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Abstract. We study sequential programs that are instruction sequences with dynamically instanti-
ated instructions. We define the meaning of such programs in two different ways. In either case,
we give a translation by which each program with dynamicallyinstantiated instructions is turned
into a program without them that exhibits on execution the same behaviour by interaction with some
service. The complexity of the translations differ considerably, whereas the services concerned are
equally simple. However, the service concerned in the case of the simpler translation is far more
powerful than the service concerned in the other case.

Keywords: instruction sequence, dynamically instantiated instruction, projection semantics, pro-
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1. Introduction

In this paper, we study sequential programs that are instruction sequences with dynamically instantiated
instructions. With that we carry on the line of research withwhich a start was made in [3]. The object
pursued with this line of research is the development of a theoretical understanding of possible forms of
sequential programs, starting from the simplest form. The view is taken that sequential programs in the
simplest form are sequences of instructions. Program algebra, an algebra of programs in which programs
are looked upon as sequences of instructions, is taken for the basis of the development aimed at.

∗This research was partly carried out in the framework of the Jacquard-project Symbiosis, which is funded by the Netherlands
Organisation for Scientific Research (NWO).
†Address for correspondence: Informatics Institute, University of Amsterdam, Science Park 107, 1098 XG Amsterdam, the
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The approach to define the meaning of programs followed in this line of research is called projection
semantics. It explains the meaning of programs in terms of known programs instead of more or less
sophisticated mathematical objects that represent behaviours of programs under execution. The main
advantage of projection semantics is that it does not require a lot of mathematical background. Over and
above that, the view is taken that the behaviours of sequential programs under execution are threads as
considered in basic thread algebra [3].1 Therefore, the meaning of the programs considered in program
algebra is explained in terms of threads. The experience gained so far leads us to believe that sequential
programs are nothing but linear representations of threads.

Sequential programs in the form of assembly programs up to and including sequential programs in
the form of structured programs are covered in [3]. However,although they are found in existing as-
sembly programming practice, indirect jump instructions are not considered. In [5], several kinds of
indirect jump instructions are considered, including a kind by which recursive method calls can easily be
explained. Dynamic instruction instantiation is a programming feature that is not suggested by existing
programming practice. However, from the viewpoint that sequential programs are nothing but linear rep-
resentations of threads, it is a genuine programming feature. It is a useful programming feature as well,
as will be illustrated by means of an example in the paper. Therefore, we consider a theoretical under-
standing of instruction sequences with dynamically instantiated instructions relevant to programming.

We believe that interaction with services provided by an execution environment is inherent in the
behaviour of programs under execution. Intuitively, some service provides for dynamic instruction in-
stantiation. In this paper, we define the meaning of programswith dynamically instantiated instructions
in two different ways. In either case, we give a translation by which each program with dynamically
instantiated instructions is turned into a program withoutthem that exhibits on execution the same be-
haviour by interaction with some service. In one case, the service concerned provides in effect for the
dynamic instruction instantiation and, in the other case, it is largely achieved by the translated programs.
We consider it useful to treat both cases because of the considerable difference in complexity of the two
translations.

A thread proceeds by doing steps in a sequential fashion. A thread may do certain steps only for
the sake of having itself affected by some service. The interaction between behaviours of programs
under execution and some service referred to above is an interaction with that purpose. In [7], the use
mechanism is introduced to allow for such a kind of interaction between threads and services. In this
paper, we will use a generalization of the use mechanism, called the action transforming use mechanism,
to have behaviours of programs under execution affected by services. This generalization is reminiscent
of the state operator introduced in [1].

A hierarchy of program notations rooted in program algebra is introduced in [3]. In this paper, we
embroider on one program notation that belongs to this hierarchy. The program notation in question,
called PGLD, is a very simple program notation which is closeto existing assembly languages. The hier-
archy also includes a program notation, called PGLS, that supports structured programming by offering
a rendering of conditional and loop constructs instead of (unstructured) jump instructions. Each PGLS
program can be translated into a semantically equivalent PGLD program by means of the projection
semantics of PGLS and some intermediate program notations.

1In [3], basic thread algebra is introduced under the name basic polarized process algebra. Prompted by the development of
thread algebra [7], which is a design on top of it, basic polarized process algebra has been renamed to basic thread algebra.
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This paper is organized as follows. First, we review basic thread algebra, program algebra, and
program notation PGLD (Sections 2, 3, and 4). Next, we provide a simple classification of services that
will be used in subsequent sections (Section 5). After that,we extend basic thread algebra with the action
transforming use mechanism and introduce a state-based approach to describe services (Sections 6 and 7).
Then, we give a state-based description of a service that canprovide for dynamic instruction instantiation
and use that service to define the meaning of the programs froma variant of the program notation PGLD
with dynamically instantiated instructions (Sections 8 and 9). Following this, we introduce a concrete
notation for basic instructions that covers dynamically instantiated instructions and use that notation to
illustrate the usefulness of dynamic instruction instantiation (Section 10). Thereupon, we give a state-
based description of a register file service and use that service to define the meaning of the programs
from the variant of the program notation PGLD with dynamically instantiated instructions in another way
(Sections 11 and 12). Finally, we discuss the semantic approaches followed in the preceding sections
and make some concluding remarks (Sections 13 and 14).

2. Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a formof process algebra which is concerned
with the behaviours that sequential programs exhibit on execution. The behaviours concerned are called
threads. BTA was first presented in [3]. In that paper, as well as several other papers, BTA is called
BPPA (Basic Polarized Process Algebra).

In BTA, it is assumed that there is a fixed but arbitrary finite set of basic actionsA with tau 6∈ A.
We writeAtau for A ∪ {tau}. The members ofAtau are referred to asactions.

