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We compared three formulations of the discrete dipole approximation �DDA� for simulation of light scat-
tering by particles with refractive indices m=10+10i, 0.1+ i, and 1.6+0.01i. These formulations include the
filtered coupled dipoles �FCD�, the lattice dispersion relation �LDR� and the radiative reaction correction. We
compared the number of iterations required for the convergence of the iterative solver �proportional to simu-
lation time� and the accuracy of final results. We showed that the LDR performance for m=10+10i is espe-
cially bad, while the FCD is a good option for all cases studied. Moreover, we analyzed the detailed structure
of DDA errors and the spectrum of the DDA interaction matrix to understand the performance of the FCD. In
particular, this spectrum, obtained with the FCD for particles smaller than the wavelength, falls into the
bounds, physically implied for the spectrum of the infinite-dimensional integral scattering operator, contrary to
two other DDA formulations. Finally, such extreme refractive indices can now be routinely simulated using
modern desktop computers using the publicly available ADDA code, which includes an efficient implementation
of the FCD.

DOI: 10.1103/PhysRevE.82.036703 PACS number�s�: 02.70.�c, 42.25.Fx, 42.68.Mj

I. INTRODUCTION

The discrete dipole approximation �DDA� is a well-
known method to calculate light scattering by arbitrary
shaped inhomogeneous particles �1�. The widespread appli-
cation of the DDA started with the work of Draine and co-
workers �2–4�. They showed that DDA accuracy decreases
and computational time increases with increasing refractive
index m. Based on those studies it was commonly accepted
that application of the DDA is limited to a range approxi-
mately described as �m−1��2, assuming the standard for-
mulation of the DDA including the lattice dispersion relation
�LDR �2��. However, DDA performance changes smoothly
with increasing m, so this criterion should be considered only
as a practical guideline. Recently, it has been shown that this
standard DDA formulation has similar problems both for
�m��1 and Re�m��1 �5�. Such “extreme” �we will further
use this term� m-values do appear in spectral resonances of
many materials in the infrared range �5� �see Fig. 1 �6–9��.
Accurate predictions of the spectral shape of absorption reso-
nances are of crucial importance for the interpretation of as-
tronomical observations. Moreover, metallic particles in the
infrared have very large values of m, hence they might be the
dominant source of opacity in many environments �10�.
However, currently accurate methods to predict the opacity
of metallic particles with complex shape and size compa-
rable to or smaller than the wavelength are lacking.

While the range of Re�m��1 is poorly studied with re-
gards to comparing different DDA formulations, there have
been a number of attempts to improve DDA performance for

large m. These attempts include the filtered coupled dipoles
�FCD �11��, the weighted discretization �WD �12��, the inte-
gration of Green’s tensor �IT �13��, the Rahmani–Chaumet–
Bryant formulation �RCB �14,15��, and the surface-corrected
LDR �SCLDR �16��. The RCB and the SCLDR require a
preliminary solution of the electrostatic problem �i.e., in the
long-wavelength limit� for the particle of the same shape.
The IT requires a numerical evaluation of oscillatory inte-
grals to build up the DDA interaction matrix, which is not
trivial to implement and may consume a lot of computer
time. The WD is efficient in decreasing shape errors �17� but
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FIG. 1. �Color online� Refractive indices of noble metals and
typical constituents of astrophysical dust in and around the visible
wavelength range, depicted in the complex plane. A shaded region
schematically shows the known range of LDR applicability. Three
dots denote refractive indices examined in this paper.
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it causes all boundary dipoles to have different polarizabil-
ities, which is incompatible with current internal data struc-
ture of publicly available DDA codes such as DDSCAT �4� and
ADDA �18�. For the FCD the only known drawback is diffi-
culties in theoretical analysis of its convergence �17�. On the
other hand, the FCD is easy to implement and it does im-
prove the performance of the DDA for large m, as was
shown by its authors �11,19�. It seems that the only reason
why the FCD, proposed 10 years ago, was not adopted by the
light scattering community is that so far it was not included
in a publicly available DDA code.

In this paper we endeavor to revive the FCD. For that we
implement it in the ADDA code and demonstrate its perfor-
mance for a number of scattering problems in comparison
with the LDR and the radiative reaction correction �RR �3��
formulations. We also discuss practical feasibility of DDA
simulation of light scattering by particles with extreme re-
fractive indices. To understand the reasons for difference in
performance between different DDA formulations and par-
ticle shapes, we analyze the detailed structure of DDA errors
and the spectrum of the DDA interaction matrix.

Preliminary results of this paper were presented earlier at
the 11th Conference on Electromagnetic and Light Scattering
�20�. Moreover, in a recently published paper �21� the per-
formance of the FCD was studied specifically for gold nano-
particles.

II. METHODS

A. Test scatterers

We tried three values of m :10+10i, 0.1+ i, 1.6+0.01i
�Fig. 1� The first two values are extreme and typical for SiC
in the infrared, the second one is also typical for noble met-
als. The third value, a moderate one, is typical for silicates in
the visible part of the spectrum. The following shapes were
used: a sphere, a cube, and Gaussian random field particles
�GRF �22��. For the latter two cubical discretizations were
employed, using 102 and 104 elements and denoted by GRF2
and GRF4, respectively �Fig. 2�. We used two different sizes:
kDx=8 �“large”� and kDx=10−5 �Rayleigh regime�, where k
is the wave number and Dx is the particle length along the x
axis. For both cases orientation of the particle was fixed. We
used the FCD, LDR, and RR formulations for the large par-

ticles. For the Rayleigh particles the LDR and the RR are
both equivalent to the classical Clausius-Mossotti �CM�—so
only the FCD and the CM were used.

