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Chapter 8

Domination on
Geometric Intersection Graphs

This chapter only treats the minimum dominating set problem on geomet-
ric intersection graphs. Although on general graphs the approximability of
Minimum Dominating Set has been settled [156, 197, 66, 108], the problem
is still open on numerous graph classes, including several classes of geometric
intersection graphs.

In studying approximation algorithms for fundamental graph optimization
problems on geometric intersection graphs, we demonstrated the power of the
geometric shifting technique to approximate these problems. In particular, we
were able to obtain better polynomial-time approximation schemes for Maxi-
mum Independent Set and Minimum Vertex Cover on unit disk graphs (Chap-
ter 6) and on general disk graphs (Chapter 7). Moreover, we found a better ptas
for Minimum (Connected) Dominating Set on unit disk graphs (Chapter 6),
again using the shifting technique. These algorithms extend to intersection
graphs of (unit) fat objects in any constant dimension and (at least partially)
to the weighted case (see Section 6.3.5 and 7.4).

Interestingly, as pointed out by Erlebach, Jansen, and Seidel [103], these
techniques do not seem sufficient for handling Minimum Dominating Set on
intersection graphs of objects of different sizes. As far as we know, there
are no results on intersection graphs of arbitrary disks, squares, etc., beyond
the (1 + lnn)-approximation ratio of the greedy algorithm [156, 197, 66]. In
particular, we know of no constant-factor approximation algorithm or approx-
imation hardness results. In this chapter, we address this open problem by
studying Minimum Dominating Set on intersection graphs of different types of
fat objects and providing new insights into its approximability.

In Section 8.2, we present a new general approach to deriving approxima-
tion algorithms for Minimum Dominating Set on geometric intersection graphs.
We apply it to obtain the first constant-factor approximation algorithms for
Minimum Dominating Set on intersection graphs of pairwise homothetic poly-
gons with a constant number of corners and on intersection graphs of rectangles
of bounded aspect-ratio.

We also obtain a constant-factor approximation algorithm for Minimum
Dominating Set on disk graphs of constant ply (see Section 8.4). A surprising
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114 Chapter 8. Domination on Geometric Intersection Graphs

corollary of this is a constant integrality gap of the standard linear program
(LP) for Minimum Dominating Set on planar graphs. For disk graphs of
bounded ply, we can improve this result to a (3 + ε)-approximation algorithm
by using a new variant of the shifting technique. This algorithm extends to
intersection graphs of fat objects of bounded ply and constant dimension.

The type of fat objects one considers has a strong impact on the ap-
proximability of Minimum Dominating Set, as shown in Section 8.5. We
prove that on intersection graphs of n convex fat objects, approximation ra-
tio (1 − ε) lnn is not achievable in polynomial time for any ε > 0, unless
NP ⊂ DTIME(nO(log logn)). This also holds on intersection graphs of pair-
wise homothetic objects. Finally, we solve an open problem of Chleb́ık and
Chleb́ıková [65], who asked whether their APX-hardness results for Minimum
Dominating Set on intersection graphs of d-dimensional axis-parallel boxes if
d ≥ 3 extend to the case where d = 2. We affirm this by showing that Minimum
Dominating Set is APX-hard on rectangle intersection graphs.

8.1 Small ε-Nets

The core of the algorithmic results of Section 8.2 relies on the availability of
small ε-nets. Given a universe U, a family S of subsets of U (called objects),
and a (positive) weight function w over S, we say that R ⊆ S is an ε-net
for S if any element u ∈ U for which

∑
s∈S:u∈s w(s) > εW is covered by R

(i.e. u ∈
⋃
R), where W =

∑
s∈S w(s). In the classic definition of an ε-net, it

assumed that all weights are equal to 1. That is, R ⊆ S is a binary ε-net for
S if any element u ∈ U covered by more than ε|S| sets in S is also covered by
R. The size of a (binary) ε-net is the cardinality of R.

We should note that in a way there are two definitions of an ε-net, that
are essentially dual to each other [143, 68]. In the covering version of ε-nets,
described above, we aim to select objects to cover elements that are covered
by a lot of objects. In the dual definition, the hitting version, we need to select
elements to hit all objects containing a large number of elements. Here we
only need the covering variant and thus disregard the hitting version.

There have been several results on ε-nets in the past (e.g. [143, 35, 170,
205, 62, 44, 68, 188, 226]). The most general result is the following. Given a
(finite) universe U and a family S of subsets of U, let S(u) = {s ∈ S | u ∈ s}
for any S ⊆ S. Then the dual Vapnik-Chervonenkis dimension or dual VC-
dimension of (U,S) is equal to the cardinality of a largest set S ⊆ S for which
{S(u) | u ∈ U} equals the power set of S [143].

Theorem 8.1.1 ([170]) Suppose that (U,S) has dual VC-dimension d. Then
for any ε > 0 that is sufficiently small with respect to d there is a binary ε-net
for S of size at most (d/ε) · (log(1/ε) + 2 log log(1/ε) + 3).

There are many examples of set systems with constant dual VC-dimension.
For instance, recall from Chapter 3 the representation of an arbitrary graph
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as an intersection graph. Given a graph G, let U = E(G) and S = {Sv | v ∈
V (G)}, where Sv = {(u, v) ∈ E(G) | u ∈ V (G)} for any v ∈ V (G). This set
system can easily be shown to have dual VC-dimension at most 2. Hence, by
Theorem 8.1.1, it has an ε-net of size O(1

ε log 1
ε ). One can however improve on

this bound.

Theorem 8.1.2 Let (U,S) be induced by a graph G (as described above) and
let w be a positive weight function over S. Then one can find an ε-net of S of
size at most 2/ε in linear time.

Proof: We need to cover all elements of U covered by sets of S with total
weight exceeding εW . Any u ∈ U is in at most 2 sets of S, say s1u and s2u. If
w(s1u) + w(s2u) > εW , then max{w(s1u), w(s2u)} > εW/2. Hence R = {s ∈ S |
w(s) > εW/2} is an ε-net. Moreover, |R| < 2/ε.

The bound of Theorem 8.1.2 is essentially tight. For m > 0, let G = K2m and
let (U,S) be the set system induced by G. Set w(s) = 1 for each s ∈ S and
set ε = 1/(m + 1

4 ). An ε-net for (U,S) is equal to a vertex cover of all edges
(u, v) ∈ E(G) for which w(u) +w(v) > εW . Clearly, w(u) +w(v) = 2 > ε · 2m
for each (u, v) ∈ E(G). But each vertex cover of G needs at least 2m − 1
vertices, while 2/ε < 2m+ 1. As m tends to infinity, this is tight.

For geometric intersection graphs one can prove similar bounds. A family
S of subsets of U = R2 is a family of pseudo-disks if the sets in S are bounded
by simple closed Jordan curves, such that each pair of curves intersects at
most twice. Examples are families of disks, squares, or homothetic polygons.
Given such U and S, the next theorem follows from results of Chazelle and
Friedman [62], Clarkson and Varadarajan [68], and Kedem et al. [161].

Theorem 8.1.3 For any ε > 0, there is a binary ε-net for S of size O(1/ε).

Such a net can be found by a randomized algorithm with polynomial expected
running time [62, 68]. By derandomizing the algorithm using the method of
conditional expectations, we can prove that a binary ε-net as in Theorem 8.1.3
can be found in time polynomial in |S| and 1/ε [62, 256].

The above results are actually corollaries of more general theorems that
relate the size of the ε-net to the union complexity of the set S. An extensive
treatment may be found in [62, 68, 256].

Pyrga and Ray [226] recently improved on Theorem 8.1.3 and the associated
algorithms. The ε-nets following from their results also have size O(1/ε), but
with a much better hidden constant. Moreover, both the analysis and the
algorithm needed to compute the net are easier.

Theorem 8.1.4 For any ε > 0, one can obtain a binary ε-net for S of size
O(1/ε) in time polynomial in |S| and 1/ε.

Linear-sized ε-nets also exist for three-dimensional objects. Clarkson and
Varadarajan [68] showed that an ε-net exists for unit cubes. This result was
subsequently generalized by Laue [188].
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Theorem 8.1.5 ([188]) For any ε > 0, one can obtain a binary ε-net of size
O(1/ε) for a set S of translates of a fixed three-dimensional polytope in time
polynomial in |S| and 1/ε.

Note that the above algorithms find binary ε-nets. One can transform them
into algorithms to find a (weighted) ε-net at relatively small cost.

Definition 8.1.6 Algorithm A is a net finder with size-function g for (U,S)
if for any ε > 0 and any (positive) weight function w over S, A gives an ε-net
for (U,S) of size at most g(1/ε) in time polynomial in |S|, 1/ε, and the size
of a representation of w.

The definition of a binary net finder with size-function g is similar. We will
always assume the size-function g to be nondecreasing.

Proposition 8.1.7 ([45]) If A is a binary net finder with size-function g for
some (U,S), then there is a net finder A′ with size-function g′(1/ε) = g(2/ε)
for (U,S).

Proof: Let some ε > 0 and some (positive) weight function w over S be given.
Scale the weights to w′ such that W ′ =

∑
s∈S w

′(s) = |S|. Take dw′(s)e copies
of each s ∈ S and denote the resulting set of objects by S ′. Then

|S ′| =
∑
s∈S
dw′(s)e <

∑
s∈S

(1 + w′(s)) = W ′ + |S| = 2|S| = 2W ′.

Choose ε′ = ε/2 and apply A to S ′ and ε′. This gives an ε′-net for S ′ of size
g(2/ε). Since ε′|S ′| < εW ′, it induces an ε-net of S with respect to w′, and
hence with respect to w as well. Observe that the above algorithm takes time
polynomial in |S|, 1/ε, and the size of the representation of w.

8.2 Generic Domination

We give a generic approach to approximating Minimum Dominating Set, par-
ticularly on geometric intersection graphs. To this end, we introduce the novel
notion of �-dominating sets, which we then use in combination with ε-nets to
approximate Minimum Dominating Set.

Let � be a binary reflexive relation on the vertices of a graph G. For
example, if G is some geometric intersection graph with representation S,
u � v if the size of S(u) is at most the size of S(v). We say that v ∈ V (G)
is �-larger than u ∈ V (G) if u � v. Denote by N�(u) = {v ∈ V (G) |
(u, v) ∈ E(G), u � v} the set of �-larger neighbors of some u ∈ V (G) and let
N�[u] = N�(u) ∪ {u} denote u’s closed �-larger neighborhood. Similarly, we
define N�(u) = {v ∈ V (G) | (u, v) ∈ E(G), v � u} and N�[u] = N�(u) ∪ {u}.

Definition 8.2.1 Given a graph G and a binary reflexive relation � on the
vertices of G, C ⊆ V (G) is a �-dominating set of G if for any u ∈ V (G),
u ∈ C or there is a �-larger neighbor of u in C.



8.2. Generic Domination 117

Alternatively, C ⊆ V (G) is a �-dominating set of G if C ∩ N�[u] 6= ∅ for
all u ∈ V (G). Observe that �-dominating sets are a proper generalization of
ordinary dominating sets. Simply take � to be the complete relation, i.e. u � v
for all u, v ∈ V (G). Moreover, the definition of �-dominating set is sound, as
V (G) is a �-dominating set of G, regardless of the definition of �.

For a given relation �, one can try to find a relation between the cardinality
of a smallest dominating and of a smallest �-dominating set.

Definition 8.2.2 Given a graph G and a binary reflexive relation � on V (G),
the �-factor is the cardinality of a minimum �-dominating set divided by the
cardinality of a minimum dominating set.

Clearly, the �-factor is at least 1 for any relation �. Knowing an upper bound
on the �-factor is more interesting however, as this leads to one of the main
theorems of this chapter.

Theorem 8.2.3 Let (U,S) be a set system for which a net finder with size-
function g exists and let � be a binary reflexive relation on the vertices of
G = G[S] with �-factor at most c1 such that for any u ∈ V (G) there exist
at most c2 elements of U in S(u) jointly hitting all S(v) with v ∈ N�(u). If
the cardinality of a minimum dominating set of G is k, then one can find a
dominating set of G of cardinality at most g(c1c2k) in time polynomial in |S|.

Proof: Consider the standard integer LP of the minimum �-dominating set
problem:

z∗I = min
∑

u∈V (G)

xu

s.t.
∑

v∈N�[u]

xv ≥ 1 ∀u ∈ V (G)

xu ∈ {0, 1} ∀u ∈ V (G)

Observe that z∗I ≤ c1k. Relax the above integer LP by replacing its last
constraint by xu ≥ 0 ∀u ∈ V (G). Let x∗ be a vector attaining the optimum
fractional value z∗. Because for any u ∈ V (G), all S(v) with v ∈ N�(u) can
be jointly hit by c2 elements in S(u), each S(u) contains an element p such
that

∑
v:p∈S(v) x

∗
v ≥ 1/c2. Call such an element heavily covered.

Now define a weight function w by w(S(u)) := x∗u|S|/z∗. Let W =∑
u∈V (G) w(S(u)) and ε = 1/(c2z∗). Following the previous observation, this

implies that any object s ∈ S contains an element p such that∑
v:p∈S(v)

w(S(v)) =
∑

v:p∈S(v)

x∗v|S|/z∗ = (|S|/z∗) ·
∑

v:p∈S(v)

x∗v ≥ |S|/(c2z∗) = εW.

Hence an ε-netR ⊆ S for this choice of ε will cover all heavily covered elements.
But then R induces a dominating set of G. Moreover,

|R| ≤ g(c2z∗) ≤ g(c2z∗I ) ≤ g(c1c2k).
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Finally note that R can be found in time polynomial in |S|. The optimum
solution to the linear program can be found in polynomial time [163, 159].
Hence the weights of the weight function can be represented using a polynomial
number of bits and therefore the ε-net can be found in polynomial time.

