 Sample support and transducer holders

To reduce the losses in the system a very light low mass support is used for
the cubes. A slab of low mass density packing material supports three small
polystyrene pieces which touch the cavity (one of two aluminum blocks shown
in Fig. 2.2) only in three points from the bottom (Fig. 2.3). Small changes
in the position of the support did not influence the transmission spectrum
and the measurements are as close as possible to the aluminum cavity with
free boundary conditions.

To satisfy the best possible alignment of the piezoelectric transducers
that are used for signal generation and detection, the optical mirror holders
with regulating screws are used as shown in the Fig. 2.3. Slight tuning of
the alignment of the transducer holder with the regulating screws enables to
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Fig. 2.3: Picture of the sample, transducers connected to it and transducer holders.
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reach the highest possible output signal.

2.2.3 Measurement instruments and procedures

The schematics of the experimental setup are shown in Fig. 2.4. An Agilent
33220A 20 MHz Function/Arbitrary Waveform Generator (AWG) generates
signals driving the piezoelectric source transducer connected to the cavity
using oil as coupling agent. AWG generates a voltage pulse of one period
of 400 kHz sine shape (Fig. 2.5) to excite the sample. A Thurlby Thandar
Instruments WA 301 Wideband Amplifier is used as the driver amplifier.
By changing the excitation pulse amplitude we can discriminate between
detection noise and resonant response peaks in the spectrum. The long cavity
responses (with reverberation time of about 5 ms) are received by the 2-nd
piezoelectric transducer. The second piezoelectric transducer is also coupled
to the cavity using oil. Its signal is amplified by an EG&G Princeton Applied
Research 5113 model pre-amplifier and recorded by a LeCroy Wave Surfer
424 model 200 MHz digitizing oscilloscope with time step of 0.1 μs. PICO-HF
1.2 piezoelectric transducers were used. They were manufactured by Physical
Acoustics Corporation (MISTRAS Group Holding Company).

The computer connected to the oscilloscope saves the recorded signals
by means of Lab View Software (National Instruments Corp., Austin, TX,
USA). A 65 536 point Fast Fourier transform of the reverberation response
is calculated by Matlab routines (The Mathworks, Natick, MA, USA). Fur-
ther calculations involve identification of resonances and give the statistical
properties discussed before in RMT overview in the Introduction chapter and
further in Sec. 2.4.

Fig. 2.5 shows examples of the short excitation pulse driving the source
transducer and the corresponding 5 ms long response recorded by the dig-
itizing oscilloscope. The spectral densities calculated from such signals are
shown in Fig. 2.6. The spectral density of the excitation pulse recorded by
the digitizing oscilloscope is shown in Fig. 2.6 together with the spectral
density of the elastic cavity oscillations detected at the receiving piezoelec-
tric transducer, amplified by the preamplifier and recorded by the digitizing
oscilloscope.

Both the radius of the well and the width of the aluminum prism removed
from the corner of cavity Nr.2, as well as the diameters of the transducers
that are attached to the samples are very close to 5 mm. This is approxi-
mately half the wavelength of the transverse plane wave in aluminum at 200-
450 kHz. The spectral density of the excitation pulse is peaked in this band
(Fig. 2.6). The wavelength range of the 200...450 kHz band used is approx-
imately 1.6d...0.7d for the fast (longitudinal) wave and 0.8d...0.35d for the
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Fig. 2.4: Schematics of the experimental setup.
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Fig. 2.5: The excitation pulse driving the source transducer (Fig. 2.4), one period
of 400 kHz sine shape (left), and the cavity response (right) received
by the receiving transducer (Fig. 2.4), amplified by the preamplifier and
recorded by the digitizing oscilloscope.
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Fig. 2.6: Spectral densities of the short 2.5 μs pulse (one period of 400 kHz sine
shape) used to excite the cavity oscillations (curve 1) and the 5 ms long
response (curve 2) plotted over a broad frequency range. From the mea-
surement on cavity Nr. 2.

slow (transversal) wave. Here d is the size of aluminum cavities (see Fig. 2.2).
Therefore, the main contribution to the detected density of resonances may
come from ”transverse-like” cavity oscillations. The ”transverse-like” cavity
modes should have a displacement component normal to the surface that
can be detected by compressional piezoelectric transducers. They are also
the most likely to be excited by the source and received by the receiver which
both have the diameter of approximately 0.25d, which matches half the wave-
length of the transverse wave inside the used frequency band. Resonances
and corresponding wavefunctions of the complex metallic 3D block can in
general not be divided strictly into ”transverse-like” and ”longitudinal-like”
ones e.g. due to transverse-longitudinal wave coupling (transformation) at
the complex cavity boundary. But transducers due to their size are more
efficient in detecting displacement variations within the wavelength range
corresponding to transverse waves at given frequencies. Even if so, this does
not mean that ”longitudinal-like” resonances are not detected.

In the band above 0.45 MHz (Fig. 2.6) a more dense structure of reso-
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nances arises and unavoidably there is a situation reached when the resonance
line width is of the order of the average resonance spacing, so that individual
cavity modes can not be resolved any more.

2.3 Efficiency of excitation pulse reconstruction in time

reversal experiments without breaking of time reversal

invariance

There is a natural decay of acoustic energy density in the cavities due to
absorption in the aluminum, the loss to the piezoelectric transducers, and
some coupling to the support and surrounding air that causes departure from
time reversal invariance. We will see that in the experiments the oscillations
can be observed for a time considerably longer than the Heisenberg time.
The Heisenberg time is defined as the inverse of the average nearest neighbor
resonance spacing, 1/savg. It is a measure of the total recording time of the
elastic oscillations required in order to resolve the average spacing between
the neighboring resonances in the frequency domain. Both time-reversal
experiment and the extraction of statistical properties can be performed using
the time scale well beyond the Heisenberg time and thus will provide a basis
to characterize these properties in one system.

The time reversal experiment, as e.g. described in [14] in general and
worked out for a closed chaotic system in [15] can be a clear measure of
time reversal invariance for acoustic waves in a chaotic cavity. As outlined in
[15], a single transmitter-receiver pair is sufficient to perform a time-reversal
experiment in a closed space (cavity). In this experiment each part of the
cavity response shown in Fig. 2.7 is recorded separately. Then each track
has been scaled to appropriate integer numbers, which were downloaded into
the memory of the AWG. So the AWG could replay the recorded oscillation
track in the reversed time direction (oscillations that arrived first are being
released last). Each of the responses to the 300 μs long reversed tracks
(Fig. 2.7) give a clear reconstruction of the original short pulse (Fig. 2.8).
The arrows in Figs 2.7 and 2.8 demonstrate that after the generation of
the particular reversed oscillation track (track 4) one has to wait a time
t1 until the refocused image of the excitation pulse. This time t1 is equal
exactly to the time elapsed from the original excitation pulse until the end
of track 4 (Fig. 2.7). Thus we explicitly see time reversed wave propagation
in our aluminum cavities. The oscillation track that has been reversed and
corresponding reconstruction of the excitation pulse are marked with the
same number in Figs 2.7 and 2.8. We observe the reconstruction peak on
the background of noisy decaying signal (Fig. 2.8) due to the fact that only
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Fig. 2.7: Cavity response upon the exciting pulse at t=0, for cavity Nr. 2. Time
delay t1 between the original excitation pulse and the end of the recorded
oscillation track 4 is shown by the dashed arrow.

short finite part of the response is being time reversed.
Fig. 2.9 shows the amplitude of the reconstructed pulse, normalized to

σi, the mean square average of the signal amplitude in the reversed 300 μs
long oscillation track used for excitation. σi is proportional to the square
root of the energy contained in 300 μs signal section driving the exciting
transducer. Such normalization is necessary because the recorded 300 μs
tracks shown in Fig. 2.7 have different average amplitude. σmax in Fig. 2.9
is the maximum of all thirteen σi related to thirteen points in Fig. 2.9. The
normalized amplitude characterizes the efficiency of energy focusing in the
time reversal experiment with a given time delay t1 of the end of the recorded
oscillation track with respect to the excitation pulse. We can expect from
Fig. 2.9 that the amplitude of the reconstructed pulse decays exponentially
with delay time. This can be explained simply as absorption of acoustic
energy during the time it is stored in the cavity, before the energy is refocused
into a reconstructed pulse. However, for the normalized amplitude of the
reconstructed pulse shown in Fig. 2.9 this behavior does not extend down to
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Fig. 2.8: The reconstruction of the dispersed input pulse by time reversal of the
recorded signal for cavity Nr. 2. The experiment shows to be working for
time delays much longer than the Heisenberg time determined further in
Sec. 2.4. Dashed arrow shows delay time t1 of the reconstructed pulse 4
relative to the start of the replay of track 4 in reverse order of time.
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Fig. 2.9: Normalized amplitude of the refocused excitation pulse depending on the
time delay of the reversed oscillation track. Closed circles show result
of the experiment on cavity Nr. 2. Solid lines show linear least square
fits using the first five and the last five points. Dotted lines are simply
extensions of the solid lines.
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smaller delay times (at least does not extend with the same decay constant).
The small delay times correspond to shorter and therefore may be less chaotic
trajectories. The estimate of the Heisenberg time is marked with an arrow
in Fig. 2.9.

Change in the slope shown in Fig. 2.9 can be related to the fact that
longer scattering times correspond to better approach to equilibrium energy
distribution between cavity modes. This can influence the reversibility of the
wave dynamics. Similar phenomena were considered in work [47].

The length of the reversed tracks was made as short as possible (300 μs),
just enough to insure good detection of the maximum of the reconstruction
peak. This enables to judge the efficiency (per input energy) of the refocused
pulse as a function of the time delay.

2.4 Statistical properties obtained from experiments without

breaking time reversal invariance

2.4.1 Division of energy between cavity waves: distributions of intensity

transmission coefficients and resonance line widths

If a finite amount of energy in each excitation pulse in the chosen frequency
band is shared randomly between the cavity waves at different frequencies,
then the distribution of the intensity transmission coefficient in the appropri-
ately small frequency band is expected to be exponential. The transmission
coefficient at a certain frequency is calculated as a ratio of the spectral den-
sity of the output signal to the spectral density of the input pulse at this
frequency (see spectral densities of the input and output signals shown in
Fig. 2.6).

We performed the statistical analysis using responses of the same sam-
ples used in previous section in time reversal experiment. The normalized
intensity distribution (NID) obtained for cavity Nr. 1 is shown in Fig. 2.10.
The results agree with an exponential dependence if the distribution is eval-
uated in a small enough frequency band (60 kHz wide, contains about 30
resonances). For broader frequency bands the distribution is a mixture of
exponentially distributed intensities with different average values, resulting
in an overall non-exponential intensity distribution. Different average in-
tensity values in the broader frequency bands are caused by e.g. different
amplification of the amplifier and slightly different sensitivity of the piezo-
electric transducers at different frequencies.

The distribution of the intensity transmission coefficients and resonance
widths are related to each other and overall related to the distribution of



2. Statistics of resonances with time-reversal invariance 50

0 1 2 3 4 5 60

0.25

0.5

0.75

1

I/Iavg

P(I)

Fig. 2.10: Typical normalized intensity distribution for 60 kHz wide frequency
band. The cross and round symbols give distributions for different sig-
nal amplitudes. From the measurement on cavity Nr. 1 in 0.27...0.33
MHz band. Iavg is the average intensity in the band. The dashed curve
shows exponential distribution.
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Fig. 2.11: Resonance line width distributions for measurements at different po-
sitions of source and receiver for cavity Nr. 2. wavg is the average
resonance line width.

pulse intensity between different kinds of cavity waves. In case the detected
resonances form a single GOE sequence of resonances or are a major part
of it, the resonance width distribution is expected to be peaked around a
single average value. This is more or less in agreement with the distributions
obtained for cavity Nr. 2 at different locations of source and receiver. They
are shown in Fig. 2.11.

The value of the average resonance width wavg is about 300-400 Hz. So
the ratio of the average resonance width to the average nearest neighbor
resonance spacing determined from experimental data is approximately 0.2.

2.4.2 Random matrix statistics of resonance sequences obtained from

experiments

The statistics mentioned in the previous paragraph describes how the finite
pulse intensity is shared among the cavity modes. Now we proceed to calcu-
lating the RMT statistics from the measured cavity responses. As mentioned
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in the introduction, it involves studying how the values of resonant frequen-
cies are distributed themselves or more precise how do they divide fixed finite
frequency band into intervals. We take a broad frequency band of 200..250
kHz with an almost constant resonance density and calculate the NNSD. The
result calculated from the experimental time traces for cavity Nr. 2 is shown
in Fig. 2.12. We see that the results do not agree with the pure model of
the GOE, but do agree much better with the distribution where a loss of 25
% of the resonances is accounted for. The error bars in Fig. 2.12 are based
on measurements performed for different positions of receiver and source on
the surface of the sample. From the NNSD we obtain an average nearest
neighbor spacing for both cavities of about 1.8 kHz. This gives an estimate
for Heisenberg time: tH ≈ 556 μs. However, there can be more resonances
missing, or independent sequences of resonances present in the case of cavity
Nr. 1. Lost resonances can lead to a smaller value of the average nearest
neighbor spacing and a larger apparent Heisenberg time.

