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Bioenergetics, overcompensation, and the
source–sink status of marine reserves

David Claessen, Anneke S. de Vos, and André M. de Roos

Abstract: One of the hypothesized functions of marine protected areas (MPAs) is to serve as sources of biomass, with bio-
mass spilling over from the reserve into neighbouring, harvested areas. We argue that the net larval flow (from or to the
marine reserve) depends on between-area differences in the population-level biomass production rate, whereas the direction
of adult flow depends on differences in the biomass standing stock. Hence, an important question is whether population-
level biomass production increases (overcompensation) or decreases (undercompensation) with increased per capita mortal-
ity. We show that in a consumer–resource context, the source–sink status of an MPA may depend on the details of the in-
dividual-level bioenergetics, as well as on the dispersal rates of larvae and adults. We compare two classic bioenergetic
models (net-production vs. gross-production allocation). The net-production model predicts that population-level reproduc-
tion may increase with mortality (overcompensation), whereas gross-production allocation always results in undercompen-
sation. We show that models often implicitly assume gross-production allocation, thus potentially overestimating the
capacity of MPAs to source unprotected areas. We briefly discuss results of two other models (a simplified, logistic model
and a size-structured model), suggesting that the relation between overcompensation and the larval sink status of MPAs is
general.

Résumé : Une des fonctions présumées des zones de protection marine (« MPA ») est de servir de source de biomasse,
cette biomasse débordant alors de la réserve vers les zones exploitées adjacentes. Nous soutenons que le flux net de larves
(depuis ou vers la réserve marine) dépend des différences entre les deux zones du taux de production de la biomasse au ni-
veau de la population, alors que la direction du flux des adultes dépend des différences de biomasse des stocks. Cela sou-
lève une question importante à savoir si la production de biomasse au niveau de la population augmente
(surcompensation) ou diminue (sous-compensation) en fonction d’une augmentation de la mortalité par individu. Nous dé-
montrons que, dans un contexte de consommateurs et de ressources, le statut de source ou de piège d’une MPA peut dé-
pendre des détails de la bioénergétique au niveau individuel, mais aussi des taux de dispersion des larves et des adultes.
Nous comparons deux modèles bioénergétiques classiques (allocation de la production nette ou de la production brute). Le
modèle de production nette prédit que la reproduction au niveau de la population peut augmenter en fonction de la mortal-
ité (surcompensation), alors que l’allocation de la production brute entraı̂ne toujours une sous-compensation. Nous mon-
trons que les modèles présupposent souvent une allocation de la production brute, surestimant ainsi la capacité des MPA
d’alimenter les zones non protégées. Nous discutons brièvement des résultats de deux autres modèles (un modèle logisti-
que simple et un modèle structuré en fonction de la taille) et nous croyons que la relation entre la surcompensation et le
statut des MPA comme pièges pour les larves est une relation générale.

[Traduit par la Rédaction]

Introduction
Marine reserves (or marine protected areas, MPAs here-

after) introduce a spatial heterogeneity into ecosystems that
is caused by spatial variation in mortality rates of harvested
populations. This results in an imbalance between protected
and unprotected areas not only in terms of standing biomass
of populations in the food web (Halpern and Warner 2002;
Micheli et al. 2004b) but also, by consequence, in terms of
ecological interactions, such as competition for resources,
predation, etc. This imbalance is the driving force behind
the potential of marine reserves to serve as biomass sources

(through spillover) for the harvested areas, possibly leading
to equal or even enhanced yield compared with conven-
tional, effort-based fisheries management (Mangel 1998;
Neubert 2003; Hart 2006). This simple vision of marine re-
serves suggests that two aspects are important for the dy-
namics of MPAs and surrounding areas: (i) the local
ecological response of the food web to the presence or ab-
sence of harvesting, and (ii) the exchange of individuals
through migration (Walters 2000; Mangel and Levin 2005).
Mathematical models have been used to investigate the con-
sequences of different assumptions on these two aspects for
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both the economic and conservational implications of MPAs
(reviewed in Gerber et al. 2003; Baskett et al. 2007; Pellet-
ier et al. 2008), including the roles of predation, competi-
tion, and mutualism (Baskett et al. 2007), spatial processes
(Botsford et al. 2001; Guichard et al. 2004), juvenile–adult
stage structure (St. Mary et al. 2000), and density-dependent
growth (Gårdmark et al. 2006).

In this paper, we show that a fundamental but usually im-
plicit assumption concerning individual-level energy alloca-
tion affects both aspects (i) and (ii) in a potentially important
way, which has been ignored in most previous modelling
work. We study two alternative, well-known models for
individual-level bioenergetics. A bioenergetics model answers
the question as to how much energy is allocated to growth, re-
production, and maintenance, given a quantity of food in the
environment. In the literature, different models of energy allo-
cation exist, which can be divided into two classes: gross-
production allocation and net-production allocation. The
distinction between the two classes is that reproduction is
supposed to be proportional to the energy intake rate either
before or after maintenance costs have been substracted. By
consequence, the allocation models assume different behav-
iour at low food conditions: in the gross-production model,
individuals reproduce as long as the food concentration is
positive, whereas in the net-production model, there is a
threshold food concentration below which individuals stop
reproducing (Gurney et al. 1996). Simple MPA models for-
mulated in terms of ordinary or partial differential equations
(ODEs or PDEs, respectively) are often based on Lotka–
Volterra type models (Neubert 2003; Steele and Beet 2003;
Baskett et al. 2006), without explicitly considering bioener-
getics. We show that such models are equivalent to an im-
plicit assumption of gross-production allocation.