A thread performs basic actions in a sequential fashion. Theintuition is that each basic action per-
formed by a thread is taken as a command to be processed by a service provided by the execution
environment of the thread. The processing of a command may involve a change of state of the service
concerned. At completion of the processing of the command, the service produces a reply value and
returns that reply value to the thread. The reply value is either T or F and determines how the thread
proceeds.

Although BTA is one-sorted, we make this sort explicit. The reason for this is that we will extend
BTA with an additional sort in Section 6.

The algebraic theory BTA has one sort: the sortT of threads. To build terms of sortT, BTA has the
following constants and operators:

• the inactionconstantD : T;

• the terminationconstantS : T;

• for eacha ∈ Atau, the binarypostconditional compositionoperator E aD : T ×T → T.

Terms of sortT are built as usual (see e.g. [16, 17]). Throughout the paper,we assume that there are
infinitely many variables of sortT, includingx, y, z.

We use infix notation for postconditional composition. We introduceaction prefixingas an abbrevi-
ation: a ◦ p, wherep is a term of sortT, abbreviatespE aD p.

The thread denoted by a closed term of the formp E aD q will first perform a, and then proceed as
the thread denoted byp if the processing ofa leads to the replyT (called a positive reply) and proceed
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Table 1. Axiom of BTA

xE tauD y = xE tauD x T1

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

as the thread denoted byq if the processing ofa leads to the replyF (called a negative reply). The action
tau plays a special role. It is a concrete internal action: the processing oftau will never involve a state
change and always lead to a positive reply, but notwithstanding all that its presence matters. The threads
denoted byD andS will become inactive and terminate, respectively.

BTA has only one axiom. This axiom is given in Table 1. Using the abbreviation introduced above,
axiom T1 can be written as follows:xE tauD y = tau ◦ x.

Each closed BTA term of sortT denotes a finite thread, i.e. a thread that will become inactive or
terminate after it has performed finitely many actions. Infinite threads can be described by guarded
recursion specifications.

A guarded recursive specificationover BTA is a set of recursion equationsE = {X = pX | X ∈ V },
whereV is a set of variables of sortT and eachpX is a term of the formD, S orpE aDq with p andq BTA
terms of sortT that contain only variables fromV . We writeV(E) for the set of all variables that occur
on the left-hand side of an equation inE. We are only interested in models of BTA in which guarded
recursive specifications have unique solutions, such as theprojective limit model of BTA presented in [2].
A thread that is the solution of a finite guarded recursive specification over BTA is called afinite-state
thread.

We extend BTA with guarded recursion by adding constants forsolutions of guarded recursive spec-
ifications and axioms concerning these additional constants. For each guarded recursive specificationE
and eachX ∈ V(E), we add a constant of sortT standing for the unique solution ofE for X to the con-
stants of BTA. The constant standing for the unique solutionof E forX is denoted by〈X|E〉. Moreover,
we add the axioms for guarded recursion given in Table 2 to BTA, where we write〈tX |E〉 for tX with,
for all Y ∈ V(E), all occurrences ofY in tX replaced by〈Y |E〉. In this table,X, tX andE stand for
an arbitrary variable of sortT, an arbitrary BTA term of sortT and an arbitrary guarded recursive spec-
ification over BTA, respectively. Side conditions are addedto restrict the variables, terms and guarded
recursive specifications for whichX, tX andE stand. RDP stands for recursive definition principle and
RSP stands for recursive specification principle. The equations 〈X|E〉 = 〈tX |E〉 for a fixedE express
that the constants〈X|E〉 make up a solution ofE. The conditional equationsE ⇒ X = 〈X|E〉 express
that this solution is the only one. It is easily demonstratedthat RDP and RSP hold in the model of BTA
based on projective sequences outlined in [3] (cf. Theorem 1from [8]).

We will use the following abbreviation:aω, wherea ∈ Atau, abbreviates〈X|{X = a ◦X}〉.
We will write BTA+REC for BTA extended with the constants forsolutions of guarded recursive

specifications and axioms RDP and RSP.
In [4], we show that the threads considered in BTA+REC can be viewed as processes that are defin-

able over ACP [12].
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3. Program Algebra

In this section, we review PGA (ProGram Algebra), an algebraof sequential programs based on the idea
that sequential programs are in essence sequences of instructions. PGA provides a program notation for
finite-state threads.

In PGA, it is assumed that there is a fixed but arbitrary finite set A of basic instructions. PGA has
the followingprimitive instructions:

• for eacha ∈ A, aplain basic instructiona;

• for eacha ∈ A, apositive test instruction+a;

• for eacha ∈ A, anegative test instruction−a;

• for eachl ∈ N, a forward jump instruction#l;

• a termination instruction!.

We writeI for the set of all primitive instructions.
The intuition is that the execution of a basic instructiona may modify a state and producesT or F at

its completion. In the case of a positive test instruction+a, basic instructiona is executed and execution
proceeds with the next primitive instruction ifT is produced; otherwise, the next primitive instruction
is skipped and execution proceeds with the primitive instruction following the skipped one. In the case
whereT is produced and there is not at least one subsequent primitive instruction and in the case whereF

is produced and there are not at least two subsequent primitive instructions, inaction occurs. In the case
of a negative test instruction−a, the role of the value produced is reversed. In the case of a plain basic
instructiona, the value produced is disregarded: execution always proceeds as ifT is produced. The
effect of a forward jump instruction#l is that execution proceeds with thel-th next instruction of the
program concerned. Ifl equals0 or thel-th next instruction does not exist, then#l results in inaction.
The effect of the termination instruction! is that execution terminates.

PGA has the following constants and operators:

• for eachu ∈ I, aninstructionconstantu ;

• the binaryconcatenationoperator ; ;

• the unaryrepetitionoperator ω .