For each combination of shape, size, and refractive index
we used 18 different discretizations from 8 to 512 dipoles
�nx� per Dx with approximately uniform spacing on a loga-
rithmic scale. The lower bound of nx is determined by ad-
equacy of the discrete representation of the shape, and the
upper bound—by acceptable computational requirements.
The only exception is GRF4 particle, initial description of
which has nx=31. For this particle we used 8 values of nx
from 31 to 434 �initial value and that multiplied by even
numbers up to 14�. We also tried odd multiples of the initial
nx but they resulted in a separate convergence curve �data not
shown�. In other words, the convergence of measured quan-
tities with increasing nx was smooth and to the same values
both for even and odd multiples, when they are considered
separately. However, there is significant difference between
results for adjacent even and odd multiples. This behavior,
especially prominent for the FCD and extreme m, warrants a
separate study, so we do not consider results for the GRF4
and odd multiples of nx=31 in this paper.

B. DDA formulations

We start with a short excerpt from the derivation of the
DDA starting from the volume-integral equation for the elec-
tric field �1�. One of the possible forms of the latter is

E�r� = Einc�r� + p.v.� d3r�Ḡ�r,r����r��E�r��

−
4�

3
��r�E�r� , �1�

where Einc and E are the incident and total electric field, and
��r�= ���r�−1� /4� is the electric susceptibility
��=m2—relative permittivity�. In this paper only isotropic
materials are considered. ��r� vanishes outside the volume of
the particle, therefore integration can be considered over the
whole space. p.v. denotes the principal value of the integral,
which corresponds to exclusion of infinitesimal sphere
around point r. The free-space Green’s tensor is the follow-
ing:

Ḡ�r,r�� =
exp�ikR�

R
�k2�Ī −

R̂R̂

R2 	 −
1 − ikR

R2 �Ī − 3
R̂R̂

R2 	
 ,

�2�

where k is the free-space wave vector, R=r−r�, R= �R�, Ī is

the identity tensor, and R̂R̂ is a tensor defined as R̂R̂�	

=R�R	.
Standard DDA formulations are obtained by dividing the

volume of the particle into equal cubical cells Vi �dipoles�
and using stepwise approximation for both ��r��E�r�� and

Ḡ�r ,r�� under the integral. Then Eq. �1� is considered in all
dipole centers �r=ri�, and the integral over the self-cell is
evaluated using another �not stepwise� approximation,

FIG. 2. Particles GRF2 �a� and GRF4 �b�, obtained by cubical
discretization of the Gaussian random field. Images were generated
with LITEBIL v.0.9.5b �38�.
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p.v.�
Vi

d3r�Ḡ�ri,r����r��E�r�� = Mi�iEi, �3�

where �i=��ri� and Ei=E�ri�. Three standard DDA formu-
lations �CM, RR, and LDR� considered in this paper differ
only by the values of self-induction term Mi,

MCM = 0, MRR =
2

3
ix3,

MLDR = �b1 + b2m2 + b3m2S�x2 +
2

3
ix3, �4�

where x=kd is the size parameter of a dipole �d—dipole
size�, b1−b3 are numerical constants, and S depends on the
polarization of the incident light. The details of the latter, as
well as motivation behind expressions in Eq. �4� can be
found in �1�. It is convenient to define dipole polarization
Pi=V�iEi and polarizability 
i=V�i�1+ �4� /3−Mi��i�−1,
where V is the volume of one dipole. Then the main DDA
equations can be formulated as


i
−1Pi − �

j�i

ḠijP j = Ei
inc, �5�

where Ei
inc=Einc�ri� and Ḡij =Ḡ�ri ,r j�. This system of linear

equations is solved for Pi, which is further used to calculate
any measured quantities �1�.

The FCD is based on the sampling theorem, applied to the
product �E �11�,

��r�E�r� � V�
i

�iEihr�r − ri� , �6�

where hr�R�=hr�R�= �sin�kFR�−kFR cos�kFR�� / �2�2R3� is
the impulse response function of the ideal antialiasing filter
that suppresses all spatial spectral components outside the
sphere with radius kF=� /d. Equation �6� becomes exact if
the spatial Fourier spectrum of �E is bounded inside this
sphere.

Piller and Martin �11� showed that the spectrum of E
inside any homogeneous particle with real refractive index m
lies on a sphere with radius km. This statement is based on
expansion of E into appropriate regular basis �Bessel multi-
poles� inside the particle and continuation of this expansion
to the whole space, ignoring the particle boundary. The latter
is fine for solution of Eq. �1� inside the particle, since �
anyway vanishes outside. However, it is at least hard to ex-
tend this property either to multidomain scatterers or to com-
plex m. Moreover, although the maximum of the spectrum of
� is at the origin, this spectrum always extends to infinity,
since support of � is finite. To alleviate the latter preliminary
filtering of � was proposed �11�, which distorts � �i.e., the
original particle is replaced by one with a smoothed bound-
ary�, but improves the accuracy of Eq. �6�. The optimum
strategy for filtering � is yet to be found, however, there
seem to be little difference between several tested options
�11�. In this paper we employ no filtering of �, because it is
incompatible with current internal data structure of ADDA

�see also remark concerning the WD in Sec. I�.