In the context of size-structured population models, Gur-
ney et al. (1996) have shown that the individual-level ener-
getics influence by which demographic process populations
are regulated (i.e., reproduction, maturation, or survival lim-
itation). The relevance of such individual-level assumptions
in the context of MPAs is their implications for the local
ecological response to the presence or absence of harvesting
(aspect (i) above); the food web response will depend on
how individuals react to (changes in) their environment. To
illustrate this point, in this paper we study the consequences
of different bioenergetic assumptions embedded in a simple
food web consisting of a harvested consumer population
(without size structure) and its resource population, based
on the model of Yodzis and Innes (1992). Space is divided
into a protected area and a harvested area, between which
consumers (but not the resource) are assumed to migrate.
Our model allows the dispersal rates of larvae and adults to
be tuned independently. Density dependence results from
competition for, and depletion of, the resource. The resource
density inside and outside the MPA influences the energy
budget and hence the respective rates of biomass growth
and reproduction of the consumers in the two areas.

We thus address the question of how density-dependent
food limitation, and its consequences for growth and repro-
duction, will affect projected effects of spillover from ma-
rine reserves. One of the hypothesized functions of marine
protected areas (MPAs) is to serve as sources of biomass,
with biomass spilling over from the MPA into neighbouring,

harvested areas. We show that in a consumer–resource con-
text, the source–sink status of the MPA may depend on the
details of the individual-level bioenergetics, as well as on
the dispersal rates of larvae and adults. We investigate the
robustness of our model results by comparing the results
with two alternative models: a simpler one (based on the lo-
gistic model) and a more complex one (a size-structured
model). The latter is of relevance as the origin of the energy
allocation models lies in the context of size-structured mod-
els. In particular, size-structured models allow for different
kinds of population regulation (maturation vs. reproduction
limitation; de Roos et al. 2007), which may have consequen-
ces for the success of marine reserves.

The model

We model the biomass dynamics of a harvested fish pop-
ulation and its forage base, taking into account the
consumer–resource interaction between these two popula-
tions, as well as a simple representation of the bioenergetics
underlying the fish biomass dynamics. To introduce the no-
tation, we first present a spatially undivided version of the
model, based on Yodzis and Innes (1992). The biomass dy-
namics of the fished stock (C for consumer) and its forage
base (R for resource) are modelled as follows:

ð1Þ dC

dt
¼ gðRÞC þ bðRÞC � dC

ð2Þ dR

dt
¼ rðRmax � RÞ � jðRÞC

where C and R are biomass per unit of sea surface area. The
fish dynamics are governed by biomass production though
somatic growth g(R) and birth b(R), which depend on the
current food density R, and mass-specific fish mortality,
which is denoted by d. The forage base R follows semi-
chemostat dynamics with dilution rate r and maximum re-
source density Rmax. The function j(R) is the mass-specific
functional response of fish.

Note that g(R) and b(R) are production rates per unit of
standing stock biomass. Below we make frequent use of the
population-level production rates, which are defined as G =
g(R)C and B = b(R)C, respectively.

Energy budget: biomass growth, reproduction, and
maintenance

The birth and somatic growth terms (b(R) and g(R)) are
based on simple bioenergetic considerations, based on the
model of Yodzis and Innes (1992). Their model assumes
that the production rate of biomass depends on the mass-
specific ingestion rate (j(R)), the loss rate due to mainte-
nance costs (m), and the loss rate due to mortality (d):

ð3Þ dC

dt
¼ C½sjðRÞ � m� d�

where 1 – s is the fraction lost as feces and urine between
ingestion and the metabolizable energy level. We assume
that the consumer intake rate, j(R), follows either a type-I
or a type-II functional response, i.e., respectively,
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ð4Þ jðRÞ ¼ aR or jðRÞ ¼ R

Rh þ R
jmax

where a is an attack rate, Rh is the half-saturation density,
and jmax is the maximum intake rate. The Yodzis and Innes
model (eq. 3) may be a sufficient description of the bioener-
getics for a single population (in spite of its simplicity in
terms of the absence of size or stage structure (de Roos et
al. 2007) or energy storage (Kooijman 2000)). Yet for spa-
tially subdivided populations with larval dispersal, such as
in the case of marine reserves, it is necessary to at least spe-
cify the allocation of resources between reproduction, main-
tenance, and growth, because we need to know which part
of the biomass production will be redistributed in the form
of larval dispersal over the spatial range of the population.

Net-production allocation vs. gross-production allocation
Maintenance, reproduction, and somatic growth all derive

from the assimilation rate, sj(R) (Kooijman 2000). Two ma-
jor types of energy allocation models have been proposed,
which are referred to as net-production allocation and gross-
production allocation (Gurney et al. 1996; Nisbet et al.
2004). The rate of net production per unit of biomass equals
the difference between the energy intake rate and the loss
rate due to maintenance, sj(R) – m, whereas gross produc-
tion equals sj(R). Under net-production allocation, it is as-
sumed that a fraction k of the net production rate is
allocated to somatic growth, and the fraction 1 – k is used
for reproduction. For the net-production allocation model,
the rates of biomass production through somatic growth (g)
and reproduction (b) then equal

ð5Þ gðRÞ ¼ ðsjðRÞ � mÞ k
bðRÞ ¼ ðsjðRÞ � mÞ ð1� kÞ

For this model, it is necessary to specify what happens in
case of starvation. In the MPA model specified below, it is
possible that biomass flow increases local competition to
such an extent that net production becomes negative in one
of the areas. In this case, we assume that the birth rate b be-
comes zero, and the somatic growth rate g becomes equal to
the (negative) net production rate. This amounts to assuming
that in case of starvation, standing biomass is converted to
cover maintenance.

Under gross-production allocation, it is assumed that a
fraction k of the gross production rate is used for both
maintenance and somatic growth, and the fraction 1 – k is
allocated to reproduction, which is also referred to as the
‘‘kappa rule’’ model (Kooijman 2000). So for the gross-
production allocation model, the rates of biomass produc-
tion through somatic growth (g) and reproduction (b) are

ð6Þ gðRÞ ¼ sjðRÞk� m

bðRÞ ¼ sjðRÞ ð1� kÞ

Note that a special rule for starvation is unnecessary in the
gross-allocation model: in case of starvation, the birth rate is
still positive, and standing biomass is used to cover mainte-
nance. Although a special rule for starvation may be more
realistic for any particular fish species, we choose to use
this simple assumption.