Terms are built as usual. Throughout the paper, we assume that there are infinitely many variables,
includingx, y, z.

We use infix notation for concatenation and postfix notation for repetition.
Closed PGA terms are considered to denote programs. The intuition is that a program is in essence

a non-empty, finite or infinite sequence of primitive instructions. These sequences are calledsingle pass
instruction sequencesbecause PGA has been designed to enable single pass execution of instruction
sequences: each instruction can be dropped after it has beenexecuted. Programs are considered to be
equal if they represent the same single pass instruction sequence. The axioms for instruction sequence
equivalence are given in Table 3. In this table,n stands for an arbitrary natural number greater than0.
For eachn > 0, the termxn is defined by induction onn as follows: x1 = x andxn+1 = x ; xn.
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Table 3. Axioms of PGA

(x ; y) ; z = x ; (y ; z) PGA1

(xn)ω = xω PGA2

xω ; y = xω PGA3

(x ; y)ω = x ; (y ; x)ω PGA4

Table 4. Defining equations for thread extraction operation

|a| = a ◦ D

|a ; x| = a ◦ |x|

|+a| = a ◦ D

|+a ; x| = |x| E aD |#2 ; x|

|−a| = a ◦ D

|−a ; x| = |#2 ; x| E aD |x|

|#l| = D

|#0 ; x| = D

|#1 ; x| = |x|

|#l + 2 ; u| = D

|#l + 2 ; u ; x| = |#l + 1 ; x|

|!| = S

|! ; x| = S

Table 5. Rule for infinite jump chains

x ∼= #0 ; y ⇒ |x| = D

Table 6. Defining formulas for structural congruence predicate

#n+ 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0

#n+ 1 ; u1 ; . . . ; un ; #m ∼= #m+ n+ 1 ; u1 ; . . . ; un ; #m

(#n+ l + 1 ; u1 ; . . . ; un)ω ∼= (#l ; u1 ; . . . ; un)ω

#m+ n+ l + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω ∼=

#n+ l + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω

x ∼= x

x1
∼= y1 ∧ x2

∼= y2 ⇒ x1 ; x2
∼= y1 ; y2 ∧ x1

ω ∼= y1
ω

Theunfoldingequationxω = x ; xω is derivable. Each closed PGA term is derivably equal to a term in
canonical form, i.e. a term of the formP or P ; Qω, whereP andQ are closed PGA terms that do not
contain the repetition operator.

Each closed PGA term is considered to denote a program of which the behaviour is a finite-state
thread, taking the setA of basic instructions for the setA of actions. Thethread extractionoperation
| | assigns a thread to each program. The thread extraction operation is defined by the equations given
in Table 4 (fora ∈ A, l ∈ N andu ∈ I) and the rule given in Table 5. This rule is expressed in terms
of the structural congruencepredicate ∼= , which is defined by the formulas given in Table 6 (for
n,m, l ∈ N andu1, . . . , un, v1, . . . , vm+1 ∈ I).
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The equations given in Table 4 do not cover the case where there is an infinite chain of forward
jumps. Programs are structural congruent if they are the same after removing all chains of forward
jumps in favour of single jumps. Because an infinite chain of forward jumps corresponds to#0, the
rule from Table 5 can be read as follows: ifx starts with an infinite chain of forward jumps, then|x|
equalsD. It is easy to see that the thread extraction operation assigns the same thread to structurally
congruent programs. Therefore, the rule from Table 5 can be replaced by the following generalization:
x ∼= y ⇒ |x| = |y|.

Let E be a finite guarded recursive specification over BTA, and letPX be a closed PGA term for
eachX ∈ V(E). Let E′ be the set of equations that results from replacing inE all occurrences of
X by |PX | for eachX ∈ V(E). If E′ can be obtained by applications of axioms PGA1–PGA4, the
defining equations for the thread extraction operation and the rule for infinite jump chains, then|PX | is
the solution ofE for X. Such a finite guarded recursive specification can always be found. Thus, the
behaviour of each closed PGA term is a thread that is definableby a finite guarded recursive specification
over BTA. Moreover, each finite guarded recursive specification over BTA can be translated to a closed
PGA term of which the behaviour is the solution of the finite guarded recursive specification concerned
(see Proposition 2 of [15]).

Closed PGA terms are loosely called PGAprograms. PGA programs in which the repetition operator
does not occur are calledfinite PGA programs.

4. The Program Notation PGLD

In this section, we review a program notation which is rootedin PGA. This program notation, called
PGLD, belongs to a hierarchy of program notations introduced in [3]. PGLD is close to existing assembly
languages. It has absolute jump instructions and no explicit termination instruction.

In PGLD, as in PGA, it is assumed that there is a fixed but arbitrary finite set ofbasic instructionsA.
Again, the intuition is that the execution of a basic instruction a may modify a state and producesT or F

at its completion.
PGLD has the following primitive instructions:

• for eacha ∈ A, aplain basic instructiona;

• for eacha ∈ A, apositive test instruction+a;

• for eacha ∈ A, anegative test instruction−a;

• for eachl ∈ N, adirect absolute jump instruction##l.

PGLD programs have the formu1; . . . ;uk, whereu1, . . . , uk are primitive instructions of PGLD. We
writePPGLD for the set of all PGLD programs.

The plain basic instructions, the positive test instructions, and the negative test instructions are as
in PGA. The effect of a direct absolute jump instruction##l is that execution proceeds with thel-th
instruction of the program concerned. If##l is itself thel-th instruction, then inaction occurs. Ifl
equals0 or l is greater than the length of the program, then termination occurs.

