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Abstract

We present a formal analysis of ribosome kinetics using probabilistic model
checking and the tool Prism. We compute different parameters of the model,
like probabilities of translation errors and average insertion times per codon. The
model predicts strong correlation to the quotient of the concentrations of the so-
called cognate and near-cognate tRNAs, in accord with experimental findings and
other studies. Using piecewise analysis of the model, we areable to give an ana-
lytical explanation of this observation.

1 Introduction

The translation mechanism that synthesizes proteins basedon mRNA sequences is a
fundamental process of the living cell. Conceptually, an mRNA can be seen as a string
of codons, each coding for a specific amino acid. The codons ofan mRNA are sequen-
tially read by a ribosome, where each codon is translated using an amino acid specific
transfer-RNA (aa-tRNA), building one-by-one a chain of amino acids, i.e. a protein. In
this setting, aa-tRNA can be interpreted as molecules containing a so-called anticodon,
and carrying a particular amino acid. Dependent on the pairing of the codon under
translation with the anticodon of the aa-tRNA, plus the stochastic influences such as
the changes in the conformation of the ribosome, an aa-tRNA,arriving by Brownian
motion, docks into the ribosome and may succeed in adding itsamino acid to the chain
under construction. Alternatively, the aa-tRNA dissociates in an early or later stage of
the translation.

Since the seventies a vast amount of research has been devoted, unraveling the
mRNA translation mechanism and related issues. By now, the overall process of trans-
lation is reasonably well understood from a qualitative perspective. The translation
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process consists of around twenty small steps, a number of them being reversible. For
the model organismEscherichia coli, the average frequencies of aa-tRNAs per cell
have been collected, but regarding kinetics relatively little is known exactly. Over
the past few years, Rodnina and collaborators have made goodprocess in capturing
the time rates for various steps in the translation process for a small number of spe-
cific codons and anticodons [14, 17, 18, 9]. Using various advanced techniques, they
were able to show that the binding of codon and anticodon is crucial at a number of
places for the time and probability for success of elongation. Based on these results,
Viljoen and co-workers started from the assumption that therates found by Rodnina
et al. can be used in general, for all codon-anticodon pairs as estimates for the reac-
tion dynamics. In [7], a complete detailed model is presented for all 64 codons and
all 48 aa-tRNA classes forE. coli, on which extensive Monte Carlo experiments are
conducted. In particular, using the model, codon insertiontimes and frequencies of
erroneous elongations are established. Given the apparently strong correlation of the
ratio of so-called near-cognates vs. cognate and pseudo-cognates, and near-cognates
vs. cognates, respectively, it is argued that competition of aa-tRNAs, rather than their
availability decides both speed and fidelity of codon translation.

In the present paper, we propose to exploit abstraction and model checking of
continuous-time Markov chains (CTMCs) with Prism [13, 10].The abstraction con-
veniently reduces the number of states and classes of aa-tRNA to consider. The tool
provides built-in performance analysis algorithms and path chasing machinery, reliev-
ing its user from mathematical calculations. More importantly, from a methodological
point of view, the incorporated CSL-logic [2] allows to establish quantitative results for
parts of the system, e.g. for first-passage time for a specificstate. Such piecewise anal-
ysis proves useful when explaining the relationships suggested by the data collected
from the model. Additionally, in our case, the Prism tool enjoys rather favourably
response times compared to simulation.

Related workThe present investigation started from the Monte-Carlo experiments
of mRNA translation reported in [7]. A similar stochastic model, but based on ordinary
differential equations, was developed in [11]. It treats insertion times, but no trans-
lation errors. The model of mRNA translation in [8] assumes insertion rates that are
directly proportional to the mRNA concentrations, but assigns the same probability of
translation error to all codons.

Currently, there exist various applications of formal methods to biological sys-
tems. A selection of recent papers from model checking and process algebra includes
[16, 4, 5]. More specifically pertaining to the current paper, [3] applies the Prism mod-
elchecker to analyze stochastic models of signaling pathways. Their methodology is
presented as a more efficient alternative to ordinary differential equations models, in-
cluding properties that are not of probabilistic nature. Also [10] employs Prism on
various types of biological pathways, showing how the advanced features of the tool
can be exploited to tackle large models.