Observe that if instead of a (weighted) net finder we only have a binary net
finder with size-function g, then the above algorithm yields a dominating set
of cardinality at most g(2c1c2k) by Proposition 8.1.7.

The running time of the algorithm described in Theorem 8.2.3 is determined
by the time it takes to find the ε-net and to solve the linear program. The
latter takes O(n3.5 log2 n) time [159], where we ignore some sublogarithmic
terms. Young [275] showed that a (1 + δ)-approximate solution to the linear
program can be found much quicker, in O(n2 log n/δ2) time. If we use such a
solution in Theorem 8.2.3, the dominating set has cardinality g((1 + δ)c1c2k).

The proof of Theorem 8.2.3 solves a linear program and finds an ε-net
once, following a technique of Even, Rawitz, and Shahar [107]. Alternatively,
one could use the iterative reweighting technique proposed by Brönnimann and
Goodrich [45], where an ε-net is constructed in every iteration. In this chapter,
finding the ε-net is usually quite expensive and hence we prefer the technique
of Even, Rawitz, and Shahar. Moreover, it makes for an easier proof.

Another consequence of the proof of Theorem 8.2.3 is a bound on the inte-
grality gap of the standard LP of Minimum Dominating Set. The integrality
gap of an LP is the ratio of its optimum integral value and its optimum frac-
tional value. For this bound, we need a fractional equivalent of the �-factor.

Definition 8.2.4 Given a graph G and a binary reflexive relation � on V (G),
the fractional �-factor is the ratio of the optimum fractional value of the stan-
dard LP for Minimum �-Dominating Set and the optimum fractional value of
the standard LP for Minimum Dominating Set.

For all relations � described in this chapter, we can find the same bound on
the �-factor as on the fractional �-factor. It is not clear whether this is a
coincidence.

We can now prove a fractional equivalent of Theorem 8.2.3.

Theorem 8.2.5 Let (U,S) be a set system for which a net finder with size-
function g exists and let � be a binary reflexive relation on the vertices of
G = G[S] with fractional �-factor at most c3 such that for any u ∈ V (G) there
exist at most c2 elements of U in S(u) jointly hitting all S(v) with v ∈ N�(u).
If the optimum fractional value of the standard LP for Minimum Dominating
Set is z∗, then one can find a dominating set of G of cardinality at most
g(c2c3z∗) in time polynomial in |S|.

Proof: Let z∗� denote the optimum fractional value of the standard LP for
Minimum �-Dominating Set on G. Following the proof of Theorem 8.2.3, one
can find a dominating set of cardinality at most g(c2z∗�) in polynomial time.
As z∗� ≤ c3z∗, this dominating set has cardinality at most g(c2c3z∗).
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In other words, the integrality gap is at most g(c2c3z∗)/z∗.
Again if only a binary net finder with size-function g exists, then one can

find a dominating set of G of cardinality at most g(2c2c3z∗) in polynomial
time. This implies that the integrality gap is at most g(2c2c3z∗)/z∗.

As an example and to demonstrate the generality of Theorem 8.2.3 and
Theorem 8.2.5, we apply them to general graphs. For a graph G, let ∆(G)
denote the maximum degree of a vertex of V (G).

Theorem 8.2.6 Minimum Dominating Set has a polynomial-time 2∆(G)-
approximation algorithm on any graph G. Moreover, the integrality gap is
at most 2∆(G).

Proof: Let G be any graph and (U,S) a representation of G, i.e. U = E(G)
and S = {Sv | v ∈ V (G)}, where Sv = {(u, v) ∈ E(G) | u ∈ V (G)} for any
v ∈ V (G). Define a binary relation � such that u � v for all u, v ∈ V (G).
Observe that the (fractional) �-factor is 1. For any u ∈ V (G), N�(u) = N(u),
and thus there exist (at most) ∆(G) elements of U in S(u) that jointly hit
all S(v) with v ∈ N�(u). Simply take all edges incident to u. Theorem 8.1.2
showed that any graph G with representation (U,S) has an ε-net of size 2/ε,
which can be found in polynomial time. The theorem statement follows from
Theorem 8.2.3 and Theorem 8.2.5.

Note that the above algorithm can only guarantee an approximation ratio of
2∆(G), whereas a greedy algorithm giving ratio 1 + ln ∆(G) exists [156, 197,
66, 149]. Theorem 8.2.6 merely serves as an indication of the power of Theo-
rem 8.2.3 and Theorem 8.2.5. The real challenges and offered improvements
lie with geometric intersection graphs.

8.3 Dominating Set on Geometric Intersection Graphs

The main result of this section is a constant-factor approximation algorithm
for Minimum Dominating Set on intersection graphs of homothetic convex
polygons. The constant depends on the number of corners (i.e. the complexity)
of the base polygon. We also show that on intersection graphs of regular
polygons the dependence on the complexity of the base polygon can be reduced.
Although homotheticity is crucial in the analysis of these results, we show
that on intersection graphs of axis-parallel rectangles that are not necessarily
homothetic, but have constant aspect-ratio, one can obtain a constant-factor
approximation algorithm as well. A discussion of disk graphs is deferred to
Section 8.4.

8.3.1 Homothetic Convex Polygons

We show that Minimum Dominating Set on intersection graphs of homothetic
convex polygons with r corners has a polynomial-time O(r4)-approximation
algorithm. We require two auxiliary results before we are ready to prove this.
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First we need a way to bound the (fractional) �-factor of a relation �. The
next two lemmas hold for arbitrary graphs.

Lemma 8.3.1 Let � be a binary reflexive relation on the vertices of a graph
G such that for any u ∈ V (G) a minimum �-dominating set for Uu = {v | v 6�
u, v ∈ N(u)} has cardinality at most c. Then the �-factor is at most c+ 1.

Proof: Consider some dominating set C of G and for each u ∈ C, let Cu be
a minimum �-dominating set of Uu. We claim that C ′ = C ∪

⋃
u∈C Cu is a

�-dominating set of G. For suppose that there is some v ∈ V (G)− C ′ that is
not �-dominated by a vertex in C ′. Because C is a dominating set of G and
C ⊆ C ′, v ∈ Uu for some u ∈ C. But then v is �-dominated by Cu and hence
by C ′, a contradiction. Finally, note that |C ′| ≤ (c + 1) · |C|. Therefore the
�-factor is at most c+ 1.

Observe that one only needs an upper bound on |Cu| for vertices u appearing
in the dominating set C.

Lemma 8.3.2 Let � be a binary reflexive relation on the vertices of some
graph G such that for any u ∈ V (G) a minimum �-dominating set for Uu =
{v | v 6� u, v ∈ N(u)} has cardinality at most c. Then the fractional �-factor
is at most c+ 1.

Proof: Let x∗ be an optimal fractional solution to the standard LP for Mini-
mum Dominating Set, with value z∗. For any u ∈ V (G), let Cu be a minimum
�-dominating for Uu. Set x′v to x∗v for each v ∈ V (G) and then add x∗u to x′v
for each u ∈ V (G) with v ∈ Cu. Then for any u ∈ V (G),∑

v∈N�[u]

x′v ≥
∑

v∈N�[u]

x∗v +
∑

v∈N [u]−N�[u]

x∗v =
∑

v∈N [u]

x∗v ≥ 1.

Hence x′ is a solution to the standard LP for Minimum �-Dominating Set. It
has value ∑

u∈V (G)

x′u ≤
∑

u∈V (G)

(c+ 1)x∗u = (c+ 1) · z∗.

Therefore the fractional �-factor is at most c+ 1.

We are now ready to present the relation used in the approximation algorithm.
Call the straight line segment between two corners of a convex polygon a chord.
Observe that some chords correspond to sides of the polygon and that each
chord is contained in the polygon. Let G = G[S] be the intersection graph of
a set S of homothetic convex polygons. Define a relation �1/3 as follows. For
any two vertices u, v ∈ V (G), let v �1/3 u if S(u) contains a corner of S(v) or
S(u) covers at least one third of a chord of S(v).

The next lemma is crucial to the analysis of the approximation algorithm.
For its proof, recall the following definitions of points and lines of a triangle.
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An altitude of a corner is the straight line through this corner, perpendicular to
the side opposite the corner. A median of a corner is the straight line through
this corner and the midpoint of the opposite side. The intersection point of
the medians of a triangle is its centroid or barycenter.

Lemma 8.3.3 Let G = G[S] be the intersection graph of a collection S of
homothetic convex polygons with r corners for some r ≥ 3. Then the �1/3 -
factor is at most 2r(r − 2) + 1.

Proof: Consider a dominating set C of G such that for each u ∈ C there is no
v ∈ V (G) for which S(v) strictly contains S(u). Clearly, G always has a domi-
nating set with this property that is also a minimum dominating set. Let u ∈ C
and consider the set U = {v | v 6�1/3 u, v ∈ N(u)}. Following Lemma 8.3.1, it
suffices to bound the cardinality of a minimum �1/3 -dominating set of U by
2r(r − 2) to prove the lemma.

Observe that for any v ∈ U , S(u) does not contain a corner of S(v). As
the polygons are convex and homothetic, each S(v) with v ∈ U must contain a
corner of S(u). Consider a corner p of S(u) and let Up = {v | v ∈ U, p ∈ S(v)}
be the set of vertices v ∈ U for which p ∈ S(v). Because S(v) has no corner in
S(u) for each v ∈ Up, there must be precisely one side of S(v) that intersects
S(u). This side is not incident with the corner of S(v) corresponding to p. Let
Up,s be the set of vertices v ∈ Up for which side s of S(v) intersects S(u).

For any p, s, reduce S(u) and each S(v) with v ∈ Up,s to the triangle
induced by the corner corresponding to p and the side corresponding to s.
This gives a collection S ′ of homothetic triangles all containing p, but no
triangle S ′(v) with v ∈ Up,s contains S ′(u) or has a corner in S ′(u). Moreover,
the sides of the triangles correspond to chords of the original polygons.

Assume without loss of generality that one side of the triangles of S ′ is
parallel to the x-axis and that p corresponds to the left corner of S ′(u). Now
let vt ∈ Up,s be a vertex such that the top corner of S ′(vt) has the largest
distance to the altitude of the left corner of S ′(u) among all top corners of
triangles in Up,s. Similarly, let vr be a vertex such that the right corner S ′(vr)
has the largest distance to the altitude of the left corner of S ′(u). We claim
that vt and vr form a �1/3 -dominating set of Up,s.

Let w be a vertex in Up,s (see Figure 8.1). We may assume that S ′(w) has
no corner in S ′(vt), S ′(vr), or S ′(u). Then S ′(w) contains a corner of S ′(vt),
S ′(vr), and S ′(u). Furthermore, by the choice of vt and vr, S ′(w) cannot
strictly contain either S ′(vt) or S ′(vr), as the top or right corner of S ′(w)
would be further from the altitude than the top or right corner of S ′(vt) or
S ′(vr) respectively.

Observe that there must be a side of S ′(w) such that p is at least as far from
this side as the centroid of S ′(w). Suppose w.l.o.g. that S ′(vr) protrudes this
side of S ′(w). Then the corner of S ′(vr) in S ′(w) is at least as far from this side
as p, and thus at least as far from the side as the centroid of S ′(w). An easy
calculation shows that S ′(vr) covers at least one third of the side of S ′(w). But
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w

u

vr

vt

Figure 8.1: Triangles S ′(u), S ′(vt), S ′(vr), and S ′(w) of the proof of
Lemma 8.3.3. The two dots represent p and the centroid of w. The
dotted line inside S ′(u) is the altitude of p.

then S(vr) covers at least one third of a chord of S(w) and hence w �1/3 vr.
Therefore vt and vr are a �1/3 -dominating set of Up,s.

As each of the r corners of the base polygon has r−2 sides not incident with
it, U has a �1/3 -dominating set of cardinality at most 2r(r − 2). Following
Lemma 8.3.1, the �1/3 -factor is at most 2r(r − 2) + 1.

Combining Lemma 8.3.3 with Theorem 8.2.3, we obtain the following result.

Theorem 8.3.4 Let r ≥ 3 be an integer. There is a polynomial-time O(r4)-
approximation algorithm for Minimum Dominating Set on intersection graphs
of homothetic convex r-polygons.

Proof: Let G = G[S] be the intersection graph of a collection S of homothetic
convex r-polygons for some r ≥ 3. Use the relation �1/3 . Lemma 8.3.3 showed
that the �1/3 -factor is at most 2r(r− 2) + 1. To hit all �1/3 -larger neighbors
of a vertex, place a point on each corner of the corresponding polygon and two
on all chords, such that each chord is divided into three equal parts. This gives
a total of r+2

(
r
2

)
= r2 points. Observe that homothetic convex polygons form

a set of pseudo-disks. The theorem statement now follows from Theorem 8.1.4
and Theorem 8.2.3.

This also implies an O(r4)-approximation algorithm for Minimum Connected
Dominating Set on intersection graphs of homothetic convex r-polygons for
r ≥ 3 by using Proposition 6.3.24.

Another consequence of Theorem 8.3.4 is a constant-factor approximation
algorithm for Minimum Dominating Set on max-tolerance (interval) graphs,
because Kaufmann et al. [160] proved that max-tolerance graphs are intersec-
tion graphs of isosceles right triangles.

Using a similar proof as for Lemma 8.3.3, we can show that the fractional
�1/3 -factor is at most 2r(r− 2) + 1. Then the following may be easily proved
from Theorem 8.2.5.
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Theorem 8.3.5 Let r ≥ 3 be an integer. The integrality gap of the standard
LP for Minimum Dominating Set on intersection graphs of homothetic convex
r-polygons is O(r4).