Figure 1.2 shows the experimentally determined staircase function N(f)
for different alignment of the transducers (from experiment on cavity Nr. 2)
at certain fixed positions of source and receiver. The best alignment enables
the best coupling of the transducers to the sample. Therefore, it allows one
to observe the largest amount of resonances. Thus the resulting staircase
function is used in the determination of NNSD and SR.

The density of elastic resonances increases as a polynomial function of
frequency. It is essential [19] to have the same density of elastic resonances
and the same savg at low and high frequencies for calculation of NNSD and
SR. To compensate for slow increase of density of resonances with frequency
an unfolding procedure [19] has been applied to the staircase functions. The
unfolding procedure involves fitting of the staircase function with a smooth
cubic polynomial (Fig. 1.2). Top curves in Fig. 1.2 show the staircase function
and smooth cubic polynomial fitting it.

Unfolding of the staircase function N(f) has been performed in this thesis
by the following steps:

1. Fitting N(f) in the studied frequency range with a smooth polynomial
function:

N∗(f) = p1f
3 + p2f

2 + p3f + p4 (2.1)

2. Given n − k spacings sj = fj − fj−1 , j = k + 1..n between neighboring
resonances at n− k + 1 frequencies fi , i = k..n are scaled as

s∗j ∼ sj
dN∗

df
|f=(fj+fj−1)/2 (2.2)
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Fig. 2.12: The nearest neighbor resonance spacing distribution (NNSD) for cavity
Nr. 2. The distribution obtained from experimental data is shown as
points with error bars. Curve 1 shows the distribution expected due
to GOE model. Curve 2 accounts for 25% of eigenvalues lost in GOE
model distribution. The Poisson distribution is shown by curve 3.
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Fig. 2.13: The spectral rigidity for cavity Nr. 1 (circles with error bars, marked
as ”1”) and cavity Nr. 2 (triangles with error bars, marked as ”2”) as
functions of 2L, the frequency band used in Eqn. 1.3 or Eqn. 1.4. The
GOE model that involves logarithmic saturation of SR and the case of
random division of the frequency band into intervals by resonances are
shown as dashed curve and dashed line respectively. Solid curve shows
the case of GOE with 25% of eigenvalues lost.
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Using Eq. 2.1 the expression for the rescaled spacings may be rewritten as:

s∗j = sj
3p1(fj + fj−1)

2/4 + p2(fj + fj−1) + p3

3p1(fn + fn−1)2/4 + p2(fn + fn−1) + p3
(2.3)

3. The new sequence of frequencies used to determine SR is calculated as

f ∗
k = fk (2.4)

f ∗
i = fk +

i∑
j=k+1

s∗j , i = k + 1..n (2.5)

The new staircase function obtained from the new sequence of frequencies f ∗
i

is used in the determination of NNSD and SR.
From the Fig. 2.13 we see that the SR agrees satisfactorily with a GOE

model [17] for averaging over the frequency bands 2L of 2..10 average spac-
ings in case of cavity Nr. 2. It is, however, slightly larger than predicted
by the model probably due to a fraction of lost resonances. The spectral
rigidity calculated from the data of the same experiment for cavity Nr. 1 is
systematically larger than in case of cavity Nr. 2. Both values agree better
with the GOE model (that involves logarithmic saturation of SR) than with
the case of random division of the frequency band into intervals (straight
dashed line in Fig. 2.13). The solid curve in Fig. 2.13 shows the case of the
GOE model with 25% of eigenvalues lost. This curve has been calculated as
the SR for sequence of eigenvalues of a large (5000x5000) random symmetric
matrix where 25% of the eigenvalues have been randomly removed from the
sequence. This curve offers a reasonably good fit to the spectral rigidities
determined from the experiment. The error bars in Fig. 2.13 (the same as
in Fig. 2.12) are based on measurements performed for different positions of
receiver and source on the surface of the sample. It is possible to see from
Fig. 2.13 that triangles mainly fall below the solid curve (representing the SR
accounting for lost resonances). This implies that 25% is a bit exaggerated
estimation. The real fraction of the lost resonances can be lower.

Now moments and central moments, skewness and kurtosis of the NNSD
(as mentioned in Chapter 1) will be considered. These quantities can be used
to characterize the NNSD quantitatively. They will be used in discussions
of the experimental data in the coming chapters as well ( Chapters 4, 5 and
6).

Moments and central moments of different order, skewness and kurtosis
for NNSD corresponding to the three most common RMT models (Poisson,
GOE and GUE) mentioned in Chapter 1 are summarized in Appendix A
(Chapter A). So we can compare the moments, central moments, skewness
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and kurtosis of the three model distributions to the same values calculated
from the NNSD discussed in present chapter.

In the figures discussed further in the present section the moments are
shown for spacing distributions (NNSD) from each experiment on cavity#2
separately (not averaged over different positions of source and receiver on
the surface of the sample). Moments of the distributions corresponding to
different positions of source and receiver on the surface of the sample are
shown in Figures 2.14 and 2.15 with different signs. So each sign (e.g.
triangle or circle) in Figures 2.14 and 2.15 corresponds to a distribution
calculated from a certain experiment characterized by certain positions of
source and receiver on the surface of the sample.

Figure 2.14 shows the moments for the three models for the NNSD (Ex-
ponential or Poisson, GOE and GUE) together with the moments calculated
from experimental data (green signs). The red, green and blue curves in
Figure 2.14 are calculated using formulas from the last column of Table A.1.

Figure 2.15 shows the central moments for the three models for NNSD
(Exponential or Poisson, GOE and GUE) together with central moments
calculated from experimental data (green signs). The red, green and blue
curves in Figure 2.15 are plotted using values from Table A.2.

Skewness and Kurtosis are summarized in Figures 2.16 and 2.17. The
red, green and blue lines in Figures 2.16 and 2.17 are plotted using values
from Table A.3.

It is visible from Figures 2.14, 2.15, 2.16 and 2.17 that values obtained
from experimental data fall in between values due to GOE model and values
for random arrangement of resonance frequencies (Poisson or Exponential
model). This may be explained as a consequence of the fraction of the lost
resonances (apparent from NNSD and SR discussed before in this chapter).
The theoretical models are based on all existing modes.

The measurements use a limited number of transducer positions to obtain
the experimental distributions. This is by itself an interesting issue. When
using a limited number of probing positions it is possible to observe some
noticeable errors in average NNSD and SR (given in Fig. 2.12 and Fig. 2.13).
This makes analysis (e.g. determination of the fraction of lost resonances)
less precise.

We dealt with a considerable amount of lost resonances in our exper-
iments. This amount is higher than found in earlier reports like [24] by
Nogueira et al. However, these experiments [24] were performed under ide-
alized circumstances. Firstly, aluminum plate resonators were used instead
of the volume ones in present work. Secondly, a vacuum chamber enclosing
the sample was used to increase the isolation and therefore increase quality
factors of the resonances. Thirdly, probably better support mechanism was
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Fig. 2.14: Red, green and blue curves show the moments for the three models
for the NNSD (Exponential or Poisson, GOE and GUE respectively).
Green signs show values of the same moments calculated from experi-
mental data for cavity#2. Different signs refer to different experiments
corresponding to different positions of source and receiver on the surface
of the sample.
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Fig. 2.15: Red, green and blue curves show central moments for the three models
for NNSD (Exponential or Poisson, GOE and GUE respectively). Green
signs show values of the same central moments calculated from experi-
mental data for cavity#2. Different signs refer to different experiments
corresponding to different positions of source and receiver on the surface
of the sample.
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Fig. 2.16: Skewness for the NNSD models (Exponential or Poisson, GOE and
GUE) is shown with red, green and blue lines respectively. Skewness
of distributions obtained from experiments on cavity#2 is shown with
green triangle signs. Different values of ”experiment#” on the x axis
(from 1 to 7) refer to different experiments corresponding to different
positions of source and receiver on the surface of the sample.
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Fig. 2.17: Kurtosis for the NNSD models (Exponential or Poisson, GOE and GUE)
is shown with red, green and blue lines respectively. Kurtosis of distri-
butions obtained from experiments on cavity#2 is shown with green
triangle signs. Different values of ”experiment#” on the x axis (from 1
to 7) refer to different experiments corresponding to different positions
of source and receiver on the surface of the sample.
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used as well.
We report experiments that have been done at normal room conditions in

air with support of the sample not entirely optimized. Therefore, a bit worse
resonance detection conditions are indeed in place. However, our approach
opens the possibility to explore experiments making use of RMT statistics
on arbitrary samples under non-optimized conditions. This is important for
validating the RMT statistical approach for probable future applications in
mechanical engineering.

2.5 Summary of experiments without breaking time reversal

invariance

The distributions of the intensity transmission coefficients studied in the
narrow frequency bands confirm random division of pulse intensity between
the cavity waves for both studied cavities. Division of the frequency band
into intervals by cavity resonances for cavity Nr. 2, characterized by the
NNSD, is found in agreement with the prediction of RMT for GOE. Perfect
agreement, however, is achieved when accounting for a fraction of the lost
resonances (about 25%). The corresponding SR shows behavior close to
the GOE model that involves logarithmic saturation of the SR. The curve
that shows SR in case of GOE model with 25% of eigenvalues lost offers
even better fit to the spectral rigidities determined from the experiment. So
both NNSD and SR can be identified as predicted by the GOE statistics,
however a relatively large fraction of the lost resonances (25%) has to be
assumed to achieve such an agreement. The SR calculated from the data of
the experiment for a symmetric cavity (cavity #1) is systematically larger
than in the comparable case of an asymmetric cavity (cavity #2). This agrees
with the concept of coexistence of odd and even independent sequences of
resonances.

The normalized amplitude of the reconstructed pulse in the time reversal
experiment deviates from exponential dependence on the time delay if the
last one is getting smaller and approaches the Heisenberg time (inverse of
the average nearest neighbor resonance spacing).

The two aluminum samples can be used further to study random matrix
statistical properties and time reversal experiment efficiency for the case of
broken time reversal invariance which will be studied in Chapters 4 and
Chapter 5 in detail.

We also found that moments and central moments of different order,
skewness and kurtosis for the NNSD determined from experiment fall close
to the values corresponding to the GOE model. These values actually fall
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in between the GOE values and values corresponding to random arrange-
ments of resonance frequencies, Poisson model. This may be considered as a
consequence of the lost resonances.

Before using the samples in experiments where time reversal invariance
is actively broken, we would like to have further evidence to support that
the aluminum cavities are indeed following GOE statistics, despite the fact
that the lost resonances modify the statistics calculated from the observed
experimental data. Therefore we performed numerical simulations on an
ideal representation of the cavities. These simulations are presented in the
next chapter.



3. SIMULATION OF ELASTIC WAVES IN THE CAVITY

3.1 Introduction

We found a relatively high fraction of lost resonances in the experimental
results in the previous chapter. So additional evidence is required to con-
firm that the sequences of resonances in the studied aluminum cavity can
indeed be modeled by GOE statistics. In this chapter we will investigate
the spectral statistics in the aluminum cavities for the full elastic wave so-
lutions using simulated cavity responses. The simulations were performed
using the program Wave3000 [48] that has been developed by Kaufman et
al. to calculate ultrasonic responses in complex solid materials using an opti-
mized adaptive finite difference method in the time domain. The simulations
enable an efficient and direct way to study the influence of e.g. the position
of transducers on the statistics of the resonance frequencies (fluctuations in
resonance spacing distributions and spectral rigidity).

For comparison, the calculated responses are analyzed in the same way as
the experimentally obtained results in the previous chapter. The sequences
of resonance frequencies obtained from the spectral density of the simulated
responses are used to calculate the NNSD and SR. The simulated results are
compared to the predictions [3, 4] of RMT for chaotic systems with time
reversal symmetry (GOE model).

3.2 The samples and simulation

The exact model representations (Fig. 2.2) of the cavities used in the experi-
ments discussed in Chapter 2 were defined as input to the Wave3000 program
[48].

The sound velocities for the aluminium used in the experiments of Chap-
ter 2 were estimated as 6.41 km/s and 3.20 km/s for longitudinal and trans-
verse waves respectively. Therefore the corresponding wavelengths ranges
of the chosen frequency band 200..450 kHz used in the measurement are ap-
proximately 1.6d..0.7d in wavelength of the longitudinal wave and 0.8d..0.35d
in wavelength of the transversal wave. Very small damping in aluminum was
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Fig. 3.1: Measured (left) and simulated (right) cavity responses at certain positions
of the source and receiver.

included in the material properties used in the simulation. However the effect
of it is not possible to notice in the typical simulated cavity response shown
in Fig. 3.1.

