UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Instruction sequences with dynamically instantiated instructions

Bergstra, J.A.; Middelburg, C.A.

DOI
10.3233/FI-2009-165

Publication date
2009

Document Version
Final published version

Published in
Fundamenta Informaticae

Link to publication

Citation for published version (APA):

Bergstra, J. A., & Middelburg, C. A. (2009). Instruction sequences with dynamically
instantiated instructions. Fundamenta Informaticae, 96(1-2), 27-48. https://doi.org/10.3233/FI-
2009-165

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

https://doi.org/10.3233/FI-2009-165
https://dare.uva.nl/personal/pure/en/publications/instruction-sequences-with-dynamically-instantiated-instructions(809f9274-b027-4351-a8a6-1bf3026400d9).html
https://doi.org/10.3233/FI-2009-165
https://doi.org/10.3233/FI-2009-165

Fundamenta Informaticae 96 (2009) 27-48 27
DOI 10.3233/FI-2009-165
10S Press

Instruction Sequences with Dynamically Instantiated Instuctions*

Jan A. Bergstra, Cornelis A. Middelburg'

Informatics Institute

University of Amsterdam

Science Park 107, 1098 XG Amsterdam, the Netherlands
{J.A.Bergstra,C.A.Middelbujg@uva.nl

1.

Abstract. We study sequential programs that are instruction seqsesitie dynamically instanti-
ated instructions. We define the meaning of such programsandifferent ways. In either case,
we give a translation by which each program with dynamicailitantiated instructions is turned
into a program without them that exhibits on execution theeshehaviour by interaction with some
service. The complexity of the translations differ consaddy, whereas the services concerned are
equally simple. However, the service concerned in the casieecsimpler translation is far more
powerful than the service concerned in the other case.

Keywords: instruction sequence, dynamically instantiated instomctprojection semantics, pro-
gram algebra, thread algebra, action transforming use amésn

Introduction

In this paper, we study sequential programs that are ingtrusequences with dynamically instantiated
instructions. With that we carry on the line of research withich a start was made in [3]. The object
pursued with this line of research is the development of ariteeal understanding of possible forms of
sequential programs, starting from the simplest form. Tie/ Vs taken that sequential programs in the
simplest form are sequences of instructions. Program edgah algebra of programs in which programs
are looked upon as sequences of instructions, is takenddrdhbis of the development aimed at.

*This research was partly carried out in the framework of #ugdard-project Symbiosis, which is funded by the Netheida
Organisation for Scientific Research (NWO).

fAddress for correspondence: Informatics Institute, Ursitg of Amsterdam, Science Park 107, 1098 XG Amsterdam, the

Netherlands

28 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

The approach to define the meaning of programs followed #lithe of research is called projection
semantics. It explains the meaning of programs in terms ofvknprograms instead of more or less
sophisticated mathematical objects that represent balnavof programs under execution. The main
advantage of projection semantics is that it does not requiot of mathematical background. Over and
above that, the view is taken that the behaviours of secalgmmbgrams under execution are threads as
considered in basic thread algebra 13Therefore, the meaning of the programs considered in progra
algebra is explained in terms of threads. The experienaeedaio far leads us to believe that sequential
programs are nothing but linear representations of threads

Sequential programs in the form of assembly programs upddratiuding sequential programs in
the form of structured programs are covered in [3]. Howeakthough they are found in existing as-
sembly programming practice, indirect jump instructioms aot considered. In [5], several kinds of
indirect jump instructions are considered, including aly which recursive method calls can easily be
explained. Dynamic instruction instantiation is a prognaimg feature that is not suggested by existing
programming practice. However, from the viewpoint thateatdial programs are nothing but linear rep-
resentations of threads, it is a genuine programming feattiis a useful programming feature as well,
as will be illustrated by means of an example in the paperréfbee, we consider a theoretical under-
standing of instruction sequences with dynamically inséed instructions relevant to programming.

We believe that interaction with services provided by ancaken environment is inherent in the
behaviour of programs under execution. Intuitively, sorevise provides for dynamic instruction in-
stantiation. In this paper, we define the meaning of prognaitisdynamically instantiated instructions
in two different ways. In either case, we give a translatignahich each program with dynamically
instantiated instructions is turned into a program withibigim that exhibits on execution the same be-
haviour by interaction with some service. In one case, tingéicseconcerned provides in effect for the
dynamic instruction instantiation and, in the other catsis,largely achieved by the translated programs.
We consider it useful to treat both cases because of thedmmasile difference in complexity of the two
translations.

A thread proceeds by doing steps in a sequential fashion.réathmay do certain steps only for
the sake of having itself affected by some service. The act@n between behaviours of programs
under execution and some service referred to above is amdtittn with that purpose. In [7], the use
mechanism is introduced to allow for such a kind of inte@attbetween threads and services. In this
paper, we will use a generalization of the use mechanisnedctile action transforming use mechanism,
to have behaviours of programs under execution affecteétwces. This generalization is reminiscent
of the state operator introduced in [1].

A hierarchy of program notations rooted in program algebriatroduced in [3]. In this paper, we
embroider on one program notation that belongs to this ttihya The program notation in question,
called PGLD, is a very simple program notation which is clasexisting assembly languages. The hier-
archy also includes a program notation, called PGLS, thapais structured programming by offering
a rendering of conditional and loop constructs instead oétfuctured) jump instructions. Each PGLS
program can be translated into a semantically equivalertP@ogram by means of the projection
semantics of PGLS and some intermediate program notations.

YIn [3], basic thread algebra is introduced under the namie paéarized process algebra. Prompted by the developnfent o
thread algebra [7], which is a design on top of it, basic ppéatl process algebra has been renamed to basic threadealgebr

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 29

This paper is organized as follows. First, we review basieal algebra, program algebra, and
program notation PGLD (Sections 2, 3, and 4). Next, we pmadimple classification of services that
will be used in subsequent sections (Section 5). After thatextend basic thread algebra with the action
transforming use mechanism and introduce a state-basedkato describe services (Sections 6 and 7).
Then, we give a state-based description of a service thaircarde for dynamic instruction instantiation
and use that service to define the meaning of the programsanaariant of the program notation PGLD
with dynamically instantiated instructions (Sections 8 &). Following this, we introduce a concrete
notation for basic instructions that covers dynamicallstamtiated instructions and use that notation to
illustrate the usefulness of dynamic instruction instatidin (Section 10). Thereupon, we give a state-
based description of a register file service and use thaicsetw define the meaning of the programs
from the variant of the program notation PGLD with dynamlicaistantiated instructions in another way
(Sections 11 and 12). Finally, we discuss the semantic appes followed in the preceding sections
and make some concluding remarks (Sections 13 and 14).

2. Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a fasfrprocess algebra which is concerned
with the behaviours that sequential programs exhibit o@tien. The behaviours concerned are called
threads BTA was first presented in [3]. In that paper, as well as sdvather papers, BTA is called
BPPA (Basic Polarized Process Algebra).