An important difference between the net- and gross-
production models is hence their behaviour at low food

density: in the former model (eq. 5), reproduction and
somatic growth stop simultaneously at a critical low
food density, whereas in the latter model (eq. 5), growth
stops but reproduction continues.

Note that for a spatially undivided population, the two
models result in exactly the same total biomass dynamics,
as all that matters is the sum of b(R) and g(R) (eq. 1). For
both allocation models, we then obtain eq. 3.

We point out that in the gross-production allocation
model, maintenance is equivalent to a local rate of biomass
loss, similar to a mortality rate. At the population level,
maintenance can hence be incorporated into a general loss
term d’ = m + d. MPA models that do not explicitly consider
bioenergetics simply redistribute the population-level repro-
duction rate B = b(R)C over protected and harvested areas,
without discounting the maintenance costs. This amounts to
the implicit assumption that maintenance costs are either ab-
sent or incorporated in the mortality loss term. In other
words, ignoring bioenergetics corresponds to assuming im-
plicitly gross-production allocation. Note also that assuming
the absence of maintenance costs (m = 0) is equivalent to
the gross-production model.

Spatial structure: marine reserve and fished area
Next we subdivide the consumer–resource system into a

marine reserve and a harvested area. Adults (i.e., standing
biomass) suffer a per-unit biomass harvesting mortality in
the fished area, denoted by H. The protected area is assumed
to cover a fraction x of the total area A. The fraction a of
produced consumer larvae is assumed to migrate and to be
equally redistributed between the areas. Adults migrate with
rate b. Note that larval migration amounts to a redistribution
of the birth rate, whereas adult migration amounts to a redis-
tribution of standing stock biomass. The so-called larval
pool equal redistribution (LPER) assumption is equivalent
to setting a = 1 and b = 0.

Variables and population-level rates pertaining to the pro-
tected and the harvested areas are denoted by indices 1 and
2, respectively. For example, the population-level birth rates
are now defined as B1 = b(R1)C1 and B2 = b(R2)C2, respec-
tively. Because all variables are expressed as densities per
unit of sea surface area, the total biomass in the protected
and fished areas equals C1Ax and C2A(1 – x), respectively.

Biomass flow between areas: source and sink
The dynamics in the two areas depend on the biomass

flow of larval and adult biomass. Assuming that from both
areas, a fraction a of produced larvae enters a common dis-
peral pool, the rate of larval settlement in each area equals
the sum of local larvae production, (1 – a)Bi, and the inflow
of larvae from the dispersal pool, a[xB1 + (1 – x)B2]. This
corresponds to the widely used LPER assumption. The
larval settlement rate in the protected area is then, after sim-
plicifation,

ð7Þ S1 ¼ B1 � að1� xÞðB1 � B2Þ

For the fished area, the equivalent rate is

ð8Þ S2 ¼ B2 þ axðB1 � B2Þ

These equations show that the larval settlement rate exceeds
the local birth rate in the area with the lowest local birth
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rate. In other words, the net larval flow is always from the
most productive to the least productive area. The net larval
flow from the reserve to the harvested area (denoted by fL)
equals the difference between inflow and ouflow in the har-
vested area, multiplied by the size of the harvested area:

ð9Þ fL ¼ fa½xB1 þ ð1� xÞB2� � aB2gð1� xÞA
¼ axð1� xÞAðB1 � B2Þ

The flow is positive, i.e., from the reserve to the harvested
area, if and only if the reserve is more productive (per unit
of sea area) than the fished area (B1 > B2).

Similar to larval migration, adults are assumed to migrate
with rate b and to enter a common dispersal pool, which is
then equally redistributed. Although this way to model adult
migration is less standard than for larvae, the resulting equa-
tion is completely analogous to the more commonly used
diffusive model.

We obtain expressions similar to larval migration. For ex-
ample, in the reserve, the rate of departing biomass equals
bC1 and the rate of incoming biomass equals b[xC1 + (1 –
x)C2]. The migration balance thus equals –b(1 – x) (C1 –
C2) in the reserve and bx(C1 – C2) in the harvested area.
The net biomass flow due to adult migration is again found
by multiplication of either of these by the corresponding sur-
face area:

ð10Þ fA ¼ bxð1� xÞAðC1 � C2Þ

The flow is positive, i.e., spillover from the reserve to the
harvested area, if and only if the biomass density is highest
in the reserve (C1 > C2).

Note that the direction of the larval flow depends on dif-
ferences in the biomass production rate, whereas the direc-
tion of adult flow depends on differences in the biomass
standing stock. The two flows do not necessarily point in
the same direction. The net total biomass flow equals their
sum ftot = fL + fA.

The full MPA model
Extending eqs. 1–2 to two areas and substituting the mi-

gration terms, we obtain

ð11Þ dC1

dt
¼ G1 þ B1 � að1� xÞðB1 � B2Þ

�bð1� xÞðC1 � C2Þ � C1d

ð12Þ dC2

dt
¼ G2 þ B2 þ axðB1 � B2Þ þ bxðC1 � C2Þ

�C2ðdþ HÞ

ð13Þ dR1

dt
¼ rðRmax � R1Þ � jðR1ÞC1

ð14Þ dR2

dt
¼ rðRmax � R2Þ � jðR2ÞC2

The dynamics of the fish populations (C1 and C2) are the
sum of four terms: local growth of standing biomass, larval
production and redistribution, adult migration, and mortal-
ity. Note that we assume that the food base (R1 and R2)
does not migrate.

Parameter values
The default parameter values of the consumer–resource

model are based on the equivalent but stage-structured
model of de Roos et al. (2007): jmax = 6, m = 1, s = 0.7,
r = 0.5, Rh = 1. The natural mortality rate is assumed to
be d = 0.1, which represents a typical value on a per-year
basis for marine fish populations (Andersen and Ursin
1977). We have, however, tested the model behaviour over
a range of d up to 1. We obtain qualitatively similar results
in all cases, although increasing d decreases standing stock
biomass and adult flow and makes the larval flow less neg-
ative. In our simulations presented below, we vary the har-
vesting rate H. We note, however, that rough estimates of
harvesting mortality fall in the range of 2–10 times the nat-
ural mortality rate (Pope et al. 2006). With a mortality rate
of d = 0.1, appropriate harvesting rates (H) thus fall in the
range of 0.2 to 1. The larval migration parameter a is var-
ied between 0 and 1 (note that a is a proporion). The adult
migration parameter b should be interpreted relative to the
mortality parameter: on average, an unharvested individual
is expected to migrate b/d times during its life time. We
vary b between 0 and 1.