8.3.2 Regular Polygons

If the given polygons are homothetic regular polygons, then we can improve on
the analysis of the previous section. We distinguish between regular polygons
with an odd and with an even number of corners. Let G = G[S] be the
intersection graph of a set S of homothetic odd regular polygons. Define a
relation �1/2 such that for any u, v ∈ V (G), u �1/2 v if S(v) contains a corner
of S(u) or S(v) covers at least half of a side of S(u).

Lemma 8.3.6 Let G = G[S] be the intersection graph of a set S of homothetic
odd regular polygons with r corners for some odd integer r ≥ 5. Then the �1/2 -
factor is at most 2r + 1.

Proof: Let C be a dominating set such that for each u ∈ C there is no v ∈ V (G)
for which S(u) ⊂ S(v). Consider the set U = {v | v 6�1/2 u, v ∈ N(u)} for some
u ∈ V (G). For each corner p of S(u), let Up = {v | v ∈ U, p ∈ S(v)} be the
set of vertices in U for which the corresponding polygon contains p. Because
S(u) does not contain a corner of S(v) for any v ∈ Up and the polygons are
odd and regular, S(u) protrudes the same side of each S(v) with v ∈ Up.

Similar to Lemma 8.3.3, let vt and vb be two vertices for which this side
of the corresponding polygons extends furthest in either direction. Then any
S(w) with w ∈ U is at most twice as large as S(vt) or S(vb), or this would
contradict the choice of vt or vb. We may assume that S(vt) and S(vb) contain
no corner of S(w), otherwise w �1/2 vt or w �1/2 vb. Since S(w) intersects
S(vt) and S(vb), the largest of S(vt) and S(vb) covers at least half of a side
of S(w). Hence w �1/2 vt or w �1/2 vb. But then vt and vb form a �1/2 -
dominating set of U . It follows immediately from Lemma 8.3.1 that the �1/2 -
factor is at most 2r + 1.

Theorem 8.3.7 Let r ≥ 3 be an odd integer. There is a polynomial-time
O(r2)-approximation algorithm for Minimum Dominating Set on intersection
graphs of homothetic regular r-polygons.

Proof: The case when r = 3 follows from Theorem 8.3.4. So let G = G[S] be
the intersection graph of a set S of homothetic regular r-polygons for some odd
integer r ≥ 5. Observe that all �1/2 -larger neighbors of a u ∈ V (G) can be
hit by the corners of S(u) and the midpoint of each side. Then Theorem 8.1.4
and Theorem 8.2.3 immediately give the theorem.

Furthermore, we can adapt Lemma 8.3.6 to bound the fractional �1/2 -factor.
Therefore the integrality gap of the standard LP of Minimum Dominating Set
on intersection graphs of homothetic regular r-polygons for odd integers r ≥ 3
is O(r2) as well by Theorem 8.2.5.
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For homothetic even regular polygons, we use a completely different relation
to improve on the approximation ratio attained by the algorithm of Theo-
rem 8.3.4. We require the following consequence of Lemma 8.3.1. A binary
relation � is a preorder if it is both reflexive and transitive. It is total if u � v
or v � u for any pair u, v.

Lemma 8.3.8 Let � be a total preorder on the vertices of a graph G such that
for any u ∈ V (G) the cardinality of any independent set of N�(u) is bounded
by c. Then the �-factor is at most c+ 1.

Proof: Find a �-dominating set of N�(u) as follows. Since � is a total
preorder, there is a v ∈ N�(u) that is maximum, i.e. w � v for each w ∈ N�(u).
Observe that v �-dominates N(v)∩N�(u). Now remove N [v] from N�(u) and
iterate. This yields a �-dominating set of N�(u) that is also an independent
set. Hence it has cardinality at most c. It follows from Lemma 8.3.1 that the
�-factor is at most c+ 1.

A similar lemma can be proved for the fractional �-factor.
Now let G = G[S] be the intersection graph of a collection S of homothetic

regular r-polygons for some even integer r ≥ 2. Define a total preorder �Leb

on V (G) such that u �Leb v for u, v ∈ V (G) if the Lebesgue measure of S(u)
is at most the Lebesgue measure of S(v).

Lemma 8.3.9 Let G = G[S] be the intersection graph of a collection S of
homothetic convex compact sets in R2. Then the �Leb -factor is at most 5 if S
is a collection of homothetic parallelograms and at most 6 otherwise.

Proof: Following Lemma 8.3.8, it suffices to bound the cardinality of any
independent set of N�Leb

(u) for each u ∈ V (G) by 4 and 5 respectively. So for
some u ∈ V (G), define a set S ′ = {S ′(v) | v ∈ N�Leb

[u]} of translated copies
of S(u) such that S ′(v) ⊆ S(v) and S ′(v) ∩ S ′(u) 6= ∅ for each v ∈ N�Leb

[u].
An independent set of N�Leb

(u) corresponds to one of G[S ′], and vice versa.
We now apply a result of Kim, Kostochka, and Nakprasit [167], who showed

that if H is the intersection graph of a set of translated copies of a fixed convex
compact set in the plane with ω(H) ≥ 2, then the maximum degree of H is
at most 4ω(H)− 4 if this fixed set is a parallelogram and at most 6ω(H)− 7
otherwise, where ω(H) is the cardinality of a maximum clique of H. Let H ′ be
the subgraph of G[S′] induced by u and any independent set of G[S ′] (i.e. of
N�Leb

(u)). Then ω(H ′) = 2 and thus the degree of u in H ′ is bounded by 4
and 5 respectively. The lemma follows.

Note that the bounds of this lemma are tight, as demonstrated by a suitable
representation of K1,5 and K1,6 respectively.

Theorem 8.3.10 Let r ≥ 2 be an even integer. There is a polynomial-time
O(r)-approximation algorithm for Minimum Dominating Set on intersection
graphs of homothetic regular r-polygons.
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Proof: Use the relation �Leb . Lemma 8.3.9 proved that the �Leb -factor is at
most 6. All �Leb -larger neighbors of a vertex can be hit by placing a point
on each corner of the corresponding polygon. The theorem statement then
follows from Theorem 8.1.4 and Theorem 8.2.3.

It follows from Theorem 8.2.5 that the integrality gap of the standard LP of
Minimum Dominating Set is O(r) on intersection graphs of homothetic regular
r-polygons for even integers r ≥ 2.

Note that although the algorithm of Theorem 8.3.10 also applies to Mini-
mum Dominating Set on intersection graphs of homothetic regular 2-polygons
(i.e. interval graphs), a linear-time exact algorithm exists in this case [61] and
the integrality gap of the standard LP is 1 [47].

8.3.3 More General Objects

Observe that the proof of Theorem 8.3.10 goes through for arbitrary homoth-
etic parallelograms. In fact, we can extend Theorem 8.3.7 and Theorem 8.3.10
to the following theorem. An affine regular polygon is any polygon that can
be obtained from a regular polygon by an invertible affine transformation.

Theorem 8.3.11 For any integer r ≥ 2, there is a polynomial-time approxi-
mation algorithm for Minimum Dominating Set on intersection graphs of ho-
mothetic affine regular r-polygons, attaining approximation ratio O(r) if r is
even and O(r2) otherwise.

Proof: Let S be a collection of homothetic affine regular r-polygons for some
r ≥ 2. Apply the inverse affine transformation to transform S into a collection
S ′ of homothetic regular r-polygons and note that G[S] = G[S ′]. The theorem
statement is now immediate from Theorem 8.3.7 and Theorem 8.3.10.

A consequence of this result is a constant-factor approximation algorithm for
intersection graphs of homothetic rectangles. By placing a mild restriction on
the type of rectangles, we can drop the homotheticity constraint.

We consider intersection graphs of axis-parallel rectangles whose aspect-
ratio is constant. The aspect-ratio of a rectangle is the length of its longest
side divided by the length of its shortest side.

Lemma 8.3.12 Let S be a collection of axis-parallel rectangles with aspect-
ratio at most c for some c ≥ 1. Then for any ε > 0, one can obtain a binary
ε-net of size O(c/ε) in time polynomial in |S| and c/ε.

Proof: Construct a set of homothetic squares S ′ by replacing each rectangle
s ∈ S by at most c axis-parallel squares, the union of which is precisely s. Now
use Theorem 8.1.4 to find an ε′-net for S ′, where ε′ = ε/c.

Theorem 8.3.13 For any integer c ≥ 1, there is a polynomial-time O(c3)-
approximation algorithm for Minimum Dominating Set on intersection graphs
of axis-parallel rectangles with aspect-ratio at most c.
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Proof: Let G = G[S] be the intersection graph of a collection S of axis-parallel
rectangles with aspect-ratio at most c, for some integer c ≥ 1. Consider a �Leb -
larger neighbor v of some vertex u. Without loss of generality, S(u) is a 1× c
rectangle. Then all sides of S(v) have length at least 1 and S(v) contains a
corner of S(u) or covers at least a 1/c-fraction of a long side of S(u). Hence
2c + 2 points in S(u) suffice to hit all �Leb -larger neighbors. But then any
independent set of N�Leb

(u) has cardinality at most 2c+2 and the �Leb -factor
is at most 2c+3 by Lemma 8.3.8. The theorem now follows from Lemma 8.3.12
and Theorem 8.2.3.

The result of Theorem 8.3.13 does not seem to extend to similarly defined
variants of regular pentagons, regular hexagons, or other regular polygons.

To show that Theorem 8.2.3 may also be applied beyond two dimensions, we
prove the following theorem about Minimum Dominating Set on intersection
graphs of translated copies of an affine three-dimensional box. We should note
that the results of Section 6.3.3 imply the existence of a ptas for this case.

Theorem 8.3.14 There exists a constant-factor approximation algorithm for
Minimum Dominating Set on intersection graphs of translated copies of an
affine three-dimensional box.

Proof: Using the idea of the proof of Theorem 8.3.11, we may assume that we
are given the intersection graph G = G[S] of a set S of translated copies of a
three-dimensional box. It is easy to see that the �Leb -factor is at most 9 by
Lemma 8.3.8 and that any �Leb -larger neighborhood can be hit by 8 points.
Hence, following a result by Laue [188] (see Theorem 8.1.5), we may apply
Theorem 8.2.3 with a linear function g and the theorem follows.

Since Theorem 8.1.5 applies to translated copies of any fixed three-dimensional
polytope, it seems likely that the above theorem could be extended to more
general or more complex three-dimensional objects.

8.4 Disk Graphs of Bounded Ply

The obvious class of intersection graphs missing in the above discussion is the
class of disk graphs. We proved in Chapter 6 that Minimum Dominating Set
has a ptas on unit disk graphs, but this scheme does not carry over to general
disk graphs. The ideas developed in Chapter 6 also seem to be insufficient
to handle this problem. Finally, even though the �Leb -factor is at most 6 for
disk graphs, we do not know how to apply Theorem 8.2.3. The problem (when
using �Leb ) is that we cannot choose a constant number of points inside a disk
to hit all �Leb -larger neighbors. All �Leb -larger neighbors of a disk can be hit
by a constant number of points, but some would have to lie outside the disk.
Unfortunately, Theorem 8.2.3 does not seem to extend to this case.



8.4. Disk Graphs of Bounded Ply 127

If we know however that the ply of the set of disks representing the disk
graph is bounded, then the above techniques do work and we obtain a constant-
factor approximation algorithm. We give these algorithms below, in order of
descending approximation ratio. Recall that the ply of a set of objects is the
maximum over all points p of the number of objects strictly containing p.

8.4.1 Ply-Dependent Approximation Ratio

The approximation ratio of the first approximation algorithms we present de-
pend (linearly) on the ply of the set of disks representing the disk graph.

Lemma 8.4.1 Given a set of disks of ply γ, the cardinality of the closed �Leb -
larger neighborhood of any disk is at most 9γ.

The proof uses an area bound in a manner similar to Lemma 7.1.1 (see also
Miller et al. [210]). We can now immediately prove the following result.

Theorem 8.4.2 There is a polynomial-time O(γ)-approximation algorithm
for Minimum Dominating Set on disk graphs of ply γ.

Proof: By Lemma 8.4.1, all �Leb -larger neighbors of a disk can be hit by at
most 9γ points. Lemma 8.3.9 shows that the �Leb -factor is at most 6. The
theorem now follows from Theorem 8.1.4 and Theorem 8.2.3.

A different technique improves on Theorem 8.4.2. We essentially give a sec-
ond general approach to approximate Minimum Dominating Set using �-
dominating sets, but this time without using ε-nets.

Theorem 8.4.3 Let G be a graph and let � be a binary reflexive relation
on the vertices of G with fractional �-factor at most c3. Suppose that the
maximum cardinality of the �-larger closed neighborhood of any u ∈ V (G) is at
most c2. Then the integrality gap of the standard LP for Minimum Dominating
Set on G is at most c2c3.

Proof: From Definition 8.2.4, the integrality gap of (the standard LP for)
Minimum �-Dominating Set on G multiplied by the fractional �-factor is
an upper bound to the integrality gap of (the standard LP for) Minimum
Dominating Set on G. By assumption, the fractional �-factor is at most c3.
Hence it suffices to bound the integrality gap of Minimum �-Dominating Set
on G.

We transform the minimum �-dominating set problem on G to an instance
of Minimum Set Cover. Let U = V (G) and S = {S(v) | v ∈ V (G)} where
S(v) = {u | v ∈ N�[u]}. Hochbaum [148] showed that the integrality gap
of Minimum Set Cover is bounded by the element frequency. The element
frequency of (U,S) is at most the maximum cardinality of any �-larger closed
neighborhood of G, which is at most c2 by assumption.
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Observe that a (fractional) �-dominating set of G corresponds directly to
a (fractional) set cover of (U,S) and vice versa. Hence the integrality gap of
Minimum �-Dominating Set on G is at most c2. This gives a bound on the
integrality gap of Minimum Dominating Set on G of c2c3.