The remarkable property of the FCD is that Eq. �6� is the
only approximation used. After substituting it into Eq. �1� the
Green’s tensor can be analytically integrated with hr�R�,
leading to the filtered Green’s tensor �23�,

ḠF�r,r�� = ḠF�R� = Ī�k2gF�R� +
gF��R�

R
+

4�

3
hr�R�	

+
R̂R̂

R2 �gF��R� −
gF��R�

R
	 , �7�

gF�R� =
sin�kR���i + C− − C+� + cos�kR��S+ + S−�

�R
,


C� = Ci��kF � k�R�
S� = Si��kF � k�R� � . �8�

We note that Eqs. �7� and �8� differ by a factor of 4� from
the original expressions �11,23�, which is compensated by
use of � instead of ��=�−1. Moreover, the expression for
gF�R� given in �11� contained an error—sin�kR� and cos�kR�
were interchanged, and so were C+ and C−. However, this
was corrected in a later publication by the same group �23�.
The FCD requires kF
k, i.e., d�� /2, but application of the
DDA outside this domain has little sense anyway.

Another consequence of filtering is that ḠF�R� is no more
singular for zero argument, allowing exact evaluation of the
self-term. We provide an explicit expression for the latter as
it was not given in the original papers �11,23�,

ĪMFCD = V lim
R→0

ḠF�R�, MFCD =
4

3
x2 +

2

3
�i +

1

�
ln

� − x

� + x
	x3.

�9�

The final DDA equations for the FCD are the same as Eq.

�5�, but with Ḡij =ḠF�ri ,r j� and 
 calculated using MFCD

from Eq. �9�. We also note that compared to standard DDA
formulations the FCD incurs additional computational over-
head for evaluating sine and cosine integrals to build-up the
interaction matrix. However, according to our experience,
this one-time overhead is comparable to a single iteration of
the iterative solver and hence can be neglected in most cases
�data not shown�.

C. Details of DDA simulations

We have implemented the FCD �without filtering of sus-
ceptibility� in ADDA and used it �v.0.78.2 �24�� for all simu-
lations presented in this paper. We used the QMR iterative
solver �18� for all simulations, except a few cases, in which
the BiCGStab was used �see below�. For refractive indices
10+10i and 0.1+ i we employed the default threshold of the
iterative solver �10−5�, but for 1.6+0.01i we set it to 10−10 to
preclude its influence on the accuracy results. For large and
Rayleigh particles we use y=kd�m� and 1 /nx as discretization
parameters, respectively. For spheres we employed volume
correction �a default option in ADDA�, which ensures that the
dipole discretization of the particle has the correct volume
�18�. All simulations were run on the Dutch compute cluster
LISA �25�.
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To compute all measured quantities, e.g., the Mueller
scattering matrix, one generally has to consider two polariza-
tions of the incident wave. But if a particle has a fourth order
rotation axis coincident with the incident propagation direc-
tion, ADDA simulates only one polarization �18�, decreasing
simulation time twofold. In the following we present data on
number of iterations and computational time for a single po-
larization of the incident wave to adequately compare sym-
metric and nonsymmetric shapes.

To facilitate further discussion we adopt several defini-
tions from �17,26�. Cubically �noncubically� shaped particles
are those that can �cannot� be exactly described by a set of
cubical subvolumes. The shape error �present only for non-
cubically shaped particles� is the difference between some
measured quantity for a discretized particle shape �calculated
to a high accuracy� and that for the original shape. This type
of errors does not depend on a particular DDA formulation,
but only on the geometry of the discretization. The discreti-
zation error is the difference between the result obtained
using a limited number of dipoles and an exact �very accu-
rate� solution for the cubical discretization of the particle.
The surface error is a part of the discretization error, which
converges linearly with y �or d�. The remaining part con-
verges quadratically with y. Moreover, surface errors appear
due to the particle interface and they are expected to increase
with increasing surface-to-volume ratio of the particle �17�.
In the current paper the spheres are the only noncubically
shaped particles that have shape errors. Among other shapes
the GRF4 particles are expected to have the largest surface
errors.

D. Extrapolation technique

Since only the sphere allows for exact analytical solution,
we used the extrapolation technique based on results for 5
best discretizations �26� to infer reference results for the cube
and the GRF particles. In a single case, the GRF4 particle
with m=10+10i using the LDR, extrapolation was based on
results of only four discretizations due to convergence fail-
ures for other values of y �see Fig. 6�b��. Using error esti-
mates provided by the extrapolation technique for all DDA
formulations applied to the same particle and assuming these
errors to be independent, we computed a weighted average
��� of extrapolation results and its error estimate ���. Then
we computed the corrected error estimates for each formula-
tion as �x

2= �x−��2+�2, where x is extrapolation result.
For spheres we also performed extrapolation �using re-

sults for nine best discretizations� to compare its accuracy
relative to the exact Mie results. The results of this compari-
son �real errors� will be presented below, while the internal
estimate of the extrapolation error in most cases was ad-
equate in describing �i.e., was larger than� the real errors
�data not shown�. The only exception occurred for large
spheres with m=10+10i, for which the estimate was three to
eight times smaller than the real errors.