In BTA, it is assumed that there is a fixed but arbitrary finig¢ af basic actionsA with tau ¢ A.
We write Ay, for AU {tau}. The members afl,,, are referred to aactions

A thread performs basic actions in a sequential fashion. ifitoétion is that each basic action per-
formed by a thread is taken as a command to be processed byieesprovided by the execution
environment of the thread. The processing of a command nvajvima change of state of the service
concerned. At completion of the processing of the commamal service produces a reply value and
returns that reply value to the thread. The reply value iseeil or F and determines how the thread
proceeds.

Although BTA is one-sorted, we make this sort explicit. Tlason for this is that we will extend
BTA with an additional sort in Section 6.

The algebraic theory BTA has one sort: the sbrof threads To build terms of sorfl’, BTA has the
following constants and operators:

e theinactionconstanD : T;
e theterminationconstant : T;
e for eacha € Ay, the binarypostconditional compositioaperator. <al> _: T x T — T.

Terms of sortT are built as usual (see e.g. [16, 17]). Throughout the paperssume that there are
infinitely many variables of sofT’, includingz, y, z.

We use infix notation for postconditional composition. Weaduceaction prefixingas an abbrevi-
ation: a o p, wherep is a term of sorfl', abbreviate® < a > p.

The thread denoted by a closed term of the farm a > ¢ will first perform a, and then proceed as
the thread denoted hyif the processing of. leads to the reply (called a positive reply) and proceed

30 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

Table 1. Axiom of BTA

r<tauby=x Jdtaulz TI1

Table 2. Axioms for guarded recursion
(X|E) = (tx|E) if X=tx € E RDP
E = X=(X|E) if Xe€V(E) RSP

as the thread denoted byf the processing of: leads to the repl¥ (called a negative reply). The action
tau plays a special role. It is a concrete internal action: tlteeg@ssing otau will never involve a state
change and always lead to a positive reply, but notwithstanall that its presence matters. The threads
denoted byD andS will become inactive and terminate, respectively.

BTA has only one axiom. This axiom is given in Table 1. Using #breviation introduced above,
axiom T1 can be written as follows: <tau™ y = tau o x.

Each closed BTA term of soff' denotes a finite thread, i.e. a thread that will become waair
terminate after it has performed finitely many actions. ltdithreads can be described by guarded
recursion specifications.

A guarded recursive specificatimver BTA is a set of recursion equatiofs= {X = px | X € V'},
whereV is a set of variables of sdit and eaclpx is a term of the fornD, S or p<t a >¢q with p andg BTA
terms of sortT" that contain only variables frovi. We write V(E) for the set of all variables that occur
on the left-hand side of an equation i We are only interested in models of BTA in which guarded
recursive specifications have unique solutions, such gertective limit model of BTA presented in [2].
A thread that is the solution of a finite guarded recursivecifigation over BTA is called dinite-state
thread.

We extend BTA with guarded recursion by adding constantsdbrtions of guarded recursive spec-
ifications and axioms concerning these additional constdfdr each guarded recursive specification
and eachX € V(E), we add a constant of sdlt standing for the unique solution &f for X to the con-
stants of BTA. The constant standing for the unique solutioR for X is denoted by X|E). Moreover,
we add the axioms for guarded recursion given in Table 2 to Bilfere we write(t x | E') for ¢ x with,
forall Y € V(E), all occurrences oY in tx replaced by(Y'|E). In this table X, tx and E stand for
an arbitrary variable of soff', an arbitrary BTA term of sofT' and an arbitrary guarded recursive spec-
ification over BTA, respectively. Side conditions are adtiedestrict the variables, terms and guarded
recursive specifications for whick, ¢t x and E stand. RDP stands for recursive definition principle and
RSP stands for recursive specification principle. The égust X |E) = (tx|E) for a fixed E express
that the constant§X | E') make up a solution of. The conditional equations = X = (X|FE) express
that this solution is the only one. It is easily demonstrated RDP and RSP hold in the model of BTA
based on projective sequences outlined in [3] (cf. Theordrart [8]).

We will use the following abbreviatior:®, wherea € A, abbreviateg X |{X = ao X}).

We will write BTA+REC for BTA extended with the constants feolutions of guarded recursive
specifications and axioms RDP and RSP.

In [4], we show that the threads considered in BTA+REC caniba&ed as processes that are defin-
able over ACP [12].

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 31

3. Program Algebra

In this section, we review PGA (ProGram Algebra), an algelfisequential programs based on the idea
that sequential programs are in essence sequences ottitsteu PGA provides a program notation for
finite-state threads.

In PGA, it is assumed that there is a fixed but arbitrary findie260f basic instructions PGA has
the following primitive instructions

e for eacha € 2, aplain basic instruction;

¢ for eacha € 2, apositive test instruction-a;
e for eacha € 2, anegative test instructior-q;
e for eachl € N, aforward jump instruction#I;
e atermination instructiorl.

We write J for the set of all primitive instructions.

The intuition is that the execution of a basic instructiomay modify a state and produc@ésor F at
its completion. In the case of a positive test instructian basic instructior: is executed and execution
proceeds with the next primitive instructionTf is produced; otherwise, the next primitive instruction
is skipped and execution proceeds with the primitive irdiom following the skipped one. In the case
whereT is produced and there is not at least one subsequent pennstruction and in the case whéte
is produced and there are not at least two subsequent pentitructions, inaction occurs. In the case
of a negative test instructiona, the role of the value produced is reversed. In the case dia phsic
instructiona, the value produced is disregarded: execution always pdscas ifT is produced. The
effect of a forward jump instructiog# is that execution proceeds with theh next instruction of the
program concerned. [fequalsO or thel-th next instruction does not exist, the#l results in inaction.
The effect of the termination instructidris that execution terminates.

PGA has the following constants and operators:

e for eachu € 7, aninstructionconstantu ;
¢ the binaryconcatenatioroperator._ ; _;
e the unaryrepetitionoperator_“ .

Terms are built as usual. Throughout the paper, we assurhehtye are infinitely many variables,
including x, y, z.

We use infix notation for concatenation and postfix notatmmrépetition.

Closed PGA terms are considered to denote programs. ThHedntis that a program is in essence
a non-empty, finite or infinite sequence of primitive instioes. These sequences are caledyle pass
instruction sequencelecause PGA has been designed to enable single pass exemfuiistruction
sequences: each instruction can be dropped after it hasdxeented. Programs are considered to be
equal if they represent the same single pass instructiomeseg. The axioms for instruction sequence
equivalence are given in Table 3. In this tablestands for an arbitrary natural number greater than
For eachn > 0, the termz” is defined by induction om as follows: z! = z andz"t! = z ; 2™

32 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

Table 3. Axioms of PGA
(x3y);z=w;(y;2) PGAL
(z™)” = av PGA2
sy =av PGA3
;Y)Y =x;(y;e)” PGA4

Table 4. Defining equations for thread extraction operation

la| =aoD |#l| =D
la; x| =ao |zl |#0;z[=D
[+al=aoD [#1; 2| = |z|
[+ta;z)=|v|Jal> [#2;2 [#+2;u/=D
|—al =aoD [#l+25us 2| = [#1+1; 7]
|—a;z|=[#2;2|da>|z| || =S

I';2| =S

Table 5. Rule for infinite jump chains

r=#0;y = [2[=D

Table 6. Defining formulas for structural congruence pradic

#n+1lur;... Uy HFOZH0ur;. ..Uy ; #0
#n+1l;ur;... U HFMEHM AN+ 1ur;... Uy ; F#M
(Fn AT+ 15urs . un) = (F s ur ;. up)®
HmAn+l4+25u1;..5up; (V1. Upg1)Y =

#n+l+1ur;. . 5up; (V1. Vmp1)”
T=x

T1EP AT =y = 21322 2y iy Ao =y

Theunfoldingequationz* = x ; z* is derivable. Each closed PGA term is derivably equal toma fer
canonical formi.e. a term of the fornP or P ; Q“, whereP and(are closed PGA terms that do not
contain the repetition operator.