Theorem 8.4.4 The integrality gap of the standard LP for Minimum Domi-
nating Set on disk graphs of ply γ is at most 54γ. If γ = 1, then the gap is at
most 42. Hence the gap on planar graphs is at most 42.

Proof: By Lemma 8.3.9, the fractional �Leb -factor is at most 6. The maximum
cardinality of any �Leb -larger closed neighborhood of G is at most 9γ by
Lemma 8.4.1. Hence the gap is at most 54γ by Theorem 8.4.3. If γ = 1,
then the maximum cardinality of any �Leb -larger closed neighborhood of S is
at most 7, yielding the bound of 42 on the gap. As planar graphs are disks
graphs of ply 1 [169, 210], the gap on planar graphs is at most 42.

Although a ptas for Minimum Dominating Set on planar graphs is known [22],
we are not aware of any previous results on the integrality gap of the standard
LP for Minimum Dominating Set on this class of graphs.

The reduction from Minimum �-Dominating Set to Minimum Set Cover
given in the proof of Theorem 8.4.3 can be exploited algorithmically.

Theorem 8.4.5 Let G be a graph and let � be a binary reflexive relation
on the vertices of G with �-factor at most c1. Suppose that the maximum
cardinality of the �-larger closed neighborhood of any u ∈ V (G) is at most
c2. Then there is a linear-time c1c2-approximation algorithm for Minimum
Dominating Set on G.

Proof: Transform the minimum �-dominating set instance on G to an instance
of Minimum Set Cover, as in Theorem 8.4.3. Bar-Yehuda and Even [24] proved
that Minimum Set Cover has a linear-time approximation algorithm with ap-
proximation ratio at most the maximum element frequency. Following the
proof of Theorem 8.4.3, the maximum element frequency is at most c2. As the
�-factor is at most c1, the theorem follows.

Using the proof of Theorem 8.4.4, we can then show the following.

Theorem 8.4.6 There exists a linear-time (54γ)-approximation algorithm for
Minimum Dominating Set on disk graphs of ply γ.

Note that the approximation ratio improves to 42 on disk graphs of ply 1,
i.e. on planar graphs.

Theorem 8.4.3 and 8.4.5 also have implications for Minimum Dominating
Set on general graphs. Following Lemma 8.3.1 and 8.3.2, the (fractional) �-
factor of any relation � is at most the maximum cardinality of any �-larger
closed neighborhood of G.
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Corollary 8.4.7 Let G be a graph and let � be a binary reflexive relation on
the vertices of G. Suppose that the maximum cardinality of the �-larger closed
neighborhood of any u ∈ V (G) is at most c. Then the integrality gap of the
standard LP for Minimum Dominating Set on G is at most c2. Moreover,
there is a linear-time c2-approximation algorithm for Minimum Dominating
Set on G.

Clearly, c ≤ ∆(G) for any relation �, yielding an integrality gap of ∆2(G) and
a linear-time ∆2(G)-approximation algorithm for Minimum Dominating Set on
any graph G. This is far worse than the (1+ln ∆(G))-approximation algorithm
for Minimum Dominating Set known in the literature [156, 197, 66, 149]. One
could however imagine that a relation � for which c is minimum over all
relations � beats this bound.

Theorem 8.4.8 Let G be a graph. We can find in polynomial time a binary
reflexive relation � such that the maximum cardinality of any �-larger closed
neighborhood of G is minimized.

Proof: First note that there is an asymmetric binary reflexive relation �
attaining the minimum. Now observe that an asymmetric binary reflexive
relation � on G corresponds to an orientation ~G of G and vice versa. Simply
let u � v if and only if there is a directed edge from u to v in ~G. Hence it
suffices to find an orientation ~G of G minimizing the maximum out-degree of
any vertex. Using a result of Frank and Gyárfás [111], such an orientation can
be found in polynomial time.

If an upper bound to the maximum cardinality of any �-larger closed neighbor-
hood of G is known for some relation �, then we can bound the approximation
ratio of the algorithm of Corollary 8.4.7.

Theorem 8.4.9 There exists a linear-time (9γ)2-approximation algorithm for
Minimum Dominating Set on disk graphs of ply γ, even if no representation
of the graph is given.

Proof: By Lemma 8.4.1, a disk graph G of ply γ has a binary reflexive relation
� for which the maximum cardinality of any �-larger closed neighborhood of
G is at most 9γ, namely �Leb . The theorem follows from Theorem 8.4.8 and
Corollary 8.4.7.

Note that to apply the approximation algorithm, one does not need to know the
ply of the given disk graph. The fact that the graph has a disk representation
of ply γ only turns up in the analysis of the approximation factor.

8.4.2 A Constant Approximation Ratio

We can improve the approximation ratio further by using the shifting tech-
nique. We show that Minimum �Leb -Dominating Set on n-vertex disk graphs
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of bounded ply, i.e. of ply γ = γ(n) = o(log n), has an eptas. Because the
�Leb -factor is at most 6, this implies the existence of a (6 + ε)-approximation
algorithm for Minimum Dominating Set on such disk graphs.

We use the shifting technique in the way outlined in Chapter 7. Assume
that we are given a set of disks D such that the smallest disk has radius 1/2.
We aim to find a small �Leb -dominating set of G = G[D].

Partition the disks into levels. A disk of radius r has level j (j ∈ Z≥0) if
2j−1 ≤ r < 2j . The level of the largest disk is denoted by l. The set D=j is
defined as the set of disks in D having level j. Similarly, we can define D≥j as
the set of disks in D having level at least j, and so on.

For each level j, define a grid induced by horizontal lines y = hk2j and
vertical lines x = vk2j (h, v ∈ Z) for some odd integer k ≥ 7, whose value we
determine later. The grid formed in this way partitions the plane into squares
of size k2j × k2j , called j-squares. Furthermore, any j-square is contained
in precisely one (j + 1)-square and each (j + 1)-square contains exactly four
j-squares, denoted by S1, . . . , S4. These four squares are siblings of each other.
The set of disks intersecting a j-square S is denoted by DS , while the set of
disks intersecting the boundary of S is denoted by Db(S). Similarly, Di(S) =
DS−Db(S) is the set of disks fully contained in the interior of S, Dc(S) denotes
the set of disks whose center is contained in S, andD+(S) =

⋃4
i=1Db(Si)−Db(S)

is the set of disks intersecting the boundary of at least one of the four children
of S, but not the boundary of S itself. The meaning of combinations such as
Db(S)
≤j should be self-explaining. The level of a square S is denoted by j(S).

Similarly, let Dor(S) denote the set of disks having their center outside a
j-square S and intersecting a band of width 2j along the outer boundary of S.
This band is called the outer ring of S. We also define several inner rings.
Let Dirj′ (S) ⊆ Dc(S) denote the set of disks having their center inside S and
intersecting a band of width 2j

′
along the inner boundary of S. Observe that

this implies that Dirj(S)+dlog ke(S) = Dc(S). For convenience, we also define
Dir(S) =

⋃
j′≥0D

irj′ (S)

≥j′ =
⋃
j′≥0D

irj′ (S)

=j′ . Now define D+r(S) =
⋃4
i=1Dir(Si) −

Dir(S), extending the notion of D+(S) we had before.
We now prove the following auxiliary theorem. Let D be a set of disks of

ply γ and let OPT be a �Leb -dominating set of D of minimum cardinality.

Theorem 8.4.10 Let D be a set of disks of ply γ and k ≥ 7 an odd pos-
itive integer. Then in O(k2n2 2(80k−68)γ/π3(64k−60)γ/π) time, we can find a
�Leb -dominating set C of D such that |C| ≤

∑
S

(∣∣∣OPT c(S)
=j(S)

∣∣∣+
∣∣∣OPT or(S)

=j(S)

∣∣∣),
where the sum is over all squares S.

We perform bottom-up dynamic programming on the j-squares. Observe that
for each j-square S, disks in Dc(S)

≤j can be �Leb -dominated by disks in Dc(S)

and Dor(S). Following the approach developed in Chapter 7, we consider the
status of disks in Dor(S)

>j . However, the outer ring of a j-square might partially
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overlap sibling j-squares, creating a problem when ‘gluing’ results together.
Therefore we also consider the status of disks in the inner ring(s).

During the dynamic programming, we compute a �Leb -dominating set of
Dc(S) − Dir(S)

>j , given the status of disks in Dor(S)
>j ∪ Dir(S)

>j and using disks in

Dc(S) − Dir(S)
>j and Dor(S)

≤j . A disk in Dor(S)
>j is either in the dominating set,

or it is not. A disk in Dir(S)
>j has three possible statuses: either it is in the

dominating set, or it is �Leb -dominated by a disk in Dor(S)
>j ∪ Dc(S)

>j , or it is
�Leb -dominated by a yet undetermined disk. We define for each j-square S
and any two disjoint sets W1 ⊆ Dor(S)

>j ∪ Dir(S)
>j and W2 ⊆ Dir(S)

>j the function
size(S,W1,W2) as

min
{
|T |
∣∣∣ T ⊆ Dor(S)

=j ∪
(
Dc(S) −Dir(S)

>j

)
;

W1 ∪ T �Leb -dominates W2 ∪
(
Dc(S) −Dir(S)

>j

)}
if j = 0 and

min

{
|U |+

4∑
i=1

size

(
Si,
(
W1 ∪ U

)
∩
(
Dor(Si)
>j−1 ∪ D

ir(Si)
>j−1

)
, Xi

) ∣∣∣∣
U ⊆ D+r(S)

>j−1 ∪ D
or(S)
=j ∪ Dirj(S)

=j

Xi =
((

W2 ∪ D+r(S)
>j−1 ∪ D

irj(S)
=j

)
−N�Leb

[
W1 ∪ U

])
∩ Dir(Si)

>j−1

}
if j > 0. Here the minimum over an empty set is ∞. Let sol(S,W1,W2) be
the subset of D attaining size(S,W1,W2), or ∅ if size(S,W1,W2) = ∞. The
meaning of W1 and W2 is as follows. The disks in W1 are dominators, whereas
the disks in W2 need to be �Leb -dominated by disks in W1 or Dc(S) −Dir(S)

>j .

Properties of the size- and sol-Functions

Functions size and sol are reasonably easy to compute, as we will show later.
First, we prove that the size and sol functions attain the properties set forth
in Theorem 8.4.10.

Lemma 8.4.11
∑
S; j(S)=l size(S, ∅, ∅) ≤

∑
S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣), where C
is any �Leb -dominating set.

Proof: We apply induction on the level j and show that the following invariant
holds for any j-square S:

size

(
S,
(
Cor(S)
>j ∪ Cir(S)

>j

)
,Dir(S)

>j − C
ir(S)
>j −N�Leb

[
C − Cc(S) − Cor(S)

])
≤

∣∣∣Cc(S)
>j

∣∣∣− ∣∣∣Cir(S)
>j

∣∣∣+
∑
S′⊆S

(∣∣∣Cc(S′)=j(S′)

∣∣∣+
∣∣∣Cor(S′)=j(S′)

∣∣∣) .
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For j = 0, the invariant holds from the definition of size, as

|T | ≤
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cc(S)

∣∣∣− ∣∣∣Cir(S)
>j

∣∣∣
=

∣∣∣Cor(S)
=j

∣∣∣+
∣∣∣Cc(S)

=j

∣∣∣+
∣∣∣Cc(S)
>j

∣∣∣− ∣∣∣Cir(S)
>j

∣∣∣ .
So assume that j > 0 and that the invariant holds for all j-squares with j′ < j.
Then from the description of size and by applying induction,

size

(
S,
(
Cor(S)
>j ∪ Cir(S)

>j

)
,Dir(S)

>j − C
ir(S)
>j −N�Leb

[
C − Cc(S) − Cor(S)

])
≤

∣∣∣C+r(S)
>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣
+

4∑
i=1

size

(
Si,
(
Cor(Si)>j−1 ∪ C

ir(Si)
>j−1

)
,

Dir(Si)
>j−1 − C

ir(Si)
>j−1 −N�Leb

[
C − Cc(Si) − Cor(Si)

])
≤

∣∣∣C+r(S)
>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣
+

4∑
i=1

(∣∣∣Cc(Si)>j−1

∣∣∣− ∣∣∣Cir(Si)>j−1

∣∣∣)+
4∑
i=1

∑
S′
i
⊆Si

(∣∣∣Cc(S′i)=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′i)=j(S′

i
)

∣∣∣)
=

∣∣∣C+r(S)
>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣
+
∣∣∣Cc(S)
>j−1

∣∣∣− ∣∣∣Cir(S)
>j−1

∣∣∣− ∣∣∣C+r(S)
>j−1

∣∣∣+
4∑
i=1

∑
S′
i
⊆Si

(∣∣∣Cc(S′i)=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′i)=j(S′

i
)

∣∣∣)
=

∣∣∣Cc(S)
>j

∣∣∣− ∣∣∣Cir(S)
>j

∣∣∣+
∣∣∣Cc(S)

=j

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣
+

4∑
i=1

∑
S′
i
⊆Si

(∣∣∣Cc(S′i)=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′i)=j(S′

i
)

∣∣∣)
=

∣∣∣Cc(S)
>j

∣∣∣− ∣∣∣Cir(S)
>j

∣∣∣+
∑
S′⊆S

(∣∣∣Cc(S′)=j(S′)

∣∣∣+
∣∣∣Cor(S′)=j(S′)

∣∣∣) .
The first inequality above is the crucial one. We give an explicit proof. Let
W1 = Cor(S)

>j ∪ Cir(S)
>j , W2 = Dir(S)

>j − Cir(S)
>j − N�Leb

[C − Cc(S) − Cor(S)], and

U = C+r(S)
>j−1 ∪C

or(S)
=j ∪Cirj(S)

=j . We claim that the inequality holds for this choice
of U .