We define the meaning of PGLD programs by means of a functionpgld2pga from the set of all
PGLD programs to the set of all PGA programs. This function isdefined by

pgld2pga(u1 ; . . . ; uk) = (φ1(u1) ; . . . ; φk(uk) ; ! ; !)ω ,
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where the auxiliary functionsφj from the set of all primitive instructions of PGLD to the set of all
primitive instructions of PGA are defined as follows (1 ≤ j ≤ k):

φj(##l) = #l − j if j ≤ l ≤ k ,

φj(##l) = #k + 2 − (j − l) if 0 < l < j ,

φj(##l) = ! if l = 0 ∨ l > k ,

φj(u) = u if u is not a jump instruction .

Let P be a PGLD program. Thenpgld2pga(P ) represents the meaning ofP as a PGA program.
The intended behaviour ofP under execution is the behaviour ofpgld2pga(P ) under execution. That
is, thebehaviourof P under execution, written|P |PGLD, is |pgld2pga(P )|.

We use the phraseprojection semanticsto refer to the approach to semantics followed in this section.
The meaning functionpgld2pga is called aprojection.

In the hierarchy of program notations introduced in [3], program notations PGLA, PGLB and
PGLC appear between PGA and PGLD. In [3], PGLD programs are translated into PGLC programs
by means of a projectionpgld2pglc, etc. Above,pgld2pga is defined such thatpgld2pga(P ) =
pgla2pga(pglb2pgla(pglc2pglb(pgld2pglc(P )))) for all PGLD programsP .

5. A Classification of Services

In this short section, we provide a classification of services. It is a simplified version of the classification
given in [9] and will be used in subsequent sections.

A distinction is made between target services and para-target services:

• A service is atarget serviceif the result of the processing of commands by the service is partly
observable externally. Reading input data from a keyboard,showing output data on a screen and
writing persistent data in permanent memory are typical examples of using a target service.

• A service is apara-target serviceif the result of the processing of commands by the service is
wholly unobservable externally. Setting a timer and transferring data by means of a Java pipe are
typical examples of using a para-target service.

The overall intuition about threads, target services and para-target services is that:

• a thread is the behaviour exhibited by a sequential program on execution;

• a thread interacts with services provided by the execution environment in question;

• the intentions about the resulting behaviour pertain only to interaction with target services;

• interaction with para-target services takes place only in as far as it is needed to obtain the intended
behaviour in relation to target services.

One of the assumptions made in thread algebra is that para-target services are deterministic. The
exclusion of non-deterministic para-target services is a simplification. We believe however that this
simplification is adequate in the cases that we address: para-target services that keep data for a thread. Of
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course, it is inadequate in cases where services such as dice-playing services are taken into consideration.
Another assumption is that target services are non-deterministic. The reason for this assumption is that
the dependence of target services on external conditions make it appear to threads that they behave non-
deterministically.

6. An Action Transforming Use Mechanism

A thread may perform certain basic actions only for the sake of having itself affected by a service. When
processing a basic action performed by a thread, a service affects that thread in one of the following
ways: (i) by returning a reply value to the thread at completion of the processing of the basic action;
(ii) by turning the processed basic action into another basic action. In this section, we introduce an
action transforming use mechanism, which allows for para-target services to affect threads in either way.
We will only use the action transforming use mechanism to have program behaviours affected by a
para-target service. The action transforming use mechanism is a generalization of the version of the use
mechanism introduced in [7].2

It is assumed that there is a fixed but arbitrary finite set offoci F and a fixed but arbitrary finite set
of methodsM. Each focus plays the role of a name of a service provided by the execution environment
that can be requested to process a command. Each method playsthe role of a command proper. For the
setA of basic actions, we take the set{f.m | f ∈ F ,m ∈ M}. Performing a basic actionf.m is taken
as making a request to the service namedf to process commandm.

We introduce yet another sort: the sortS of services. However, we will not introduce constants
and operators to build terms of this sort. We identify para-target services with pairs(H1,H2), where
H1 : M+ → {T,F,M,B} andH2 : M+ → Atau, satisfying the following conditions:3

∀m ∈ M • (∃α ∈ M∗ •H1(α y 〈m〉) = M ⇒ ∀α′ ∈ M∗ •H1(α
′

y 〈m〉) 6∈ {T,F}) ,

∀α ∈ M+,m ∈ M • (H1(α) = B ⇒ H1(α y 〈m〉) = B) ,

∀α ∈ M+ • (H1(α) 6= M ⇔ H2(α) = tau) .

M stands for meaningless andB stands for blocked.M is used to indicate that a request to process a
command is accepted, but that no reply is produced.B is used to indicate that a request to process a
command is rejected.

LetH be a para-target service, and letH1 andH2 be the unique functions such thatH = (H1,H2).
Then we writerf (H) and af (H) for H1 andH2, respectively. Given a para-target serviceH and
a methodm ∈ M, the derived serviceof H after processingm, written ∂

∂m
H, is defined by

rf ( ∂
∂m
H)(α) = rf (H)(〈m〉 yα) andaf ( ∂

∂m
H)(α) = af (H)(〈m〉 yα).