The following simulation parameters were used: elastic modulus E = 7.2
1010 Pa and Poisson ratio ν = 0.33, what corresponds to transverse and
longitudinal wave velocities 3200 m/s and 6410 m/s respectively. The time
step used was 0.0301 μs and grid size was 0.2 mm. This corresponds to a
total of 106 grid points and 166113 time steps.

3.3 Simulation results

Responses of the cavities to short excitation pulses were simulated for nine
different positions of the source and receiver. Fig. 3.1 shows examples of
the measured (discussed in Chapter 2) and simulated cavity responses. The
details of the cavity geometries, the coupling to the environment, and the
exact response of the transducers are too complex to expect a detailed match
between experiment and simulation. In particular the reverberation time is
much shorter in the experimental results. However, the statistical properties
of the spectra should be the same.

The spectral densities of the cavity responses were calculated, resonances
were identified and the staircase functions N(f) were determined. Then the
spectral statistics (NNSD and SR) was calculated for each sequence of reso-
nances in the same way as in the previous (experimental) chapter. The NNSD
and SR were averaged then over different resonance sequences corresponding
to different positions of the source and receiver.

To verify the simulation parameters, a simulation of the symmetric cubic
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metal block (without well drilled in it or corner removed) has been done.
Fig. 3.2 shows spectral densities of the responses of the symmetric cubic
aluminum block simulated for the aluminum parameters mentioned above.
Three different curves given in Fig. 3.2 correspond to different receiver po-
sitions. The comparison to the resonance frequencies obtained by Demarest
[46] is also given in Fig. 3.2. The resonance frequencies listed in Demarest
[46] are used at the value of the Poisson ratio ν = 0.33 and a transverse wave
velocity equal to 3200 m/s, what corresponds to the aluminum used in the
experiment (discussed in the previous chapter) and simulation.

It can be seen, however, from the spectral density of the responses of
the symmetric cube that a few small sharp peaks are present (although not
represented in all three spectral density curves in Fig. 3.2) in addition to
much better pronounced peaks identified as resonances studied in work [46]
by Demarest. These small peaks can be an artifact of the simulation. Such
spurious modes in higher frequency band may influence the statistics of res-
onances and therefore cause the departure from the random matrix model.

3.4 Discussion of the results: Nearest Neighbor Spacing

Distribution and Spectral Rigidity determined from

simulation

The NNSD calculated from the spectral density of the simulated responses
of cavity Nr. 2 is shown in Fig. 3.3. Error bars shown in Fig. 3.3 appear
from averaging the distribution over different positions of source and receiver
(nine different positions). The simulation does not show the effect of miss-
ing resonances, something inherently present in the experiment (Chapter 2).
However the NNSD determined from simulation shows larger repelling of res-
onant frequencies than in the GOE model distribution. We see from Fig. 3.3
that the NNSD determined from simulation has higher peak value while both
the NNSD from simulation and the GOE model distribution are normalized
to the unit area under the curve. The NNSD calculated from the spectral
density of the simulated responses of cavity Nr. 1 shows similar behavior.

The SR (Δ) calculated from the simulated responses for cavity Nr. 2 is
shown in Fig. 3.4. Error bars in Fig. 3.4 appear from averaging the SR over
different positions of source and receiver (nine different positions). Calculated
SR is in agreement with the GOE model. However, unlike the dependence
determined from experiment, the simulation data gives a bit lower values of
the SR than predicted by the model. This is better shown in Fig. 3.5. The SR
calculated from simulation for each particular position of source and receiver
is shown in Fig. 3.5. We see that these dependencies either exactly coincide
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Fig. 3.2: Spectral densities of the responses of the symmetric cubic aluminum block
simulated by Wave3000 program. Curves 1, 2 and 3 correspond to dif-
ferent positions of the receiver. Vertical lines (4) represent lowest reso-
nances of the cubic block of aluminum according to [46]. Capital letters
D, T, S and F refer to the initial of the group to which the vibration
mode belongs [46]: ’dilation’, ’torsion’, ’shear’ and ’flexure’. A lower
case subscript refers to the subgroups: s refers to ’symmetric’, a refers to
’antisymmetric’ and d refers to ’doublet’. An additional subscript orders
the modes in certain subgroup by frequency (1,2,3...).
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Fig. 3.3: NNSD calculated for cavity Nr. 2 from responses obtained in Wave3000
simulation program for different positions of source and receiver (round
signs with error bars). Exponential (Poisson) distribution corresponding
to random division of the frequency band into intervals by resonances
and distribution due to GOE model are shown as dashed curves.
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Fig. 3.4: Spectral rigidity for cavity Nr. 2 (round signs with error bars). From
responses obtained in Wave3000 simulation program. Spectral rigidities
corresponding to random division of the frequency band into intervals by
resonances and GOE model are shown respectively as dashed line and
dashed curve without error bars.
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Fig. 3.5: Spectral rigidity for cavity Nr. 2. From responses obtained in Wave3000
simulation program. Different curves with signs in this picture show
results for different positions of source and receiver. Spectral rigidities
corresponding to random division of the frequency band into intervals by
resonances and GOE model are shown respectively as dashed line and
dashed curve without signs.
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with GOE model for frequency bands 2L < 10savg or take lower value.

3.5 Conclusions

Simulation with the Wave3000 program allows satisfactory reproduction of
the cavity responses. The spectral density of the response of the symmetric
cubic aluminum resonator (without well drilled in it or corner removed) allows
a correct identification of 10 consequent resonances of the cubic resonator as
given by the analytical model [46].

The simulated acoustic wave dynamics shows noticeably larger repelling
of resonances than determined from the responses in the experiment. The
NNSD determined from the simulation data is better peaked around average
value than predicted by the GOE distribution. SR averaged over frequency
bands 2L smaller than 10savg has a bit lower value than predicted by the
GOE model. The behavior of NNSD and SR due to a fraction of lost reso-
nances in GOE model is not found in the case of the Wave3000 simulation
(unlike for NNSD and SR determined from experimental data discussed in
Chapter 2).

In particular, SR determined from the spectra of the Wave3000 simulated
responses satisfactory follows the GOE curve for averaging over bands 2L of
size of 2 to 10 average spacings. The corresponding SR determined from
experimental data (discussed in Chapter 2) has larger values than given by
the GOE model and significantly deviates from the GOE curve: it falls above
the GOE curve and agrees with GOE model with the lost levels. The reduced
spacing value corresponding to the maximum of NNSD determined from the
Wave3000 simulated responses is close to that of the pure GOE distribution
(without the lost resonances). The only discrepancy between the GOE model
and NNSD determined from simulated responses is the actual height of the
maximum of NNSD obtained from simulated responses. This can not be
explained satisfactory at the moment.

But it can be seen from the spectral density of the responses of the sym-
metric cube that small sharp peaks are present in addition to large (much
better pronounced) ones that have been identified with 10 consequent known
elastic resonances from work [46] for the Poisson ratio of 0.33 corresponding
to aluminum. These small sharp peaks, that can be artifact of the simulation,
can alter the distribution when identified as resonances. So the departure
from the GOE distribution can happen if such peaks are present in the higher
frequency band and are counted as resonances. But it is important to men-
tion that NNSD determined from simulated responses in present chapter
does not behave as GOE distribution with randomly added resonance fre-
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quencies (considered in Chapter 1). So if the small peaks, being the artifact
of the simulation, are present in higher frequency band used to study statis-
tics then they appear around real cavity resonances in non-random fashion.
This implies that they can be for example higher harmonics of the identified
resonances that appear due to some kind of numerical nonlinearities.

Indeed NNSD and SR calculated from the responses simulated with Wave3000
program do not require accounting for the fraction of lost resonances to be
fitted with predictions for the GOE statistics. So the sample is suitable
for further studies of the resonance statistics in case of broken time rever-
sal invariance. However the lost resonances remain an experimental issue
(discussed in Chapter 2) that can make the outcome of the experiment less
clear.

NNSD and SR have still noticeable error bars arising from the different
positions of source and receiver on the surface of the samples. The NNSD
and SR as well as sequences of resonances used in calculation are different
for different positions of the transducers on the surface of the sample. This
was also observed in the analysis of the experimental data (Chapter 2). But
in Chapter 2 different sequences of resonances for different positions of the
transducers can be explained by the fraction of lost resonances. In present
chapter obviously the error bars of NNSD and SR appear for a different
reason (e.g. small peaks in spectral density that can be an artifact of the
simulation).



4. STATISTICS OF RESONANCES AND TIME
REVERSAL RECONSTRUCTION IN ALUMINUM

ACOUSTIC CHAOTIC CAVITIES WITH FEEDBACK

4.1 Introduction

This chapter addresses the case of elastic waves in a chaotic cavity where
the time reversal (TR) invariance is broken by a feedback loop. Considerable
effort in acoustics has been devoted to study the influence of motion in liquids
on TR invariance. For example the rotation in a vortex motion of a liquid
breaks the TR invariance for the propagation of acoustic waves [10, 11, 12,
13]. An analogous phenomenon should be present in solids and would be of
practical interest in such mechanical systems as blenders, airplane engines
and so on.

An alternative and appealing method we devised to study the effects of
TR invariance is to detect the acoustic signal at one location on the sur-
face of the cavity and re-inject the signal after delay and amplification into
another location on the surface of the cavity. Depending on the amplifi-
cation (forward and/or backward) and the signal delay this feedback loop
can influence the TR invariance and reciprocity in the acoustic system. The
connecting cable and the amplifier introduce a delay in the feedback. When
only forward waves travelling from the pick-up source through the amplifier
are re-injected, the forward and backward paths for the waves are different
and the reciprocity of wave propagation and therefore TR invariance of the
wave equation are broken. The wave solution with negative time is no longer
a solution. However, paths not travelling through the loop still have their
reciprocity intact. Similar idea of one-directional wave signal transfer was
explored in work [49] by Stoffregen et al about specially designed microwave
billiards.

It should be mentioned that reciprocity still can be observed in the system
with TR invariance broken. Reciprocity is equality of responses obtained by
sending the same signal both from point A to point B and from B to A in
opposite direction. The example of preserving the reciprocity in time reversal
non-invariant system is a symmetric vortex in a liquid with the source and



4. Statistics of resonances in a cavity with feedback 73

receiving transducers located on the opposite sides of the vortex at equal
distances from the center of the vortex. The wave equation has no time
reversal invariance but still the reciprocity can be observed between these
two points. We consider that the above-mentioned situation is never the
case in our experiment. So the feedback loop considered in this thesis breaks
both TR invariance and reciprocity.

The amplification coefficient K in the feedback loop strongly influences
the feedback process. Self oscillation in the cavity may occur for K much
larger than the loss in cables and piezoelectric transducers. Recently the
effects of such a strong feedback in a chaotic cavity has been studied in
the context of an acoustic laser (see the work [50] by Richard Weaver, Oleg
Lobkis and Alexey Yamilov).

Multi channel feedback network for radio waves has been studied in [51]
using S - matrix description both in case of low amplification in the feedback
loop (far from self-oscillating regime) and in self-oscillating regime.

In this chapter we will study how and to what extent the efficiency of
the time reversal experiment and RMT statistics (cavity resonances) are in-
fluenced by the feedback loop with K remaining below the self oscillation
condition. The outcome of the TR experiments and the statistical proper-
ties of the cavity spectra obtained from cavity responses for a system with
feedback will be discussed further in present chapter.

Section 4.2 gives a brief description of the experimental setup by point-
ing main features of the experiential setup and measurement procedures with
a feedback loop. Section 4.3 tells about efficiency of excitation pulse recon-
struction in TR experiments with different amplification in the feedback loop.
The efficiency of the excitation pulse reconstruction in TR experiment is con-
sidered a measure of TR invariance. Section 4.4 gives statistical properties
(NID, NNSD and SR) obtained from experiments with the feedback loop.
Summary and conclusions are given in section 4.5.

4.2 Experimental setup for studies of the cavity with

feedback loop

4.2.1 The sample and transducers

For comparison with the results described in Chapter 2 we use the same
aluminum Cavity Nr. 2 as used in the experiments on TR and statistics
(Fig. 4.1, left shows the shape of the cavity (aluminum block)). The time
reversal invariance of elastic waves travelling inside the cavity will be bro-
ken by an additional feedback loop. The schematic of the feedback loop is
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Fig. 4.1: The actual shape of the sample (aluminum block) used in experiment with
time reversal invariance broken by a feedback loop (left in the figure),
excitation pulse (top right in the figure) played by the input transducer
and schematic of the feedback loop (bottom right in the figure).

shown in Fig. 4.1. The time reversal invariance of the wave dynamics in the
cavity for waves travelling through the loop is broken because the amplifier
included in the feedback connection transmits only in one direction. The
frequency bandwidth of the amplifier is set constant to the frequency band
of approximately 10 kHz - 400 kHz and the amplification coefficient K can
be changed.