First we show that (W1 ∪U)∩
(
Dor(Si)
>j−1 ∪D

ir(Si)
>j−1

)
= Cor(Si)>j−1 ∪C

ir(Si)
>j−1 for any

i = 1, . . . , 4. Note that

W1 ∪ U = Cor(S)
>j ∪ Cir(S)

>j ∪ C+r(S)
>j−1 ∪ C

or(S)
=j ∪ Cirj(S)

=j
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= Cor(S)
>j−1 ∪ C

ir(S)
>j−1 ∪ C

+r(S)
>j−1

= Cor(S)
>j−1 ∪

4⋃
i=1

Cir(Si)>j−1.

But then (W1 ∪U)∩
(
Dor(Si)
>j−1 ∪D

ir(Si)
>j−1

)
= Cor(Si)>j−1 ∪ C

ir(Si)
>j−1 for any i = 1, . . . , 4.

For the third parameter, we observe that for any i = 1, . . . , 4

Xi =
((
W2 ∪ D+r(S)

>j−1 ∪ D
irj(S)
=j

)
−N�Leb

[W1 ∪ U ]
)
∩ Dir(Si)

>j−1

=
((
Dir(S)
>j ∪ D

+r(S)
>j−1 ∪ D

irj(S)
=j

)
−N�Leb

[
W1 ∪ U

]
−N�Leb

[
C − Cc(S) − Cor(S)

])
∩ Dir(Si)

>j−1

= Dir(Si)
>j−1 −N�Leb

[
W1 ∪ U

]
−N�Leb

[
C − Cc(S) − Cor(S)

]
⊆ Dir(Si)

>j−1 − C
ir(Si)
>j−1 −N�Leb

[
C − Cc(Si) − Cor(Si)

]
.

Because for any W and any Xi ⊆ X ′i, size(Si,W,Xi) ≤ size(Si,W,X ′i), the
first inequality is correct.

Since l is the level of the largest disk, for any j-square S with j ≥ l,
Cor(S)
>j ∪ Cir(S)

>j = ∅, Dc(S)
>j = ∅, and Dir(S)

>j = ∅. Hence∑
S; j(S)=l

size(S, ∅, ∅) ≤
∑

S; j(S)=l

∑
S′⊆S

(∣∣∣Cc(S′)=j(S′)

∣∣∣+
∣∣∣Cor(S′)=j(S′)

∣∣∣)
=

∑
S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣) .
This proves the lemma.

It follows that if OPT is a minimum �Leb -dominating set, then∑
S; j(S)=l

size(S, ∅, ∅) ≤
∑
S

(∣∣∣OPT c(S)
=j(S)

∣∣∣+
∣∣∣OPT or(S)

=j(S)

∣∣∣) .
Lemma 8.4.12

⋃
S; j(S)=l sol(S, ∅, ∅) is a �Leb -dominating set.

Proof: For any j-square S and any two disjoint sets W1 ⊆ Dor(S)
>j ∪ Dir(S)

>j ,

W2 ⊆ Dir(S)
>j , we claim that W1 ∪ sol(S,W1,W2) is a �Leb -dominating set of

W2 ∪ (Dc(S) −Dir(S)
>j ) if size(S,W1,W2) 6=∞.

Apply induction on j. If j = 0, this follows trivially from the definition of
size and sol. So assume that j > 0 and that the claim holds for all j′-squares
with j′ < j.
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Suppose that size(S,W1,W2) 6=∞ for two disjoint setsW1 ⊆ Dor(S)
>j ∪D

ir(S)
>j ,

W2 ⊆ Dir(S)
>j . Let U ⊆ D+r(S)

>j−1 ∪ D
or(S)
=j ∪ Dirj(S)

=j attain the minimum in the
definition of size for W1 and W2. Because size(S,W1,W2) 6= ∞, it must be
that size(Si,W i, Xi) 6=∞ for i = 1, . . . , 4 as well, where

W i = (W1 ∪ U) ∩
(
Dor(Si)
>j−1 ∪ D

ir(Si)
>j−1

)
and

Xi =
((

W2 ∪ D+r(S)
>j−1 ∪ D

irj(S)
=j

)
−N�Leb

[
W1 ∪ U

])
∩ Dir(Si)

>j−1.

Then by induction, W i ∪ sol(Si,W i, Xi) is a �Leb -dominating set of Xi ∪(
Dc(Si) −Dir(Si)

>j−1

)
. Observe that

4⋃
i=1

W i ∪
4⋃
i=1

sol(Si,W i, Xi)

=
4⋃
i=1

(
(W1 ∪ U) ∩

(
Dor(Si)
>j−1 ∪ D

ir(Si)
>j−1

))
∪

4⋃
i=1

sol(Si,W i, Xi)

⊆ W1 ∪ U ∪
4⋃
i=1

sol(Si,W i, Xi)

= W1 ∪ sol(S,W1,W2)

and
4⋃
i=1

(
Xi ∪

(
Dc(Si) −Dir(Si)

>j−1

))
=

4⋃
i=1

Xi ∪
(
Dc(S) −Dir(S)

>j−1 −D
+r(S)
>j−1

)
.

Since W1 ∪ sol(S,W1,W2) also �Leb -dominates N�Leb
[W1 ∪ U ], we can derive

that W1 ∪ sol(S,W1,W2) �Leb -dominates

4⋃
i=1

Xi ∪
(
Dc(S) −Dir(S)

>j−1 −D
+r(S)
>j−1

)
∪N�Leb

[W1 ∪ U ]

⊇
4⋃
i=1

((
W2 ∪ D+r(S)

>j−1 ∪ D
irj(S)
=j

)
∩ Dir(Si)

>j−1

)
∪
(
Dc(S) −Dir(S)

>j−1 −D
+r(S)
>j−1

)
= W2 ∪

(
Dc(S) −Dir(S)

>j

)
.

From the previous lemma, we know that
∑
S; j(S)=l size(S, ∅, ∅) 6= ∞. Hence⋃

S; j(S)=l sol(S, ∅, ∅) is a �Leb -dominating set of
⋃
S; j(S)=lDc(S). Because each

disk is in Dc(S) for some l-square S, this is a �Leb -dominating set of D.
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Computing the size- and sol-Functions

We apply the methods outlined in Chapter 7. We show again that it is sufficient
to size and sol for a limited number of j-squares.

The definition of nonempty and empty is slightly different than usual. We
say that that a j-square S is nonempty if S or the outer ring of S is intersected
by a level j disk and empty otherwise.

The definition of relevant remains the same, modulo the new definition of
nonempty. A j-square S is relevant if one of its three siblings is nonempty or
there is a nonempty square S′ containing S, such that S′ has level at most
j + dlog ke (so each nonempty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′,
S′ is a relevant parent of S.

Lemma 8.4.13 For each relevant 0-square S, all size- and sol-values for S
can be computed in O

(
nkγ 2(16k+32)γ/π3(40k−12)γ/π

)
time.

Proof: We use area bounds to bound the cardinality of sets we are interested
in. By Lemma 7.1.1,

∣∣∣Dor(S)
>j

∣∣∣ ≤ 16(k + 2)γ/π. To bound
∣∣∣Dir(S)

>j

∣∣∣, note that∣∣∣Dirj+1(S)
≥j+1

∣∣∣ ≤ (20k − 60)γ/π and that for any j′ > j,
∣∣∣Dirj′ (S)

≥j′ −Dirj′−1(S)

≥j′−1

∣∣∣ ≤
(3 · 2j−j′+3k − 60)γ/π. Hence∣∣∣Dir(S)

>j

∣∣∣ ≤ ((20 + 3
∞∑

j′=j+2

2j−j
′+3
)
k − 60

)
γ/π ≤ (32k − 60)γ/π.

Therefore we can enumerate all disjoint sets W1 ⊆ Dor(S)
>j ∪Dir(S)

>j , W2 ⊆ Dir(S)
>j

in O
(
2(16k+32)γ/π3(32k−60)γ/π

)
time.

Using Lemma 7.1.2, the pathwidth of Dor(S)
=j ∪

(
Dc(S) − Dir(S)

>j

)
can be

bounded by 8(k+6)γ/π. By adapting the algorithm of Corollary 5.3.9, we can
find the set T required by the definition of size and sol in O(nkγ 3(8k+48)γ/π)
time. The lemma follows.

Now assume that the size- and sol-values of all relevant children of a j-square
S are known.

Lemma 8.4.14 For each relevant j-square S (j > 0) with relevant (j − 1)-
square children, in O(2(80k−68)γ/π3(64k−60)γ/π) time all size- and sol-values for
S can be computed.

Proof: Using similar ideas as in Lemma 8.4.13 and Lemma 7.1.1, we can show
that

∣∣∣Dor(S)
≥j

∣∣∣ ≤ (40k + 60)γ/π and∣∣∣Dir(S)
≥j

∣∣∣ ≤ ((
40 + 3

∞∑
j′=j+1

2j−j
′+3
)
k − 60

)
γ/π ≤ (64k − 60)γ/π.
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Now bound
∣∣∣D+r(S)
≥j

∣∣∣. Note that
∣∣∣⋃4

i=1D
irj(Si)
≥j −Dirj(S)

≥j

∣∣∣ ≤ (32k − 128)γ/π
and for any j′ > j,∣∣∣∣∣

(
4⋃
i=1

Dirj′ (Si)

≥j′ −Dirj′ (S)

≥j′

)
−

(
4⋃
i=1

Dirj′−1(Si)

≥j′−1 −Dirj′−1(S)

≥j′−1

)∣∣∣∣∣
≤ (2j−j

′+3k − 12) · γ/π.

Then ∣∣∣D+r(S)
≥j

∣∣∣ ≤ (
32k − 128 +

∞∑
j′=j+1

2j−j
′+3k

)
· γ/π

= (40k − 128)γ/π.

The lemma now follows from the definition of size and sol.

Lemma 8.4.15 For each relevant j-square S (j > 0) with no relevant children
of level j−1, all size- and sol-values for S can be computed in O(n 244γ/π316γ/π)
time.

Proof: Following the proof of Lemma 7.2.6, Dir(S)
≥j = Dir(S)

≥j+dlog ke. Then

Lemma 7.1.1 shows that
∣∣∣Dir(S)
≥j

∣∣∣ ≤ ∣∣∣Dc(S)
≥j+dlog ke

∣∣∣ ≤ 16γ/π. Lemma 7.2.6 im-

plies that
∣∣∣D+r(S)
≥j

∣∣∣ = 0 and Dor(S)
≥j = Dor(S)

≥j+dlog ke and thus
∣∣∣Dor(S)
≥j

∣∣∣ ≤ 44γ/π.
Then from the proof of Lemma 7.2.6 and the definition of size and sol, we can
compute all size- and sol-values in O(n 244γ/π316γ/π) time.

Lemma 8.4.16 The value of
∑
S; j(S)=l size(S, ∅, ∅) can be computed in time

O(k2n2 2(80k−68)γ/π3(64k−60)γ/π).

Proof: Follows from Lemma 8.4.13, Lemma 8.4.14, Lemma 8.4.15, and the
proof of Lemma 7.2.7. The number of relevant squares is O(k2n).

Proof of Theorem 8.4.10: Follows directly from Lemmas 8.4.11, 8.4.12,
and 8.4.16.

The Approximation Algorithm

The shifting technique can now be applied as follows. For an integer a (0 ≤
a ≤ k − 1), call a line of level j active if it has the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into
j-squares as before, although shifted with respect to the shifting parameter a.
However, we can still apply the algorithm of Theorem 8.4.10.

Let Ca denote the set returned by the algorithm for the j-squares induced
by shifting parameter a (0 ≤ a ≤ k − 1) and let Cmin be a smallest such set.
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Lemma 8.4.17 |Cmin| ≤ (1+24/k) · |OPT |, where OPT is a minimum �Leb -
dominating set.

Proof: Define Dor
a as the set of disks intersecting the outer ring of a j-square S

at their level, i.e. Dor
a =

⋃
S D

or(S)
=j(S). Clearly a disk of level j can be in Dor

a for

at most 8 values of a. Therefore
∑k−1
a=0 |OPT ∩Dor

a | ≤ 8 · |OPT |. Furthermore,
for any fixed value of a, any level j disk can intersect the outer ring of at most
3 j-squares. It follows from Lemma 8.4.11 that

|Ca| ≤
∑
S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣) ≤ |OPT |+ 3|OPT ∩ Dor
a |.

Then

k · |Cmin| ≤
k−1∑
a=0

|Ca| ≤
k−1∑
a=0

(|OPT |+ 3|OPT ∩ Dor
a |) ≤ (k + 24) · |OPT |.

Hence |Cmin| ≤ (1 + 24/k) · |OPT |.

Combining Theorem 8.4.10 and Lemma 8.4.17, we obtain the following ap-
proximation scheme.

Theorem 8.4.18 There is an eptas for Minimum �Leb -Dominating Set on
n-vertex disk graphs of bounded ply, i.e. of ply γ = γ(n) = o(log n).

Proof: Consider any ε > 0. Choose k as the largest odd integer such that
(64k−60)γ/π ≤ log3 n. If k < 7, output V (G). Otherwise, apply the algorithm
of Lemma 8.4.10 and compute Cmin in O(n4 log3 n) time. Furthermore, if
γ = γ(n) = o(log n), there is a cε such that k ≥ 24/ε and k ≥ 7 for all n ≥ cε.
Therefore, if n ≥ cε, it follows from Lemma 8.4.17 and the choice of k that
Cmin is a (1 + ε)-approximation to the optimum. Hence there is a fiptasω for
Minimum �Leb -Dominating Set on n-vertex disk graphs of bounded ply, i.e. of
ply γ = γ(n) = o(log n). The theorem follows from Theorem 2.2.4.

Observe that the above theorem extends to intersection graphs of fat objects
of any constant dimension and the weighted case. Because the �Leb -factor is
at most 6 for disk graphs, we also obtain the following result.