A para-target serviceH can be understood as follows:

• if rf (H)(〈m〉) ∈ {T,F}, then the request to processm is accepted by the service, the reply
rf (H)(〈m〉) is produced,m is turned intotau, and the service proceeds as∂

∂m
H;

2In later papers, this use mechanism is also called thread-service composition.
3We writeD∗ for the set of all finite sequences with elements from setD and we writeD+ for the set of all non-empty finite
sequences with elements from setD. We use the following notation for finite sequences:〈 〉 for the empty sequence,〈d〉 for
the sequence havingd as sole element, andσ y σ′ for the concatenation of finite sequencesσ andσ′.
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Table 7. Axioms for action transforming use operators

S /f H = S ATU1

D /f H = D ATU2

(tau ◦ x) /f H = tau ◦ (x /f H) ATU3

(xE g.mD y) /f H = (x /f H) E g.mD (y /f H) if f 6= g ATU4

(xE f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if rf (H)(〈m〉) = T ATU5

(xE f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if rf (H)(〈m〉) = F ATU6

(xE f.mD y) /f H =

(x /f
∂

∂m
H) E af (H)(〈m〉)D (y /f

∂
∂m
H) if rf (H)(〈m〉) = M ATU7

(xE f.mD y) /f H = D if rf (H)(〈m〉) = B ATU8

• if rf (H)(〈m〉) = M, then the request to processm is accepted by the service, no reply is produced,
m is turned intoaf (H)(〈m〉), and the service proceeds as∂

∂m
H;

• if rf (H)(〈m〉) = B, then the request to processm is rejected by the service.

The three conditions imposed on para-target services can beparaphrased as follows:

• if it is possible that no reply is produced at completion of the processing of a command, then it
is impossible that a positive or negative reply is produced at completion of the processing of that
command;

• after a request to process a command has been rejected, any request to process a command will be
rejected;

• a reply is produced at completion of the processing of a command if and only if the command is
turned intotau.

For eachf ∈ F , we introduce the binaryaction transforming useoperator /f : T × S → T.
Intuitively, p /f H is the thread that results from processing all basic actionsperformed by threadp that
are of the formf.m by the para-target serviceH. When a basic action of the formf.m performed by
threadp is processed by the para-target serviceH, it is turned into another action and, if this action is
tau, postconditional composition is removed in favour of action prefixing on the basis of the reply value
produced.

The axioms for the action transforming use operators are given in Table 7. In this table,f andg
stand for arbitrary foci fromF andm stands for an arbitrary method fromM. Axioms ATU3 and ATU4
express that the actiontau and basic actions of the formg.m, wheref 6= g, are not processed. Axioms
ATU5–ATU7 express that a thread is affected by a para-targetservice as described above when a basic
action of the formf.m performed by the thread is processed by the service. Axiom ATU8 expresses that
inaction occurs when a basic action to be processed is not accepted.

Let T stand for either BTA or BTA+REC. Then we will writeT+ATU for T , taking the set{f.m |
f ∈ F ,m ∈ M} for A, extended with the action transforming use operators and the axioms from
Table 7.
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Table 8. Axioms for abstraction

τtau(S) = S TT1

τtau(D) = D TT2

τtau(tau ◦ x) = τtau(x) TT3

τtau(xE aD y) = τtau(x) E aD τtau(y) TT4

τtau(tau
ω) = D TT5

The use mechanism introduced in [7] deals in essence with para-target servicesH for which it holds
that af (H)(α) = tau for all α ∈ M+. For these services, the action transforming use mechanism
coincides with the use mechanism from [7].

The actiontau is an internal action whose presence matters. To conceal itspresence in the case where
it does not matter after all, we also introduce the unaryabstractionoperatorτtau : T → T.

The axioms for the abstraction operator are given in Table 8.In this table,a stands for an arbitrary
basic action fromA.

Abstraction can for instance be appropriate in cases wheretau arises from turning actions of an
auxiliary nature intotau by means of the action transforming use mechanism. In subsequent sections,
abstraction will only be used in such cases. Unlike the use mechanism introduced in [7], the use mecha-
nism introduced in [11] incorporates abstraction.

LetT stand for either BTA+REC or BTA+REC+ATU. Then we will writeT+ABSTR forT extended
with the abstraction operator and the axioms from Table 8.

7. State-Based Description of Para-Target Services

In this section, we introduce the state-based approach to describe families of para-target services that
will be used in Sections 8 and 11. This approach is similar to the approach to describe state machines
introduced in [11].

In this approach, a family of para-target services is described by

• a set of statesS;

• an effect functioneff : M× S → S;

• a yield functionyld : M× S → {T,F,M,B};

• an action functionact : M× S → Atau;

satisfying the following conditions:

∀m ∈ M • (∃s ∈ S • yld(m, s) = M ⇒ ∀s′ ∈ S • yld(m, s′) 6∈ {T,F}) ,

∃s ∈ S • ∀m ∈ M • (yld(m, s) = B ∧ ∀s′ ∈ S • (yld(m, s′) = B ⇒ eff (m, s′) = s)) ,

∀m ∈ M, s ∈ S • (yld(m, s) 6= M ⇔ act(m, s) = tau) .
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The setS contains the states in which the services may be, and the functions eff , yld andact give, for
each methodm and states, the state, reply and action, respectively, that result from processingm in
states.

We define, for eachs ∈ S, a cumulative effect functionceff s : M∗ → S in terms ofs andeff as
follows:

ceff s(〈 〉) = s ,

ceff s(α y 〈m〉) = eff (m, ceff s(α)) .

We define, for eachs ∈ S, a para-target serviceHs in terms ofceff s, yld andact as follows:

rf (Hs)(α y 〈m〉) = yld(m, ceff s(α)) ,

af (Hs)(α y 〈m〉) = act(m, ceff s(α)) .

Hs is called the para-target service withinitial state s described byS, eff , yld andact . We say that
{Hs | s ∈ S} is thefamily of para-target servicesdescribed byS, eff , yld andact .

The conditions that are imposed onS, eff , yld andact imply that, for eachs ∈ S, Hs is indeed
a para-target service. It is worth mentioning that∂

∂m
Hs = Heff (m,s), rf (Hs)(〈m〉) = yld(m, s), and

af (Hs)(〈m〉) = act(m, s).