To reduce losses in the system a very light low mass polystyrene support
is used (Fig. 4.2). Four transducers are attached to the cavity (aluminum
block). Two of them are to be used for the measurement of the cavity re-
sponse in the same way as described in Chapter 2 (Experiments on the cavity
without breaking of the time reversal invariance). They shall be referred to
further as input and output transducers. The remaining two transducers are
glued to the sample and do not change the position during the measurements.
These two transducers are connected to form feedback loop between them
and to break the time reversal invariance of the elastic waves in the sample
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Fig. 4.2: Picture of the sample, transducers connected to it and transducer holders.
Transducer holders hold transducers used to measure the response of the
cavity to a short excitation pulse, the same as in Chapter 2, describing the
experiment without the feedback loop. An additional pair of transducers
is glued to the aluminum block as shown in this figure. This pair of
transducers is used to connect a feedback loop between them.

(Figures 4.1 and 4.2).
The schematics of the experimental setup mainly remains the same as in

Chapter 2 (Experiments on the aluminum block without breaking the time
reversal invariance). The only difference is the feedback loop connected to
the sample via two additional transducers.

4.2.2 Measurements with feedback

Time reversal experiments and analysis of the statistics (NID, NNSD and
SR) obtained from the cavity responses are performed for several distinct
positions of input and output transducers in the same way as without a
feedback loop. However a such sequence of measurements (several positions
of the input and output transducers) is repeated now for the feedback loop
amplifier switched off and for a few values of the feedback amplification
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coefficient K (Fig. 4.1).
The range of K available in experiment is limited for the following reason:

for small K the receiving transducer gets a decaying response composed of
many modes at different resonant frequencies. When increasing the amplifi-
cation K further and further beyond the value of 2200 eventually the regime
is reached when the receiving transducer receives an oscillation at one of the
resonant frequencies with high amplitude (so that other modes contribute
a negligibly small output signal). In such a case, when self-oscillation is
reached, the calculation of random matrix statistics is impossible. This will
be discussed again in Chapter 5, the chapter about the possible random
matrix model for the cavity influenced by the feedback loop.

The case of high amplification (reaching the self-oscillation regime) has
been studied in [50], although not in sense of random matrix statistics.

4.3 Efficiency of excitation pulse reconstruction in time

reversal experiments with a breaking of the time reversal

invariance

Fig. 4.3 shows the efficiency of the time reversal pulse reconstruction as
function of the time delay between the end of the oscillation track replayed
backward in time and the exciting pulse. 300 μs long oscillation tracks have
been used (in the same way as explained previously in chapters 1 and 2). The
circle signs show the results for the feedback loop switched off. Results are
given also for the same oscillation tracks replayed backwards with active feed-
back loop with feedback coefficients K of the voltage amplifier equal to 1000
(squares) and 2200 (crosses). Fig. 4.3 shows that the active feedback loop
has a negligible effect on the TR reconstruction for small time delays (0.4-0.6
ms). But the active feedback loop noticeably suppresses the reconstruction
of the excitation pulse for larger time delays (0.7-1.0 ms). Such an effect of
the suppression of the TR reconstruction increases with an increase of the
amplification coefficient K as can be seen from Fig. 4.3. So we see explicitly
from Fig. 4.3 that time reversal focusing of the part of the response back into
the short excitation pulse (time reversal reversal reconstruction) becomes less
and less efficient with increasing feedback: the normalized amplitude of the
reconstructed pulse goes down with increasing K.

However, for very long time delays (about 2 ms) and a large amplification
coefficient K the voltage spike, representing the reconstruction of the exci-
tation pulse in TR experiment, is obscured by the background peaks. As a
result the TR reconstruction peak detection algorithm, developed to be used
in this thesis and described in Chapter 1, does not work properly. Also these
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background noisy peaks make the determination of the reconstructed pulse
amplitude less reliable for the long time delays.

Moreover for large time delays the TR experiment becomes sensitive to
many minor issues like aging and temperature dependence of transducer-
oil-aluminum coupling so the daily drift is influencing the amplitude of the
detected reconstruction spike (if there is not enough time to repeat the exper-
iments at different positions of source and receiver for different amplification
in the feedback loop without experiencing the effect of the daily drift). For
time delays of 2 ms and larger the daily drift of the amplitude of the recon-
struction spike was measured as large as 10%. For the delays shorter than
1.6 ms it never exceeded 3%.

k ≤ 1 in Fig. 4.3 is a coefficient used to scale the input signal for lower
time delays, so that the reconstructed spike will not be high enough to cause
the changes in sensitivity (due to the high signal amplitude) of the receiving
transducer.

4.4 Statistical properties obtained from experiments with

feedback

4.4.1 Division of energy between cavity waves: distributions of intensity

transmission coefficients and resonance line widths

Fig. 4.4 gives NID in 60 kHz wide frequency band. The results mainly agree
with an exponential distribution corresponding to the input pulse energy
being shared randomly between the cavity waves.

4.4.2 Random matrix statistics of resonance sequences obtained from

experiments

The NNSD for the different amplification K in the feedback loop is given in
Fig. 4.5, Fig. 4.6 and Fig. 4.7. It is possible to see that the feedback loop
leads to changes in the distribution more significant than the error bars shown
in the figures. SR for the different amplification K in the feedback loop is
given in Fig. 4.8. The error bars in Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8
are based on measurements performed for different positions of source and
receiver (input and output transducers) on the surface of the aluminum block.
Transducers with a feedback loop connected between them remain glued to
the sample at the same locations through the full cycle of measurements.

Unfortunately the trend related to the active feedback loop is not clearly
visible from NNSD given in Fig. 4.5, Fig. 4.6 and Fig. 4.7. As indicated in
Chapters 1 and 2 and Appendix A, a moment analysis of the distribution may
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Fig. 4.3: Normalized amplitude of the excitation pulse refocused in TR experi-
ment depending on the time delay of the reversed oscillation track with
respect to the excitation pulse. Circles correspond to a blocked feedback
loop (amplification coefficient K is equal to zero). Squares and crosses
correspond to amplification coefficients 1000 and 2200 respectively. The
area hatched with diagonal lines represents the time delays for which the
reconstructed pulse is very badly detectable and the daily drift of the
reconstructed pulse plays certain role.



4. Statistics of resonances in a cavity with feedback 79

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

I/Iavg

P(
I)

exponential distribution
intensity distribution (low signal)
intensity distribution (high signal)

Fig. 4.4: Normalized intensity distribution (NID) in the frequency band 210 kHz
... 270 kHz for the amplification K=2200 in the feedback loop. Different
signs correspond to different (low/high) voltage amplitude of the exciting
pulse (1.25 V and 2.5 V respectively).
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Fig. 4.5: NNSD for the amplification K = 0 in the feedback loop (points with
error bars connected with lines). Poisson case (exponential distribution)
is shown by solid decaying curve. GOE model distribution is shown by
solid curve with a maximum. Dashed curve shows GOE model with 25%
of resonances lost.
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Fig. 4.6: NNSD for the amplification K = 1000 in the feedback loop (points with
error bars connected with lines). Poisson case (exponential distribution)
is shown by solid decaying curve. GOE model distribution is shown by
solid curve with a maximum. Dashed curve shows GOE model with 25%
of resonances lost.
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Fig. 4.7: NNSD for the amplification K = 2200 in the feedback loop (points with
error bars connected with lines). Poisson case (exponential distribution)
is shown by solid decaying curve. GOE model distribution is shown by
solid curve with a maximum. Dashed curve shows GOE model with 25%
of resonances lost.
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Fig. 4.8: SR (delta statistics) for the amplification K=0 in the feedback loop
(points with error bars connected by the solid line) and for amplifica-
tions K = 1000 and K = 2200 (points with error bars connected by dash
and dash dotted lines respectively). Theoretical predictions for uncor-
related sequence of resonances (the same as in case of randomly chosen
resonance frequencies) and GOE model are shown by dashed line and
dashed curve respectively.
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help to clarify the difference. In particular moments, skewness and kurtosis
of the experimentally determined distributions can be calculated. Skewness
is a measure of the asymmetry of the distribution around the mean and
kurtosis indicates the nature of the spread around the mean (whether small
or large deviations of the random variable around the mean contribute to
the spread around the mean). Precise definitions of these values are given
in Appendix A. The moment analysis for the main model NNSD functions
(GUE, GOE and Poisson or exponential) is given in detail in the Appendix
A (Chapter A).

The skewness and kurtosis of the NNSD for the case of active feedback
loop (broken time reversal invariance) are summarized in Figures 4.9 and
4.10. Skewness and kurtosis values for NNSD due to GUE, GOE and Poisson
models (shown by horizontal lines in Figures 4.9 and 4.10) are taken from
Table A.3 in Appendix A (Chapter A).

Figures 4.9 and 4.10 show that skewness and kurtosis approach closer to
the values of the Poisson model (marked as ’EXP’) with increasing of the
influence of the feedback loop. Hence, the NNSD is approaching the case of
randomly chosen resonant frequencies (Poisson or exponential NNSD).

So it is apparent from figures 4.9 and 4.10 that although the feedback
loop breaks the time reversal invariance in the system, the distribution is not
approaching the GUE model. However such behavior as shown in figures 4.9
and 4.10 may be explained also by the growing amount of lost resonances with
increasing influence of the feedback loop. E.g. because some of the modes
are inhibited by the loop, some are on the contrary amplified and many of
the modes remain uninfluenced (this will be discussed again in Chapter 5,
the chapter about possible random matrix model describing the resonance
statistics of the cavity with feedback). So more modes are obscured by the
growth of the modes that are amplified by feedback.

4.5 Summary on experiments with breaking of the time

reversal invariance

The TR experiments show that the feedback loop suppresses the reconstruc-
tion of the excitation pulse for different time delays of the recorded (and
replayed backwards) oscillation track with respect to the original excitation
pulse. The suppression of the time reversal reconstruction increases with
increasing amplification coefficient K of the amplifier in the feedback loop.
Thus time reversal experiment becomes less efficient due to increasing influ-
ence of the feedback loop.

The NID obtained from 60 kHz wide frequency band mainly agree with
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Fig. 4.9: Skewness of the NNSD obtained from experimental data for zero am-
plification K in the feedback loop (curve 1), K = 1000 (curve 2) and
K = 2200 (curve 3). Every value of ”experiment#” on the x axis (from
1 to 5) corresponds to certain positions of the input and output trans-
ducers on the surface of the sample. Skewness values for NNSD due to
GUE, GOE and Poisson models are shown by horizontal lines marked
respectively as ’GUE’, ’GOE’ and ’EXP’.
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Fig. 4.10: Kurtosis of the NNSD obtained from experimental data for zero am-
plification K in the feedback loop (curve 1), K = 1000 (curve 2) and
K = 2200 (curve 3). Every value of ”experiment#” on the x axis (from
1 to 5) corresponds to certain positions of the input and output trans-
ducers on the surface of the sample. Kurtosis values for NNSD due to
GUE, GOE and Poisson models are shown by horizontal lines marked
respectively as ’GUE’, ’GOE’ and ’EXP’.
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the exponential distribution corresponding to the input pulse energy being
shared randomly between the cavity waves.

It is found also that the active feedback loop influences the NNSD statis-
tics. The effect of the feedback loop on SR (delta statistics) is found negligibly
small compared to the error bars based on measurements at several different
positions of source and receiver.

It can be seen also that skewness and kurtosis of the NNSD, determined
from the data of several experiments, approach closer to the values due to the
Poisson model (exponential NNSD) with an increase of the influence of the
feedback loop, what implies that NNSD is approaching the case of randomly
chosen resonant frequencies. This means that arrangement of the resonances
becomes more random with increasing influence of the feedback loop in the
experiment.

However a part of this behavior may be explained also by the growing
amount of lost resonances with increasing influence of the feedback loop in
case if more modes are obscured by the growth of the modes that are amplified
by feedback.



5. RANDOM MATRIX MODEL OF THE CHAOTIC
CAVITY WITH TIME REVERSAL INVARIANCE BROKEN

BY THE FEEDBACK LOOP

5.1 Introduction

It is not possible (not practical) to define a feedback loop in numerical sim-
ulation programs that use a finite difference method like Wave 3000. Thus,
this chapter will consider another approach that allows to obtain the NNSD
using the matrix model built specifically for the elastic cavity influenced by
the feedback loop. We shall use the agreement of the RMT statistics for
the unperturbed cavity (cavity not influenced by the feedback loop) with the
GOE model as an assumption. The main goal of the present chapter is to
obtain resonance frequencies of the cavity influenced by the feedback loop
when the resonances of the unperturbed cavity are known and obey GOE
statistics.

5.2 Derivation of the matrix to describe random matrix

statistical properties of the elastic cavity influenced by a

feedback loop

We start with the standard Navier-Cauchy wave equation [38] that describes
acoustic displacement field �u(�x, t) within a block of solid isotropic material.