Organization of the paperSection 2 provides the biological background, discussing
the mRNA translation mechanism. Its Prism model is introduced in Section 3. In Sec-
tion 4, it is explained how error probabilities are obtainedfrom the model and why they
correlate with the near-cognate/cognate fraction. This involves adequate estimates of
specific stochastic subbehaviour. Insertion times are the subject of Section 5. There
too, it is illustrated how the quantitative information of parts of the systems is instru-
mental in deriving the relationship with the ratio of pseudo-cognate and near-cognates
vs. cognates.4

AcknowledgmentsWe are grateful to Timo Breit, Christiaan Henkel, Erik Luit,

4An appendix presents supplementary figures and data.
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Jasen Markovski, and Hendrik Viljoen for fruitful discussions and constructive feed-
back.

2 A kinetic model of mRNA translation

In nature, there is a fixed correspondence of a codon and an amino acid. This is the
well-known genetic code. Thus, an mRNA codes for a unique protein. However, the
match of a codon and the anticodon of a tRNA is different from pair to pair. The
binding influences the speed of the actual translation.5 Here, we give a brief overview
of the translation mechanism. Our explanation is based on [17, 12]. Two main phases
can be distinguished: peptidyl transfer and translocation.

The peptidyl transfer phase runs through the following steps. aa-tRNA arrives at the
A-site of the ribosome-mRNA complex by diffusion. The initial binding is relatively
weak. Codon recognition comprises (i) establishing contact between the anticodon of
the aa-tRNA and the current codon in the ribosome-mRNA complex, and (ii) subse-
quent conformational changes of the ribosome.GTPase-activation of the elongation
factor EF-Tu is largely favoured in case of a strong complementary matching of the
codon and anticodon. AfterGTP-hydrolysis, producing inorganic phosphatePi and
GDP, the affinity of the ribosome for the aa-tRNA reduces. The subsequentaccommo-
dation step also depends on the fit of the aa-tRNA.

Next, the translocation phase follows. Another GTP-hydrolysis involving elonga-
tion factorEF-G, producesGDP andPi and results in unlocking and movement of the
aa-tRNA to the P-site of the ribosome. The latter step is preceded or followed byPi -
release. Reconformation of the ribosome and release ofEF-G moves the tRNA, that
has transferred its amino acid to the polypeptide chain, into the E-site of the ribosome.
Further rotation eventually leads to dissociation of the used tRNA.

At present, there is little quantitative information regarding the translation mech-
anism. ForE. coli, a number of specific rates have been collected [17, 9], whereas
some steps are known to be relatively rapid. The fundamentalassumption of [7], that
we also adopt here, is that experimental data found by Rodnina et al. for theUUU and
CUC codons, extrapolate to other codons as well. However, further assumptions are
necessary to fill the overall picture. In particular, Viljoen proposes to estimate the
delay due to so-called non-cognate aa-tRNA, that are blocking the ribosomal A-site,
as 0.5ms. Also, accurate rates for the translocation phase are largely missing. Again
following [7], we have chosen to assign, if necessary, high rates to steps for which data
is lacking. This way these steps will not be rate limiting.

3 The Prism model

The abstraction of the biological model as sketched in the previous section is twofold:
(i) Instead of dealing with 48 classes of aa-tRNA, that are identified by the their anti-
codons, we use four types of aa-tRNA distinguished by their matching with the codon
under translation. (ii) We combine various detailed steps into one transition. The first
reduction greatly simplifies the model, more clearly eliciting the essentials of the un-
derlying process. The second abstraction is more a matter ofconvenience, though it
helps in compactly presenting the model.

For a specific codon, we distinguish four types of aa-tRNA: cognate, pseudo-
cognate, near-cognate, non-cognate. Cognate aa-tRNAs have an anticodon that stro-
ngly couples with the codon. The amino acid carried by the aa-tRNA is always the right

5See Figure 2 and Figure 3 in the appendix.
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one, according to the genetic code. The binding of the anticodon of a pseudo-cognate
aa-tRNA or a near-cognate aa-tRNA is weaker, but sufficiently strong to occasionally
result in the addition of the amino acid to the nascent protein. In case the amino acid
of the aa-tRNA is, accidentally, the right one for the codon,we call the aa-tRNA of
the pseudo-cognate type. If the amino acid does not coincidewith the amino acid the
codon codes for, we speak in such a case of a near-cognate aa-tRNA.6 The match of
the codon and the anticodon can be very poor too. We refer to such aa-tRNA as being
non-cognate for the codon. This type of aa-tRNA does not initiate a translation step at
the ribosome.