Each closed PGA term is considered to denote a program ofwthi& behaviour is a finite-state
thread, taking the séX of basic instructions for the set of actions. Thehread extractionoperation
|-| assigns a thread to each program. The thread extractioatapers defined by the equations given
in Table 4 (fora € 2,1 € N andu € J) and the rule given in Table 5. This rule is expressed in terms
of the structural congruenceredicate. = _, which is defined by the formulas given in Table 6 (for
n,m,l € Nanduy, ..., up,v1,...,0ns1 € J).

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 33

The equations given in Table 4 do not cover the case where thaan infinite chain of forward
jumps. Programs are structural congruent if they are theesafter removing all chains of forward
jumps in favour of single jumps. Because an infinite chainawfverd jumps corresponds t%0, the
rule from Table 5 can be read as follows:zifstarts with an infinite chain of forward jumps, ther
equalsD. It is easy to see that the thread extraction operation msdlte same thread to structurally
congruent programs. Therefore, the rule from Table 5 carepkaced by the following generalization:
r2y = |of =yl.

Let F be a finite guarded recursive specification over BTA, andPletbe a closed PGA term for
eachX € V(E). Let E' be the set of equations that results from replacindiall occurrences of
X by |Px| for eachX € V(FE). If E' can be obtained by applications of axioms PGA1-PGA4, the
defining equations for the thread extraction operation aedtle for infinite jump chains, thei®x | is
the solution ofF for X. Such a finite guarded recursive specification can alwayslmedf Thus, the
behaviour of each closed PGA term is a thread that is defirtmgtdefinite guarded recursive specification
over BTA. Moreover, each finite guarded recursive specitioabver BTA can be translated to a closed
PGA term of which the behaviour is the solution of the finiteugled recursive specification concerned
(see Proposition 2 of [15]).

Closed PGA terms are loosely called P@wygrams PGA programs in which the repetition operator
does not occur are calldohite PGA programs.

4. The Program Notation PGLD

In this section, we review a program notation which is roate@®GA. This program notation, called
PGLD, belongs to a hierarchy of program notations introdung3]. PGLD is close to existing assembly
languages. It has absolute jump instructions and no ekgdighination instruction.

In PGLD, as in PGA, it is assumed that there is a fixed but antyitfinite set obasic instructions.
Again, the intuition is that the execution of a basic instiwrt e may modify a state and producé&sor F
at its completion.

PGLD has the following primitive instructions:

e for eacha € 2, aplain basic instruction;
¢ for eacha € 2, apositive test instruction-a;

e for eacha € 2, anegative test instructior-a;

for eachl € N, adirect absolute jump instructiogt#1.

PGLD programs have the forma;. .. ;ug, whereu, ..., u; are primitive instructions of PGLD. We
write Pprp for the set of all PGLD programs.

The plain basic instructions, the positive test instruwijoand the negative test instructions are as
in PGA. The effect of a direct absolute jump instructigi¥(is that execution proceeds with theh
instruction of the program concerned. #+#1l is itself thel-th instruction, then inaction occurs. Af
equalsd or [is greater than the length of the program, then terminattmuis.

We define the meaning of PGLD programs by means of a fungigid2pga from the set of all
PGLD programs to the set of all PGA programs. This functioteiSned by

pgld2pga(uy ;...;ur) = (P1(u1) ;... ; delur) ;15 DY,

34 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

where the auxiliary function®; from the set of all primitive instructions of PGLD to the sdtail
primitive instructions of PGA are defined as followis< j < k):

Gj(#H#L) = #1—Jj ifj<l<k,

Gi(#H#) =#k+2-(G-1)iF0<I<],

i (##1) = ifl=0VI>k,

i) =wu if u is not a jump instruction .

Let P be a PGLD program. Thepgld2pga(P) represents the meaning 6fas a PGA program.
The intended behaviour d? under execution is the behaviour wf1d2pga(P) under execution. That
is, thebehaviourof P under execution, writtefP|p¢.p, IS |pgld2pga(P)|.

We use the phraggrojection semantict refer to the approach to semantics followed in this sactio
The meaning functiopgld2pga is called aprojection

In the hierarchy of program notations introduced in [3], gmeon notations PGLA, PGLB and
PGLC appear between PGA and PGLD. In [3], PGLD programs arslated into PGLC programs
by means of a projectiopgld2pglc, etc. Above,pgld2pga is defined such thatgld2pga(P) =
pgla2pga(pglb2pgla(pglc2pglb(pgld2pglc(P)))) for all PGLD programsP.

5. A Classification of Services

In this short section, we provide a classification of semvideis a simplified version of the classification
given in [9] and will be used in subsequent sections.
A distinction is made between target services and parattaeyvices:

e A service is atarget servicdf the result of the processing of commands by the servicaityp
observable externally. Reading input data from a keybaslrdwing output data on a screen and
writing persistent data in permanent memory are typicaihgas of using a target service.

e A service is apara-target servicef the result of the processing of commands by the service is
wholly unobservable externally. Setting a timer and trangig data by means of a Java pipe are
typical examples of using a para-target service.

The overall intuition about threads, target services amd-farget services is that:

e athread is the behaviour exhibited by a sequential prograexecution;

¢ athread interacts with services provided by the executmirenment in question;

¢ the intentions about the resulting behaviour pertain omiypteraction with target services;

e interaction with para-target services takes place onlgifanas it is needed to obtain the intended
behaviour in relation to target services.

One of the assumptions made in thread algebra is that payet-tservices are deterministic. The
exclusion of non-deterministic para-target services isgmghfication. We believe however that this
simplification is adequate in the cases that we address:taayet services that keep data for a thread. Of

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 35

course, itis inadequate in cases where services such apldidag services are taken into consideration.
Another assumption is that target services are non-datéstici. The reason for this assumption is that
the dependence of target services on external conditioke ihappear to threads that they behave non-
deterministically.

6. An Action Transforming Use Mechanism

A thread may perform certain basic actions only for the sdlkewing itself affected by a service. When
processing a basic action performed by a thread, a senfieetathat thread in one of the following
ways: (i) by returning a reply value to the thread at comptef the processing of the basic action;
(ii) by turning the processed basic action into anotherdastion. In this section, we introduce an
action transforming use mechanism, which allows for parget services to affect threads in either way.
We will only use the action transforming use mechanism toehanogram behaviours affected by a
para-target service. The action transforming use meadmaisis generalization of the version of the use
mechanism introduced in [7].