ρ�̈u = (λ + μ)∇ (∇ · �u) + μΔ�u + �f(�x, t) (5.1)

Here ρ is the mass density, λ is the first Lamé parameter and μ is the
second Lamé parameter or shear modulus. �f(�x, t) is the force density related
to the excitation of the cavity waves by external forces (e.g. piezoelectric
transducers in experiments described earlier in this thesis). �x is a coordinate
inside the cavity and t is time. This equation implies that the elastic proper-
ties of the solid material (Lamé parameters) do not vary in space inside the
cavity (solid block).
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The wave equation 5.1 can be rewritten using c|| =
√

(λ + 2μ)/ρ and

c⊥ =
√

μ/ρ (the velocities respectively of the longitudinal and transverse

plane waves in infinite uniform space of the considered solid material):

�̈u

c2
||

=

⎛
⎝c2

|| − c2
⊥

c2
||

⎞
⎠∇ (∇ · �u) +

c2
⊥

c2
||
Δ�u +

�f(�x, t)

ρc2
||

Now let us consider the differential operator of this wave equation as the
sum of the time dependent (the inverse of the longitudinal wave speed squared
times the second derivative with respect to time) and the space dependent
(L̂) parts:

⎛
⎝ 1

c2
||

∂2

∂t2
− L̂

⎞
⎠ �u(�x, t) =

�f(�x, t)

ρc2
||

= �F (�x, t) (5.2)

Here L̂ ≡ (1− ξ)∇ (∇·) + ξΔ and ξ ≡ c2
⊥/c2

||.

In case of active feedback loop it is essential that �F is written in the form
dependent on the displacement field �u(�x, t) as �F (�u, �x, t).

Let us consider first the cavity without the external excitation forces and
without the feedback loop (�F = �0). In this case the separation of the time

and space variables is possible using the relation �u(�x, t) = T (t) �X(�x). This
allows using the form of the displacement field �u(�x, t) shown below to find

the eigenvalues corresponding to the eigenfunctions �ψn(�x) of the unperturbed
cavity.

�F = �0 : �u(�x, t) =
∑
n

(
Aneiωnt + Bne−iωnt

)
�ψn(�x)

Now after substituting this form of �u(�x, t) into the equation 5.2 we can
write down the eigenfrequencies and eigenfunctions of the unperturbed cavity
as eigenvalues and eigenfunctions of the operator L̂:

L̂�ψn = −k2
n
�ψn, k2

n =
ω2

n

c2
||

In our further simulation of the statistical properties of the cavity influ-
enced by the feedback loop we consider eigenfrequencies of the unperturbed
cavity ωn known and having statistical properties as of a sequence of GOE
eigenvalues.

The displacement field �u(�x, t) when excitation forces and feedback loop
are active can be represented in general as the sum of the eigenfunctions
�ψn(�x) of the unperturbed cavity with time dependent amplitudes ϕn(t):
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Fig. 5.1: Schematic of the cavity with an active feedback loop described by equa-
tion 5.4 or equation 5.5.

�u(�x, t) =
N∑

n=1

ϕn(t)�ψn(�x) (5.3)

The short excitation pulse and the feedback loop can be described as a
combined excitation force �F (�u, �x, t) of the following form:

�F (�u, �x, t) = �F0δ(t)δ(�x− A) + α̂�u(C, t− τ)δ(�x−D) (5.4)

The first term �F0δ(t)δ(�x − A) describes a short excitation pulse at the
moment t = 0 launched at point A (�x = A) similar e.g. to [42]. The
second term α̂�u(C, t−τ)δ(�x−D) describes the feedback loop: the oscillations
recorded at point C are played at point D (Fig. 5.1) after a delay time τ ,
which is a delay time of the signal travelling through the feedback loop. The
quantity α̂ is simply a matrix of proportionality coefficients.

However, it is natural to write the feedback loop term in a form given by
Eq. 5.5, where only the normal component of the displacement is received
(played) by the transducers at points C and D. This is actually the case for
the transducers used in the experiment discussed in the previous chapters.



5. Random matrix model of a cavity with a feedback loop 91

�F (�u, �x, t) = �F0δ(t)δ(�x−A) + α (�nC · �u(C, t− τ)) (δ(�x−D) · �nD) (5.5)

Here �nC and �nD are unit vectors normal to the surface of the cavity (solid
block) at points C and D respectively, where the transducers of the feedback
loop are connected. α here is a scalar proportionality coefficient.

Equation 5.4 (or equation 5.5) offers a possibility to add a feedback loop
to the wave equation 5.2. Now substituting the �u(�x, t) as sum (5.3) into (5.2)

with �F (�u, �x, t), given by (5.4) as the sum of the above-mentioned non-zero
excitation term and the feedback loop term, we get:

N∑
n=1

⎧⎨
⎩

⎛
⎝ϕ//

n (t)

c2
||

+
ω2

nϕn(t)

c2
||

⎞
⎠ �ψn(�x)

⎫⎬
⎭ =

= �F0δ(t)δ(�x−A) + α̂δ(�x−D)

⎛
⎝ N∑

j=1

�ψj(C)
{
ϕj(t)− ϕ

/
j (t)τ

}⎞
⎠ (5.6)

Here we assumed already τ << 1/ωn and wrote down the approximation

ϕj(t)− ϕ
/
j(t)τ instead of ϕj(t− τ).

Further we multiply both sides of the equation 5.6 by �ψk(�x) and inte-

grate over the volume of the cavity (solid block):
∫ �ψk(�x) · ...dV . The follow-

ing relations are used:
∫ �ψk(�x) · �ψn(�x)dV = δkn (Kronecker delta symbol),∫ �ψk(�x)δ(�x− A)dV = �ψk(A) and

∫ �ψk(�x)δ(�x−D)dV = �ψk(D). After tak-
ing the above stated relations into account we get the following system of
equations (k = 1..N) for the time dependent amplitudes ϕk(t):

ϕ
//
k (t) + ω2

kϕk(t)−
N∑

j=1

{
βkj

(
ϕj(t)− ϕ

/
j (t)τ

)}
= γkδ(t) (5.7)

Here γk = �F0c
2
|| �ψk(A). The βkj are defined as follows:

βkj = c2
|| �ψk(D)α̂ �ψj(C)

for the case of general proportionality coefficients α̂ (Eqn. 5.4). For trans-
ducers sensing only the component of the displacement normal to the surface
of the cavity (Eqn. 5.5) the βkj can be defined as follows:

βkj = αc2
||(�ψk(D) · �nD)(�ψj(C) · �nC)

Now equations 5.7 can be used to determine new eigenfrequencies of the
cavity (cavity under influence of the feedback loop). It is clear from Eqn. 5.7
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that when the feedback loop is absent (βkj = 0) only a collection of N
independent harmonic oscillator equations is left. The eigenfrequencies are
then the eigenfrequencies of the original cavity without the feedback loop.
However in case of non-zero βkj and τ equations 5.7 are coupled to each
other. This naturally leads to the new eigenfrequencies (denoted further as
υk) departing from original values ωk (eigenfrequencies of the cavity without
the feedback loop).

In the simple case of N equal to 1 and τ = 0 the influence of the feedback
loop is quite straightforward. Equations 5.7 take on the simple form:

ϕ
//
1 (t) + ω2

1ϕ1(t)− β11ϕ1(t) = γ1δ(t)

In this case the new resonance frequency is defined as υ2
1 = ω2

1−β11. The
solution for ϕ1(t), after applying the initial conditions ϕ1(−0) = 0, ϕ1(+0) =

0, ϕ
/
1(−0) = 0 and ϕ

/
1(+0) = γ1 at t = 0, when a delta pulse is applied,

takes the following form: ϕ1(t) = (γ1/υ1) sin(υ1t). The first derivative ϕ
/
1(t)

experiences a jump of γ1 at t = 0. This can be seen easily from integrating
both sides of the differential equation for ϕ1(t) over time within an arbitrary
small interval around t = 0.

It is possible to get a similar solution for N = 2 and τ = 0:

υ2
1/2 =

ω2
1 + ω2

2 − β11 − β22 ±
√

(ω2
1 − ω2

2 − β11 + β22)
2 − 4β12β21

2

ϕ1(t) =
(υ2

2 − ω2
1 + β11)γ1 + β12γ2

(υ2
2 − υ2

1)υ1

sin(υ1t)−(υ2
1 − ω2

1 + β11)γ1 + β12γ2

(υ2
2 − υ2

1)υ2

sin(υ2t)

ϕ2(t) =
(υ2

2 − ω2
2 + β22)γ2 + β21γ1

(υ2
2 − υ2

1)υ1
sin(υ1t)−(υ2

1 − ω2
2 + β22)γ2 + β21γ1

(υ2
2 − υ2

1)υ2
sin(υ2t)

So the new wave functions �̄ψ1 and �̄ψ2 corresponding to υ1 and υ2 are:

�̄ψ1 =

(
(υ2

2 − ω2
1 + β11)γ1 + β12γ2

Λ1 (υ2
2 − υ2

1) υ1

�ψ1(�x) +
(υ2

2 − ω2
2 + β22)γ2 + β21γ1

Λ1 (υ2
2 − υ2

1) υ1

�ψ2(�x)

)

�̄ψ2 =

(
−(υ2

1 − ω2
1 + β11)γ1 + β12γ2

Λ2 (υ2
2 − υ2

1) υ2

�ψ1(�x)− (υ2
1 − ω2

2 + β22)γ2 + β21γ1

Λ2 (υ2
2 − υ2

1) υ2

�ψ2(�x)

)

�u(�x, t) = Λ1 sin(υ1t) �̄ψ1(�x) + Λ2 sin(υ2t) �̄ψ2(�x)
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In case of τ > 0 equations 5.7 contain terms proportional to derivatives
of the functions ϕj(t). These terms correspond to damping terms in classical
mechanics. For example in case N = 1 and τ > 0 equations 5.7 take the
following form:

ϕ
//
1 (t) + β11τϕ

/
1(t) + ω2

1ϕ1(t)− β11ϕ1(t) = γ1δ(t)

The solution is then can be given as follows:

ϕ1(t) = γ1√
ω2

1
−β11−(β11τ)2/4

e−β11τt/2 sin(
√

ω2
1 − β11 − (β11τ)2/4t)

Equations 5.7 can be written in the full phase space fashion using addi-
tional functions ϕN+k(t) being the derivatives of ϕk(t):⎧⎪⎨
⎪⎩

ϕ
/
k(t) = ϕN+k(t)

ϕ
/
N+k(t) =

N∑
j=1
{(βkj − δkjω

2
k)ϕj(t)− βkjτϕN+j(t)}+ γkδ(t)

, k = 1..N

This can be written as the following matrix equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
/
1(t)

ϕ
/
2(t)
...

ϕ
/
N−1(t)

ϕ
/
N(t)

ϕ
/
N+1(t)

ϕ
/
N+2(t)

...

ϕ
/
2N−1(t)

ϕ
/
2N (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

[βkj − δkjω
2
k] [−βkjτ ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(t)
ϕ2(t)

...
ϕN−1(t)
ϕN(t)

ϕN+1(t)
ϕN+2(t)

...
ϕ2N−1(t)
ϕ2N (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0

γ1δ(t)
...

γN−1δ(t)
γNδ(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.8)

The 2N x 2N matrix in equation 5.8 consists of the following 4 blocks:
matrix of zeros (top left), unit matrix of N x N size (top right), [βkj −
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δkjω
2
k] (bottom left) and [−βkjτ ] (bottom right), assuming that index k is

the number of the row and index j is the number of the column within the
block.

According to the theory of differential equations solutions for ϕk(t) in
equation 5.8 are linear combinations of exponents eλlt, where λl are eigenval-
ues of the 2N x 2N matrix in equation 5.8. It can be shown that in the ab-
sence of the feedback loop (βkj = 0) the eigenvalues of such a 2N x 2N matrix
take the following 2N values: −iωN ,−iωN−1, · · · ,−iω1, iω1, · · · , iωN−1, iωN ,
i.e. values of the resonant frequencies of the original cavity times imaginary
unit i and corresponding conjugated values. This is the case when equation
5.7 represents N independent harmonic oscillator equations.

When βkj and τ are taken as small nonzero values the eigenvalues of the
big matrix in equation 5.8 start to shift along the imaginary axis as well as
depart from this axis by acquiring also very small real part (but in such a
manner that conjugated eigenvalues are also eigenvalues). Positive imaginary
parts of the new eigenvalues are new resonant frequencies υk of the cavity
influenced by the feedback loop. The simulation described further will allow
us to see how the statistical properties of the new eigenfrequencies υk differ
from the statistical properties of the old eigenfrequencies ωk.

The above-mentioned very small real part of each eigenvalue governs the
slow decay or growth of the corresponding mode υk. This exponential growth
(damping) with the small real part of the eigenvalue as a growth (decay)
constant is caused by the feedback loop. As it has been calculated earlier in
this chapter, this growth (decay) constant in case N = 1 and τ > 0 is equal
to −β11τ/2, the product of the feedback coupling strength and the feedback
loop delay τ .