8. Method-to-Action Translator Services

In this section, we give a state-based description of the very simple family of para-target services that
constitute a register-file-dependent method-to-action translator of which the register file consists of reg-
isters that can contain natural numbers up to some bound. This method-to-action translator will be used
in Section 9 to describe the behaviour of programs in a variant of PGLD with dynamically instantiated
instructions.

It is assumed that fixed but arbitrary positive numbersI,N ∈ N have been given.I is considered
the number of registers in the register file andN is considered the greatest natural number that can be
contained in the registers of the register file. The functions from [1, I] to [0, N ] are taken for the states
of the register file. For every functions : [1, I] → [0, N ], s is the state in which, for eachi ∈ [1, I], the
content of registeri is s(i).

It is also assumed that a fixed but arbitrary setAproto ⊆ M and a fixed but arbitrary function
θ : Aproto × ([1, I] → [0, N ]) → A have been given.Aproto is considered the set of methods that
are transformable to basic actions andθ is regarded to give, for each methodm in Aproto and function
s : [1, I] → [0, N ], the basic action into whichm is turned in the case where the state of the register file
is s. The methods that belong toAproto are calledproto-actionsbecause they are the methods that are
turned into basic actions by the register-file-dependent method-to-action translator.

The register-file-dependent method-to-action translatorservices accept the following methods:

• for eachi ∈ [1, I] andn ∈ [0, N ], a register set methodset:i:n;

• eachm ∈ Aproto.

We writeMset for the set{set:i:n | i ∈ [1, I] ∧ n ∈ [0, N ]}. It is assumed thatMset ⊆ M.
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The methods accepted by the method-to-action translator services can be explained as follows:

• set:i:n : the content of registeri becomesn, the reply isT, andset:i:n is turned intotau;

• m, wherem ∈ Aproto: the state of the register file does not change, there is no reply, andm is
turned intoθ(m, s) wheres is the state of the register file.

LetRFS be the set of all functionss:[1, I] → [0, N ]. Take↑ such that↑ /∈ RFS . Lets ∈ RFS∪{↑}.
Then we writeRFDT s for the para-target service with initial states described byS = RFS ∪ {↑} and
the functionseff , yld , andact defined as follows (i ∈ [1, I], n ∈ [0, N ], andρ ∈ RFS ):4

eff (set:i:n, ρ) = ρ⊕ [i 7→ n] , 5

eff (m,ρ) = ρ if m ∈ Aproto ,

eff (m,ρ) = ↑ if m 6∈ Mset ∪ Aproto ,

eff (m, ↑) = ↑ ,

act(m,ρ) = θ(m,ρ) if m ∈ Aproto ,

act(m,ρ) = tau if m 6∈ Aproto ,

act(m, ↑) = tau .

yld(set:i:n, ρ) = T ,

yld(m,ρ) = M if m ∈ Aproto ,

yld(m,ρ) = B if m 6∈ Mset ∪ Aproto ,

yld(m, ↑) = B ,

We writeRFDT init for RFDT [17→0]⊕...⊕[I 7→0].
The special state↑ added above to the proper states of the register file is a statein which any request

to process a method is rejected. The existence of such a blocking state is required to guarantee thatS,
eff , yld andact describe a para-target service.

The following proposition states rigorously that the methods that belong toAproto are exactly the
methods that are turned into basic actions.

Proposition 8.1. For alls : [1, I] → [0, N ]:

Aproto = {m ∈ M | ∃α ∈ M∗ • af (RFDT s)(α y 〈m〉) ∈ A} .

Proof:
This follows immediately from the definition of the register-file-dependent method-to-action translator
services. ⊓⊔

9. PGLD with Dynamically Instantiated Instructions

In this section, we introduce a variant of PGLD with dynamically instantiated instructions. This variant
is called PGLDdii. In Section 10, the usefulness of dynamic instruction instantiation will be illustrated
by means of an example.

In PGLDdii, it is assumed that there is a fixed but arbitrary finite set offoci F with rfdt ∈ F and a
fixed but arbitrary finite set ofmethodsM. Moreover, we adopt the assumptions made about register-file-

4We use the following notation for functions:f ⊕ g for the functionh with dom(h) = dom(f) ∪ dom(g) such that for all
d ∈ dom(h), h(d) = f(d) if d 6∈ dom(g) andh(d) = g(d) otherwise; and[d 7→ r] for the functionf with dom(f) = {d}
such thatf(d) = r.
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dependent method-to-action translator services in Section 8. The set{f.m | f ∈ F ,m ∈ M \ Aproto}
is taken as the setA of basic instructions. In the setting of PGLDdii, we use the termproto-instruction
instead of proto-action and writeAproto instead ofAproto. A proto-instruction is what becomes a basic
instruction by dynamic instantiation.

PGLDdii has the following primitive instructions in addition to theprimitive instructions of PGLD:

• for eache ∈ Aproto, aplain basic proto-instructione;

• for eache ∈ Aproto, apositive test proto-instruction+e;

• for eache ∈ Aproto, anegative test proto-instruction−e.

PGLDdii programs have the formu1 ; . . . ; uk, whereu1, . . . , uk are primitive instructions of PGLDdii.
The effect of a plain basic proto-instructione is the same as the effect of the plain basic instruction

θ(e, s), wheres is the state of the register file involved in the instantiation of proto-instructions. The
effect of a positive or negative test proto-instruction is similar.

Recall that the content of registeri can be set ton by means of the basic instructionrfdt.set:i:n.
Initially, its content is0.

We define the meaning of PGLDdii programs by means of a functionpglddii2pgld from the set of
all PGLDdii programs to the set of all PGLD programs. This function is defined by

pglddii2pgld(u1 ; . . . ; uk) = ψ(u1) ; . . . ; ψ(uk) ,

where the auxiliary functionψ from the set of all primitive instructions of PGLDdii to the set of all
primitive instructions of PGLD is defined as follows:

ψ(e) = rfdt.e if e ∈ Aproto ,

ψ(+e) = +rfdt.e if e ∈ Aproto ,

ψ(−e) = −rfdt.e if e ∈ Aproto ,

ψ(u) = u if u is not a proto-instruction.