The Prism model can be interpreted as the superposition of four stochastic au-
tomata, each encoding the interaction of one of the types of aa-tRNA. The automata
for the cognates, pseudo-cognates and near-cognates are very similar; the cognate type
automaton only differs in its value of the rates from those for pseudo-cognates and near-
cognates, while the automata for pseudo-cognates and for near-cognates only differ in
their arrival process. The automaton for non-cognates is rather simple.

Below, we are considering average transition times and probabilities for reacha-
bility based on exponential distributions. Therefore, following common practice in
performance analysis, there is no obstacle to merge two subsequent sequential transi-
tions with ratesλ andµ, say, into a combined transition of rateλµ/(λ + µ). This way,
an equivalent but smaller model can be obtained. However, itis noted, that in general,
such a simplification is not compositional and should be taken with care.

For the modeling of continuous-time Markov chains, Prism commands have the
form [label] guard→ rate : update ;. In short, from the commands whose guards
are fulfilled in the current state, one command is selected proportional to its relative
rate. Subsequently, the update is performed on the state variables. So, a probabilis-
tic choice is made among commands. Executing the selected command results in a
progress of time according to the exponential distributionfor the particular rate. We
refer to [13, 10] for a proper introduction to the Prism modelchecker.

Initially, control resides in the common start states=1 of the Prism model with
four boolean variablescogn, pseu, near andnonc set to false. Next, an arrival pro-
cess selects one of the booleans that is to be set to true. Thisis the initial binding of
the aa-tRNA. The continuation depends on the type of aa-tRNA: cognate, pseudo-
cognate, near-cognate or non-cognate. In fact, a race is runthat depends on the con-
centrationsc cogn, c pseu, c near andc nonc of the four types of aa-tRNA and
a kinetic constantk1f. Following Markovian semantics, the probability in the race
for cogn to be set to true (the others remaining false) is the relativeconcentration
c cogn/(c cogn + c pseu + c near + c nonc).

// initial binding

[ ] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;

[ ] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;

[ ] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;

[ ] (s=1) -> k1f * c_nonc : (s’=2) & (nonc’=true) ;

As the aa-tRNA, that is just arrived, may dissociate too, thereversed reaction is in
the model as well. However, control does not return to the initial state directly, but,
for modelchecking purposes, first to the states=0 representing dissociation. At the
same time, the boolean that was true is reset. Here, cognates, pseudo-cognates and
near-cognates are handled with the same ratek2b. Non-cognates always dissociate as
captured by the separate ratek2bx.

// dissociation

6The notion of a pseudo-cognate comes natural in our modeling. However, the distinction between a
pseudo-cognate and a near-cognate is non-standard. Usually, a near-cognate refers to both type of tRNA.
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[ ] (s=2) & ( cogn | pseu | near ) -> k2b :

(s’=0) & (cogn’=false) & (pseu’=false) & (near’=false) ;

[ ] (s=2) & nonc -> k2bx : (s’=0) & (nonc’=false) ;

An aa-tRNA that is not a non-cognate can continue from states=2 in the codon recog-
nition phase, leading to states=3. This is a reversible step in the translation mecha-
nism, so there are transitions from states=3 back to states=2. However, the rates for
cognates vs. pseudo- and near-cognates, viz.k3bc, k3bp andk3bn, differ significantly
(see Table 1). Note that the values of the booleans do not change.

// codon recognition

[ ] (s=2) & ( cogn | pseu | near ) -> k2f : (s’=3) ;

[ ] (s=3) & cogn -> k3bc : (s’=2) ;

[ ] (s=3) & pseu -> k3bp : (s’=2) ;

[ ] (s=3) & near -> k3bn : (s’=2) ;

The next forward transition, from states=3 to states=4, is a combination of detailed
steps involving the processing of GTP. The transition is one-directional, again with
a significant difference in the ratek3fc for a cognate aa-tRNA and the ratesk3fp
andk3fn for pseudo-cognate and near-cognate aa-tRNA, that are equal.