Theorem 8.4.19 There is an algorithm that gives for any ε > 0 a (6 + ε)-
approximation for Minimum Dominating Set on disk graphs with n vertices
and of bounded ply, i.e. of ply γ = γ(n) = o(log n), in time f(1/ε) · nO(1) for
some computable function f of 1/ε.

Similar constant-factor approximation algorithms exist for Minimum Dominat-
ing Set on intersection graphs of other fat objects of bounded ply, constant di-
mension, and constant �Leb -factor. For example, a (5+ε)-approximation algo-
rithm on square graphs or a (13+ε)-approximation algorithm on 3-dimensional
ball graphs follow from Theorem 8.4.18.
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8.4.3 A Better Constant

Although the above approach yields a constant-factor approximation algorithm
for Minimum Dominating Set on disk graphs of bounded ply, we can also
approximate it directly, i.e. without using �Leb -dominating sets. This gives an
easier algorithm with a better approximation ratio. To this end, we apply the
shifting technique in a novel fashion.

Let k ≥ 9 be an odd multiple of 3, let D be partitioned into levels and the
plane into j-squares. We prove the following auxiliary theorem.

Theorem 8.4.20 Let D be a set of disks of ply γ, k ≥ 9 an odd multiple
of 3, and OPT a minimum dominating set. Then we can obtain in time
O(k2n2 332kγ/π216kγ/π416(k+1)γ/π) a set C ⊆ D dominating

⋃
S D

i(S)
=j(S) such

that |C| ≤
∑
S

∣∣∣OPTS
=j(S)

∣∣∣, where the union and sum are over all squares S.

The set C is computed by performing bottom-up dynamic programming on
the j-squares. For each j-square S, we consider each possible dominating set
for Di(S), given the status of disks in Db(S)

>j . A disk in Db(S)
>j can have one of

three statuses: either it is a dominator, or it is dominated by a disk in DS , or
it is dominated by a yet undetermined disk. Now define for each j-square S
and any two disjoint sets W1,W2 ⊆ Db(S)

>j the function size(S,W1,W2) as

min
{
|T |
∣∣∣ T ⊆ Db(S)

=j ∪ D
i(S)
≥j ; W1 ∪ T dominates Di(S)

≥j ∪W2

}
if j = 0;

min
{
|U |+

4∑
i=1

size
(
Si, (W1 ∪ U)b(Si), Xi

) ∣∣∣
U ⊆ D+(S)

>j−1 ∪ D
b(S)
=j , Xi ⊆ Db(Si)

>j−1

{X1, . . . , X4} decomposes W2 ∪ (D+(S)
>j−1 − U)

}
if j > 0.

Here we define the minimum over an empty set to be ∞ and we say a family
of pairwise disjoint sets {A1, . . . , Am} decomposes (or is a decomposition of)
some set A if Ai ⊆ A for each i and

⋃
iAi = A. Note that this definition

explicitly allows empty sets.
Let sol(S,W1,W2) be the subfamily of D attaining size(S,W1,W2), or ∅

if size(S,W1,W2) is ∞. In the function parameters, the set W1 is used for
disks of Db(S)

>j that will be in the dominating set, while W2 is used to denote

the subset of Db(S)
>j that should be dominated by a disk in DS . Note that

one actually only needs to consider sets W2 ⊆ Db(S)
>j − N [W1], but doing so

would not improve the theoretical performance of the algorithm and might
complicate its analysis.

Properties of the size- and sol-Functions

We start again by showing that size and sol are the functions that we need.
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Lemma 8.4.21
∑
S; j(S)=l size(S, ∅, ∅) ≤

∑
S

∣∣∣CS=j(S)

∣∣∣, where C is any domi-
nating set.

Proof: We prove using induction that the following inequality holds for all
j-squares S:

size
(
S, Cb(S)

>j , N ii(S)(CS)b(S)
>j

)
≤
∣∣∣Ci(S)
>j

∣∣∣+
∑
S′⊆S

∣∣∣CS′=j(S′)

∣∣∣ .
Here N ii(S)(X) is the set of disks d 6∈ X such that d intersects some d′ ∈ X
(i.e. d ∈ N(X)) and d ∩ d′ intersects S.

The base case is trivial, since Cb(S)
>0 ∪ Ci(S)

>0 ∪ CS=0 = CS clearly dominates
Di(S)
≥j ∪N ii(S)(CS)b(S)

>j . For the inductive step, we can show that

size
(
S, Cb(S)

>j , N ii(S)(CS)b(S)
>j

)
≤

∣∣∣C+(S)
>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑
i=1

size
(
Si, Cb(Si)

>j−1, N
ii(Si)(CSi)b(Si)

>j−1

)
≤

∣∣∣C+(S)
>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑
i=1

∣∣∣Ci(Si)>j−1

∣∣∣+
4∑
i=1

∑
S′
i
⊆Si

∣∣∣CS′i=j(S′
i
)

∣∣∣
=

∣∣∣C+(S)
>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
∣∣∣Ci(S)
>j−1

∣∣∣− ∣∣∣C+(S)
>j−1

∣∣∣+
4∑
i=1

∑
S′
i
⊆Si

∣∣∣CS′i=j(S′
i
)

∣∣∣
=

∣∣∣Ci(S)
>j

∣∣∣+
∣∣CS=j∣∣+

4∑
i=1

∑
S′
i
⊆Si

∣∣∣CS′i=j(S′
i
)

∣∣∣
=

∣∣∣Ci(S)
>j

∣∣∣+
∑
S′⊆S

∣∣∣CS′=j(S′)

∣∣∣ .
The first inequality above is the crucial one and that it should hold is not
obvious. We give an explicit proof.

Suppose that to obtain

size
(
S, Cb(S)

>j , N ii(S)(CS)b(S)
>j

)
using the definition of size, we consider U = C+(S)

>j−1 ∪C
b(S)
=j . As for i = 1, . . . , 4,

(W1 ∪ U)b(Si) =
(
Cb(S)
>j ∪ C

+(S)
>j−1 ∪ C

b(S)
=j

)b(Si)

=
(
Cb(S)
>j−1 ∪ C

+(S)
>j−1

)b(Si)

by def.
=

(
4⋃

m=1

Cb(Sm)
>j−1

)b(Si)

= Cb(Si)
>j−1,
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the second parameter of the inductive call is correct.
So what about the third parameter? We claim that

W2 ∪ (D+(S)
>j−1 − U) ⊆

4⋃
i=1

N ii(S)(CS)b(Si)
>j−1 ⊆

4⋃
i=1

N ii(Si)(CSi)b(Si)
>j−1.

Because C is a dominating set and every disk in D+(S)
>j−1 must be dominated by

a disk in DS ,
N ii(S)(CS)+(S)

>j−1 = N(CS)+(S)
>j−1

= D+(S)
>j−1 − C

+(S)
>j−1

= D+(S)
>j−1 − U.

Then

W2 ∪ (D+(S)
>j−1 − U) = N ii(S)(CS)b(S)

>j ∪N
ii(S)(CS)+(S)

>j−1

⊆ N ii(S)(CS)b(S)
>j−1 ∪N

ii(S)(CS)+(S)
>j−1

by def.
=

4⋃
i=1

N ii(S)(CS)b(Si)
>j−1,

thus proving the first part of the claim.
To prove the second part, consider any disk d in N ii(S)(CS)b(Si)

>j−1 for all
i ∈ I ⊆ {1, . . . , 4}. As d ∈ N ii(S)(CS), there must be some h ∈ {1, . . . , 4} such
that d ∈ N ii(Sh)(CS), i.e. d ∈ N ii(Sh)(CSh). Furthermore, it is clear that h ∈ I.
But then d ∈ N ii(Sh)(CSh)b(Sh)

>j−1. This proves the claim.
Following the claim, there exists a decomposition {X1, . . . , X4} of W2 ∪

(D+(S)
>j−1 −U) such that Xi ⊆ N ii(Si)(CSi)b(Si)

>j−1 and hence Xi ⊆ Db(Si)
>j−1. There-

fore for such Xi and the chosen set U ,

size
(
S, Cb(S)

>j , N ii(S)(CS)b(S)
>j

)
≤ |U |+

4∑
i=1

size
(
Si, (W1 ∪ U)b(Si), Xi

)
=

∣∣∣C+(S)
>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑
i=1

size
(
Si, Cb(Si)

>j−1, Xi

)
≤

∣∣∣C+(S)
>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑
i=1

size
(
Si, Cb(Si)

>j−1, N
ii(Si)(CSi)b(Si)

>j−1

)
,

where the last inequality follows from Xi ⊆ N ii(Si)(CSi)b(Si)
>j−1. This proves the

inequality of the previous page.
We now know that

size
(
S, Cb(S)

>j , N ii(S)(CS)b(S)
>j

)
≤
∣∣∣Ci(S)
>j

∣∣∣+
∑
S′⊆S

∣∣∣CS′=j(S′)

∣∣∣ .
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Since l is the level of the largest disk, Ci(S)
>j = ∅ and Cb(S)

>j = ∅, and thus

N ii(S)(CS)b(S)
>j = ∅ for all j-squares S with j ≥ l. Hence∑
S; j(S)=l

size(S, ∅, ∅) ≤
∑

S; j(S)=l

∑
S′⊆S

∣∣∣CS′=j(S′)

∣∣∣ =
∑
S

∣∣∣CS=j(S)

∣∣∣ .
This proves the lemma.

It follows that if OPT is a minimum dominating set, then∑
S; j(S)=l

size(S, ∅, ∅) ≤
∑
S

∣∣∣OPTS
=j(S)

∣∣∣ .
Lemma 8.4.22

⋃
S; j(S)=l sol(S, ∅, ∅) is a dominating set for

⋃
S D

i(S)
=j(S).

Proof: For any j-square S and any two disjoint W1,W2 ⊆ Db(S)
>j , we claim that

W1∪ sol(S,W1,W2) dominates W2∪Di(S)
>j ∪

⋃
S′⊆S D

i(S′)
=j(S′) if size(S,W1,W2) 6=

∞. Apply induction on j. The case j = 0 is trivial, so assume that j > 0 and
that the claim holds for all j′ < j.

Suppose that size(S,W1,W2) 6= ∞ for some j-square S and for disjoint
W1,W2 ⊆ Db(S)

>j . Let U,X1, . . . , X4 attain the minimum in the definition
of size. Then size(Si, (W1 ∪ U)b(Si), Xi) 6= ∞ for i = 1, . . . , 4. By induction,
(W1∪U)b(Si)∪sol(Si, (W1∪U)b(Si), Xi) dominates Xi∪Di(Si)

>j−1∪
⋃
S′
i
⊆Si D

i(S′i)

=j(S′
i
)

for i = 1, . . . , 4. Observe that

4⋃
i=1

(
(W1 ∪ U)b(Si) ∪ sol

(
Si, (W1 ∪ U)b(Si) , Xi

))
= W1 ∪ U ∪

4⋃
i=1

sol
(
Si, (W1 ∪ U)b(Si) , Xi

)
= W1 ∪ sol(S,W1,W2)

and that
4⋃
i=1

(
Xi ∪ Di(Si)

>j−1 ∪
⋃

S′
i
⊆Si

Di(S′i)

=j(S′
i
)

)

= W2 ∪
(
D+(S)
>j−1 − U

)
∪

4⋃
i=1

(
Di(Si)
>j−1 ∪

⋃
S′
i
⊆Si

Di(S′i)

=j(S′
i
)

)
.

Because W1 ∪ sol(S,W1,W2) dominates U , W1 ∪ sol(S,W1,W2) dominates

W2 ∪ D+(S)
>j−1 ∪

4⋃
i=1

(
Di(Si)
>j−1 ∪

⋃
S′
i
⊆Si

Di(S′i)

=j(S′
i
)

)
= W2 ∪ Di(S)

>j ∪
⋃
S′⊆S

Di(S′)
=j(S′).
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This proves the claim.
We know that

∑
S; j(S)=l size(S, ∅, ∅) 6=∞ from Lemma 8.4.21. Since each

disk has level at most l,
⋃
S; j(S)=l sol(S, ∅, ∅) dominates

⋃
S D

i(S)
=j(S).

Computing the size- and sol-Functions

We use the same definitions of (non)empty and relevant (child) as in Chapter 7.
That is, a j-square is nonempty if it is intersected by a level j disk and empty
otherwise. A j-square S is relevant if one of its three siblings is nonempty or
there is a nonempty square S′ containing S, such that S′ has level at most
j + dlog ke (so each nonempty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′,
then S′ is a relevant parent of S.

Lemma 8.4.23 For each relevant 0-square S, all size- and sol-values for S
can be computed in O

(
nkγ 3(24k+32)γ/π

)
time.

Proof: We use the bounds of Lemma 7.1.1 and Lemma 7.1.2. Then
∣∣∣Db(S)

>0

∣∣∣ ≤
16kγ/π and all disjoint W1,W2 ⊆ Db(S)

>0 can be enumerated in O(316kγ/π) time.
Furthermore, as the pathwidth of Db(S)

=j ∪D
i(S)
>j can be bounded by 8(k+4)γ/π,

we can adapt the algorithm of Corollary 5.3.9 to find the appropriate minimum
dominating set in O(nkγ 3(8k+32)γ/π) time. The lemma follows.

Now assume that the size- and sol-values of all relevant children of a j-square
S are known.

Lemma 8.4.24 For each relevant j-square S (j > 0) with relevant (j − 1)-
square children, in O(332kγ/π216kγ/π416(k+1)γ/π) time all size- and sol-values
for S can be computed.