It is assumed that there is a fixed but arbitrary finite sdboif 7 and a fixed but arbitrary finite set
of methodsM. Each focus plays the role of a name of a service provided égxiecution environment
that can be requested to process a command. Each methodh@agde of a command proper. For the
set.A of basic actions, we take the det.m | f € F, m € M}. Performing a basic actiofim is taken
as making a request to the service nanfigd process comman.

We introduce yet another sort: the s&rtof services However, we will not introduce constants
and operators to build terms of this sort. We identify panat services with paireH;, H2), where
Hy: M*T — {T,F,M,B} andH, : M+ — A.,,, satisfying the following condition3:

Vm € M (3a € M* e Hi(a™(m)) =M = Vo' € M*« Hi(/ ~(m)) & {T,F}),
Va e Mt me M+ (Hi(a) =B = Hi(a~(m))=B),
Va e Mt e (Hi(a) #M & Hy(a) = tau) .

M stands for meaningless amdstands for blockedM is used to indicate that a request to process a
command is accepted, but that no reply is produdgds used to indicate that a request to process a
command is rejected.

Let H be a para-target service, and I&t and H, be the unique functions such thit= (Hy, Hs).
Then we writerf(H) and of (H) for H; and Ho, respectively. Given a para-target servileand

a methodm € M, the derived serviceof H after processingn, written a%H , is defined by

rf (g H) () = rf (H)({m) ~a) andaf (5% H)(e) = af (H)((m) ~a),
A para-target servicél can be understood as follows:

o if rf(H)((m)) € {T,F}, then the request to process is accepted by the service, the reply
rf(H)((m)) is producedyn is turned intotau, and the service proceedsﬁgH;

2In later papers, this use mechanism is also called threaiteecomposition.

3We write D* for the set of all finite sequences with elements from3etnd we writeD ™ for the set of all non-empty finite
sequences with elements from g2t We use the following notation for finite sequencés:for the empty sequencéd) for
the sequence havingfjas sole element, and~ ¢’ for the concatenation of finite sequeneeando’.

36 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

Table 7. Axioms for action transforming use operators

S/fH=S ATU1
D/fH=D ATU2
(tauow) /f H =tauo(x /f H) ATU3
(xdgmby) /fH=(z/fH)dgmP(y /s H) if f#g ATU4
(xS fmy) /f H="tauo (z /; 7= H) if rf(H)((m)) =T ATU5
(xS fmy) /f H="tauo (y [2= H) if rf (H)((m)) =F ATU6
(

zdfmby)/fH =
(@ /5 g H) Saf (H)((m) 2 (y /s 5 H) if of (H)((m)) =M ATU7
(x<dfmby)/f H=D if 7f (H)((m)) =B ATUS8

e if rf(H)((m)) = M, then the request to processis accepted by the service, no reply is produced,
m is turned intoaf (H)((m)), and the service proceedsggH;

o if rf(H)({m)) = B, then the request to processis rejected by the service.
The three conditions imposed on para-target services cpart@hrased as follows:

e if it is possible that no reply is produced at completion af firocessing of a command, then it
is impossible that a positive or negative reply is produdecbanpletion of the processing of that
command;

e after a request to process a command has been rejected gamgtréo process a command will be
rejected;

e areply is produced at completion of the processing of a comshifaand only if the command is
turned intotau.

For eachf € F, we introduce the binargction transforming useperator_ /; _: T x S — T.
Intuitively, p /¢ H is the thread that results from processing all basic acpentormed by threag that
are of the formf.m by the para-target servick. When a basic action of the forghm performed by
threadp is processed by the para-target servifeit is turned into another action and, if this action is
tau, postconditional composition is removed in favour of attwefixing on the basis of the reply value
produced.

The axioms for the action transforming use operators arengin Table 7. In this tablef and g
stand for arbitrary foci fron# andm stands for an arbitrary method fram(. Axioms ATU3 and ATU4
express that the actiaau and basic actions of the forgnm, wheref # g, are not processed. Axioms
ATU5-ATU7 express that a thread is affected by a para-tasgetice as described above when a basic
action of the formf.m performed by the thread is processed by the service. Axiol8&Xxpresses that
inaction occurs when a basic action to be processed is neptext

Let T" stand for either BTA or BTA+REC. Then we will writ€+ATU for T', taking the sef f.m |
f e F,m € M} for A, extended with the action transforming use operators aedagioms from
Table 7.

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 37

Table 8. Axioms for abstraction

Ttau(S) =S TT1
Ttau(D) = D TT2
Tau(tau o z) = Tay () TT3
Fiau(0B y) = Toag () DB 7ig(y) TTA
Ttau(tau®) =D TT5

The use mechanism introduced in [7] deals in essence wititpaget service#l for which it holds
that af (H)(«) = tau for all « € M™. For these services, the action transforming use mechanism
coincides with the use mechanism from [7].

The actiontau is an internal action whose presence matters. To concgaksgence in the case where
it does not matter after all, we also introduce the uradrgtractionoperatorr,, : T — T.

The axioms for the abstraction operator are given in Table 8his table,a stands for an arbitrary
basic action fromA.

Abstraction can for instance be appropriate in cases wtwrarises from turning actions of an
auxiliary nature intatau by means of the action transforming use mechanism. In subségections,
abstraction will only be used in such cases. Unlike the usshar@sm introduced in [7], the use mecha-
nism introduced in [11] incorporates abstraction.

Let T stand for either BTA+REC or BTA+REC+ATU. Then we will wriletABSTR for T extended
with the abstraction operator and the axioms from Table 8.

7. State-Based Description of Para-Target Services

In this section, we introduce the state-based approachdcride families of para-target services that
will be used in Sections 8 and 11. This approach is similahé&dapproach to describe state machines
introduced in [11].

In this approach, a family of para-target services is dbsdrby

a set of states;

an effect functioreff : M x S — S;

ayield functionyld : M x S — {T,F,M, B};

an action functioruct : M x S — Aiau;

satisfying the following conditions:

Vm e Me(Is € Seyldim,s) =M = Vs’ € Seyld(m,s") € {T,F}),

ds e Se¥m e Mo (yld(m,s) =BAVs € Se(yldim,s") =B = eff(m,s') =s)),

VYm e M,s € Ss(yldim,s) #M < act(m,s) = tau) .

38 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

The setS contains the states in which the services may be, and thédaseff, yid and act give, for
each methodn and states, the state, reply and action, respectively, that resuthfppocessingn in
states.

We define, for eack € S, a cumulative effect functiomeff , : M* — S in terms ofs and eff as
follows:

ceff s(()) = s,
ceff (o~ (m)) = eff (m, ceff (a)) -

We define, for each € S, a para-target servicH; in terms ofceff ,, yld andact as follows:

rf (Hs)(oo ™ (m)) = yld(m, ceff () ,
af (Hs)(a ™~ (m)) = act(m, ceff () -

H, is called the para-target service withitial state s described bys, eff, yld and act. We say that
{H | s € S} is thefamily of para-target servicedescribed bys, eff, yld andact.

The conditions that are imposed 6h eff, yld and act imply that, for eachs € S, H, is indeed
a para-target service. It is worth mentioning t%%gHs = H g(m,s), 7f (Hs)({m)) = yld(m, s), and
of (H)((m)) = act(m, s).