// GTPase activation, GTP hydrolysis, EF-Tu conformation change

[ ] (s=3) & cogn -> k3fc : (s’=4) ;

[ ] (s=3) & pseu -> k3fp : (s’=4) ;

[ ] (s=3) & near -> k3fn : (s’=4) ;

In states=4, the aa-tRNA can either be rejected, after which control moves to the
states=5, or accommodates, i.e. the ribosome reconforms such that the aa-tRNA can
hand over the amino acid it carries, so-called peptidyl transfer. In the latter case, control
moves to states=6. As before, rates for cognates and those for pseudo-cognates and
near-cognates are of different magnitudes.

// rejection

[ ] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;

[ ] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;

[ ] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer

[ ] (s=4) & cogn -> k4fc : (s’=6) ;

[ ] (s=4) & pseu -> k4fp : (s’=6) ;

[ ] (s=4) & near -> k4fn : (s’=6) ;

After a number of movements back-and-forth between states=6 and states=7, the
binding of the EF-G complex becomes permanent. In the detailed translation mecha-
nism a number of (mainly sequential) steps follows, that aresummarized in the Prism
model by a single transition to a final states=8, that represents elongation of the pro-
tein in nascent with the amino acid carried by the aa-tRNA. The synthesis is successful
if the aa-tRNA was either a cognate or pseudo-cognate for thecodon under translation,
reflected by eithercogn or pseu being true. In case the aa-tRNA was a near-cognate
(non-cognates never pass beyond states=2), an amino acid that does not correspond to
the codon in the genetic code has been inserted. In the later case, an insertion error has
occurred.

// EF-G binding

[ ] (s=6) -> k6f : (s’=7) ;

[ ] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,

// rearrangements of ribosome and EF-G, dissociation of GDP

[ ] (s=7) -> k7f : (s’=8) ;
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A number of transitions, linking the dissociation states=0 and the rejection states=5
back to the start states=1, where a race of aa-tRNAs of the four types commences a
new, and looping at the final states=8, complete the Prism model.

// no entrance, re-entrance at state 1

[ ] (s=0) -> FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ ] (s=5) -> FAST : (s’=1) ;

// elongation

[ ] (s=8) -> FAST : (s’=8) ;

Table 1 collects the rates as gathered from the biological literature [17, 7] and used in
the Prism model above.

k1f 140 k3fc 260 k4rc 60 k6f 150

k2f 190 k3fp, k3fn 0.40 k4rp, k4rn FAST k7f 145.8

k2b 85 k3bc 0.23 k4fc 166.7 k7b 140

k2bx 2000 k3bp, k3bn 80 k4fp, k4fn 46.1

Table 1: Rates of the Prism model.
In the next two sections, we will study the Prism model described above for the

analysis of the probability for insertion errors, i.e. extension of the peptidyl chain with
a different amino acid than the codon codes for, and of the average insertion times, i.e.
the average time it takes to process a codon up to elongation.

4 Insertion errors

In this section we show how the model checking features of Prism can be used to
predict the misreading frequencies for individual codons.The translation of mRNA
into a polypeptide chain is performed by the ribosome machinery with high precision.
Experimental measurements show that on average, only one in10,000 amino acids is
added wrongly.7

For a codon under translation, a pseudo-cognate anticodon carries precisely the
amino acid that the codon codes for. Therefore, successful matching of a pseudo-
cognate does not lead to an insertion error. In our model, themain difference of cog-
nates vs. pseudo-cognates and near-cognates is in the kinetics. At various stages of the
peptidyl transfer the rates for true cognates differ from the others up to three orders of
magnitude.

Figure 1 depicts the relevant abstract automaton, derived from the Prism model
discussed above. In case a transition is labeled with two rates, the leftmost number
concerns the processing of a cognate aa-tRNA, the rightmostnumber that of a pseudo-
cognate or near-cognate. In three states a probabilistic choice has to be made. The prob-
abilistic choice in state 2 is the same for cognates, pseudo-cognates and near-cognates
alike, the ones in state 3 and in state 4 differs for cognates and pseudo-cognates or
near-cognates.