Proof: Using Lemma 7.1.1, we can show that
∣∣∣Db(S)
≥j

∣∣∣ ≤ 32kγ/π and
∣∣∣D+(S)
≥j

∣∣∣ ≤
16kγ/π. Hence all disjoint W1,W2 ⊆ Db(S)

>j and all U ⊆ D+(S)
>j−1 ∪ D

b(S)
=j can

be enumerated in O(332kγ/π216kγ/π) time. To enumerate all decompositions
{X1, . . . , X4} of W2 ∪ (D+(S)

>j−1−U) for fixed W2 and U such that Xi ⊆ Db(Si)
>j−1,

it suffices to consider decompositions of disks in an ‘extended cross’. Following
Lemma 7.1.1, the number of disks intersecting it is at most 16(k+ 1)γ/π. The
lemma follows.

Lemma 8.4.25 For each relevant j-square S (j > 0) with no relevant children
of level j−1 all size- and sol-values for S can be computed in O(n 264γ/π332γ/π)
time.
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Proof: From the proof of Lemma 7.2.6, we know that Db(S)
>j = Db(S)

≥j+dlog ke,

D+(S)
>j−1 = ∅, and Db(S)

=j = ∅. Then for any disjoint W1,W2 ⊆ Db(S)
>j , we can

show that size(S,W1,W2) equals

0 if S has no relevant children and
W1 dominates W2;

∞ if S has no relevant children and
W1 doesn’t dominate W2;

min
{XS′′}

∑
S′′

size
(
S′′,W

b(S′′)
1 , XS′′

)
otherwise.

The sum is over all relevant children S′′ of S and {XS′′} decomposes W2.
Since Db(S)

>j = Db(S)
≥j+dlog ke,

∣∣∣Db(S)
>j

∣∣∣ ≤ 32γ/π. Then all disjoint W1,W2 ⊆

Db(S)
>j can be enumerated in O(332γ/π) time.

For fixed W1 and W2, we can compute size(S,W1,W2) in O(n) time if S has
no relevant children. Otherwise, number the relevant children of S arbitrarily,
S′′1 , . . . , S

′′
m. Now compute size(S,W1,W2) using the following function s. For

any X ⊆W2,

s1(X) = size(S′′1 ,W
b(S′′)
1 , X)

si(X) = minXS′′
i
⊆X{size(S′′1 ,W

b(S′′)
1 , X) + si−1(X −XS′′

i
)}

Then size(S,W1,W2) = sm(W2). One can thus compute size(S,W1,W2) in
O(n 264γ/π) time, as m = O(n). The lemma follows.

Lemma 8.4.26 The value of
∑
S; j(S)=l size(S, ∅, ∅) can be computed in time

O(k2n2γ 332kγ/π216kγ/π416(k+1)γ/π).

Proof: Follows from Lemma 8.4.23, Lemma 8.4.24, Lemma 8.4.25, and the
proof of Lemma 7.2.7.

Proof of Theorem 8.4.20: Follows directly from Lemmas 8.4.21, 8.4.22,
and 8.4.26.

The Approximation Algorithm

The shifting technique can now be applied as follows. For an integer a (0 ≤
a ≤ k − 1), call a line of level j active if it has the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into
j-squares as before, although shifted with respect to the shifting parameter a.
However, we can still apply the algorithm of Theorem 8.4.20.

Let Ca denote the set returned by the algorithm for the j-squares induced
by shifting parameter a (0 ≤ a ≤ k − 1). Instead of considering each set Ca
individually, we join three such sets to ensure that we have a dominating set.
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So let C3
i = Ci ∪Ci+k/3 ∪Ci+2k/3 for each i = 0, . . . , k/3− 1. This is properly

defined, as k is a multiple of 3. Denote the smallest such set by C3
min. We

claim that C3
min is a dominating set of cardinality at most (3 + 36/k) · |OPT |,

where OPT is a minimum dominating set.
To prove this claim, let Dba be the set of disks intersecting the boundary of

a j-square S at their level, i.e. Dba =
⋃
S D

b(S)
=j(S).

Lemma 8.4.27 C3
i is a dominating set of D for any i = 0, . . . , k/3− 1.

Proof: We claim that any disk is in at most two of the sets Dbi ,Dbi+k/3,D
b
i+2k/3.

A level j disk is in Dba if and only if it intersects an active line of level j for a.
We showed in Lemma 7.2.8 that any disk intersects an active horizontal line
for at most two values of a and an active vertical line for at most two values
of a. It is easy to see from the proof of this lemma that the intersections with
an active horizontal line and similarly the intersections with an active vertical
line must occur for consecutive values of a (modulo k). Since k ≥ 9 is an
odd multiple of 3, k/3 > 1, and thus i, i + k/3, i + 2k/3 are nonconsecutive
integers (modulo k). It follows that any disk is in at most two of the sets
Dbi ,Dbi+k/3,D

b
i+2k/3, as claimed.

Lemma 8.4.22 shows that Ca is a dominating set of
⋃
S D

i(S)
=j(S) = D −Dba.

Given the previous argument, (D −Dbi ) ∪ (D −Dbi+k/3) ∪ (D −Dbi+2k/3) = D.
Hence C3

i = Ci ∪ Ci+k/3 ∪ Ci+2k/3 is a dominating set of D.

Lemma 8.4.28 |C3
min| ≤ (3 + 36/k) · |OPT |, where OPT is a minimum dom-

inating set.

Proof: Following the proof of Lemma 7.2.8, a level j disk is in Dba for at most
4 different values of a. Therefore

∑k−1
a=0 |OPT ∩Dba| ≤ 4 · |OPT |. Furthermore,

for any fixed value of a, any level j disk can intersect at most 4 j-squares. It
follows from Theorem 8.4.20 that

|Ca| ≤
∑
S

∣∣∣OPTS
=j(S)

∣∣∣
≤

∑
S

(∣∣∣OPT i(S)
=j(S)

∣∣∣+
∣∣∣OPT b(S)

=j(S)

∣∣∣)
≤ |OPT |+ 3|OPT ∩ Dba|.

Then

1
3k · |C

3
min| ≤

k/3−1∑
i=0

|C3
i |

≤
k−1∑
a=0

|Ca|
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≤
k−1∑
a=0

(
|OPT |+ 3|OPT ∩ Dba|

)
≤ (k + 12) · |OPT |.

Hence |C3
min| ≤ (3 + 36/k) · |OPT |.

Combining Theorem 8.4.20 and Lemma 8.4.28, we obtain the following ap-
proximation algorithm.

Theorem 8.4.29 There is an algorithm that gives for any ε > 0 a (3 + ε)-
approximation for Minimum Dominating Set on disk graphs with n vertices
and of bounded ply, i.e. of ply γ = γ(n) = o(log n), in time f(1/ε) · nO(1) for
some computable function f of 1/ε.

Proof: Consider any ε > 0. Choose k as the largest odd multiple of 3 such
that 32kγ/π ≤ log3 n. If k < 9, output V (G). Otherwise, apply the algorithm
of Theorem 8.4.20 and compute C3

min in O(n5 log3 n) time. Furthermore, if
γ = γ(n) = o(log n), there is a cε such that k ≥ 36/ε and k ≥ 9 for all n ≥ cε.
Therefore, if n ≥ cε, it follows from Lemma 8.4.28 and the choice of k that
C3

min is a (3 + ε)-approximation to the optimum. The theorem now follows
from the proof of Theorem 2.2.4.

We can obtain analogous approximation algorithms on intersection graphs of
fat objects of bounded ply and of any constant dimension.

8.5 Hardness of Approximation

We have seen that although Minimum Dominating Set is a challenging problem
on intersection graphs of arbitrary-sized geometric objects, it still is approx-
imable on a variety of classes of geometric intersection graphs. We show how-
ever that there are also classes of geometric intersection graphs for which no
constant-factor approximation algorithm or approximation scheme can exist,
under certain complexity assumptions.

We prove that Minimum Dominating Set on intersection graphs of convex
polygons or of homothetic polygons is as hard as on general graphs. That
is, it is not approximable within (1 − ε) lnn for any ε > 0, unless NP ⊂
DTIME(nO(log logn)). This nicely complements Theorem 8.3.4, where we gave
a constant-factor approximation algorithm on intersection graphs of homoth-
etic convex polygons. Hence it seems that both convexity and homotheticity
are essential properties of the objects when designing a constant-factor ap-
proximation algorithm.

We also gain further insight into Minimum Dominating Set on disk graphs.
We show that on a collection of fat almost-disks, Minimum Dominating Set is
as hard as on general graphs. Even if the fat objects have constant description
complexity, the problem is still APX-hard.
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Finally, we solve an open problem of Chleb́ık and Chleb́ıková [65] by proving
that Minimum Dominating Set is APX-hard on rectangle intersection graphs.
This result extends to intersection graphs of ellipses. We should note that all
hardness results given here extend to Minimum Connected Dominating Set.

8.5.1 Intersection Graphs of Polygons

We consider the approximability of Minimum Dominating Set on intersection
graphs of polygons. First we show that convexity of the objects is no guarantee
for the existence of a constant-factor approximation algorithm. Instead of just
looking at arbitrary convex polygons, we prove a stronger result.

Recall from Chapter 3 that a polygon-circle graph is the intersection graph
of a set of polygons for which all corners lie on a fixed circle. Note that in
a polygon-circle graph, all polygons are convex. This graph class is a gener-
alization of circle graphs, which are intersection graphs of chords of a fixed
circle. On circle graphs, we know that Minimum Dominating Set has a (2+ ε)-
approximation algorithm [76], but no ptas unless P=NP [75]. The slight gen-
eralization to polygon-circle graphs however makes Minimum Dominating Set
much more difficult.

Theorem 8.5.1 Minimum Dominating Set on polygon-circle graphs is not ap-
proximable within (1−ε) lnn for any ε > 0, unless NP ⊂ DTIME(nO(log logn)).

Proof: We give a gap-preserving reduction from Minimum Set Cover. Consider
an instance (U,S) of Minimum Set Cover and assume that U =

⋃
S and U =

{1, . . . , n}. Fix a circle and n+ 1 points on this circle, numbered p1, . . . , pn+1

in order of appearance on the circle. Construct a polygon Pj for each set Sj
as the convex hull of the set {pi | i ∈ Sj} ∪ {pn+1}. Furthermore, place a
tiny polygon around each point pi such that these tiny polygons are pairwise
disjoint.

Observe that any polygon dominated by a tiny polygon is also dominated
by some polygon Pj . It is now easy to see that the optima of the minimum set
cover instance and the constructed instance of Minimum Dominating Set on
polygon-circle graphs are the same. As the construction can be computed in
polynomial time, this gives a gap-preserving reduction. The theorem then fol-
lows from Feige’s inapproximability result for Minimum Set Cover [108].

A direct consequence of Theorem 8.5.1 is an inapproximability result on inter-
section graphs of convex polygons.

Corollary 8.5.2 Unless NP ⊂ DTIME(nO(log logn)), Minimum Dominating
Set on intersection graphs of convex polygons cannot be approximated within
(1− ε) lnn for any ε > 0.

We give a similar result for intersection graphs of fat convex polygons later.
If the polygons are not convex, but translated copies of a fixed polygon,

the approximability of Minimum Dominating Set does not change.
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Figure 8.2: The left figure shows the rectangle constructed for S1.
The right figure shows the combination of the rectangles for S1, . . . ,S|S|.
This is the base polygon P . The small circles represent the Lu, which
are homothetic copies of P .
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Theorem 8.5.3 Minimum Dominating Set on intersection graphs of homoth-
etic polygons is not approximable within (1− ε) lnn for any ε > 0, unless NP
⊂ DTIME(nO(log logn)).

Proof: We give a similar reduction as in the proof of Theorem 8.5.1. Given an
instance (U,S) of Minimum Set Cover, place for each u ∈ U a polygon Lu in
the plane, such that these polygons are aligned in a column (see Figure 8.2).
Now construct a rectangle next to this column. Deform the long side by placing
small bulges on it such that the deformed rectangle intersects an Lu if and only
if u ∈ S1 (see Figure 8.2). Do this for each set in S and stack these rectangles.
This is the base polygon P . By taking a translated copy of P for each set in S
and ensuring that the Lu are homothetic copies of P , we can build the same
graph as in Theorem 8.5.1. The theorem follows.

The hardness results of Corollary 8.5.2 and Theorem 8.5.3 complement The-
orem 8.3.4, where we gave an O(r4)-approximation algorithm on intersection
graphs of homothetic convex polygons with r corners.

The approximability of Minimum Dominating Set on intersection graphs
of convex polygons or of homothetic polygons with r corners has yet to be
determined. The APX-hardness on circle graphs [75] implies APX-hardness
on intersection graphs of convex polygons with two (or more) corners. Hence
no ptas exists, unless P=NP [16]. Using the gadget of Theorem 8.5.1, we can
give a slightly weaker result, but by an easier proof. We use that Minimum
k-Set Cover is APX-hard for any k ≥ 3 (by reduction from Minimum Vertex
Cover on graphs of degree at most 3 [9]). Minimum k-Set Cover is the variation
of Minimum Set Cover where each set has cardinality at most k.

Theorem 8.5.4 Minimum Dominating Set on polygon-circle graphs of convex
polygons with r corners is APX-hard for any r ≥ 4. Hence it has no ptas,
unless P=NP.

Proof: We use the same gadget as in the proof of Theorem 8.5.1 and reduce
from Minimum k-Set Cover, which is APX-hard for any k ≥ 3. The gadget
constructs polygons with at most k + 1 corners. The theorem follows.

Corollary 8.5.5 Minimum Dominating Set on intersection graphs of convex
polygons with r corners is APX-hard for any r ≥ 4. Hence it has no ptas,
unless P=NP.

8.5.2 Intersection Graphs of Fat Objects

The approximation schemes for Maximum Independent Set and Minimum Ver-
tex Cover on disk graphs (see Chapter 7) extend easily to intersection graphs
of fat objects. It is unlikely that an approximation algorithm for Minimum
Dominating Set extends this way, as on intersection graphs of fat objects that
are almost-disks, Minimum Dominating Set becomes hard to approximate.
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du

dj

Figure 8.3: A cut-off disk dj and the disks du for elements u ∈ U of
Theorem 8.5.6.