8. Method-to-Action Translator Services

In this section, we give a state-based description of thg sienple family of para-target services that
constitute a register-file-dependent method-to-actiandator of which the register file consists of reg-
isters that can contain natural numbers up to some bound.ri&tihod-to-action translator will be used
in Section 9 to describe the behaviour of programs in a vagARGLD with dynamically instantiated
instructions.

It is assumed that fixed but arbitrary positive numbEra’ € N have been given! is considered
the number of registers in the register file aNds considered the greatest natural number that can be
contained in the registers of the register file. The funatiom [1, I] to [0, V] are taken for the states
of the register file. For every function: [1, I] — [0, N], s is the state in which, for eache [1, I], the
content of registef is s(7).

It is also assumed that a fixed but arbitrary sgt..o € M and a fixed but arbitrary function
0 : Aproro % ([1,I] — [0,N]) — A have been given. A, is considered the set of methods that
are transformable to basic actions a&ht regarded to give, for each methodin A, and function
s :[1,I] — [0, N], the basic action into whichu is turned in the case where the state of the register file
is s. The methods that belong td,,.:, are calledoroto-actionsbecause they are the methods that are
turned into basic actions by the register-file-dependerthaukto-action translator.

The register-file-dependent method-to-action transkdovices accept the following methods:

e for eachi € [1,1] andn € [0, N], aregister set methoskt:i:n;
e eachm € Ayroto.

We write Mg for the set{set:i:n | i € [1,I] An € [0, N]}. Itis assumed that s C M.

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 39

The methods accepted by the method-to-action translateicee can be explained as follows:

e set:i:n: the content of registerbecomes:, the reply isT, andset:i:n is turned intotau;

e m, Wherem € A,o: the state of the register file does not change, there is g, r@pd m is
turned intod(m, s) wheres is the state of the register file.

Let RFS be the set of all functions:[1, I] — [0, N]. Takel such thatl ¢ RFS. Lets € RFSU{T}.
Then we writeRFDT , for the para-target service with initial statelescribed byS = RFS U {1} and
the functionseff, yld, andact defined as followsi(e [1, I], n € [0, N], andp € RFS):*

eff (set:izn, p) = p @ [i — n] ,°

(
eﬁ(m’p) =p if m € -Aproto) yld(map) =M if m e ‘APrOtO)
eﬁ(m, ,0) =1 if m € Mier U -Aproto) yld(ma p) =B if m Q Meser U -Aproto)
eff (m, 1) =1, yld(m,7) =B,
act(m, = H(m, p) if m e Aproto >

We write RFDT;nit for RFDT[L—»O]@...QB[I»—»O]'

The special staté added above to the proper states of the register file is aistateich any request
to process a method is rejected. The existence of such aitdpstate is required to guarantee tisat
eff, yld andact describe a para-target service.

The following proposition states rigorously that the mekhahat belong tod,.., are exactly the
methods that are turned into basic actions.

Proposition 8.1. For all s : [1, I] — [0, N]:

Aproto = {m € M | Jao € M* e af (RFDT5)(ov ~(m)) € A} .

Proof:
This follows immediately from the definition of the regisfde-dependent method-to-action translator
services. 0

9. PGLD with Dynamically Instantiated Instructions

In this section, we introduce a variant of PGLD with dynartiicastantiated instructions. This variant
is called PGLL;;. In Section 10, the usefulness of dynamic instruction imsagion will be illustrated
by means of an example.

In PGLDyj;, it is assumed that there is a fixed but arbitrary finite sdbof 7 with rfdt € F and a
fixed but arbitrary finite set ahethodsM. Moreover, we adopt the assumptions made about register-fil

“We use the following notation for functiong® & g for the functionk with dom(h) = dom(f) U dom(g) such that for all
d € dom(h), h(d) = f(d) if d € dom(g) andh(d) = g(d) otherwise; andd — r] for the functionf with dom(f) = {d}
such thatf(d) = r.

40 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

dependent method-to-action translator services in SeétioThe se{ f.m | f € F,m € M\ Aproto }
is taken as the sé& of basic instructions. In the setting of PGl we use the terrproto-instruction
instead of proto-action and wrig,., instead ofA,..:,. A proto-instruction is what becomes a basic
instruction by dynamic instantiation.

PGLDy; has the following primitive instructions in addition to themitive instructions of PGLD:

o for eache € Apot0, @plain basic proto-instructiore;
o for eache € 2,10, apositive test proto-instruction-e;
e for eache € 2,10, anegative test proto-instructione.

PGLDg; programs have the form ;. .. ; ug, whereu, . .., u; are primitive instructions of PGLE..

The effect of a plain basic proto-instructieris the same as the effect of the plain basic instruction
(e, s), wheres is the state of the register file involved in the instantiataf proto-instructions. The
effect of a positive or negative test proto-instructioniraikar.

Recall that the content of registércan be set tm by means of the basic instructiofdt.set:i:n.
Initially, its content isD.

We define the meaning of PGlgp programs by means of a functigiglddii2pgld from the set of
all PGLDy;; programs to the set of all PGLD programs. This function israfiby

pglddii2pgld(uy ;...;ug) = Y(u1) ;... 5 ¥(ug) ,
where the auxiliary functiony from the set of all primitive instructions of PGLJ to the set of all

primitive instructions of PGLD is defined as follows:

P(e) =rfdte if e € Apoto »
(+e) = +rfdt.e if e € Aproto
(—e) = —rfdt.e if e € Aproto
(u) =u if w is not a proto-instruction

< & S

The idea is that each proto-instruction can be replaced lysaiuction in which the proto-instruction is
taken for the method.

Let P be a PGLD);; program. Themwglddii2pgld(P) represents the meaning Bfas a PGLD pro-
gram. The intended behaviour Bfunder execution is the behaviourg$lddii2pgld(P) under execu-
tion on interaction with a register-file-dependent metktmaction translator when abstracted froma.
That is, thebehaviourof P under execution, WrittefP|pcip,;, IS Ttau(|pglddii2pgld(P)|pcLp /rfdt
RFDThnit).

10. Concrete Proto-Instructions

At a fairly concrete level, basic instructions and protetinctions are strings of characters. In [3], a
concrete notation for basic instructions is introducedliercase where each basic instruction consists of
a focus and a method. Here, we extend that concrete notaticover proto-instructions. The resulting
concrete notation will be used in examples of the use of PGLD

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 41

First of all, we distinguish neutral strings and activergjs. Aneutral stringis an empty string or a
string of one or more characters of which the first charastaiétter or a colon and each of the remaining
characters is a letter, a digit or a colon. Active stringis a string of two or more characters of which
the first character is an asterisk and each of the remainiagcters is a digit.

A concrete proto-instructioms a string of the formy’.m/, wheref’ andm’ are non-empty strings of
characters in which neutral strings and active stringsradte, starting with a neutral string of which the
first character is a letter, and at least one active stringrscc

A concrete focusgs a neutral string of which the first character is a letter.cahcrete methods
either a neutral string of which the first character is a tattea concrete proto-instruction. éoncrete
instructionis a string of the formy.m, wheref is a concrete focus and is a concrete method.