For example, after recognition in state 3, a cognate aa-tRNAwill go through the
hydrolysis phase leading to state 4 for a fraction 0.999 of the cases (computed as
260/(0.23+ 260)), a fraction being close to 1. In contrast, for a pseudo-cognate or
near-cognate aa-tRNA this is 0.005 only. Cognates will accommodate and continue
to state 6 with probability 0.736, while pseudo-cognates and near-cognates will do so

7Our findings, see Table 4, based on the kinetic rates available are slightly higher.
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Figure 1: Abstract automaton for error insertion

with the small probability 0.044, the constant FAST being set to 1000 in our experi-
ments. As the transition from state 4 to state 6 is irreversible, the rates of the remaining
transitions are not of importance here.

The probability for reaching state 8 in one attempt can be easily computed by Prism
via the CSL-formula

P=? [ (s!=0 & s!=5) U (s=8) {(s=2) & cogn} ] .

The formula asks to establish the probability for all paths wheres is not set to0 nor5,
until s have been set to8, starting from the (unique) state satisfyings=2 & cogn. We
obtainpc

s = 0.508,pp
s = 0.484·10−4 andpn

s = 0.484·10−4, with pc
s the probability for a

cognate to end up in state 8 —and elongate the peptidyl chain—without going through
state 0 nor state 5;pp

s andpn
s the analogues for pseudo- and near-cognates, respectively.

Note that these values are the same for every codon. Different among codons are
the concentrations of cognates, pseudo-cognates and near-cognates.8 Ultimately, the
frequenciesfc, f p andfn of the types of aa-tRNA in the cell, i.e. the actual number of
molecules of the kind, determine the rates for an arrival

As reported in [7], the probability for an erroneous insertion, is strongly correlated
with the quotient of the number of near-cognate anticodons and the number of cog-
nate anticodons.9 In the present setting, this correlation can be formally derived. We
have that an insertion error occurs if a near-cognate succeeds to attach its amino acid.
Therefore,

P(error) = P(near & elongation| elongation)

=
pn

s · (fn/tot)

pc
s · (fc/tot) + pp

s · (f p/tot) + pn
s · (fn/tot)

≈
pn

s · fn

pc
s · fc

∼
fn

fc

with tot = fc + f p + fn, and where we have used that

P(elongation)= (fc/tot) · pc
s + (f p/tot) · pp

s + (fn/tot) · pn
s

and thatpp
s , pn

s ≪ pc
s . Note, the ability to calculate the latter probabilities, illustrating

that the approach of piecewise analysis, is instrumental inobtaining the above result.

5 Competition and insertion times

We continue the analysis of the Prism model for translation and discuss the correlation
of the average insertion time for the amino acid specified by acodon, on the one hand,
and the relative abundance of pseudo-cognate and near-cognate aa-tRNAs, on the other
hand. The insertion time of a codon is the average time it takes to elongate the protein
in nascent with an amino acid.

The average insertion time can be computed in Prism using theconcept ofrewards
(also known ascostsin Markov theory). Each state is assigned a value as its reward.

8See Table 3 in the appendix.
9See Figure 4 in the appendix.
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Further, the reward of each state is weighted per unit of time. Hence, it is computed by
multiplication with the average time spent in the state. Thecumulative reward of a path
in the chain is defined as a sum over all states in the path of such weighted rewards per
state. Thus, by assigning to each state the value 1 as reward,we obtain the total aver-
age time for a given path. For example, in Prism the CSL formulaR=? [ F (s=8) ]

which asks to compute the expected time to reach states=8. Recall, in states=8 the
amino acid is added to the polypeptide chain. So, a script modelchecking the above for-
mula then yields the expected insertion time per codon.10 A little bit more ingenuity is
needed to establish average exit times, for example for a cognate to pass from states=2
to states=8. The point is that conditional probabilities are involved.However, since
dealing exponential distributions, elimination of transition in favour of adding their
rates to that of the remaining ones, does the trick. Various results, some of them used
below, are collected in Table 2. (The probabilities of failure and success for the non-
cognates are trivial,px

f = 1 andpx
s = 0, with a time per failed attemptT x

f = 0.5 · 10−3

seconds.)
pc

s 0.5079 pc
f 0.4921 T c

s 0.03182 T c
f 9.342· 10−3

pp
s 4.847· 10−4 pp

f 0.9995 T p
s 3.251 T p

f 0.3914

pn
s 4.847· 10−4 pn

f 0.9995 T n
s 3.251 T n

f 0.3914

Table 2: Exit probabilities and times (in seconds) for threetypes of aa-tRNA. Failure
for exit to statess=0 or s=5; success for exit to states=8.