Results

Consequences of choice of allocation model
To understand how the MPA system reacts to harvesting

mortality, it is instructive to first analyse the how the equili-
brium of the single-area system (eqs. 1–2) without dispersal
depends on the level of mortality, d. Recall that for a single
population, the allocation into growth and reproduction is ir-
relevant, as it is their sum that appears in eq. 1.

To simplify the analysis, we initially assume a linear
functional response, which does not qualitatively influence
the results (see below). For the single-area system (eqs. 1–
2), the equilibrium equals

ð15Þ ~C ¼ rðsaRmax � m� dÞ
aðmþ dÞ

ð16Þ ~R ¼ mþ d

sa

These equations show that ~C decreases and ~R increases with
mortality, because @ ~C=@d < 0 and @ ~R=@d > 0. The fish po-
pulation goes extinct when mortality exceeds the value

ð17Þ dext ¼ saRmax � m

The equilibrium (eqs. 15–16) is the same for the two alloca-
tion rules (eqs. 5–6). However, this is not true for the
steady-state total reproduction rate, denoted by ~B. With net-
production allocation,

ð18Þ ~B ¼ dð1� kÞ ~C

with ~C as defined in eq. 15, whereas with gross-production
allocation,

ð19Þ ~B ¼ ðmþ dÞð1� kÞ ~C

An important difference between the allocation rules is the
resulting relation between the total reproduction rate and
(mass-specific) mortality. By substituting eq. 15 into eq. 19,
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we find that with gross-production allocation, the reproduc-
tion rate necessarily decreases with mortality, i.e.,
@ ~B=@d < 0. Yet with net-production allocation, the curve of
~B over mortality is dome-shaped; it first increases between
d = 0 and a critical mortality rate dcrit, after which it decreases
to zero at dext. The critical mortality rate is as follows:

ð20Þ dcrit ¼ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
saRmax m

p
This equation shows that with m > 0, the population-level
birth rate can increase with mortality, even though the equi-
librium biomass ~C always decreases with mortality. We re-
fer to such a postive relation between total reproduction and
mortality as ‘‘overcompensation’’.

The explanation of the overcompensation lies in (i) the re-
source dependence of the reproduction rate and (ii) the bal-
ancing of the birth and mortality rates in equilibrium.
Increasing mortality decreases competition for the resource,
which increases the reproduction rate per unit of biomass.
Yet the total (population) reproduction rate may still de-
crease if the standing biomass decreases faster than the fe-
cundity increases. This is the case when reproduction is
proportional to the intake rate and hence to the resource
density, as in the gross-production model. However, when
reproduction is proportional to the net-production rate, by
contrast, fecundity can increase much faster than the re-
source density itself. This becomes obvious in the limit of
zero mortality. The equilibrium condition dC/dt = 0 requires
that net production balances the death rate, i.e.,
sjð ~RÞ � m ¼ d, which means that for d = 0, the net-production
rate is zero. This, in turn, means that the total reproduction
rate ~B is zero for d = 0. ~B then necessarily increases with d.

In summary, overcompensation is never found in the gross-
production model, whereas it occurs in the net-production
model whenever the background mortality is relatively low
(d < dcrit). This result is true also for a type-II functional re-
sponse, but the equation of dcrit is very ugly in that case. A
graph of dcrit for a type-II functional response, plotted against
m (Fig. 1), shows that overcompensation is likely to occur
with plausible parameter values; across a range of taxa, the
mortality rate appears to be of the order of 10% of the main-
tenance rate (de Roos et al. 2007). Figure 1 illustrates that for
this estimation, most combinations of d and m fall in the re-
gion of overcompensation. Very similar results are obtained
when varying the parameters Rmax, a, and Rh (data not
shown).

Implications for the MPA model
The analysis of the single-area model gives an idea of

how the MPA model will behave. As a simple thought ex-
periment, compare the two areas of the MPA model, without
any migration and with a low harvesting rate. The analysis
tells us that the standing biomass will be lower in the har-
vested area, for either allocation model. Assuming gross-
production allocation, we also know that the total birth rate
will be lower in the harvested area. So we expect that allow-
ing either larval migration between the two areas or adult
migration will result in a biomass flow from the reserve
into the harvested area (i.e., fL > 0 and fA > 0).

Next, consider the net-allocation model. Because of the
overcompensation, the total birth rate is then likely to be

higher in the harvested area than in the MPA. Larval migra-
tion is hence likely to result in a biomass flow from the har-
vested area into the reserve (fL < 0). With net-production
allocation, we therefore expect the MPA to be a biomass
sink for larvae.

However, these expectations should be checked with anal-
ysis of the full MPA model, as the steady state of the full
model with migration does not necessarily conform to our
intuition based on the limiting case of no migration.

The MPA model: source–sink status of the reserve
Here we study the dynamics of the full MPA system

(eqs. 11–14) assuming a type-II functional response. We
compute the steady state of the MPA model over a range of
the harvesting rate H (similar to Fig. 2), with the MPA
being 30% of the total area (x = 0.3).

Model analysis confirms the intuition on the gross-
production allocation model (Fig. 3). Assuming larval
migration only (a = 1, b = 0), the standing biomass
decreases with H in both the protected and harvested
areas, but is consistently higher in the protected area
(C1 > C2). The same is true for the population birth
rates (i.e., undercompensation and B1 > B2), despite in-
creasing resource density in both areas. The resulting
biomass flow is positive; the MPA is a source of larval
production. Note also that the MPA prevents the har-
vested population from going extinct at high harvesting
rates (cf. Fig. 2).