Recall that a convex subset s of R2 is α-fat for some α ≥ 1 if the ratio
between the radii of the smallest disk enclosing s and the largest disk inscribed
in s is at most α [97].

Theorem 8.5.6 For any α > 1, Minimum Dominating Set on intersection
graphs of α-fat objects is not approximable within (1 − ε) lnn for any ε > 0,
unless NP ⊂ DTIME(nO(log logn)).

Proof: We reduce from Minimum Set Cover in a manner similar as in the proof
of Theorem 8.5.1. For an instance (U,S) of Minimum Set Cover, construct an
instance of Minimum Dominating Set as follows. Each u ∈ U corresponds to
a ‘small’ disk du. Each Sj corresponds to a disk dj with the top replaced
by a polygonal structure such that dj intersects du if and only if u ∈ Sj (see
Figure 8.3). Packing the du close together makes the fatness of the construction
arbitrarily close to 1. As any object dominated by a du is also dominated by a
dj for which u ∈ Sj , the optima of the two instances are equal. Moreover, the
construction can be computed in polynomial time. The theorem then follows
from Feige’s result [108].

An object has constant description complexity if it is a semialgebraic set de-
fined by a constant number of polynomial (in)equalities of constant maximum
degree [97]. The objects in the proof of Theorem 8.5.6 that model the Sj are
the intersection of a disk with a polygon and thus we can describe each such dj
by one quadratic inequality and |Sj |+ 1 linear inequalities. Hence the objects
in the construction of Theorem 8.5.6 might not have constant description com-
plexity. So for constant description complexity objects, better approximation
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ratios than lnn could be attained. However, we can still prove APX-hardness
by reducing from Minimum k-Set Cover with the same gadget.

Theorem 8.5.7 For any α > 1, Minimum Dominating Set on intersection
graphs of α-fat objects of constant description complexity is APX-hard. Hence
it has no ptas, unless P=NP.

These results say something about intersection graphs of fat objects in general,
and of fat almost-disks in particular. But we can easily prove similar results
for almost-squares, bounded aspect-ratio almost-rectangles, almost-triangles,
etc. Basically, if we slightly relax the shape constraints for a given object,
Minimum Dominating Set on the intersection graphs of such relaxed objects
is hard to approximate. Moreover, the above results can be used to derive
hardness of approximation results for Minimum Connected Dominating Set.

8.5.3 Intersection Graphs of Rectangles

Chleb́ık and Chleb́ıková [65] proved that Minimum Dominating Set is APX-
hard on intersection graphs of three-dimensional axis-parallel boxes and asked
whether this result can be extended to only two dimensions. We prove that
this is indeed the case.

Theorem 8.5.8 Minimum Dominating Set on rectangle intersection graphs
is APX-hard. Hence it has no ptas, unless P=NP.

Proof: We give an L-reduction [220] from Minimum Vertex Cover on graphs
of degree three, which is known to be APX-hard [9]. Consider an arbitrary
instance x of Minimum Vertex Cover on graphs of degree three. Let G = (V,E)
be the graph of x and denote the cardinality of the smallest vertex cover in
G by k. Number the vertices of V arbitrarily v1, . . . , vn, where n = |V |. Now
construct for each vertex vi a horizontal and a vertical rectangle Rhi and Rvi
and connect them as shown in Figure 8.4. Call the big rectangle used in the
connection of Rhi and Rvi the big plate Pi of i and the two small rectangles
the small plates of i. This models the vertices. Next we model the edges. If
(vi, vj) ∈ E for certain i < j, then add a small rectangle Si,j in the intersection
of rectangles Rvi and Rhj (see Figure 8.4). This gives the instance f(x) of
Minimum Dominating Set on rectangle intersection graphs. Observe that this
is indeed a polynomial-time computable function (even if not only the graph,
but also the rectangles are part of the output).

Let C be a vertex cover of G of cardinality k. Let Rh[C] = {Rhi | vi ∈ C}
be the set of horizontal rectangles induced by C and similarly let Rv[C] be the
set of vertical rectangles induced by C. Furthermore, let P [C] = {Pi | vi 6∈ C}
be the big plates for which the corresponding vertex is not in C.

We claim that D = Rh[C] ∪ Rv[C] ∪ P [C] is a dominating set of G′. Let
r be an arbitrary rectangle. Suppose that r is an Si,j for a certain i, j. Since
C is a vertex cover, vi ∈ C or vj ∈ C. Assume w.l.o.g. that vi ∈ C. Then
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Rv2

Rh1

Rh2

Rhn

Rvn

Pn

Rv1

P2

P1

...
. . .

. . .

Figure 8.4: The intersection graph used in the proof of Theorem 8.5.8.
If edge (v1, v2) is in E, then the shaded rectangle S1,2 is in G′.
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by construction, Rhi , R
v
i ∈ D, and thus by construction of G′, Si,j must be

dominated. Suppose that r is a (big or small) plate of i. If vi ∈ C, then
Rhi , R

v
i ∈ D, and thus the plate must be dominated. If vi 6∈ C, then Pi ∈

P [C] ⊆ D, and the plate is dominated. Using a similar argument, we can
show that if r is Rhi or Rvi for certain i, it must be dominated. Hence D is a
dominating set of G′.

Note that |Rh[C]| = |Rv[C]| = |C| = k. Furthermore, |P [C]| = n − k.
Since G has degree three, k ≥ n/4. Hence

m∗(f(x)) ≤ n− k + k + k ≤ 4k + k = 5 ·m∗(x). (8.1)

We now take a closer look at the cardinality of dominating sets of G′.
Let D be an arbitrary dominating set of G′. Observe that the rectangles
dominated by small plates and the Si,j are also dominated by the appropriate
big plate or Rhi respectively Rvi . Hence we can replace these small plates
and Si,j ’s and obtain a dominating set D′ with |D′| ≤ |D|, where all small
plates and Si,j are dominated by big plates and rectangles of type Rhi and
Rvi . Let R2[D′] = {Rhi , Rvi | Rhi , Rvi ∈ D′} be the rectangles for vi for which
both the horizontal and the vertical version occur in D′, R1[D′] the remaining
rectangles of type Rhi and Rvi (i.e. rectangles for vi for which only one version
occurs in D′), and let P [D′] denote the big plates in D′. Furthermore, let
R[D′] = R2[D′] ∪R1[D′]. Note that R2[D′] ∩R1[D′] = ∅.

Consider C = {vi | Rhi ∈ D′ or Rvi ∈ D′}. Since all Si,j are dominated by
R[D′], C is a vertex cover. Observe that to dominate all plates of i, Pi ∈ D′,
or Rhi , R

v
i ∈ D′. This holds for all i. Thus |P [D′]| + |R2[D′]|/2 ≥ n. Also, as

C is a vertex cover of G, |R1[D′]|+ |R2[D′]|/2 = |C| ≥ k.
Hence

|D′| ≥ |R1[D′]|+ |R2[D′]|+ |P [D′]|
≥ |R1[D′]|+ |R2[D′]|/2 + n (8.2)
≥ k + n.

Together with Equation 8.1, this implies that m∗(f(x)) = n+ k.
Now suppose that |D| = m∗(f(x)) + c, for a certain c ≥ 0. Then |D′| ≤

|D| = n+ k + c. Using Equation 8.2,

|R1[D′]|+ |R2[D′]|/2 + n ≤ n+ k + c

|R1[D′]|+ |R2[D′]|/2 ≤ k + c

|C| ≤ m∗(x) + c

|C| −m∗(x) ≤ c.

This gives an L-reduction from Minimum Vertex Cover on graphs of degree
three to Minimum Dominating Set on rectangle intersection graphs with α = 5
and β = 1.
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Note that this theorem holds even if the rectangles have to be axis-parallel or if
no rectangle can be fully contained in another rectangle (by slightly changing
the construction of Figure 8.4). Furthermore, the construction in the proof of
Theorem 8.5.8 can be replicated using ellipses instead of rectangles. This gives
the following theorem.

Theorem 8.5.9 Minimum Dominating Set on ellipse intersection graphs is
APX-hard. Hence it has no ptas, unless P = NP.

The proof of Theorem 8.5.9 requires ellipses of relatively high eccentricity (of
the order

√
1− n−2) as ‘Rhi ’ and ‘Rvi ’. Hence the proof does not immediately

carry over to disk graphs.
The construction to prove the APX-hardness of Minimum Dominating Set

in rectangle intersection graphs can be extended to prove the APX-hardness of
Minimum Connected Dominating Set. In fact, the new construction generalizes
the previous construction, as it can also be used to prove the APX-hardness
of Minimum Dominating Set. Below, we give this generalized proof.

Theorem 8.5.10 Minimum Connected Dominating Set on rectangle intersec-
tion graphs is APX-hard. Hence it has no ptas, unless P=NP.

Proof: Consider again an arbitrary instance x of Minimum Vertex Cover on
graphs of degree three. Let G = (V = {v1, . . . , vn}, E) be the graph of x and
denote the cardinality of the smallest vertex cover of x by k. We keep the
construction of Theorem 8.5.8 (see Figure 8.4) and extend it as follows (see
Figure 8.5). For any big plate Pi, we add a horizontal plate Phi intersecting Pi
and containing a single small rectangle, ensuring that Phi is in any connected
dominating set. We also add three surrounding rectangles S1, S2, and S3, each
containing a single small rectangle, enforcing the presence of S1, S2, and S3

in any connected dominating set. These rectangles are aligned such that S1

intersects all horizontal rectangles Rhi , S2 intersects S1 and all vertical rect-
angles Rvi , and S3 intersects S2 and all horizontal plates Phi . The intersection
graph G′ of these rectangles is the function f(x) for the L-reduction. It can
be quickly verified that this is indeed a polynomial-time computable function
(even if the rectangles are part of the output).

Let C be a vertex cover of G of cardinality k. Recall that Rh[C] = {Rhi |
vi ∈ C}, Rv[C] = {Rvi | vi ∈ C}, and P [C] = {Pi | vi 6∈ C}. Let Ph = {Phi |
i = 1, . . . , n}. We claim that D = Rh[C] ∪Rv[C] ∪ P [C] ∪ Ph ∪ {S1, S2, S3} is
a connected dominating set of G′. From the proof of Theorem 8.5.8 and the
construction of G′, it should be clear that D is a dominating set for G′.

To prove that D induces a connected subgraph of G′, let d, d′ ∈ D be any
two distinct rectangles in G′. We show there exists a path in G′[D] between
d and d′. If d or d′ is in Rh[C] (Rv[C]), it takes one step to reach S1 (S2).
Similarly, if d or d′ is in P [C], the appropriate horizontal plate can be used
to reach S3 in two steps. Thus from d or d′, we can reach S1, S2, or S3 in
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Figure 8.5: The intersection graph used in the APX-hardness proof
of Minimum Connected Dominating Set. The rectangles that also ap-
peared in Figure 8.4 have dashed boundaries.
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the subgraph of G′ induced by D in at most two steps. But since {S1, S2, S3}
form a connected induced subgraph in G′, this implies that D is a connected
subgraph of G′. Hence D is a connected dominating set.

We now give an upper bound to |D|. Since the degree ofG is three, k ≥ n/4,
and thus

m∗(f(x)) ≤ |D|
= |Rh[C]|+ |Rv[C]|+ |P [C]|+ |Ph|+ 3
= k + k + (n− k) + n+ 3
= 2n+ k + 3 (8.3)
≤ 9k + 3
≤ 12k
= 12 ·m∗(x).

Now let D be an arbitrary connected dominating set of G′. We may assume
that D contains all Phi and S1, S2, S3 (if not, the small rectangle contained in
these rectangles is in D, which can be easily replaced by the bigger rectangle).
Similarly, as already noted in the proof of Theorem 8.5.8, we may assume that
all small plates and Si,j are dominated by big plates and rectangles Rhi and
Rvi . Let R2[D′] = {Rhi , Rvi | Rhi , Rvi ∈ D} be the set of the rectangles for i
for which both the horizontal and the vertical version occur in D, R1[D] the
set of remaining rectangles of type Rhi and Rvi (i.e. rectangles for i for which
only one version occurs in D), and let P [D] denote the set of big plates in D.
Furthermore, let R[D] = R2[D] ∪R1[D]. Note that R2[D] ∩R1[D] = ∅.

Consider C = {vi | Rhi ∈ D or Rvi ∈ D}. Since all Si,j are dominated by
R[D], C is a vertex cover. Observe that to dominate the small plates of i, Pi ∈
D, or both Rhi , R

v
i ∈ D. This holds for all i. Therefore |P [D]|+ |R2[D]|/2 ≥ n.

Also, as C is a vertex cover for G, |R1[D]|+ |R2[D]|/2 = |C| ≥ k. Hence

|D| ≥ |R1[D]|+ |R2[D]|+ |P [D]|+ |Ph|+ 3
≥ |R1[D]|+ |R2[D]|/2 + n+ n+ 3 (8.4)
≥ k + 2n+ 3.

Together with Equation 8.3, this implies that m∗(f(x)) = 2n+ k + 3.
Now suppose that |D| = m∗(f(x)) + c, for a certain c ≥ 0. Then |D| =

2n+ k + 3 + c. Using Equation 8.4,

|R1[D]|+ |R2[D]|/2 + 2n+ 3 ≤ |D| = 2n+ k + 3 + c

|R1[D]|+ |R2[D]|/2 ≤ k + c

|C| ≤ m∗(x) + c

|C| −m∗(x) ≤ c.

This gives an L-reduction with α = 12 and β = 1.

This reduction can also be extended to ellipse intersection graphs (where the
ellipses have high eccentricity).