There is a visible correlation between the quotient of the number of near-cognate
aa-tRNA and the number of cognate aa-tRNA.11 In fact, the average insertion time for
a codon is approximately proportional to the near-cognate/cognate ratio. This can be
seen as follows. The insertion of the amino acid is completedif states=8 is reached,
either for a cognate, pseudo-cognate or near-cognate. As wehave seen, the probability
for the latter two is negligible. Therefore, the number of cognate arrivals is decisive.
With pc

f andpc
s being the probability for a cognate to fail, i.e. exit at states=0 ors=5, or

to succeed, i.e. reach of states=8, the insertion timeTins can be regarded as a geometric
series. (Note the exponenti below.) Important are the numbers of arrivals of the other
aa-tRNA types per single cognate arrival, expressed in terms of frequencies. We have

Tins =
∑⊤

i=0 (pc
f )

ipc
s · ((average delay fori + 1 cognate arrivals)+ T c

s )

=
∑⊤

i=0 (pc
f )

ipc
s ·
(

i · (T c
f +

f p

fc

T p
f +

fn

fc

T n
f +

f x

fc

T x
f ) + T c

s
)

≈ f p+fn

fc

pc
s T n

f

∑⊤
i=0 i (pc

f )
i
∼ f p+fn

fc

.

We have used thatT c
f andT c

s are negligible,T p
f equalsTn

f , and
f x

fc

T x
f is relatively small.

Note that the estimate is not accurate for small values off p+fn. Nevertheless, closer in-
spection show that for these values the approximation remains order-preserving. Again,
the results obtained for parts of the systems are pivotal in the derivation.

6 Concluding remarks

In this paper, we presented a stochastic model of the translation process based presently
available data of ribosome kinetics. We used the CTMC facilities of the Prism tool.
Compared to simulation, our approach is computationally more reliable (independent

10See Table 5 in the appendix.
11See Figure 5 in the appendix.
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on the number of simulations) and has faster response times (taking seconds rather then
minutes or hours). More importantly, modelchecking allowed us to perform piecewise
analysis of the system, yielding better insight in the modelcompared to just observing
the end-to-end results with a monolithic model. Based on this, we improved on earlier
observations, regarding error probabilities and insertion times, by actually deriving
the correlation suggested by the data. In conclusion, we have experienced aa-tRNA
competition as a very interesting biological case study of intrinsic stochastic nature,
falling in the category of the well known lambda-phage example [1].

Our model opens a new avenue for future work on biological systems that pos-
sess intrinsically probabilistic properties. It would be interesting to apply our method
to processes which, similarly to translation, require highprecision, like DNA repair,
charging of the tRNAs with amino acids, etc. Also, using our model one could check if
amino acids with similar biochemical properties substitute erroneously for one another
with greater probabilities than dissimilar ones.
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Appendix: suplementary figures and data

Figure 2: Kinetic scheme of peptidyl transfer taken from [7].

Figure 3: Kinetic scheme of translocation taken from [7].
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// translation model

stochastic

// constants

const double ONE=1;

const double FAST=1000;

// tRNA rates

const double c_cogn ;

const double c_pseu ;

const double c_near ;

const double c_nonc ;

const double k1f = 140;

const double k2b = 85;

const double k2bx=2000;

const double k2f = 190;

const double k3bc= 0.23;

const double k3bp= 80;

const double k3bn= 80;

const double k3fc= 260;

const double k3fp= 0.40;

const double k3fn= 0.40;

const double k4rc= 60;

const double k4rp=FAST;

const double k4rn=FAST;

const double k4fc= 166.7;

const double k4fp= 46.1;

const double k4fn= 46.1;

const double k6f = 150;

const double k7b = 140;

const double k7f = 145.8;

module ribosome

s : [0..8] init 1 ;

cogn : bool init false ;

pseu : bool init false ;

near : bool init false ;

nonc : bool init false ;

// initial binding

[ ] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;

[ ] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;

[ ] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;

[ ] (s=1) -> k1f * c_nonc : (s’=2) & (nonc’=true) ;

[ ] (s=2) & ( cogn | pseu | near ) -> k2b : (s’=0) &

(cogn’=false) & (pseu’=false) & (near’=false) ;

[ ] (s=2) & nonc -> k2bx : (s’=0) & (nonc’=false) ;

// codon recognition

[ ] (s=2) & ( cogn | pseu | near ) -> k2f : (s’=3) ;

[ ] (s=3) & cogn -> k3bc : (s’=2) ;

[ ] (s=3) & pseu -> k3bp : (s’=2) ;

[ ] (s=3) & near -> k3bn : (s’=2) ;

// GTPase activation, GTP hydrolysis, reconformation

[ ] (s=3) & cogn -> k3fc : (s’=4) ;

[ ] (s=3) & pseu -> k3fp : (s’=4) ;

[ ] (s=3) & near -> k3fn : (s’=4) ;

// rejection

[ ] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;

[ ] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;

[ ] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;

// accommodation, peptidyl transfer

[ ] (s=4) & cogn -> k4fc : (s’=6) ;

[ ] (s=4) & pseu -> k4fp : (s’=6) ;

[ ] (s=4) & near -> k4fn : (s’=6) ;

// EF-G binding

[ ] (s=6) -> k6f : (s’=7) ;

[ ] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking,

// tRNA movement and Pi release,

// rearrangements of ribosome and EF-G,

// dissociation of GDP

[ ] (s=7) -> k7f : (s’=8) ;

// no entrance, re-entrance at state 1

[ ] (s=0) -> FAST*FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ ] (s=5) -> FAST*FAST : (s’=1) ;

// elongation

[ ] (s=8) -> FAST*FAST : (s’=8) ;

endmodule

rewards

true : 1;

endrewards
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codon cognate pseudo- near- non- codon cognate pseudo- near- non-
cognate cognate cognate cognate cognate cognate

UUU 1037 0 2944 67493 GUU 5105 0 0 66369
UUC 1037 0 9904 60533 GUC 1265 3840 7372 58997
UUG 2944 0 2324 66206 GUG 3840 1265 1068 65301
UUA 1031 1913 2552 65978 GUA 3840 1265 9036 57333
UCU 2060 344 0 69070 GCU 3250 617 0 67607
UCC 764 1640 4654 64416 GCC 617 3250 8020 59587
UCG 1296 764 2856 66558 GCG 3250 617 1068 66539
UCA 1296 1108 1250 67820 GCA 3250 617 9626 57981
UGU 1587 0 1162 68725 GGU 4359 2137 0 64978
UGC 1587 0 4993 64894 GGC 4359 2137 4278 60700
UGG 943 0 4063 66468 GGG 2137 4359 0 64978
UGA 6219 0 4857 60398 GGA 1069 5427 11807 53171
UAU 2030 0 0 69444 GAU 2396 0 4717 64361
UAC 2030 0 3388 66056 GAC 2396 0 10958 58120
UAG 1200 0 5230 65044 GAG 4717 0 3464 63293
UAA 7200 0 4576 59698 GAA 4717 0 10555 56202

CUU 943 5136 4752 60643 AUU 1737 1737 2632 65368
CUC 943 5136 1359 64036 AUC 1737 1737 6432 61568
CUG 5136 943 2420 62975 AUG 706 1926 4435 64407
CUA 666 5413 1345 64050 AUA 1737 1737 6339 61661
CCU 1301 900 4752 64521 ACU 2115 541 0 68818
CCC 1913 943 2120 66498 ACC 1199 1457 4338 64480
CCG 1481 720 5990 63283 ACG 1457 1199 4789 64029
CCA 581 1620 1430 67843 ACA 916 1740 2791 66027
CGU 4752 639 0 66083 AGU 1408 0 1287 68779
CGC 4752 639 2302 63781 AGC 1408 0 5416 64650
CGG 639 4752 6251 59832 AGG 420 867 6318 63869
CGA 4752 639 2011 64072 AGA 867 420 4248 65939
CAU 639 0 6397 64438 AAU 1193 0 1924 68357
CAC 639 0 3308 67527 AAC 1193 0 6268 64013
CAG 881 764 6648 63181 AAG 1924 0 6523 63027
CAA 764 881 1886 67943 AAA 1924 0 2976 66574