Model analysis also confirms the intuition on the net-
allocation model (Fig. 4). The populaton birth rate in the
harvested area displays the typical pattern of overcompen-
sation (cf. Fig. 2). By contrast, the birth rate in the pro-
tected area decreases and is zero over a considerable
range of H. In this range, the consumers in the MPA are

Fig. 1. The regions of overcompensation, undercompensation, and
extinction in m,d-parameter space for the spatially undivided model
(eqs. 1–2) assuming net-production model and a type-II functional
response. Without maintenance (m = 0), being the analogous case
of gross production, we obtain undercompensation for all values of
the mortality rate except zero. For comparison with the MPA model
(eqs. 11–14), we have indicated for the MPA model with a = 1 and
b = 0, the curves where larval flow fL = 0, assuming F = 1 (broken
line) or F = 0.1 (dotted line), respectively. Parameters: k = 0.5, jmax =
6, Rh = 1, s = 0.7, r = 0.5, Rmax = 5, x = 0.3.
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starving due to severe resource competition. Throughout
the range where B1 < B2, the larval flow is negative
(Fig. 4). The reserve is thus a larval sink for harvesting
rates up to the point at which the harvested population
would go extinct in the absence of an MPA (cf. Fig. 2).
Beyond this point, the fished stock is practically extinct,
and the MPA becomes a source of larvae, saving the har-
vested population from true extinction.

In the marine reserve, the biomass initially increases with
H, mirrorring the pattern of larval production in the har-
vested area (Fig. 4). Although the resource in the exploited
area increases gradually with H, converging to its carrying
capacity at very high H, in the reserve, the resource first de-
creases with H, showing that competition for food intensifies
in the MPA. In fact, the strong inflow of larvae causes an
unsustainably high biomass density in the MPA: severe re-

source competition leads to starvation, most notably result-
ing in the complete absence of reproduction inside the MPA.

The idea is thus that overcompensation in the harvested
area causes the MPA to be a larval sink. We test this idea
by drawing the curve for which the larval flow is zero
(Fig. 1), which delimits the region in which the MPA is a
sink (i.e., below the broken or dotted curves). The figure
shows that with decreasing H, the sink region approximates
the region of overcompensation, thus confirming the idea.
Note that with increasing H, the sink region becomes
smaller, which reflects the fact that the sink status of the
MPA depends on H and is obtained for small and intermedi-
ate H only (Fig. 4).

The effect of adult migration
Allowing adults to migrate (b > 0) results in an additional

biomass flow, which is always directed from the MPA to the
harvested area, because C1 > C2 (cf. eq. 10). Here we study
the effect of adult migration on the larval flow (fL) and total
flow (ftot).

Consider the example with a = 1 and b = 0.5 (Fig. 5).
(Note that b/d = 5, meaning that unharvested adults migrate
on average five times in a life time.) The flow of standing
biomass changes the pattern of consumer biomass in the re-
serve; C1 now decreases monotonically with H. The adult
flow releases the resource competition in the MPA, allowing
for reproduction in that area. Initially, however, reproduction
is still higher in the harvested area (B1 < B2), resulting in
negative larval flow up to H & 3. In this range, the MPA is
hence a sink for larvae, but a source of adults. Overall, the
MPA is a source of biomass (ftot > 0).

Next we study the effect of adult migration on the
source–sink status of the MPA systematically (Fig. 6a). Fig-
ure 6 depicts the regions in H, b-parameter space where the
MPA is a sink of total biomass and (or) larvae. These zones
are delimited by the curves of fL = 0 and ftot = 0. The curve
of fL = 0 is almost vertical, indicating that the rate of adult
migration has little influence on the sign of the larval flow.
The MPA is a larval sink even for very high values of b. By
contrast, the total biomass flow depends strongly on b: in-
creasing adult migration reduces the range of H with nega-
tive total flow. The region marked ‘‘S’’ shows that
starvation in the MPA, and hence zero reproduction, is re-
stricted to low adult migration.

The effect of larval migration
The effect of changing the proportion of dispersing larvae

(a) mirrors the effect of changing adult migration. For fixed
adult migration (b = 0.1), reducing a has no influence on
the sign of the larval flow (Fig. 6b). As expected, the total
biomass flow becomes positive when larval migration be-
comes very small. Starvation is limited to very high larval
migration.

The effect of the size of the MPA
The relative size of the reserve (x) determines the relative

contribution of the two areas to the biomass flows; increas-
ing x hence decreases the potential effect of overcompensa-
tion, which occurs in the harvested area only, on the larval
flow. Changing x may influence the direction of the larval
flow (fL); if the MPA is larger, the larval flow is negative

Fig. 2. Steady state of the spatially undivided version of the model
(eqs. 1–2). Top panel: consumer ( ~C ; solid line) and resource ( ~R;
broken line) biomass density. Middle panel: population birth rate ~B

for the net-production (solid line) and gross-production (broken
line) models. Bottom panel: yield. All quantities are per unit of sur-
face area. Parameters: k = 0.5, jmax = 6, Rh = 1, m = 1, s = 0.7, d =
0.1, r = 0.5, Rmax = 5.
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over a wider range of H (Fig. 7). At high H, small reserve
size accentuates the ‘‘source’’ potential of marine reserves,
as most of the locally produced larvae are lost to migration,
thus reducing resource competition in the reserve and in-
creasing the birth rate ~B1. However, at low and intermediate
H, when overcompensation is strong in the harvested area
(Fig. 4), small reserve size accentuates the ‘‘sink’’ potenial
of an MPA. With small x, the larval flow is largely deter-
mined by the harvested area such that overcompensation has
a large impact on the dynamics in the MPA. By consequence,
the starvation range is limited to small MPA size (Fig. 7).

Changing x does not, however, influence the sign of the
total biomass flow (Fig. 7). This ‘‘inertia’’ is independent of
the values of the other parameters (data not shown). The in-
ertia can be understood as follows: when the total biomass
flow is zero, each unit of sea area has a zero net flow. Given
that the biomass inflow (larvae + adults) is the same for
each unit of sea surface area, the biomass outflow per unit
area (larvae + adults) must be the same in the MPA and the
harvested area. Changing the relative contribution (x) to the
common dispersal pool then has no effect whatsoever.