The extrapolation technique was also used to compute
accurate results for different cubical discretizations of a
sphere, which allowed us to separate shape and discretization
errors as described in �26�. Cubical discretizations were ob-

tained using nx=8, 16, 24, 32, 48, and 64. Further these
shapes were described with several refined grids �nx up to
640� and light scattering was simulated using the FCD for
m=10+10i and 1.6+0.01i, and the RR for m=0.1+ i.

III. RESULTS OF THE DDA SIMULATIONS

A. Convergence of the iterative solver

We start by analyzing the number of iterations �Niter� of
the iteration method, which is the main factor determining
total simulation time. For Rayleigh particles FCD is faster
than CM for both extreme refractive indices, while Niter is
only weakly dependent on the discretization �Fig. 3�. Accel-
eration from employing the FCD is approximately 6 and 1.2
times for m=10+10i and 0.1+ i respectively, which is in line
with literature data for slightly different problem parameters
�19�. Results of Niter for both particle sizes, but for a single
discretization level nx=128 �124 for the GRF4�, are pre-
sented in Table I. For large particles with any of the consid-
ered m, as well as for Rayleigh particles with m=1.6
+0.01i, all formulations show very similar Niter almost inde-
pendent on y, except for the following two peculiarities.

First, for m=10+10i the LDR shows strongly nonmono-
tonic dependence of Niter on y for all studied shapes �see Fig.
4 for example�. This can be explained by the nature of the
LDR formulation, which employs corrections of order y2

�Eq. �4��. When y is not small this correction may be large
and wrong, which not only decreases the accuracy of the
simulations �see below� but also strongly increases the con-
dition number of the interaction matrix. This is not so notice-
able for very coarse discretizations due to the small dimen-
sion of the interaction matrix, but becomes prominent for y
�1. Other formulations employ corrections given in powers
of x �Eqs. �4� and �9��, which is much smaller than y for this
m. It is important to note that when the LDR is faster than
other formulations �y
1�, it leads to huge errors �see below�
that preclude any practical application.

Second, the QMR iterative solver fails for very fine dis-
cretizations of cubes for both the RR and the LDR and for

FIG. 3. �Color online� Ratio of number of iterations when using
FCD and CM formulations for Rayleigh particles with m=10+10i
and 0.1+ i versus the grid size.

YURKIN, MIN, AND HOEKSTRA PHYSICAL REVIEW E 82, 036703 �2010�

036703-4



both extreme refractive indices �data not shown�. We leave
this fact for a future study and use the BiCGStab in these
cases. The latter works fine and leads to reasonable Niter for
all DDA formulations except for the LDR in combination
with m=10+10i �see Table I�.

Piller �19� showed that for refractive indices close to the
real axis acceleration by using the FCD may be even larger
than shown above. We performed only a single test to con-
firm that �a sphere, m=5, nx=16, kDx=10−5�, resulting in
Niter equal to 22 and 680 for the FCD and the CM respec-
tively �acceleration factor of 31�.

B. Accuracy of absorption cross section

In this paper, we show and analyze the accuracy results
only for the absorption cross section �Cabs� for fixed propa-

gation direction and polarization of the incident wave �along
the z and y axes, respectively�. Accuracy of other quantities,
such as extinction cross section and angle-resolved light
scattering intensity and linear polarization, lead to similar
general conclusions �data not shown�. Accuracy of Cabs ver-
sus discretization parameter for Rayleigh particles are shown
in Fig. 5 for all considered shapes, refractive indices, and
DDA formulations. Analogous results for large particles are
shown in Fig. 6. The leftmost points on these figures corre-
spond to estimated extrapolation errors. The minimum of
these values among different DDA formulations for the same
particle corresponds to the estimated accuracy of the refer-
ence result �except for spheres�. Therefore, all shown values
are expected to have this uncertainty.

In most cases this uncertainty is negligibly small. The
only exception is the GRF4 particle �both Rayleigh and
large� for m=0.1+ i and 1.6+0.01i �see Figs. 5�b�, 5�c�, 6�d�,
and 6�f��. Also in several other cases the errors of the FCD
are smaller than the estimated errors of the reference results.
In particular, FCD results for the Rayleigh cube �Fig. 5�b��
are probably affected by the value of the default threshold of
the iterative solver �10−5�. However, in all these cases both
mentioned errors are so small that corresponding uncertainty
do not affect any of the following conclusions.

The overall tendency is that the FCD is more accurate
than other DDA formulations �exceptions are discussed be-
low�, but its convergence with decreasing discretization pa-
rameter is less regular. The convergence behavior of the FCD
is largely unknown. In particular, it is the only DDA formu-
lation, for which the convergence has not been rigorously
proven neither in �17� nor, to the best of our knowledge,
anywhere else. From a practical viewpoint, oscillations
around the linear trend in log-log scale �e.g., Figs. 6�c� and
6�d�� cause relatively large errors during extrapolation of its
results. Probably, a modification of the extrapolation tech-
nique to account for unusual convergence of the FCD may

TABLE I. Number of iterations for a single run of QMR iterative solver when nx=128 �or 124�.

m Shape

kDx�1 kDx=8

CM FCD RR LDR FCD

10+10i Sphere 431 72 1644 6122 1457

Cube 428 61 1257a 
30000 a 1496a

GRF2 571 87 1251 27693 1133

GRF4 608 92 1257 
30000 1208

0.1+ i Sphere 112 91 189 188 159

Cube 121 106 155a 149a 144a

GRF2 129 108 176 175 161

GRF4 130 111 173 173 167

1.6+0.01i b Sphere 15 14 66 67 63

Cube 15 14 96 96 95

GRF2 17 15 39 39 38

GRF4 17 15 35 35 35

aBiCGStab iterative solver was used.
bFor this m we used convergence threshold of the iterative solver equal to 10−10, therefore shown values of
Niter are approximately twice as large as for the default threshold of 10−5.