Table 3: Frequencies of cognate, pseudo-cognate, near-cognate and non-cognates forE. coli as molecules per cell [6].
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UUU 0.002741862683943581 CUU 0.004663729080892617

UUC 0.009117638314789647 CUC 0.0013623408749670932

UUG 7.588473846528858e-4 CUG 4.487561228352708e-4

UUA 0.0023468531911491246 CUA 0.0018888580411442013

UCU 2.8056841829690867e-10 CCU 0.0034116470820387637

UCC 0.005606123319450197 CCC 0.0010419283146932763

UCG 0.002032726835647694 CCG 0.003761852345052361

UCA 9.090727755350428e-4 CCA 0.0022775137744062385

UGU 6.966884002285479e-4 CGU 1.207693755014732e-10

UGC 0.0030362362683066077 CGC 4.587111916100053e-4

UGG 0.003978308597370318 CGG 0.008874544692533565

UGA 7.498426342500918e-4 CGA 3.9837866155798695e-4

UAU 2.8061598550623636e-10 CAU 0.009105588393934699

UAC 0.001568960520388667 CAC 0.004745578685847523

UAG 0.004132405628997547 CAG 0.0069400807775903016

UAA 6.039804446811093e-4 CAA 0.0022666704102712373

GUU 1.122602539973544e-10 AUU 0.0014440395784868422

GUC 0.005495266825145313 AUC 0.0035043308185745276

GUG 2.6820764780942726e-4 AUG 0.005831774423967932

GUA 0.0022306329982350647 AUA 0.0034390541040541776

GCU 1.766661283697676e-10 ACU 2.725325694334536e-10

GCC 0.01245896879253996 ACC 0.0034184472357413403

GCG 3.1789705950373547e-4 ACG 0.003167334470509804

GCA 0.002818616263545499 ACA 0.0029111153328695892

GGU 1.3246548978903072e-10 AGU 8.70279113272123e-4

GGC 9.396128218189778e-4 AGC 0.003719031341166648

GGG 2.7206107910251926e-10 AGG 0.01406993213919797

GGA 0.010230631644252862 AGA 0.004811394879822719

GAU 0.0018570532571304608 AAU 0.0015239834703624298

GAC 0.004322322632194155 AAC 0.00493586499554021

GAG 7.090294740031601e-4 AAG 0.003209595977078994

GAA 0.002136227458736717 AAA 0.0014587873027927622

Table 4: Probabilities per codon for erroneous elongation
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UUU 0.3327 CUU 0.8901 GUU 0.0527 AUU 0.2733

UUC 0.8404 CUC 0.6286 GUC 0.7670 AUC 0.4373

UUG 0.1245 CUG 0.1028 GUG 0.1041 AUG 0.8115

UUA 0.4436 CUA 0.9217 GUA 0.2604 AUA 0.4321

UCU 0.0893 CCU 0.4202 GCU 0.0756 ACU 0.0943

UCC 0.7409 CCC 0.1992 GCC 1.5622 ACC 0.4658

UCG 0.3035 CCG 0.4257 GCG 0.1010 ACG 0.4073

UCA 0.2313 CCA 0.5535 GCA 0.3002 ACA 0.5025

UGU 0.1432 CGU 0.0645 GGU 0.0924 AGU 0.1636

UGC 0.3296 CGC 0.1010 GGC 0.1673 AGC 0.3905

UGG 0.4360 CGG 1.3993 GGG 0.2308 AGG 1.4924

UGA 0.1098 CGA 0.0962 GGA 1.2989 AGA 0.5517

UAU 0.0758 CAU 0.8811 GAU 0.2180 AAU 0.2242

UAC 0.2008 CAC 0.5341 GAC 0.4144 AAC 0.4959

UAG 0.4319 CAG 0.7425 GAG 0.1106 AAG 0.3339

UAA 0.0963 CAA 0.4058 GAA 0.2243 AAA 0.1945

Table 5: Estimated average insertion time per codon in seconds
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Figure 4: Correlation offn
fc

ratio and error probabilities

Figure 5: Correlation off p+fn

fc
ratio and average insertion times
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