Alternative models

Size-structured population model
The allocation models studied in this paper were origi-

nally designed for size-structured population models
(Gurney et al. 1996). In size-structured population models,

density dependence may affect not only fecundity, settle-
ment, and survival, but also maturation and individual
growth. To illustrate the consequences of size structure, we
analyse a well-studied size-structured population model in
the context of our findings above.

The gross-production allocation model (eq. 6) first ap-
peared as the kappa rule in a size-structured population
model (Kooijman and Metz 1984). The Kooijman–Metz
model has since been studied in various forms, and here we
use the model published by de Roos and Persson (2002), but
without predators. We extend their model by including an
MPA and larval dispersal (analogous to eqs. (11–14) with
a = 1 and b = 0). In this model, individuals are born with
size ‘b and mature at size ‘j. The gross-production model
results in von Bertalanffy growth with asymptotic size
‘mR/(Rh + R). A model description (without MPA) can be
found in de Roos and Persson (2002).

We do not present a full analysis of the size-structured
model, but merely illustrate the implications of a juvenile
life stage. In the size-structured model (without MPA), the
consumer and resource biomass (Fig. 8a) follow the same
pattern as in the unstructured model (cf. Fig. 2). Surpris-
ingly, however, we find overcompensation (Fig. 8b), despite
the gross-production allocation model. Based on the over-
compensation, we thus expect a negative biomass flow
(from the harvested area to the MPA) in the case of larval
migration. Including an MPA in the size-structured model
(with x = 0.3) confirms this expectation (Fig. 8c).

Fig. 3. The equilibrium of the MPA model (eqs. 11–14) with gross-production allocation and larval migration only (a = 1, b = 0). In a, b,
and c, broken lines represent the marine reserve; solid lines, the harvested area. (a) Consumer population biomass and yield (dotted line);
(b) resource biomass; (c) larval production ~B1 and ~B2; (d) net biomass flow (thick solid line; equal to larval flow) from MPA to harvested
zone and adult flow (dotted line; equal to zero). Parameters: x = 0.3, k = 0.5, jmax = 6, Rh = 1, m = 1, s = 0.7, d = 0.1, r = 0.5, Rmax = 5.

Claessen et al. 1065

Published by NRC Research Press



Which difference between the unstructured and structured
models explains the found overcompensation? An important
difference between unstructured and size-structured models
is that the latter allows for different kinds of population reg-
ulation, depending on which demographic process (juvenile
growth–maturation or adult reproduction) is most affected
by intraspecific competition and hence limiting population
growth. If a population is maturation-limited (as in
Figs. 8a–8b), then increasing the mortality rate releases the
competition among juveniles, and the adult biomass in-
creases due to increased maturation (de Roos et al. 2007).
In this case, we thus observe an overcompensation of the
adult standing biomass: adult biomass increases with mortal-
ity (Fig. 8a, thin solid line), resulting in an overcompensa-
tion of the population-level reproduction rate (Fig. 8b). To
demonstrate the crucial role of the juvenile life stage, we
have rerun the model with ‘j < ‘b, such that individuals are
born mature (Figs. 8d–8f). In this case, the population is
necessarily reproduction-limited. Without a juvenile stage,
the size-structured model predicts undercompensation
(Fig. 8e). The corresponding MPA model displays a positive
biomass flow (Fig. 8e), as expected from the undercompen-
sation.

This simple example illustrates that maturation limitation
in structured populations may lead to overcompensation in
both adult biomass and the population reproduction rate, as
shown by de Roos et al. (2007). The examples demonstrate
that (i) overcompensation is not restricted to net-production
allocation models and (ii) overcompensation in a model

without MPA implies a negative larval biomass flow in the
corresponding MPA model, whatever mechanism is causing
the overcompensation. The size-structured model thus sug-
gests that the association of overcompensation and negative
biomass flow is general.

Logistic MPA model
Now that we have identified the role of overcompensa-

tion, we can check that it works in the simplest model that
could produce such a result, the logistic growth model:

ð21Þ dN

dt
¼ rN 1� N

K

� �

To be able to use the death rate as an independent parameter
and to use the total birth rate as a model output, we have to
decompose eq. 21 by making assumptions about how it re-
flects underlying per capita birth and death rates. As in the
previous two models, we assume that density dependence
affects the birth rate, whereas the death rate remains con-
stant. By choosing b – bN for the per capita birth rate and
d for the death rate, we obtain,

ð22Þ dN

dt
¼ Nðb� bN � dÞ

which is equivalent to eq. 21 with r = b – d and K = (b – d)/b.
The equilibrium population of eq. 22 equals

~N ¼ ðb� dÞ=b. The population-level birth rate, defined as
~B ¼ ~Nðb� bNÞ, thus equals

Fig. 4. The equilibrium of the MPA model (eqs. 11–14) with net-production allocation and larval migration only (a = 1, b = 0). In a, b, and
c, broken lines represent the marine reserve; solid lines, the harvested area. (a) Consumer population biomass and yield (dotted line); (b)
resource biomass; (c) larval production ~B1 and ~B2; (d) larval flow fL from MPA to harvested area (negative flow means reserve is larval
sink). Parameters: x = 0.3, k = 0.5, jmax = 6, Rh = 1, m = 1, s = 0.7, d = 0.1, r = 0.5, Rmax = 5.
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ð23Þ ~B ¼ d
b� d

b

Because ~B goes to zero when d goes to zero, the logistic
growth model clearly displays overcompensation for any va-
lue of b and b. Based on this observation, we expect that an
MPA model that connects two logistic equations with larval
dispersal will predict that the MPA is a larval sink. To
check this prediction, we have extended eq. 22 by including
a second harvested population and assuming LPER. We
have computed its steady state and the corresponding direc-
tion of the larval biomass flow. The results are analogous to
the ones obtained with the consumer–resource model above
and confirm that the logistic model indeed predicts the MPA
to be a larval sink for d below a critical background mortal-
ity rate (data not shown).