FIG. 4. �Color online� Number of iterations versus y for kDx

=8 sphere with m=10+10i.
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improve the quality of the extrapolation. We consider good
accuracy of single DDA simulations to be more important
than good potential for extrapolation, especially considering
the lack of robustness for the latter. Moreover, such oscilla-
tory behavior is not an exclusive feature of the FCD. In
particular, similar oscillations were noted for a red blood cell
when using the LDR �27�.

Another feature of the computations is that convergence is
generally nonmonotonic for all DDA formulations. This be-
havior is exhibited, in particular, by gaps caused by the sign
change of errors and complicates adequate comparison be-
tween the DDA formulations. Therefore, we propose the
maximum error over all simulations with nx�124 as the ac-
curacy measure. It is based on the region of nx, where con-

vergence is on average monotonic, and diminishes the effect
of single gaps. Values of this error measure for all studied
cases are shown in Table II.

The following conclusions can be deduced from this table
�as well as from data on Figs. 5 and 6�. For Rayleigh spheres
accuracy of the FCD and the CM is almost the same. For all
other cases with m=10+10i the FCD accuracy is 3 to 30
times better than that of the RR �or the CM�. Errors of the
LDR for large particles with this refractive index are unac-
ceptably large. For m=0.1+ i the LDR and the RR result in
almost the same accuracy, except for difference for kDx=8
cubes which is due to crossing of zero of the RR error �see
Fig. 6�c��. For all Rayleigh particles with this m the FCD is
not worse than the CM, and even 30 times more accurate for
the cube. However, for large particles the FCD can be either
3 times more accurate or 4 times less accurate than the RR.

For m=1.6+0.01i the LDR is on average more accurate
than the RR, which agrees with Draine et al. �2,4�. Moreover,
it seems to be widely accepted that there is no large differ-
ence between different DDA formulations for such moderate
refractive indices. This makes the FCD results especially sur-
prising. For Rayleigh cubically shaped particles �i.e., all ex-
cept spheres� the FCD was from 3 to 200 times more accu-
rate than the CM. For larger particles the FCD was also
clearly superior, improving the accuracy from 1.7 to 6 times
in comparison with the LDR �the smallest improvement was
for spheres�. As far as we know, this feature of the FCD was
never observed in the literature, which is probably because
this formulation was never systematically applied to cubi-
cally shaped particles.

Another important factor is the scaling of errors with re-
fining discretization. Although nonmonotonic convergence
significantly complicates the analysis, our wide range of dis-
cretization parameters allows drawing the following conclu-
sions. Errors of Cabs for the LDR and the RR converge lin-
early with y or 1 /nx for all particles studied, while the FCD
leads to significantly faster �approximately quadratic� con-
vergence in some cases. This feature is especially prominent
for large cubes with m=10+10i and 1.6+0.01i �Figs. 6�a�
and 6�e��. For Rayleigh cubes the linear part of errors is also
small, becoming important only for small values of 1 /nx �ex-
act values depend on m—Fig. 5�. Quadratic convergence is
also obtained for the GRF2 with m=1.6+0.01i �Figs. 5�c�
and 6�f��.

The differences between shapes can be generalized as fol-
lows. Improvement by using the FCD is the least pronounced
for spheres, which is discussed in the next subsection.
Among cubical shapes, the cube corresponds to the largest
improvement �both in values and scaling exponents�, then
the GRF2, and finally the GRF4 �although this general order
is not strict�. This order corresponds to increasing surface-to-
volume ratio and hence relative importance of surface errors
of the DDA. Therefore, we conclude that the FCD is most
effective in decreasing the part of discretization errors asso-
ciated with dipoles far from the surface. However, the effi-
cient susceptibility filtering �see Sec. II B� may improve the
efficiency of the FCD for dipoles near the surface as well.

C. Structure of errors for the spheres

To analyze the difference between the spheres and other
shapes, we divided the relative errors of Cabs for the spheres

FIG. 5. �Color online� Relative error of Cabs versus the discreti-
zation parameter for Rayleigh particles in log-log scale. The left-
most points �corresponding to abscissa values of 10−3� show ex-
trapolation errors �real errors for spheres and corrected estimates for
other shapes�. Gray vertical lines correspond to nx=124.
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into shape and discretization parts �as described in Sec. II D�.
Corresponding results are presented in Fig. 7. We remind the
reader that the errors for any sphere, shown in Figs. 5 or 6,
are the sum �or difference, depending on relative signs� of
the shape and discretization error for the same sphere and
DDA formulation. Shape errors are approximately linearly
proportional to discretization parameter �slope close to 1 in
log-log scale� in agreement with theoretical predictions of
�17�. However, this convergence is not expected to be always
monotonic, especially for relatively large discretization pa-

rameters, as exemplified by Fig. 7�f�. This can be partly ex-
plained by nonmonotonic dependence of surface irregularity
of the dipole grid �e.g., as defined by Draine �3�� on nx. The
same applies to discretization errors �see points with y=0.5
in Fig. 7�d��. The values of shape errors are generally com-
parable to the discretization errors, which smoothes the dif-
ference between the DDA formulations when looking at total
instead of discretization errors.