The idea is that each proto-instruction can be replaced by aninstruction in which the proto-instruction is
taken for the method.

LetP be a PGLDdii program. Thenpglddii2pgld(P ) represents the meaning ofP as a PGLD pro-
gram. The intended behaviour ofP under execution is the behaviour ofpglddii2pgld(P ) under execu-
tion on interaction with a register-file-dependent method-to-action translator when abstracted fromtau.
That is, thebehaviourof P under execution, written|P |PGLDdii

, is τtau(|pglddii2pgld(P )|PGLD /rfdt

RFDT init).

10. Concrete Proto-Instructions

At a fairly concrete level, basic instructions and proto-instructions are strings of characters. In [3], a
concrete notation for basic instructions is introduced forthe case where each basic instruction consists of
a focus and a method. Here, we extend that concrete notation to cover proto-instructions. The resulting
concrete notation will be used in examples of the use of PGLDdii.
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First of all, we distinguish neutral strings and active strings. Aneutral stringis an empty string or a
string of one or more characters of which the first character is a letter or a colon and each of the remaining
characters is a letter, a digit or a colon. Anactive stringis a string of two or more characters of which
the first character is an asterisk and each of the remaining characters is a digit.

A concrete proto-instructionis a string of the formf ′.m′, wheref ′ andm′ are non-empty strings of
characters in which neutral strings and active strings alternate, starting with a neutral string of which the
first character is a letter, and at least one active string occurs.

A concrete focusis a neutral string of which the first character is a letter. Aconcrete methodis
either a neutral string of which the first character is a letter or a concrete proto-instruction. Aconcrete
instructionis a string of the formf.m, wheref is a concrete focus andm is a concrete method.

The intention is that instantiation of a concrete proto-instruction amounts to simultaneously replacing
all active strings occurring in it by strings according to some assignment of strings to active strings. The
assignment concerned must be such that concrete proto-instructions are turned into concrete instructions.

To accomplish the assignments of strings to active strings,all active strings of interest must be of
the form∗δ, whereδ is the decimal representation of somei ∈ [1, I]. Moreover, an encoding of the
assignable strings by numbers in[0, N ] must be given. Then each state of the register file being involved
in PGLDdii induces an assignment as follows: for each active string of interest, say∗δ, the string assigned
to it is the one that is encoded by the content of the register with the number of whichδ is the decimal
representation.

The concrete notation for basic instructions introduced above is sufficiently expressive for all appli-
cations that we have in mind. The assignable strings are in many cases binary or decimal representations
of numbers in the interval[0, N ]. In such cases, it is most natural to encode the representations simply
by the numbers that they represent.

Example 10.1. Consider a program that on execution reads digit by digit thebinary representation of
a password and then performs an action to have the password checked by some para-target service.
The binary representation of a password is a character sequence of a fixed length, sayn, of which all
characters are among the binary digits0 and1. The program reads in the binary digits which make up
the binary representation of the password by performing actions that are processed by a target service.
Suppose that the service used for reading in binary digits only accepts methods of the formgetb and
returns the replyF if the next binary digit is0 andT if the next binary digit is1. Moreover, suppose
that the service used for checking passwords only accepts methods of the formchk:pw , wherepw is the
binary representation of a password. The focusstdin is used below as a name of the former service and
the focuspassw is used below as a name of the latter service.

In PGLDdii, where proto-instructions are available, the program has to distinguish among only2 · n
cases. In PGLD, where no proto-instructions are available,the program has to distinguish among2n

cases.

TakeI = n andN = 1. Consider the case wheren = 3. In PGLDdii, the initial part of the program
looks as follows:

+stdin.getb ; ##5 ; rfdt.set:1:0 ; ##6 ; rfdt.set:1:1 ;

+stdin.getb ; ##10 ; rfdt.set:2:0 ; ##11 ; rfdt.set:2:1 ;

+stdin.getb ; ##15 ; rfdt.set:3:0 ; ##16 ; rfdt.set:3:1 ;

+passw.chk:∗1:∗2:∗3 ; . . .
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In PGLD, the initial part of the program looks as follows:

+stdin.getb ; ##7 ; ##4 ;

+stdin.getb ; ##13 ; ##10 ; +stdin.getb ; ##19 ; ##16 ;

+stdin.getb ; ##23 ; ##22 ; +stdin.getb ; ##25 ; ##24 ;

+stdin.getb ; ##27 ; ##26 ; +stdin.getb ; ##29 ; ##28 ;

+passw.chk:000 ; ##44 ; ##45 ; +passw.chk:001 ; ##44 ; ##45 ;

+passw.chk:010 ; ##44 ; ##45 ; +passw.chk:011 ; ##44 ; ##45 ;

+passw.chk:100 ; ##44 ; ##45 ; +passw.chk:101 ; ##44 ; ##45 ;

+passw.chk:110 ; ##44 ; ##45 ; +passw.chk:111 ; . . .

These programs take16 and 43 instructions, respectively, up to and including the password-check
(proto-)instructions. In general, we have that:

• In PGLDdii, the program takes5 · n + 1 instructions up to and including the password-check
proto-instruction;

• In PGLD, the program takes6·(2n−1)+1 instructions up to and including the last password-check
instruction.

11. Register File Services

In this section, we give a state-based description of the very simple family of para-target services that
constitute a register file consisting of registers that can contain natural numbers up to some bound. This
register file will be used in Section 12 to describe the behaviour of programs in PGLDdii.