The intention is that instantiation of a concrete protdringtion amounts to simultaneously replacing
all active strings occurring in it by strings according toreoassignment of strings to active strings. The
assignment concerned must be such that concrete protadtighs are turned into concrete instructions.

To accomplish the assignments of strings to active striatjgctive strings of interest must be of
the form=d, whered is the decimal representation of some [1,I]. Moreover, an encoding of the
assignable strings by numbers|@n N] must be given. Then each state of the register file beingvadol
in PGLDy;; induces an assignment as follows: for each active stringtefest, sayd, the string assigned
to it is the one that is encoded by the content of the regisiir tve number of which is the decimal
representation.

The concrete notation for basic instructions introduceavahbs sufficiently expressive for all appli-
cations that we have in mind. The assignable strings are nymases binary or decimal representations
of numbers in the intervdD, N]. In such cases, it is most natural to encode the represamtagimply
by the numbers that they represent.

Example 10.1. Consider a program that on execution reads digit by digitbihary representation of
a password and then performs an action to have the passweolkethby some para-target service.
The binary representation of a password is a character segu# a fixed length, say, of which all
characters are among the binary digitand1. The program reads in the binary digits which make up
the binary representation of the password by performingethat are processed by a target service.
Suppose that the service used for reading in binary digitg accepts methods of the forgetb and
returns the replyF if the next binary digit is) and T if the next binary digit isl. Moreover, suppose
that the service used for checking passwords only acceptsoagof the fornthk:pw, wherepw is the
binary representation of a password. The fogtdén is used below as a name of the former service and
the focuspassw is used below as a name of the latter service.

In PGLDy;;, where proto-instructions are available, the program batstinguish among onlg - n
cases. In PGLD, where no proto-instructions are availahle,program has to distinguish amo
cases.

Takel = n andN = 1. Consider the case where= 3. In PGLDy;;, the initial part of the program
looks as follows:
+stdin.getb ; ##5 ; rfdt.set:1:0 ; ##6 ; rfdt.set:1:1 ;
+stdin.getb ; ##10 ; rfdt.set:2:0 ; ##11 ; rfdt.set:2:1;
+stdin.getb ; ##15 ; rfdt.set:3:0 ; ##16 ; rfdt.set:3:1;
+passw.chk:x1:%2:x3 ; . ..

42 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

In PGLD, the initial part of the program looks as follows:

+stdin.getb ; ##7 ; ##4;

+stdin.getb ; ##13 ; #4#10 ; +stdin.getb ; ##19 ; ##16 ;
+stdin.getb ; ##23 ; ##22 ; +-stdin.getb ; #H#25 ; ##24 ;
+stdin.getb ; ##27 ; ##26 ; +-stdin.getb ; ##29 ; ##28;
+passw.chk:000 ; ##44 ; ##45 ; +passw.chk:001 ; #H#44 ; #H#45 ;
+passw.chk:010 ; ##44 ; ##45 ; +passw.chk:011 ; #H#44 ; #H#45 ;
+passw.chk:100 ; ##44 ; ##45 ; +passw.chk:101 ; #H#44 ; #H#45 ;
+passw.chk:110 ; ##44 ; #4#45 ; +passw.chk:111 ;...

These programs také&6 and 43 instructions, respectively, up to and including the passvatheck
(proto-)instructions. In general, we have that:

e In PGLDy;, the program takes - n + 1 instructions up to and including the password-check
proto-instruction;

e In PGLD, the program takes (2 —1)+1 instructions up to and including the last password-check
instruction.

11. Register File Services

In this section, we give a state-based description of thg sienple family of para-target services that
constitute a register file consisting of registers that @amain natural numbers up to some bound. This
register file will be used in Section 12 to describe the bahavof programs in PGLD;.

As in Section 8, it is assumed that fixed but arbitrary positiumberd, N € N have been givenl
is considered the number of registers in the register filefédnsl considered the greatest natural number
that can be contained in the registers of the register file.

The register file services accept the following methods:

e for eachi € [1,1] andn € [0, N], aregister set methoskt:i:n;
e for eachi € [1,1] andn € [0, N], aregister test methodq:i:n.

We write M ¢ for the set{set:i:n,eq:i:n | i € [1,1] An € [0, N]}. Itis assumed thatt,s C M.
The methods accepted by register services can be explasrfetiaavs:

e set:i:n: the content of registerbecomes:, the reply isT, andset:i:n is turned intotau;

e eq:i:n : the content of the register does not change, the replyifithe content of registetr equals
n andF otherwise, an@q:i:n is turned intotau.

Let RFS be the set of all functions:[1, I] — [0, N]. Take! suchthatl ¢ RFS. Lets € RFSU{T}.
Then we writeRF'; for the para-target service with initial statelescribed bysS = RFS U {1} and the

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 43

functionseff, yld, andact defined as followsi(c [1, I], n € [0, N], andp € RFS):

ff (set:iin, p) = p @ [i — n] , yld(set:i:n,p) =T, act(m, p) = tau ,
eff (eqiiin, p) = p , yld(eqiin, p) =T if p(i) = act(m, 1) = tau .
eff(m,p) =1 ifmg My, yldleqimn,p)=F pr()#n
fFm, 1) =1, yld(m,p) =B ifm ¢ Mg,

yld(m,1) =B,

We write RF';y;t, for RE 1 oje...o1—0-

12. An Alternative Semantics for PGLDy;

In this section, we discuss an alternative semantics forlPGL

Unlike the meaning of PGLR; programs that we defined in Section 9, we define the altemativ
meaning of PGLLR; programs only for the case whefe= 1. The generalization of the definition to
arbitrary I is obvious, but leads to a definition that is hard to read.

The alternative meaning of PGIl4p programs is given by a functiopglddii2pgld’ from the set
of all PGLDy; programs to the set of all PGLD programs. For the case whetel, this function is
defined by

pglddii2pgld(us ;... ;ug) = i (u1) ;... ;¢ (ur) ,

where the auxiliary functionﬂ)§- from the set of all primitive instructions of PGIJR to the set of all
PGLD programs are defined as followis< j < k):

¥j(e) = +rf.eq:l:0; #4]o ;...; +rfeq LN =1 #4017 | s ##1
() ##l +1a##l]+2a"' ‘9(6 N—-1) ##l +1a##l3+2a (G,N),
V) (+e) = +rf.eql:0; ## o5 .. +HrfeqrliN =1 #4410 s #H# n s
+6(e,0) ; ##l;_,_l ; ##lj+2 po.+0(e, N—1); ##l;_,_l ; ##lj+2 ;+0(e,N) ,
(—e) = +rf.eq:l:0; #4] o ;...; +rfeq LN =1 #4017 v s ##

—0(e,0) s #4114 ,##lwr2 poos—0(e, N=1) s #4H y #4E 55 —0(e, N)
(rfdt.m) =rf.m ,
L(4rfdt.m) = +rfom
L(—rfdt.m) = —rf.m |
(H#D) = ##1]
(u) =u if u IS not a proto-instruction, jump instruction or
a plain basic or test instruction with focult ,

and for eacly € [1, k] andh € [0, N]:

;) =j+(B-N+1)-n;,
l;’h:l;.+2-N+3-h+1,

andn; is the number of proto-instructions preceding positjon

44 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

The idea is that each proto-instruction can be replaced binstruction sequence of which the
execution leads to the execution of the intended instrocéifter the content of the register has been
found by a linear search. Because the length of the repldnitguction sequence is greater thgn
the direct absolute jump instructions are adjusted so asrtgpensate for the introduction of additional
instructions. Obviously, the linear search for the contgnthe register can be replaced by a binary
search.