For large particles difference between the DDA formula-
tions for discretization errors of spheres correlates with that

FIG. 6. �Color online� Same as Fig. 5 but for large particles. Left column shows results for spheres and cubes, right—for GRF2 and
GRF4 particles. For m=10+10i part of LDR simulations either did not converge �missing data points� or resulted in huge errors �more than
ten times�.
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of cubes. For m=0.1+ i this difference is small for both
spheres and cubes, while for other two m using the FCD
leads to significant decrease of discretization errors for both
shapes. However, there is no such correlation for Rayleigh
particles because the FCD do not show considerable im-
provement of discretization errors for Rayleigh spheres.
Moreover, in all cases discretization errors for spheres con-
verge linearly and are much larger than that for cubes.

It is tempting to conclude that surface errors �the part of
discretization errors, converging linearly, see Sec. II D� for
spheres are much larger than those for cubes. However, the
points on any chosen curve of discretization errors in Fig. 7
are not for the same particle, but for slightly different dis-
cretizations of the same sphere. Therefore, theoretical con-
clusions from �17�, in particular the association of surface
errors with the linear part of the convergence curve, do not
apply. To assess surface errors unambiguously one may study
convergence of errors with increasing nx for fixed initial dis-
cretized shape, which is an extended version of simulations
that were used to estimate accurate results for these dis-
cretized shapes through extrapolation. Such comprehensive
study is outside the scope of this paper. However, our pre-
liminary simulations in this direction resulted in power-law
convergence with exponent values between 1 and 2 �data not
shown�.

For now, we conclude that the concept of surface error has
limited applicability to noncubically shaped particle. There-
fore, the main conclusion of this subsection is that �total�
discretization errors of the FCD for spheres are markedly
different from that for the cubes. As a plausible explanation
we suggest that the FCD is sensitive not only to the surface-
to-volume ratio �which is approximately the same for this
two shapes� but also to ratio of characteristic surface scale to
dipole size. In other words, the FCD is more accurate when
dipole set can be divided into large cubical homogeneous
quasidipoles. This is intuitively understandable considering
the sampling nature of the FCD. Another possible explana-
tion is discussed in Sec. IV.

D. Computational time

For practical applications one is usually interested not in
accuracy for fixed discretization, but in required discretiza-
tion and computational time to obtain this desired accuracy.
We choose a typical accuracy goal, 10% relative error of
Cabs, but require it to be fulfilled not only for a single value
of nx, but for all nx larger than some threshold value. This is
done to decrease the influence of nonmonotonic conver-
gence. Computational times corresponding to those threshold
values of nx for different problem parameters are shown in
Table III.

For m=10+10i using the FCD decreases the computa-
tional time by several orders of magnitude, which is a com-
bination of decreasing number of iterations and improving
accuracy. This makes such extreme refractive indices, in
principle, feasible for DDA simulations, although the simu-
lation times can be large �about 1 processor hour�. For m
=0.1+ i the FCD is slightly faster for Rayleigh particles and
comparable to other formulations for kDx=8, which agrees
with the accuracy results. Computational times for m=1.6
+0.01i are almost the same for all DDA formulations, be-
cause in most cases required accuracy is achieved using the
minimum tested value of nx. Therefore, these values do not
reflect the observed superiority of the FCD in accuracy for
this m.

We also note that computational times for the cubes are
smallest among all shapes �especially for m=10+10i�, while
for the spheres they are largest �especially for m=0.1+ i�.
This is a direct implication of the difference of DDA accu-
racy between particle shapes, discussed above.

IV. SPECTRAL PROPERTIES

We finally examine the special case of Rayleigh homoge-
neous scatterers and present a short introduction into the
spectral representation formalism, following �28,29�. In this
case x=0, M =0 �cf. Eqs. �4� and �9��, and hence 
 is that of

TABLE II. Maximum for all nx�124 relative error of Cabs.

m Shape

kDx�1 kDx=8

CM FCD RR LDR FCD

10+10i Sphere 0.11 0.10 0.58 3.7 0.17

Cube 0.060 0.0042 0.45 a 0.014

GRF2 0.29 0.047 0.12 4.6 0.034

GRF4 0.64 0.050 0.12 a 0.038

0.1+ i Sphere 0.049 0.052 0.16 0.16 0.14

Cube 0.0030 9.6�10−5 6.1�10−4 0.0016 0.0025

GRF2 0.010 0.0031 0.0059 0.0058 0.0056

GRF4 0.017 0.013 0.0061 0.0059 0.024

1.6+0.01i Sphere 0.0021 0.0021 0.0038 0.0020 0.0012

Cube 5.9�10−4 2.9�10−6 9.3�10−4 4.6�10−4 1.8�10−4

GRF2 0.0025 9.8�10−5 0.0015 0.0025 5.0�10−4

GRF4 0.0029 0.0011 0.0049 0.0036 5.8�10−4

aThe method failed to converge within 30 000 iterations at least for one value of nx�124.
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the CM. Moreover, the Green’s tensor is purely real �cf. Eqs.
�2� and �7��. We rewrite Eq. �5� in matrix form as