If, however, we assume that density dependence does not
influence the birth rate but the death rate (by choosing d +
bN for the death rate and b for the birth rate), we obtain
~B ¼ bðb� dÞ=b, which corresponds to undercompensation.
Thus, overcompensation requires that density dependence
affects the birth rate.

Discussion
Our main result is that the source–sink status of marine

reserves depends on the effect of the per capita mortality
rate, including harvesting mortality, on the population-level
reproduction rate (B). If this relation displays overcompensa-
tion (i.e., B initially increases with mortality), then any de-

gree of larval migration results in a net biomass flow of
larvae from the harvested area into the MPA, and the MPA
is thus a sink of larval biomass. In the case of undercompen-
sation, by contrast, the MPA is a source of larval biomass.

Why do MPAs become larval sinks? The explanation re-
sides in intraspecific competition. Competition is more se-
vere inside the MPA due to the reduced mortality rate (e.g.,
see the lower resource density R1 in Fig. 3). When increased
competition reduces the population-level reproductive output
(i.e., overcompensation of B), then total reproduction is
higher outside the MPA than inside. By consequence, the
net larval flow will be towards the MPA. This, however, is
not true for populations that display undercompensation of B
(such as the gross-production model (eq. 6)).

For migration of standing biomass (as opposed to larval
migration), our results suggest that marine reserves are usu-
ally a source of biomass, if it is assumed (as done here) that
net migration goes from high-biomass to low-biomass areas.
Larval and adult flow may thus be in opposite directions,
and the net effect obviously depends on the relative rates of
larval and adult migration. It should be noted, however, that
in size-structured populations, adult biomass may itself dis-
play overcompensation, i.e., increase with mortality
(de Roos et al. 2007). This may hence cause an MPA to be
a sink of adult fish.

The main work presented here concerns the effect of al-
ternative bioenergetic models on the source–sink status of
MPAs. The conclusion is that gross-production allocation re-
sults in undercompensation of the population reproduction

Fig. 5. The equilibrium of the MPA model (eqs. 11–14) with net-production allocation and both larval and adult migration (a = 1, b = 0.5).
In a, b, and c, broken lines represent the marine reserve; solid lines, the harvested area. (a) Consumer population biomass and yield (dotted
line); (b) resource biomass; (c) larval production ~B1 and ~B2; (d) larval flow (broken line), adult flow (dotted line), and net biomass flow
(thick solid line) from MPA to harvested zone. Parameters: x = 0.3, k = 0.5, jmax = 6, Rh = 1, m = 1, s = 0.7, d = 0.1, r = 0.5, Rmax = 5.

Claessen et al. 1067

Published by NRC Research Press



rate (and hence the MPA being a larval source), whereas
net-production allocation is likely to result in overcompensa-
tion (and hence the MPA being a larval sink). However, our
complementary analyses of a size-structured model, in
which overcompensation is caused by a juvenile growth and
maturation despite gross-production allocation, and a logistic
model show that the connection between overcompensation
and the larval-sink status of MPAs is more general and not
limited to net-production models. In other words, overcom-
pensation of the total reproduction rate causes the MPA to
be a larval sink, whatever underlying mechanism causes the
overcompensation.

Our main result depends on the combination of two fac-
tors: (i) overcompensation and (ii) larval dispersal. When
both factors are present, the MPA is predicted to be a larval
sink. Our study of three models shows that different mecha-
nisms can underly the first of these factors. Common be-
tween all of them is a strong, density-dependent response of

the population reproduction rate with increasing mortality.
This response is stronger (at high population density) for
net-production allocation than for gross-production alloca-
tion, explaining the different results for these two types of
models. The logisic MPA model shows that overcompensa-
tion is found only when the logistic density dependence af-
fects the birth rate (instead of the death rate). In the size-
structured model, the birth rate depends not only on the fe-
cundity (determined by gross-production allocation), but also
on the age at maturation and survival to maturation, which
are both density-dependent themselves. By consequence, the
presence of a juvenile life stage accentuates the density de-
pendence in the birth rate to such an extend that it results in
overcompensation, despite gross-production allocation.

With respect to the second factor (larval dispersal), our
results stress the need to distinguish between migration of
newborns and of older individuals. Whereas the former
amounts to a redistribution of biomass production, the latter
amounts to a redistribution of biomass standing stock. Our
main result depends critically on this distinction; only the
redistribution of biomass production can result in the MPA
being a sink, because the production can be higher in the
harvested area than in the MPA. By contrast, standing bio-
mass is generally higher in the MPA than in the harvested
area (Halpern and Warner 2002; Micheli et al. 2004b) and
therefore is likely to induce spillover into harvested areas.
Although the distinction between larval and adult migration
is common in MPA models, its implications for the source–
sink status of marine reserves has not been identified before.

Here we note that the strictly negative relation between
standing (adult) biomass and mortality found for unstruc-
tured models (eq. 15) does not necessarily apply to size-
structured populations. Size-structured populations can be
limited by different demographic processes, depending on
which one of them is most affected by intraspecific compe-

Fig. 6. The effect of migration on the source–sink status of the
MPA model (eqs. 11–14) with net-production allocation. Top panel:
the effect of adult migration (b) for fixed larval migration (a = 1).
Bottom panel: the effect of larval migration (a) with fixed adult
migration (b = 0.1). Solid lines indicate zero larval flow (fL = 0)
and zero total biomass flow (ftot = 0). The dotted line ( ~B1 ¼ 0) de-
limits the region with starvation in the MPA (zone S). Zones: I,
MPA is sink of larvae and of net biomass; II, MPA is sink of larvae
but source of net biomass; III, MPA is source of larvae and of net
biomass. Parameters: x = 0.3, k = 0.5, jmax = 6, Rh = 1, m = 1, s =
0.7, d = 0.1, r = 0.5, Rmax = 5.