Henceforth, we will proceed aspiglddii2pgld’ has been defined for arbitrarfy

Let P be a PGLDQ; program. Thempglddii2pgld'(P) represents an alternative meaningroés a
PGLD program. The alternative behaviour®iinder execution is the behaviourgflddii2pgld’(P)
under execution on interaction with a register file when ralos¢éd fromtau. That is, thealternative
behaviourof P under execution, WritteP[.¢ , ., IS Trau (|pglddii2pgld’(P)|pcrp /rf REF'init)-

Example 12.1. Consider the PGL[; program from Example 10.1. The initial part of the PGLD pro-
gram that results from its translation by meangpgfddii2pgld looks as follows:

+stdin.getb ; ##5 ; rfdt.set:1:0 ; ##6 ; rfdt.set:1:1 ;
+stdin.getb ; ##10 ; rfdt.set:2:0 ; ##11 ; rfdt.set:2:1 ;
+stdin.getb ; ##15 ; rfdt.set:3:0 ; ##16 ; rfdt.set:3:1 ;
~+rfdt.passw.chk:x1:%2:x3 ; . ..

The initial part of the PGLD program that results from itswkation by means qfglddii2pgld’ looks
as follows:
+stdin.getb ; ##5 ; rf.set:1:0 ; ##6 ; rf.set:1:1;
+stdin.getb ; ##10 ; rf.set:2:0 ; ##11 ; rf.set:2:1;
+stdin.getb ; ##15 ; rf.set:3:0 ; ##16 ; rf.set:3:1;
+rf.eq:1:0 ; #H19 ; ##22
+rf.eq:2:0 ; H#H25 ; ##H28
+rf.eq:2:0 ; ##31 ; ##34;
+rf.eq:3:0 ; #H#37 ; ##40 ;
+rf.eq:3:0 ; H#H4A3 ; ##46 ;
+rf.eq:3:0 ; #H#49 ; #H#52;
+rf.eq:3:0 ; ##55 ; ##58 ;
+passw.chk:000 ; ##59 ; ##60 ;
+passw.chk:001 ; ##59 ; #460 ;
+passw.chk:010 ; ##59 ; #460 ;
+passw.chk:011 ; ##59 ; ##60 ;
+passw.chk:100 ; ##59 ; ##60 ;
+passw.chk:101 ; ##59 ; ##60 ;
+passw.chk:110 ; ##59 ; ##60 ;
+passw.chk:111; ...

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions 45

These PGLD programs také and58 instructions, respectively, up to and including the passavaheck
instructions.

Letby, b2 andbs be eithel0 or 1. Suppose that the three bits read in at the beginning of theuton
of these programs aig, b, andbs, in that order. In the case of the former program, it is easshick
that the instructiont-rfdt.passw.chk:x1:x2:x3 will be executed while the contents of registér® and3
areby, by andbs, respectively. In the case of the latter program, it is easghieck that the instruction
+passw.chk:b1bobs Will be executed after execution of some test and jump inttvas. This strongly
suggests that the programs are “behaviourally equivalent”

The following theorem states rigorously that, for any PG} [program, the behaviour under execu-
tion coincides with the alternative behaviour under execut

Theorem 12.1. For all PGLRy; programsP, |Plecro,; = |Plogin,, -

Proof:
Strictly speaking, we prove this theorem in the algebragoti obtained by: (i) combining PGA with
BTA+REC+ATU+ABSTR, resulting in a theory with three sorta:sortP of programs, a sorfl’ of
threads, and a soff of services; (ii) extending the result by taking for an additional operator from
sort P to sort T and taking the semantic equations and rule defining threrdation for additional
axioms. We write7 for the set of all closed terms of sdft from the language of the resulting theory.
In the proof, we make use of an auxiliary function_| : N x Ppep, — 7 which gives, for each
natural numbef and PGLD programu ; ... ; ux, a closed term of soff' that denotes the behaviour of
u1 ;... ; ur When executed from positiohif 1 < i < k andS otherwise. This function is defined as
follows:

i, 5o s ug] = |di(ug) 5o drlur) s 15 by (dr(wa) 5o d(ug) 5 s D91 <d <k,
li,ug ;...;uk| =S if ~1<i<k

(whereg; is as in the definition opgld2pga). It follows easily from the definition of_, _| and the
axioms of PGA that ifl <17 < k:

liyug 5. .5uk| =ao i+ 1,uy;...;u ifu; =a,

li,ug s s ukl =i+ Lup ;.5 uel Qa i+ 2,uy ;... ugl if u = 4a,

liyut skl =i+ 2,15 ue] La fi4 Lug ;. ugl ifug = —a,

fivun] = (s s = AL
Letwvy, ..., v, be primitive instructions of PGLE;, let

T = {meau(li, ¥ (v1) 5 ... ;¥ (vk)| fesar REDT,) | i € [1,k] As:[1,1] — [0,N]},
T' = {mau(l; ¥1(01) 5o s () /e RES) [i € [L K] As 2 [1,1] — [0, N}

(wherey, ¢, I are as in the definitions @fglddii2pgld andpglddii2pgld’), andletd: T — T’ be
the bijection defined by

ﬁ(Ttau(Maw(vl) Yeees Q;Z)(Uk)| /rfdt RFDTS)) = Ttau(“éﬂpi(vl) PRI ¢;€(Uk:)| /rf RFS) .

46 J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

For eachy’ € T, write 3*(p’) for p’ with, for all p € T, all occurrences op in p’ replaced by3(p).
Then, using the equations concerning the auxiliary functio_| given above, it is straightforward to
prove that there exists a sBtconsisting of one derivable equatipn= p’ for eachp € T such that, for
all equationg = p’ in E:

e the equatiord(p) = 5*(p’) is derivable;
e p/ € T only if p’ can be rewritten to @” ¢ T' using the equations &' from left to right.

Becausgi(vi);. . ;¢ (vi)| = [1,9(v1);. - ;¢ (ve) | @nd[eh (v1);. - 34y (vr) | = 11, 91 (v1) 5. - 5905, (vi) s

this means thavs ; ... ; vglparp,,; and|vi ;... vklpan,,, are solutions of the same guarded recursive
specification. Because guarded recursive specifications tmique solutions, it follows immediately
that|vi ;... vklpaipy, = |v1s ... /Uk“)GLDdii' O

13. Discussion of Semantic Approaches

In Sections 9 and 12, the meaning of PGj;programs is explained by means of different translations
into PGLD programs. In both sections, the intended behawba PGLDy; program under execution is
described as the behaviour of the translated program urdeuton on interaction with some para-target
service. The translation from Section 9 is extremely simiple the translation from Section 12 is fairly
complicated. The para-target service used in Section 9dorithe the behaviour of a PGI4P program
and the one used in Section 12 are equally simple. Howewefotimer service is far more powerful:
it turns a processed method into a basic action if the metboggponds to a proto-instruction. By its
power, the translation can be kept simple if that servicesedu Because of the simpler translation of
PGLDg; programs into PGLD programs and the equally simple pagetaervice used, the approach
followed in Section 9 to define the meaning of PGi;[brograms is preferable.