BE = ��zI − W�E = Einc, z = V
−1 =
4�

3

� + 2

� − 1
, W = VG ,

�10�

where E and Einc are arrays combined from Ei and Ei
inc re-

spectively for all dipoles, I is the identity matrix, and matrix

G contains the values of Green’s tensor and has zero diago-
nal. z and � contains all information about material proper-
ties, while W describes the shape of the scatterer. W is real-
symmetric and B is Hermitian contrary to the non-Rayleigh
case, when both these matrices are complex-symmetric.
Finding the spectrum of W �set of real values wn� and diago-
nalizing this matrix, one can easily solve Eq. �10� for many
different values of �. We stress that this spectrum, discussed
in detail below, is completely different from the spatial spec-

FIG. 7. �Color online� Shape and discretization parts of relative errors of Cabs for the spheres in log-log scale. Left and right columns
show results for Rayleigh and large sizes respectively. Error bars are due to uncertainties of the reference results for cubical discretizations
of the spheres, calculated by the extrapolation technique. For most data the error bars are narrower than the symbol width. In figure part �b�
discretization errors of the LDR are not shown because they are larger than 10. In figure part �f� nonmonotonic behavior of FCD results is
due to sign change.
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trum, used in the derivation of the FCD �Sec. II B�.
One of the most often considered optical property of the

Rayleigh scatterers is its absorption cross-section Cabs nor-
malized by the scatterer volume Vs. Moreover, usually the
scatterer is considered in random orientation leading to �28�

�Cabs�
kVs

= 4� Im�
n

fn

z − wn
= Im�

n

fn

1/�� − 1� + vn

= Im� f�v�dv
1/�� − 1� + v

, �11�

where vn=1 /3−wn /4� are generalized depolarization fac-
tors �in analogy to ellipsoids, or form-factors �29�� and fn are
real weights computed from the corresponding eigenvectors
of W. Therefore, for the purpose of computing �Cabs� the
shape of the scatterer is fully characterized by sets �wn , fn� or
�vn , fn�, or equivalently by function f�v�. Those sets are
called density of states and distribution of depolarization fac-
tors �or form-factors�, respectively �28�. To compute other
measured quantities one should consider several sets of
weights, corresponding to the polarizability tensor of the
whole particle �29�, but we do not analyze them here.

To generalize this approach one may look at Eq. �10� as a
discretization of a corresponding infinite-dimensional opera-
tor equation, obtained by replacing vectors by functions and
matrices by linear operators. Set of wn is then a certain ap-
proximation to the spectrum of operator W and �fn��v
−vn� is an approximation to f�v�. The DDA is not the only
method to compute these estimates. For instance, discretiza-
tion of the surface-integral equation �30,31� or multipole ex-
pansion �32,33,28� can be used, all leading to the same re-
sult. Other notable examples are the DDA applied to clusters

of spheres with each sphere described by a single dipole �34�
and attempts to extend this approach to non-Rayleigh scat-
terers �35�.

Budko and Samokhin �36� rigorously proved that the
spectrum of the operator W is bounded between −8� /3 and
4� /3 �corresponding to form factors between 0 and 1�,
which was also justified using physical arguments by Rahola
�37� and Markel et al. �28�. In the latter paper it was also
stated that the spectrum should lie strictly inside the specified
bounds. However, any finite-dimensional approximation �wn�
is only expected to converge to the operator spectrum with
increasing n. Although numerical tests �29,37� showed that
values of wn approximately fall into the specified bounds,
strict compliance do not necessarily take place for any finite
n.

We computed the form-factor distributions for the GRF2
particle, using both the FCD and the CM and different levels
of discretizations �number of dipoles Ndip is from 100 to
6400�. Since the total number of eigenvalues Neig=3Ndip,
presenting the whole set �vn , fn� or the function �fn��v
−vn� is not practical. We have smoothed the latter to produce
a piecewise linear function, each point of which is obtained
by averaging over �Neig eigenvalues. In comparison with re-
placing delta functions with Lorentz profiles �28�, this ap-
proach improves the resolution of f�v� in regions of high
density of eigenvalues �e.g., near v=0 and 1� and preserves
the support of f�v�, i.e., limiting bounds of v. Resulting
smoothed distributions are shown in Fig. 8.

Form-factor distributions computed using different formu-
lations of the DDA seem to converge to the same function
with refining discretization. Moreover, there is not so large
difference between the results for Ndip�800, which suggests
that we caught all main features of the “true” f�v�. However,
there is an important difference between the results for the

TABLE III. Computational time �processor seconds� to provide persistent accuracy of Cabs at least
10%.a

m Shape

kDx�1 kDx=8

CM FCD RR LDR FCD

10+10i Sphere 2�104 2000 
3�106 
4�106 3�105

Cube 3000 1 
7�106 
8�106 200

GRF2 8�105 40 1�106 
2�106 1000

GRF4 
1�106 500 3�105 1�106 7000

0.1+ i Sphere 700 200 3�104 3�104 2�104

Cube 0.4 2 0.6 3 3

GRF2 2 2 2 2 8

GRF4 500 30 40 40 40

1.6+0.01i b Sphere 0.1 0.1 3 0.2 0.3

Cube 0.1 0.1 5 0.3 0.4

GRF2 0.2 0.2 0.8 0.3 0.3

GRF4 6 7 10 10 10

aAccuracy of the shown estimates is between one significant digit and an order of magnitude due to the large
step in values of nx and varying number of Intel Xeon 3.4 GHz processors that were used in simulations.
bFor this m we used convergence threshold of the iterative solver equal to 10−10, therefore shown time values
are approximately twice as large as for the default threshold of 10−5.
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CM and the FCD. The form-factors for the FCD are always
between 0 and 1 �within the numerical errors of eigenvalues
calculation—smaller than 10−5�, while that for the CM fall
out of this range �to a lesser extent for finer discretizations�.
We hypothesize that this is a general feature of the FCD,
although a prove is not readily available.