The natural damping of the modes is neglected in equations 5.8 and 5.7.
We assume it to be small and not affected sufficiently by the feedback loop
as long as K is small enough and as a consequence α and βkj are small
enough. This is the reason why the range of the values of amplification
K used in experiment, discussed in Chapter 4, is limited. The upper limit
for values of K arises from the fact that mode growth due to the feedback
loop can compensate the natural damping and cause the system to go to the
self-oscillation regime.

When amplification K is sufficiently large then the amplitude of one of
the modes can start quickly growing exponentially and eventually the system
can switch to the regime when the receiving transducer receives continuous
oscillation with a large amplitude at the self-oscillation frequency instead of
receiving decaying response composed out of many distinguishable modes at
different resonant frequencies.

βkj, which enters equations 5.8 and 5.7, is dependent not only on K
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(α ∝ K), but also on normal components of the wavefunctions (of the cavity
without feedback loop) at points C and D (points at which the transducers of
the feedback loop are connected). α in fact should be considered as α = Kζ ,
where ζ is related to the loss in piezoelectric transducers and efficiency of
coupling of the piezoelectric transducers glued at the points C and D in
experiment. So the range of experimentally available values of K should be
dependent also on the normal components of the wavefunctions at points C
and D, loss in piezoelectric transducers and efficiency of coupling of the glued
transducers.

5.3 Input parameters of the simulation and the simulation

procedure

The following simulation parameters are used:
1. Original frequencies ωk, uniformly distributed in the section [fAV −

0.5..fAV + 0.5] with GOE distribution of the frequency spacing. These are
obtained from eigenvalues of the large symmetric matrix (Fig. 5.2) and have
GOE statistical properties (Figures 5.3 and 5.4).

2. Time delay of the feedback loop τ . The value of this parameter is es-
timated from the measurements discussed in Chapter 2. It can be seen from
Figure 2.1 that the delay value can be estimated as less than a microsec-
ond. This parameter depends on how long the signal is delayed by travelling
through the feedback loop. The value of τ is considered reasonably smaller
than the period of oscillation for the studied resonant modes.

3. B, a parameter related to βkj, describes the strength of the influ-
ence of the feedback loop. βkj are defined by the wavefunction compo-

nents at points D and C. βkj = αc2
||(�ψk(D) · �nD)(�ψj(C) · �nC) = Bd(k)c(j),

where d(k) and c(j) are values proportional to the wave function compo-
nents along �nD and �nC at points D and C respectively. These values d(k)
and c(j) are taken as gaussian distributed (what is natural for chaotic wave
system) with standard deviation of 1. B is a scaling coefficient. So B =

αc2
||
√

< (�ψk(D) · �nD)2 >
√

< (�ψj(C) · �nC)2 >.
Parameters γk are not considered in the simulation for the reason that

they represent the strength of the excitation signal. Eigenfrequencies (as
with present feedback loop as without it) do not depend on the excitation
signal (γk do not appear in the 2Nx2N matrix: see equation 5.8).

Using the above mentioned ωk, B and τ as input for the 2Nx2N matrix
from equation 5.8 it is possible to calculate the positive imaginary parts of
the eigenvalues of this matrix, the new eigenfrequencies υk.

The new eigenfrequencies υk are approximately uniformly distributed in
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Fig. 5.2: Distribution of the eigenvalues of 5000x5000 random symmetric matrix
(agrees with Wigner’s semicircle law). Range of 1000 selected eigenvalues
used to obtain eigenfrequencies of the aluminum block without feedback
loop ωk is shown with the arrow.
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Fig. 5.3: NNSD for 1000 selected eigenvalues (see Figure 5.2) of 5000x5000 random
symmetric matrix, Poisson (exponential) distribution (solid curve) and
GOE model (dashed curve). There is naturally a full agreement with the
GOE curve.
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Fig. 5.4: SR (delta statistics) for sequence of 1000 eigenvalues of 5000x5000 ran-
dom symmetric matrix (squares). SR model for sequence of randomly
placed values (uncorrelated level sequence) and GOE model correspond
to dashed line and dashed curve respectively. Triangles illustrate the
same calculation for sequence of 1000 eigenvalues of 5000x5000 random
symmetric matrix when 25% of eigenvalues are randomly lost.
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the section [fAV− 0.5..fAV +0.5], the same as input eigenfrequencies ωk. A
very few of υk values ”jump out” of this section and this effect is neglected.
NNSD for the new eigenfrequencies υk, obtained for certain values of the
simulation parameters, are shown in Figures 5.5, 5.6 and 5.7.

It can be seen from NNSD shown in Figure 5.5, as well as from NNSD
obtained for other values of the simulation parameters (Figures 5.6 and 5.7),
that the number of small spacings increases and the number of average spac-
ings decreases due to the influence of the feedback loop. Such transformation
makes NNSD approach the Poisson (exponential) model. This is more or less
in agreement with data given in Figures 4.9 and 4.10.

5.4 Summary of random matrix model of the elastic cavity

influenced by a feedback loop

The model matrix, the eigenvalues of which give eigenfrequencies of the elas-
tic cavity influenced by the feedback loop, can be derived for small values of
τ (time delay of the signal travelling through the feedback loop). It can be
seen from the NNSD obtained due to this model matrix for different values
of simulation parameters that the number of small resonance spacings (rel-
ative to the average spacing) increases and the number of average spacings
decreases due to the influence of the feedback loop. This means that the
trend here is similar to the one found in Chapter 4 when distributions cal-
culated from experimental data were discussed. Increase in small eigenvalue
(resonance) spacings and decrease in average eigenvalue (resonance) spac-
ings makes the distribution closer to exponential (earlier referred as Poisson
model). However exact fitting of the distributions obtained from experimen-
tal data using the random matrix model discussed in the present chapter is

considerably complicated due to unknown factors (
√

< (�ψk(D) · �nD)2 > and√
< (�ψj(C) · �nC)2 >) involved in expression for the parameter B measuring

the strength of the influence of the feedback loop. And unknown fraction of
the lost (undetected) resonances can be also present in distributions obtained
from experimental data.

The considered random matrix model also shows that the feedback loop
may have influence on decay constants (linewidth, quality factor) of the in-
dividual resonances.
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Fig. 5.5: NNSD for the case of active feedback loop (shown as step like function)
obtained from statistical simulation as described in the present chapter.
The GOE model is shown by the solid continuous curve. The exact val-
ues of simulation parameters are shown above the figure. τ is the delay
time in the feedback loop, fAV is the average frequency in the considered
band and B is the parameter related to the strength of the influence of

the feedback loop, B ∝ K

√
< (�ψk(D) · �nD)2 >

√
< (�ψj(C) · �nC)2 > (ac-

cording to the definition given in the present section). Averaging denoted
by the brackets <> is performed over indices k and j (different wavefunc-
tions). C and D are points where the transducers of the feedback loop
are placed.
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Fig. 5.6: NNSD for the case of active feedback loop (shown as step like function)
obtained from statistical simulation as described in the present chapter.
The GOE model is shown by the solid continuous curve. The exact
values of simulation parameters are shown above the figure (the same
parameters as explained in the caption to Figure 5.5).
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Fig. 5.7: NNSD for the case of active feedback loop (shown as step like function)
obtained from statistical simulation as described in the present chapter.
The GOE model is shown by the solid continuous curve. The exact
values of simulation parameters are shown above the figure (the same
parameters as explained in the caption to Figure 5.5).



6. CONCLUSIONS

Calculations based on experimental data for the case without the feedback
loop (experiments on unperturbed aluminum blocks ”Cavity #1” and ”Cav-
ity #2”), discussed in Chapter 2, show that the distributions of the intensity
transmission coefficients studied in the narrow frequency bands confirm ran-
dom division of pulse intensity between the cavity waves for both studied
cavities.

Division of the frequency band into intervals by cavity resonances for
the unperturbed cavity #2, characterized by the NNSD, is found in agree-
ment with the prediction of RMT for GOE. Perfect agreement, however, is
achieved when accounting for a fraction of the lost resonances (about 25%).
The corresponding SR shows behavior close to the GOE model that involves
logarithmic saturation of the SR. The curve that shows SR in case of GOE
model with 25% of eigenvalues lost offers even better fit to the spectral rigid-
ity determined from the experimental data of Chapter 2. So both NNSD and
SR can be identified as predicted by the GOE statistics, however a relatively
large fraction of the lost resonances (25%) has to be assumed to achieve such
an agreement. The SR calculated from the data of the experiment on a sym-
metric cavity (cavity #1) is systematically larger than in the comparable
case of an asymmetric cavity (cavity #2). This agrees with the concept of
coexistence of odd and even independent sequences of resonances.

The normalized amplitude of the reconstructed pulse in the time reversal
experiment discussed in Chapter 2 deviates from exponential dependence on
the time delay if the last one is getting smaller and approaches the Heisenberg
time (inverse of the average nearest neighbor resonance spacing).

We also found that moments and central moments of different order,
skewness and kurtosis of the NNSD determined from experiment discussed
in Chapter 2 fall close to the values corresponding to the GOE model. These
values actually fall in between the GOE values and values corresponding to
random arrangements of resonance frequencies, Poisson model. This may be
considered as a consequence of the lost resonances.

We dealt with a considerable amount of lost resonances in our experiments
discussed in Chapter 2. This amount is higher than found in earlier reports
like [24] by Nogueira et al. However, these experiments [24] were performed
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under idealized circumstances. Firstly, aluminum plate resonators were used
instead of the volume ones in present work. Secondly, a vacuum chamber
enclosing the sample was used to increase the isolation and therefore in-
crease quality factors of the resonances. Thirdly, probably better support
mechanism was used as well.

We report experiments that have been done at normal room conditions in
air with support of the sample not entirely optimized. Therefore, a bit worse
resonance detection conditions are indeed in place. However, our approach
opens the possibility to explore experiments making use of RMT statistics
on arbitrary samples under non-optimized conditions. This is important for
validating the RMT statistical approach for probable future applications in
mechanical engineering.

Simulation with the Wave3000 program [48] discussed in Chapter 3 al-
lows satisfactory reproduction of the cavity responses. The spectral density
of the response of the symmetric cubic aluminum resonator (without well
drilled in it or corner removed) allows a correct identification of 10 conse-
quent resonances of the cubic resonator as given by the analytical model
[46].

The simulated elastic wave dynamics for cavity #2 shows noticeably
larger repelling of resonances than determined from the responses in the ex-
periment. The NNSD determined from the simulation data is better peaked
around average value than predicted by the GOE distribution. SR averaged
over frequency bands smaller than 10savg has a bit lower value than predicted
by the GOE model. The behavior of NNSD and SR showing a fraction of lost
resonances is not found in the case of the Wave3000 simulation (unlike for
NNSD and SR determined from experimental data discussed in Chapter 2).

In particular, SR determined from the spectra of the Wave3000 simulated
responses satisfactory follows the GOE curve for averaging over bands of
size of 2 to 10 average spacings. The corresponding SR determined from
experimental data (discussed in Chapter 2) has larger values than given by
the GOE model and significantly deviates from the GOE curve: it falls above
the GOE curve and agrees with GOE model with the lost levels. The reduced
spacing value corresponding to the maximum of NNSD determined from the
Wave3000 simulated responses is close to that of the pure GOE distribution
(without the lost resonances). The only discrepancy between the GOE model
and NNSD determined from simulated responses is the actual height of the
maximum of NNSD obtained from simulated responses. This can not be
explained satisfactory at the moment.

But it can be seen from the spectral density of the responses of the sym-
metric cube that small sharp peaks are present in addition to large (much
better pronounced) ones that have been identified with 10 consequent res-
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onances from work [46] for the Poisson ratio of 0.33 corresponding to alu-
minum. These small sharp peaks, that can be artifact of the simulation, can
alter the distribution when identified as resonances. So the departure from
the GOE distribution can happen if such peaks are present in the higher
frequency band and are counted as resonances. But it is important to men-
tion that NNSD determined from simulated responses in Chapter 3 does
not behave as GOE distribution with randomly added resonance frequen-
cies (considered in Chapter 1). So if the small peaks, being the artifact of
the simulation, are present in higher frequency band used to study statis-
tics then they appear around real cavity resonances in non-random fashion.
This implies that they can be for example higher harmonics of the identified
resonances that appear due to some kind of numerical nonlinearities.

NNSD and SR have still noticeable error bars arising from the different
positions of source and receiver on the surface of the samples. The NNSD
and SR as well as sequences of resonances used in calculation are different
for different positions of the transducers on the surface of the sample. This
was also observed in the analysis of the experimental data (Chapter 2). But
in Chapter 2 different sequences of resonances for different positions of the
transducers can be explained by the fraction of lost resonances. In Chapter 3
obviously the error bars of NNSD and SR appear for a different reason (e.g.
small peaks in spectral density that can be an artifact of the simulation).