A manifestation of the difference in complexity of the triat®ns of PGLDy; programs from Sec-
tions 9 and 12 is that the former translation replaces edofitpre instruction of PGLQ;; by one prim-
itive instruction of PGLD, whereas the latter translatioveg rise to a combinatorial explosion. Recall
that I stands for the number of registers involved in the instéintiaof proto-instructions and’ stands
for the greatest natural number that can be contained i tteagsters. The translation from Section 12
replaces each primitive instruction of PGl;Pthat is not a proto-instruction by one primitive instructio
of PGLD as well, but replaces each proto-instruction by aisage of

2-N+1) SN+ D) 43 (N+ 1) =) +1=(5-N+1) - (N+ 1) —=1)/N) +1

primitive instructions of PGLD.

If a new programming feature is added to a known program iootatich as PGLD and the starting
point of the approach to define the meaning of the progranm fiee extended program notation is
translation of those programs into programs from the knowmggam notation, then we can conceive of
several approaches:

e give a translation by which each program from the extendedram notation is translated into a
program from the known program notation that exhibits orcaken the same behaviour;

J.A. Bergstra and C.A. Middelburg / Instruction Sequenciés ynamically Instantiated Instructions a7

e give a translation by which each program from the extendedgnam notation is translated into
a program from the known program notation that exhibits oecation the same behaviour by
interaction with a given para-target service that does unwt &ny processed method into a basic
action;

e give a translation by which each program from the extendedram notation is translated into
a program from the known program notation that exhibits oecaiion the same behaviour by
interaction with a given para-target service that turnsageiprocessed methods into basic actions.

We consider an approach earlier in this list preferable igexy that the translation concerned does not
become too complicated. In the case where the translatioonies too complicated with all three
approaches, it is desirable to look for another startingtpdihis may end up in direct thread extraction,
i.e. assigning a thread to each program as this was done farif?Section 3.

In the case of PGLR;, it is obvious that the first approach in the list given aboweesinot work.
However, it is virtually impossible to find out that the thisgproach is preferable to the second one with-
out actually producing definitions of the meaning of PGL[Pprograms according to both approaches.

14. Conclusions

We have studied sequential programs that are instructiqnesees with dynamically instantiated in-
structions. We have defined the meaning of the programs ooedeén two different ways, which both
involve a translation into programs that are instructioguesces without dynamically instantiated in-
structions. In one of the two ways, the translation is vemyaé and does not lead to increase in the length
of a program or the number of steps needed by a program. Thatswansidered the preferred one.
The preferred way made it necessary for the use mechanisiwalantroduced in [7] to be generalized.
In [6], we demonstrate that dynamic instruction instaidiais a useful programming feature.

In this paper, we have followed the approach of projectiana#ics, starting from the perception of
a program as an instruction sequence. This means that pregree considered at a much lower level
than usual in theoretical computer science. This allow$forging the interface between software and
hardware better into the picture, which becomes increfsimgportant to a growing number of develop-
ments related to computer architecture. The usual appesachdefine the meaning of programs, such
as operational semantics, denotational semantics anchatidbsemantics, are based on the view that the
details of program execution should be abstracted from ahraa possible. This makes comparisons
with those approaches virtually impossible.

In [10], we have modelled and analysed micro-architectwits pipelined instruction processing
in the setting of program algebra, basic thread algebra Maugter computers [13, 14]. In that work,
which we consider a preparatory step in the development ofradl approach to design new micro-
architectures, dynamically instantiated instructionsemeot taken into account. An option for future
work is to look at the effect of dynamically instantiatedtimstions on pipelined instruction processing.

References

[1] Baeten, J. C. M., Bergstra, J. A.: Global Renaming Omesdih Concrete Process Algebtaformation and
Control, 78(3), 1988, 205-245.

48

(2]

[3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

J.A. Bergstra and C.A. Middelburg / Instruction Sequencigls Bynamically Instantiated Instructions

Bergstra, J. A., Bethke, |.: Polarized Process Algelmd Brogram EquivalenceRroceedings 30th ICALP
(J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginges,)EONCS 2719, Springer-Verlag, 2003, 1-21.

Bergstra, J. A., Loots, M. E.: Program Algebra for SedisdrCode, Journal of Logic and Algebraic Pro-
gramming 51(2), 2002, 125-156.

Bergstra, J. A., Middelburg, C. A.: Thread Algebra withul-Level StrategiesFundamenta Informaticae
71(2-3), 2006, 153-182.

Bergstra, J. A., Middelburg, C. A.: Instruction Sequesavith Indirect JumpsScientific Annals of Computer
Sciencel7, 2007, 19-46.

Bergstra, J. A., Middelburg, C. A.: Programming an lpteter Using Molecular DynamicScientific Annals
of Computer Scien¢é&7, 2007, 47-81.

Bergstra, J. A., Middelburg, C. A.: Thread Algebra for&egic InterleavingFormal Aspects of Computing
19(4), 2007, 445-474.

Bergstra, J. A., Middelburg, C. A.: A Thread Algebra withulti-Level Strategic Interleaving,Theory of
Computing System41(1), 2007, 3—-32.

Bergstra, J. A., Middelburg, C. A.: Distributed Strai@nterleaving with Load Balancing;uture Genera-
tion Computer System®4(6), 2008, 530-548.

Bergstra, J. A., Middelburg, C. A.: Maurer Computers Ripelined Instruction Processingylathematical
Structures in Computer Sciende3(2), 2008, 373—-409.

Bergstra, J. A., Ponse, A.: Combining Programs andeStchines,Journal of Logic and Algebraic Pro-
gramming 51(2), 2002, 175-192.

Fokkink, W. J.:Introduction to Process Algebrdexts in Theoretical Computer Science, An EATCS Series,
Springer-Verlag, Berlin, 2000.

Maurer, W. D.: A Theory of Computer Instruction¥purnal of the ACM13(2), 1966, 226—235.
Maurer, W. D.: A Theory of Computer InstructiorScience of Computer Programmir@f, 2006, 244-273.

Ponse, A., van der Zwaag, M. B.: An Introduction to Praogrand Thread Algebr&iE 2006(A. Beckmann,
etal., Eds.), LNCS 3988, Springer-Verlag, 2006, 445—-458.

Sannella, D., Tarlecki, A.: Algebraic Preliminariesn: Algebraic Foundations of Systems Specification
(E. Astesiano, H.-J. Kreowski, B. Krieg-Brickner, EdSpringer-Verlag, Berlin, 1999, 13-30.

Wirsing, M.: Algebraic Specification, ifHandbook of Theoretical Computer Scietidevan Leeuwen, Ed.),
vol. B, Elsevier, Amsterdam, 1990, 675-788.