Fig. 7. The effect of relative reserve size (x) on the source–sink
status of the MPA model (eqs. 11–14) with net-production alloca-
tion for b = 0.1 and a = 1. Solid lines indicate zero larval flow
(fL = 0) and zero total biomass flow (ftot = 0). The dotted line
( ~B1 ¼ 0) delimits the region with starvation in the MPA (zone S).
Zones: I, MPA is sink of larvae and of net biomass; II, MPA is sink
of larvae but source of net biomass; III, MPA is source of larvae
and of net biomass. Parameters: k = 0.5, jmax = 6, Rh = 1, m = 1,
s = 0.7, d = 0.1, r = 0.5, Rmax = 5.
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tition (Gurney et al. 1996; de Roos et al. 2007). When a
population is regulated by juvenile growth and maturation,
then increasing mortality tends to increase the adult standing
biomass Although such overcompensation of adult biomass
may in turn cause overcompensation of the population repro-
duction rate, in itself, it may cause a net migration of adults
into the MPA. Hence, for maturation-limited populations, we
predict that MPAs are likely to be general sinks of biomass,
irrespective of the rates of larval and adult migration.

The review of Gerber et al. (2003) shows that previous
models have often assumed either migration of larvae only
(for example, models assuming LPER) or of adults only.

Our work shows that it is in the case of LPER that overcom-
pensation has the largest potential to cause MPAs to be bio-
mass sinks. This result has not previously been found for the
simple reason that the models used do not allow for factors
(i) and (ii) to occur simultaneously. Many models in the lit-
erature do not explicitly take into account maintenance costs
when computing the birth rate and hence implicitly corre-
spond to the gross-production model (Neubert 2003; Baskett
et al. 2006).

For example, the Lotka–Volterra competition models of
Baskett et al. (2007) have the potential to display overcom-
pensation, due to their equivalence to the logistic growth

Fig. 8. Steady state of a size-structured model with gross-production allocation. Left panels: fixed size at maturation (‘j = 40, ‘m = 80).
Right panels: absence of juvenile period (‘j < ‘b, ‘m = 40). Background mortality (left, m = 0.01; right, m = 0.1) and harvesting are size-
independent. Top panels: consumer (solid lines) and resource (broken lines) biomass without MPA; adult biomass is represented by the thin
solid curve. Middle panels: population birth rate ( ~B) without MPA. The left panel displays overcompensation despite gross-production allo-
cation. Bottom panels: predicted biomass flow for corresponding MPA model with x = 0.3 and larval dispersal (a = 1, b = 0). Biomass
densities (g�m–3) and rates (g�m–3�day–1) are time-averaged over low-amplitude generation cycles (left panels). Parameters and notation are
as in de Roos and Persson (2002): ‘b = 10, k = 0.7, Im = 10–4, Rh = 10–5, g = 0.006, rm = 0.003, b = 9�10–6, r = 0.1, K = 3.

Claessen et al. 1069

Published by NRC Research Press



model (see subsection Logistic MPA model). However, they
assume that diffusion migration, i.e., migration of standing
stock, results in a flow from high to low density and hence
that the MPA is a source. The same is true for the models of
Neubert (2003) and Steele and Beet (2003), which are
equally based on the logistic growth model. The trophic
models of Baskett (2006, 2007) and Baskett et al. (2006,
2007) also assume diffusion migration and hence do not
need to distinguish between net- or gross-production alloca-
tion. However, we argue that in all of these models, larval
flow is likely to be from the MPA to the harvested areas if
larval dispersal and, in the trophic model, net-production al-
location were assumed.

A second important result of our model is that the relative
size of an MPA does not affect the sign of the total biomass
flow between the MPA and surrounding areas. How can we
understand this? This is a consequence of our assumption of
a well-mixed, common dispersal pool. This assumption im-
plies that for each unit of sea surface, the net biomass flow
reflects the difference in local production of migrants and
the global average production of migrants. Changing the
MPA size (x) changes the relative contribution of areas with
high and low migrant production and thus influences the
average production of migrants. For example, if reserve size
x is small and the reserve has a lower migrant production
than the fished area, then increasing x will reduce the global
average migrant production and hence reduce the influx of
migrants into the MPA. Changing x thus has a quantitative
effect on steady-state biomass flux (and standing biomass).
This is not true, however, for the special case of zero net
biomass flow. In this case, each unit of sea surface produces
exactly the same amount of migrants. The local production
and the global average are hence the same, irrespective of
the size of the MPA. Changing the reserve size x has abso-
lutely no effect on biomass flow or on the standing stock
biomass.

Increasing reserve size is hence not likely to qualitatively
improve the functioning of MPAs (in terms of the source–
sink status of the MPA). Figure 7 illustrates that in the range
of realistic harvesting rates (i.e., H & 0.2 to 1), the MPA is
a biomass sink for both larvae and adults, no matter the size
of the reserve. Only for heavily overexploited fisheries (H >
2) does the MPA function as a biomass source.

All of the models that we have discussed are continuous-
time models. But what about discrete-time models? Many
fisheries models are formulated in discrete time, based on
the Ricker or Beverton–Holt models, so the question seems
relevant. There is no reason to presume that for discrete-
time models, the relation between overcompensation and
the source–sink status of MPAs should not hold, in combi-
nation with the redistribution of larvae. For example, in the
discrete time, predator–prey model of Micheli et al. (2004a),
it is assumed that larvae enter a common dispersal pool. We
have simulated their model, simplified by excluding the
MPA, and found that the steady–state value of the variable
L (equivalent to our ~B), increases with fishing mortality for
high values of the parameter a. Based on this observation,
our results thus predict that in this model, the MPA can be
a larval sink. Micheli et al. (2004a) did not, however, com-
pute the direction of the larval flow.

More generally, for discrete-time models, whenever the

recruitment rate displays overcompensation, larval redistrib-
ution is expected to result in larval flow from the harvested
area to the MPA. This should be the case of models based
on the Ricker model, which is the classical example of over-
compensation, in contrast to the Beverton–Holt model,
which displays undercompensation. However, the actual dy-
namics will depend on how the density dependence in such
models is assumed to depend on the underlying vital rates
(birth, death, growth, maturation).
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