Indeed NNSD and SR calculated from the responses simulated with Wave3000
program do not require accounting for the fraction of lost resonances to be
fitted with predictions for the GOE statistics. So the studied sample (cavity
#2) fits for further studies of the resonance statistics in case of experimen-
tally broken TR invariance, however a fraction of the lost resonances which
remains an experimental issue (discussed in Chapter 2) can make the out-
come of the experiment less clear.

Cavity #2 was used further to study random matrix statistical properties
and time reversal experiment efficiency for the case of broken time reversal
invariance (Chapter 4) which was attempted to achieve in experiment by
connecting two additional transducers to the surface of the sample and con-
necting the feedback loop between them (so that the signal can travel only
in one direction through the feedback loop).

It has been found from TR experiments discussed in Chapter 4 that the
feedback loop suppresses the reconstruction of the excitation pulse for dif-
ferent time delays of the recorded (and replayed backwards) oscillation track
with respect to the original excitation pulse. The suppression of the time
reversal reconstruction increases with increasing amplification coefficient K
of the amplifier in the feedback loop. Thus time reversal experiment becomes
less efficient due to increasing influence of the feedback loop.
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The NID obtained from 60 kHz wide frequency band in case of the active
feedback loop mainly agree with the exponential distribution corresponding
to the input pulse energy being shared randomly between the cavity waves.

It is found also that the active feedback loop influences the NNSD statis-
tics. The effect of the feedback loop on SR (delta statistics) is found negligibly
small compared to the error bars based on measurements at several different
positions of source and receiver.

It can be seen also that skewness and kurtosis of the NNSD, determined
from the data of several experiments, approach closer to the values due to the
Poisson model (exponential NNSD) with an increase of the influence of the
feedback loop, what implies that NNSD is approaching the case of randomly
chosen resonant frequencies. This means that arrangement of the resonances
becomes more random with increasing influence of the feedback loop in the
experiment. However a part of this behavior may be explained also by the
growing amount of lost resonances with increasing influence of the feedback
loop in case if more modes are obscured by the growth of the modes that are
amplified by feedback.

The model matrix for the elastic cavity influenced by the feedback loop
can be derived for small values of τ (time delay of the signal travelling
through the feedback loop). Imaginary parts of the eigenvalues of such a
matrix derived in Chapter 5 represent eigenfrequencies of the chaotic elas-
tic cavity influenced by the feedback loop. It can be seen from the NNSD
obtained due to this model matrix for different values of simulation param-
eters that the number of small resonance spacings (relative to the average
spacing) increases and the number of average spacings decreases due to the
influence of the feedback loop. This means that the trend here is similar to
the one found in Chapter 4 when distributions calculated from experimen-
tal data were discussed. Increase in small eigenvalue (resonance) spacings
and decrease in average eigenvalue (resonance) spacings makes the distribu-
tion closer to exponential (earlier referred as Poisson model). However exact
fitting of the distributions obtained from experimental data using the ran-
dom matrix model discussed in Chapter 5 is considerably complicated due

to unknown factors (
√

< (�ψk(D) · �nD)2 > and
√

< (�ψj(C) · �nC)2 >) involved
in expression for the parameter B measuring the strength of the influence of
the feedback loop. And unknown fraction of the lost (undetected) resonances
can be also present in distributions obtained from experimental data.

The considered random matrix model also shows that the feedback loop
may have influence on decay constants (linewidth, quality factor) of the in-
dividual resonances.
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A. MOMENTS, CENTRAL MOMENTS, SKEWNESS, AND
KURTOSIS OF THE NEAREST NEIGHBOR SPACING

DISTRIBUTIONS OF THE MAIN MODELS OF RANDOM
MATRIX THEORY

Moments of the Nearest Neighbor resonance Spacing Distributions (NNSD)
for main models from Random Matrix Theory (RMT) can be derived as
simple analytical functions of the order of the moment. Table A.1 gives re-
sults of calculation of such functions for three main RMT distribution models
(Exponential or Poisson, GOE and GUE).

Zero and first order moments,
∫ ∞
0 P (s)ds and

∫ ∞
0 sP (s)ds are both equal

to 1 for all three models (Exponential or Poisson, GOE and GUE) due to
the normalization of the distribution functions P (s) and variable s (average
nearest neighbor spacing savg in present chapter is set to 1). It can be also
clearly seen from the Table A.1. So it is obvious that for zero order central
moment we have

∫ ∞
0 P (s)ds = 1 again for all three above-mentioned models

for distribution functions P (s) and the first order central moment is equal
to 0 in all cases:

∫ ∞
0 (s− 1)P (s)ds = 0. The values of the rest of the central

moments (e.g. central moments of 2-nd, 3-rd, 4-th and 5-th order) can be
found as shown in Table A.2.

Skewness S and kurtosis K can be defined by Equation A.1 and Equa-
tion A.2 using central moments Cn =

∫ ∞
0 (s− 1)nP (s)ds.

Tab. A.1: Moments of the NNSD models.

Model Distribution Moments
(name) P (s)

∫ ∞
0 P (s)ds

∫ ∞
0 sP (s)ds

∫ ∞
0 s2P (s)ds

∫ ∞
0 snP (s)ds

Poisson e−s 1 1 2 Γ(n + 1)

GOE π
2
se−

π
4
s2

1 1 4
π

= 1.273 ( 2√
π
)nΓ(n+2

2
)

GUE 32
π2 s

2e−
4

π
s2

1 1 3π
8

= 1.178 (
√

π
2

)n−1Γ(n+3
2

)
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Tab. A.2: Central moments of the NNSD models.

Model Central Moments
(name)

∫ ∞
0 (s− 1)2P (s)ds

∫ ∞
0 (s− 1)3P (s)ds

Poisson 1 2
GOE 4

π
− 1 = 0.273 2− 6

π
= 0.090

GUE 3π
8
− 1 = 0.178 2− 5π

8
= 0.037

Model Central Moments
(name)

∫ ∞
0 (s− 1)4P (s)ds

∫ ∞
0 (s− 1)5P (s)ds

Poisson 9 44
GOE 32

π2 − 3 = 0.242 4
π2 (π(5 + π)− 25) = 0.234

GUE π
4
− 3 + 15π2

64
= 0.099 4 + 5π

4
− 51π2

64
= 0.062

Tab. A.3: Skewness S and Kurtosis K of the NNSD models.

Model Distribution Skewness Kurtosis
(name) P (s) S K
Poisson e−s 2 6

GOE π
2
se−

π
4
s2 2− 6

π

( 4

π
−1)3/2

= 0.6311
32

π2
−3

( 4

π
−1)2

− 3 = 0.2451

GUE 32
π2 s

2e−
4

π
s2 2− 5π

8

( 3π
8
−1)3/2

= 0.4857
π
4
−3+ 15π2

64

( 3π
8
−1)2

− 3 = 0.1082

S =
C3

(C2)3/2
(A.1)

K =
C4

(C2)2
− 3 (A.2)

Skewness S and kurtosis K for all three above mentioned distributions
models P (s) are summarized in Table A.3.

Figure A.1 shows moments for the three models for NNSD (Exponential or
Poisson, GOE and GUE). Curves in Figure A.1 are calculated using formulas
from the last column of Table A.1.

Figure A.2 shows central moments for the three models for NNSD (Expo-
nential or Poisson, GOE and GUE). Curves in Figure A.2 are plotted using
Table A.2.
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Fig. A.1: Curves marked as ’EXP’ ’GOE’ and ’GUE’ show the moments for the
three models for NNSD (Exponential or Poisson, GOE and GUE respec-
tively).
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Fig. A.2: Curves marked as ’EXP’ ’GOE’ and ’GUE’ show central moments for
the three models for NNSD (Exponential or Poisson, GOE and GUE
respectively).
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SUMMARY

The statistical properties of wave propagation in classical chaotic systems
are of fundamental interest in physics. They can be used as the basis for
diagnostic tools in materials science [1, 2]. One successful statistical ap-
proach originating from quantum mechanics [3, 4] is to describe properties
of eigenvalues (i.e. resonant frequencies or energy levels) and eigenfunctions
of a complex chaotic system by modelling the Hamiltonian of the system
with an ensemble of random matrices with certain properties. The statisti-
cal properties of the eigenvalues of this ensemble of random matrices give the
statistical properties of the considered resonant frequencies or energy levels.
The method can be applied to interpret the properties of acoustic waves in
complex mechanical systems.

The statistical properties of the resonance frequencies depend also on the
presence of time reversal invariance in the system. The role of time reversal
invariance can be verified independently by time reversal experiments. In
time reversal experiments part of the recorded (elastic) response is played
backwards in time in order to refocus the strongly scattered signal back into
a short pulse by back-propagation of the waves in the system.

As a model system to test the statistical properties of resonances with
the ability to perform time reversal reconstruction, we investigated chaotic
systems with time reversal invariance using ultrasonic waves in aluminum
blocks (cavities). After excitation of the samples with a short acoustic pulse
the reverberation responses were recorded and analyzed.

The statistical properties of resonance frequencies of the cavities were
obtained from the spectral density of the reverberant responses. The dis-
tribution of the transmitted intensities displays a random division of inten-
sity between cavity waves in narrow frequency bands. The distribution of
frequency spacing between neighboring cavity resonances and the Spectral
Rigidity agree with the predictions for a Gaussian Orthogonal Ensemble of
random matrices. In the analysis of the spectral density of the recorded re-
sponses we explicitly included the fact that not all resonances are detected.
The agreement with predictions for the Gaussian Orthogonal Ensemble is
achieved if we a assume that a fraction of typically 25 percent of the reso-
nances is not detected in the experiment. We also found that moments and
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central moments of different order, skewness and kurtosis for nearest neighbor
resonance spacing distributions determined from experimental data fall close
to the values corresponding to the Gaussian Orthogonal Ensemble. These
values actually fall in between the values for the Gaussian Orthogonal En-
semble and the values corresponding to a random arrangement of resonance
frequencies, the Poisson model. This may be considered a consequence of the
lost resonances.

Reversibility of the excited wave dynamics in the cavity after a given time
delay was studied by reconstruction of the excitation pulse in time reversal
experiments. The normalized amplitude of the reconstructed pulse decays
exponentially with the time delay between the original excitation pulse and
the end of the reversed oscillation track. The exponential behavior exists for
time delays longer than the inverse of the nearest neighbor resonance spacing.

The statistical properties of the chaotic cavity were determined both from
the experimental cavity responses as well as from simulations of the elastic
cavity responses (using Wave3000 simulation program [48]). In this thesis it
was confirmed that the simulation correctly predicts the spectral density of
the elastic responses of an aluminum cube in the low frequency limit [46].

The distribution of frequency spacing between neighboring cavity reso-
nances and the Spectral Rigidity calculated from the responses simulated
with Wave3000 program do not show behavior predicted for the fraction of
the lost resonances in the Gaussian Orthogonal Ensemble. However, small
peaks, being the artifact of the simulation, may be present in the higher
frequency band used to study statistics. Such spurious peaks that appear
around real cavity resonances may influence the statistics and cause the de-
viation from the prediction for Gaussian Orthogonal Ensemble.

The time reversal invariance of waves in the chaotic cavity was broken
experimentally by connecting an amplified feedback loop between the two
additional transducers on the surface of the aluminum block (cavity). We
repeated the time reversal experiments and the statistical analysis of the
spectral density of the cavity responses. Thus we did prove that the feed-
back loop inhibits time reversal reconstruction of the excitation pulse in time
reversal experiment. The effect of the feedback loop on the nearest neigh-
bor resonance spacing statistics has been observed. The experimental results
show that the skewness and kurtosis of the distribution of the spacing be-
tween the neighboring resonances approach the values due to the Poisson
model (exponential distribution) when the influence of the feedback loop is
increased. This implies that the distribution approaches the case of randomly
chosen resonant frequencies with increasing influence of the feedback loop in
the experiment.

A random matrix model was constructed within this thesis to describe
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the statistical properties of the resonance frequencies of the aluminum block
(chaotic cavity) influenced by the feedback loop. Predictions for the nearest
neighbor resonance spacing distribution due to this random matrix model
have been made. It can be seen from these predictions that the number of
small eigenvalue (resonance) spacings increases and the number of average
resonance spacings decreases with increasing influence of the feedback loop.
This makes the distribution closer to exponential (earlier referred as Poisson
model). The calculations confirm the trend of the experimental data.

It makes sense to further investigate similar systems with (and without)
the feedback loop using chaotic and regular resonators of different shapes
made out of different materials. Such results would help to assess how random
matrix statistics can be used in nondestructive testing techniques in material
science. A good improvement would also be to improve resonance detection in
case of spurious peaks in the spectral density. An important improvement to
the random matrix model for the elastic chaotic cavity influenced by feedback
can be made by including the linewidth (quality factors) of the individual
resonances and distributions of these values.