This difference at the side-tails of f�v� may seem not that
large when compared to the middle of the distributions.
However, inspection of Eq. �11� readily reveals that values of
f�v� near v=0 and v=1 determine the absorption for ���
�1 and ����1, respectively. In particular, this explains bet-
ter performance of the FCD for m=10+10i ��=200i�. More-
over, Eq. �11� leads to resonant behavior for �=1−1 /v. For
0�v�1 these resonances are located on negative real axis,
but may shift to the positive real axis, when v fall out of this
bounds. For instance, significant nonzero values of f�v� near
v=−0.01 �Fig. 8�a�� should lead to very inaccurate results
�breakdown� of the CM formulation for ��100 �m�10�.
We leave numerical verification of this fact for future re-
search, but note that it also explains very slow convergence
of the iterative solver in the CM formulation for large real
refractive indices, mentioned in Sec. III A.

In contrast, consider another studied value of m=0.1+ i
��=−0.99+0.2i�. It is located near resonance corresponding

to v=0.5, where there is no significant differences between
f�v� calculated with the CM and the FCD. This explains why
FCD leads to relatively small improvement �if any� both in
accuracy and convergence of iterative solver compared to the
CM for this m.

As stated above form-factor distribution is completely de-
termined by the scatterer shape. In particular, there exist ana-
lytical solution for a sphere f�v�=��v−1 /3�, which trans-
forms to narrow distributions around v=1 /3 by
discretization using both the CM and the FCD �data not
shown�. This narrow distributions lack “resonant” regions of
v �near 0 and 1� and hence superiority of the FCD in these
regions becomes less relevant. This makes a sphere �as well
as general ellipsoids, characterized by three delta functions�
markedly different from other shapes, which form-factor dis-
tributions covers the whole range from 0 to 1 �data not
shown�. Therefore, we propose these form-factor distribu-
tions as a possible explanation of difference in improvement
of the DDA accuracy by using the FCD between a sphere
and other shapes. However, more shapes �both cubical and
noncubical� should be studied to make any conclusions.

Although the above is based on the assumption of Ray-
leigh sizes, the ideas presented may explain many results for
larger scatterers, especially with respect to accuracy of DDA
simulations.

V. CONCLUSION

We have compared three DDA formulations: the FCD, the
LDR, and the RR for simulations of light scattering by
cubes, spheres, and GRF particles with sizes comparable and
much smaller than the wavelength, using three refractive in-
dices: 10+10i, 0.1+ i, and 1.6+0.01i.

The FCD improves convergence of the iterative solver for
Rayleigh particles with extreme refractive indices: it is about
6 and 1.2 times faster than CM for m=10+10i and 0.1+ i,
respectively. Also the FCD is from 3 to 30 times more accu-
rate than the RR in calculation of Cabs for nonspherical par-
ticles with m=10+10i. For m=0.1+ i all studied formula-
tions lead to similar results, but FCD was 30 times more
accurate for Rayleigh cubes. Surprisingly, even for moderate
m=1.6+0.01i the FCD was from 3 to 200 times more accu-
rate than the LDR for all nonspherical shapes. Overall, using
the FCD allows one to decrease the computational time to
reach a prescribed accuracy by up to several orders of mag-
nitude. The only drawback of FCD is that in some cases the
extrapolation technique applied to its results leads to larger
errors than for other formulations. If comparing the LDR and
the RR, our results show that the LDR is a “never use”
option for m=10+10i, comparable to the RR �and generally
to FCD� for m=0.1+ i, and better than the RR for 1.6
+0.01i.

To get insight about the difference in performance be-
tween different DDA formulations and particle shapes, we
analyzed the detailed structure of DDA errors and the spec-
trum of the DDA interaction matrix. In particular, so-called
discretization errors of the FCD for spheres are markedly
different from that for the cubes, which suggests that the

FIG. 8. �Color online� Form-factor distributions for GRF2 par-
ticle, computed using the CM �a� and the FCD �b�. Results are
obtained by smoothing �see text� from sets �vn , fn� obtained for
several levels of discretization. Insets show detailed behavior near
zero values of v.
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FCD is sensitive to characteristic surface scale of the cubical
discretization of the particle. We empirically showed that dis-
cretization of the integral scattering operator �in the Rayleigh
regime� using the FCD retains the limiting bounds of its
spectrum, in contrast to the CM formulation. This explains
better performance of the FCD for large �m�. We also con-
clude that a spherical shape is a very special case for the
DDA, hence other shapes must be examined in any study of
the DDA accuracy.

The FCD has been implemented in the publicly available
code ADDA and is ready to be applied by the light scattering
community. Although further comparative studies are defi-
nitely required, the FCD is at least a very good candidate to
become a default DDA formulation for day-to-day simula-
tions. Extreme refractive indices, such as considered in this

paper, can be routinely �although not quickly� simulated us-
ing modern desktop computers.
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