A short overview of the content of chapters of the present thesis is given
below.

Chapter 1 gives an overview of the statistics of Random Matrix The-
ory and Time Reversal Experiments. The Gaussian Orthogonal Ensemble,
Nearest Neighbor eigenvalue Spacing Distribution and Spectral Rigidity are
introduced. Distributions resulting from the coexistence of independent res-
onance sequences and from incomplete sequences of resonances are treated as
well. The general scheme of the time-reversal experiments is also described
in Chapter 1.

Experiments on and statistical properties of the elastic chaotic cavity
without breaking the time reversal invariance are discussed in detail in Chap-
ter 2. The efficiency of the time reversal experiments using this cavity is
discussed as well.

In chapter 3 the statistical properties of the chaotic cavity are calculated
from simulations using Wave3000 software [48].

Experimental investigation of the statistical properties and efficiency of
the time reversal experiment when the time reversal invariance in a chaotic
cavity is broken by a feedback loop is discussed in Chapter 4.

Chapter 5 describes a novel random matrix model for the description of a
chaotic cavity influenced by a feedback loop. It discusses the corresponding
Nearest Neighbor eigenvalue Spacing Distribution obtained with this model.

The following new results are claimed to be obtained within the scope of
the present thesis:

- Calculation of the Nearest Neighbor eigenvalue Spacing Distributions,
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its moments and spectral rigidity from experiments on a chaotic elastic vol-
ume resonator (Chapter 2). Correspondence of the found Nearest Neighbor
eigenvalue Spacing Distribution and Spectral Rigidity to those of a Gaussian
Orthogonal Ensemble with a fraction of lost resonances.

- Determination of the Nearest Neighbor eigenvalue Spacing Distribution
and Spectral Rigidity from simulations of the acoustic wave propagation in
an elastic chaotic resonator (Chapter 3).

- Measurements of the acoustic responses of the cavity influenced by the
feedback loop. Calculation of the Nearest Neighbor eigenvalue Spacing Dis-
tribution, its moments and the Spectral Rigidity from these measured re-
sponses. Time reversal experiments performed on such a system (Chapter
4).

- Construction of the random matrix model of an elastic chaotic cavity
influenced by a feedback loop and prediction of the behavior of the Nearest
Neighbor eigenvalue Spacing Distribution behavior within this model (Chap-
ter 5).



SAMENVATTING

De statistische eigenschappen van golfvoortplanting in klassieke chaotische
systemen zijn van fundamenteel belang in de natuurkunde. Zij kunnen de
basis zijn voor niet destructief testen en diagnostiek in de materiaalkunde en
techniek [1, 2]. Wij gebruiken een succesvolle statistische methode afkom-
stig uit de kwantummechanica [3, 4] om de eigenschappen van eigenwaarden
(resonantiefrequenties of energie niveaus) en eigenfuncties van een complex
chaotisch systeem te beschrijven door de Hamiltoniaan van het systeem met
een ensemble van toevallige matrices met bepaalde eigenschappen te mod-
elleren. De statistische eigenschappen van de eigenwaarden van een dergelijk
ensemble van toevallige matrices geven de statistische eigenschappen van de
beschouwde resonantiefrequenties of energie niveaus. Dit kan ook toegepast
worden om de eigenschappen van akoestische golven in complexe mechanische
systemen te interpreteren.

De statistische eigenschappen van de resonantiefrequenties zijn ook afhanke-
lijk van de aan- of afwezigheid van tijdinversie-invariantie in het systeem.
Tijdinversie-invariantie kan onafhankelijk geverifieerd worden door tijdinver-
sie experimenten. In een tijdinversie experiment wordt een deel van het
opgenomen (elastische) signaal teruggespeeld zodat het sterk verspreide sig-
naal wordt gefocuseerd in een korte puls door de voortplanting van de golven
in het systeem om te keren. Als model systeem voor het testen van de statis-
tische eigenschappen van resonanties met de mogelijkheid om een tijdinversie
experiment toe te passen, hebben we chaotische systemen onderzocht. Hi-
erbij is gebruik gemaakt van ultrasone golven in aluminium blokken. Na
excitatie van de monsters met een korte akoestische puls werd het complexe
responssignaal geregistreerd en geanalyseerd.

De statistische eigenschappen van resonantie frequenties zijn verkregen
uit de spectrale dichtheid van de opgenomen responssignalen. De verdeling
van de transmissie-intensiteit vertoont een toevalige verdeling van de inten-
siteit in smalle frequentiebanden. De verdeling van de frequentie-afstanden
tussen naaste buur resonanties en de Spectrale Rigiditeit komen overeen met
de voorspellingen voor een Gaussiaans Orthogonaal Ensemble. Bij de anal-
yse van de spectrale dichtheid van de opgenomen responssignalen hebben
wij uitdrukkelijk meegenomen dat niet alle resonanties kunnen worden gede-
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tecteerd. De overeenkomst met de voorspellingen voor het Gaussiaans Or-
thogonaal Ensemble wordt bereikt als we veronderstellen dat een fractie van
25 procent van de resonanties niet gedetecteerd wordt in het experiment. We
vonden ook dat de momenten, de centrale momenten van verschillende orde,
de scheefheid en de kurtosis voor de Naaste Buur resonantie Afstand Verdelin-
gen, bepaald op basis van de experimentele gegevens, dichtbij de waarden
liggen die overeenkomen met het Gaussiaans Orthogonaal Ensemble. Deze
waarden liggen tussen de waarden voor het Gaussiaans Orthogonaal Ensem-
ble en de waarden die overeenkomen met een toevallige rangschikking van
resonantiefrequenties, de Poisson verdeling. Dit kan worden beschouwd als
een gevolg van de niet gedetecteerde resonanties.

De omkeerbaarheid van de golfdynamica in de resonator werd onder-
zocht door reconstructie van de excitatiepuls in tijdinversie experimenten.
De genormaliseerde amplitude van de gereconstrueerdepuls in het tijdinver-
sie experiment vervalt exponentieel met het tijdsverschil tussen de originele
excitatiepuls en de eindtijd van het deel van het responssignaal dat omge-
keerd wordt. Het exponentiele gedrag wordt zichtbaar bij vertragingen langer
dan de inverse van de naaste buur resonantie afstand.

De statistische eigenschappen van de chaotische resonator konden bepaald
worden zowel van de experimentele resonator respons als van de gesimuleerde
response van een elastische resonator met behulp van simulatie-programma’s
(als Wave3000 programma’s [48]). In dit proefschrift werd bevestigd dat de
simulaties een correcte voorspelling gaven van de spectrale dichtheid van de
elastische respons van een aluminium kubus in lage frequentie limiet [46].

De verdeling van de frequentie afstand tussen naaste buur resonanties en
de Spectrale Rigiditeit berekend op basis van de resonator responsen ges-
imuleerd met het Wave3000 programma kwam niet overeen met de voor-
spelling voor de fractie van de verloren resonanties in het Gaussiaans Or-
thogonaal Ensemble. Er kunnen echter enkele kleine pieken aanwezig zijn
in de hogere frequentie band gebruikt om de statistieken te bestuderen, die
een gevolg zijn van artefacten in de simulatie. Deze valse pieken rond de
echte resonator resonanties kunnen invloed hebben op de statistiek en zijn
de oorzaak van de afwijking van het Gaussiaans Orthogonaal Ensemble.

De tijdinversie-invariantie van golven in de chaotische resonator werd ex-
perimenteel gebroken door het aansluiten van een versterkte terugkoppel-
ing tussen de twee extra transducers op het oppervlak van het aluminium
blok. De tijdinversie experimenten en de statistische analyse van de spectrale
dichtheid van de resonator responsen werden herhaald in dit proefschrift
voor de actieve terugkoppeling. Wij hebben vastgesteld dat de terugkop-
peling de reconstructie van de excitatie puls in het tijdinversie experiment
vermindert. Het effect van de terugkoppeling op de naaste buur afstand res-
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onantie statistieken is gemeten. Uit de experimentele resultaten blijkt dat de
Scheefheid en Kurtosis van de Naaste Buur resonantie Afstand Verdelingen
dichter bij de waarden van het Poisson-model (exponentiele verdeling) liggen
naarmate de invloed van de terugkoppeling toeneemt. Dit houdt in dat de
verdeling de toestand van toevallig gekozen resonantiefrequenties benaderd,
als de invloed van de terugkoppeling in het experiment toeneemt.

Een toevallig matrix model werd geconstrueerd als onderdeel van dit
proefschrift om de statistische eigenschappen van de resonantie frequenties
van het aluminium blok (chaotische resonator) te beschrijven wanneer deze
wordt beinvloed door de terugkoppeling. Er zijn voorspellingen gedaan voor
de Naaste Buur resonantie Afstand Verdelingen als gevolg van dit toevallige
matrix model. Hieruit blijkt dat het aantal kleine eigenwaardenafstanden of
resonantieafstanden toeneemt en het aantal gemiddelde resonantieafstanden
afneemt met toenemende invloed van de terugkoppeling. Hierdoor krijgt de
verdeling een exponentieel karakter en komt dichter bij het Poisson model.
De berkeningen bevestigen de trend gevonden in de experimentele data.

Het is zinvol vergelijkbare systemen te onderzoeken met (en zonder) een
terugkoppeling door gebruik te maken van chaotische en regelmatige res-
onatoren van verschillende vormen gemaakt uit verschillende materialen.
Dergelijke resultaten kunnen helpen om te beoordelen hoe random matrix
statistieken gebruikt kunnen worden in niet-destructieve testen in de mate-
riaalkunde. Een goede verbetering zou ook zijn om de resonantiedetectie te
verbeteren en zo de detectie van valse pieken in de spectrale dichtheid te
verminderen. Het toevallige matrix model voor de elastische chaotische res-
onator onder invloed van een terugkoppeling kan verbeterd worden door de
lijnbreedte (kwaliteitsfactoren) van de individuele resonanties en de verdeling
van deze waarden in het model op te nemen.

Een kort overzicht van de inhoud van de hoofdstukken van dit proefschrift
wordt hieronder gegeven.

Hoofdstuk 1 geeft een overzicht van de belangrijkste elementen van de
toevallige matrix theorie en de tijdinversie experimenten. Het Gaussiaans
Orthogonaal Ensemble, de Naaste Buur resonantie Afstand Verdelingen en
Spectrale Rigiditeit worden geintroduceerd. Verdelingen, die het resultaat
zijn van co-existentie van onafhankelijke resonantie sequenties en verdelin-
gen van onvolledige sequenties van resonanties worden ook bediscussieerd.
De algemene opzet van het tijdinversie experiment wordt ook beschreven in
Hoofdstuk 1.

Experimenten aan en statistische eigenschappen van de elastische chao-
tische resonator zonder verbreking van de tijdinversie-invariantie worden be-
handeld in detail in Hoofdstuk 2. Ook de efficiëntie van het tijdinversie
experiment met deze resonator wordt beschouwd in Hoofdstuk 2.
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In hoofdstuk 3 worden de statistische eigenschappen van de chaotische
resonator berekend uit simulaties met behulp van Wave3000 software [48].

Experimenteel onderzoek van de statistische eigenschappen en de efficiëntie
van het tijdinversie experiment in het geval van bebroken tijdinversie-invariantie
in een chaotische resonator waarin de tijdinversie gebroken is door een terugkop-
pelingscircuit wordt behandeld in Hoofdstuk 4.

Hoofdstuk 5 beschrijft een mogelijk toevallige matrix model voor de beschri-
jving van de elastische chaotische resonator beinvloed door een terugkoppel-
ingscircuit. Hierin wordt de simulatie en de hieruit volgende NBAV bedis-
cussieerd.

In dit proefschrift zijn de volgende nieuwe resultaten verkregen:
- Berekening van de Naaste Buur resonantie Afstand Verdelingen, ziin mo-

menten en Spectrale Rigiditeit uit experimenten aan een chaotische elastis-
che volume resonator (Hoofdstuk 2). Overeenkomst van deze Naaste Buur
resonantie Afstand Verdelingen en Spectrale Rigiditeit met die van een Gaus-
siaans Orthogonaal Ensemble met een fractie van verloren resonanties.

- Bepaling van de Naaste Buur resonantie Afstand Verdelingen en de
Spectrale Rigiditeit uit simulaties van akoestische golven in een chaotische
resonator (Hoofdstuk 3).

- Metingen van de akoestische respons van de resonator bëınvloed door een
terugkoppelingscircuit. Berekening van de Naaste Buur resonantie Afstand
Verdelingen, zijn momenten en Spectrale Rigiditeit van de gemeten respons.
Tijdinversie experimenten uitgevoerd op dit systeem (Hoofdstuk 4).

- Constructie van het toevallige matrix model van de elastische chaotische
resonator bëınvloed door de terugkoppeling en voorspelling van de Naaste
Buur resonantie Afstand Verdelingen door dit model (Hoofdstuk 5).
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