As in Section 8, it is assumed that fixed but arbitrary positive numbersI,N ∈ N have been given.I
is considered the number of registers in the register file andN is considered the greatest natural number
that can be contained in the registers of the register file.

The register file services accept the following methods:

• for eachi ∈ [1, I] andn ∈ [0, N ], a register set methodset:i:n;

• for eachi ∈ [1, I] andn ∈ [0, N ], a register test methodeq:i:n.

We writeMrf for the set{set:i:n, eq:i:n | i ∈ [1, I] ∧ n ∈ [0, N ]}. It is assumed thatMrf ⊆ M.
The methods accepted by register services can be explained as follows:

• set:i:n : the content of registeri becomesn, the reply isT, andset:i:n is turned intotau;

• eq:i:n : the content of the register does not change, the reply isT if the content of registeri equals
n andF otherwise, andeq:i:n is turned intotau.

LetRFS be the set of all functionss:[1, I] → [0, N ]. Take↑ such that↑ /∈ RFS . Lets ∈ RFS∪{↑}.
Then we writeRF s for the para-target service with initial states described byS = RFS ∪ {↑} and the
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functionseff , yld , andact defined as follows (i ∈ [1, I], n ∈ [0, N ], andρ ∈ RFS ):

eff (set:i:n, ρ) = ρ⊕ [i 7→ n] ,

eff (eq:i:n, ρ) = ρ ,

eff (m,ρ) = ↑ if m 6∈ Mrf ,

eff (m, ↑) = ↑ ,

yld(set:i:n, ρ) = T ,

yld(eq:i:n, ρ) = T if ρ(i) = n ,

yld(eq:i:n, ρ) = F if ρ(i) 6= n ,

yld(m,ρ) = B if m 6∈ Mrf ,

yld(m, ↑) = B ,

act(m,ρ) = tau ,

act(m, ↑) = tau .

We writeRF init for RF [17→0]⊕...⊕[I 7→0].

12. An Alternative Semantics for PGLDdii

In this section, we discuss an alternative semantics for PGLDdii.
Unlike the meaning of PGLDdii programs that we defined in Section 9, we define the alternative

meaning of PGLDdii programs only for the case whereI = 1. The generalization of the definition to
arbitraryI is obvious, but leads to a definition that is hard to read.

The alternative meaning of PGLDdii programs is given by a functionpglddii2pgld′ from the set
of all PGLDdii programs to the set of all PGLD programs. For the case whereI = 1, this function is
defined by

pglddii2pgld′(u1 ; . . . ; uk) = ψ′
1(u1) ; . . . ; ψ′

k(uk) ,

where the auxiliary functionsψ′
j from the set of all primitive instructions of PGLDdii to the set of all

PGLD programs are defined as follows (1 ≤ j ≤ k):

ψ′
j(e) = +rf.eq:1:0 ; ##l′′j,0 ; . . . ; +rf.eq:1:N−1 ; ##l′′j,N−1 ; ##l′′j,N ;

θ(e, 0) ; ##l′j+1 ; ##l′j+2 ; . . . ; θ(e,N−1) ; ##l′j+1 ; ##l′j+2 ; θ(e,N) ,

ψ′
j(+e) = +rf.eq:1:0 ; ##l′′j,0 ; . . . ; +rf.eq:1:N−1 ; ##l′′j,N−1 ; ##l′′j,N ;

+θ(e, 0) ; ##l′j+1 ; ##l′j+2 ; . . . ; +θ(e,N−1) ; ##l′j+1 ; ##l′j+2 ; +θ(e,N) ,

ψ′
j(−e) = +rf.eq:1:0 ; ##l′′j,0 ; . . . ; +rf.eq:1:N−1 ; ##l′′j,N−1 ; ##l′′j,N ;

−θ(e, 0) ; ##l′j+1 ; ##l′j+2 ; . . . ; −θ(e,N−1) ; ##l′j+1 ; ##l′j+2 ; −θ(e,N) ,

ψ′
j(rfdt.m) = rf.m ,

ψ′
j(+rfdt.m) = +rf.m ,

ψ′
j(−rfdt.m) = −rf.m ,

ψ′
j(##l) = ##l′l ,

ψ′
j(u) = u if u is not a proto-instruction, jump instruction or

a plain basic or test instruction with focusrfdt ,

and for eachj ∈ [1, k] andh ∈ [0, N ]:

l′j = j + (5 ·N + 1) · nj ,

l′′j,h = l′j + 2 ·N + 3 · h+ 1 ,

andnj is the number of proto-instructions preceding positionj.
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The idea is that each proto-instruction can be replaced by aninstruction sequence of which the
execution leads to the execution of the intended instruction after the content of the register has been
found by a linear search. Because the length of the replacinginstruction sequence is greater than1,
the direct absolute jump instructions are adjusted so as to compensate for the introduction of additional
instructions. Obviously, the linear search for the contentof the register can be replaced by a binary
search.

Henceforth, we will proceed as ifpglddii2pgld′ has been defined for arbitraryI.
LetP be a PGLDdii program. Thenpglddii2pgld′(P ) represents an alternative meaning ofP as a

PGLD program. The alternative behaviour ofP under execution is the behaviour ofpglddii2pgld′(P )
under execution on interaction with a register file when abstracted fromtau. That is, thealternative
behaviourof P under execution, written|P |′

PGLDdii
, is τtau(|pglddii2pgld′(P )|PGLD /rf RF init).

Example 12.1. Consider the PGLDdii program from Example 10.1. The initial part of the PGLD pro-
gram that results from its translation by means ofpglddii2pgld looks as follows:

+stdin.getb ; ##5 ; rfdt.set:1:0 ; ##6 ; rfdt.set:1:1 ;

+stdin.getb ; ##10 ; rfdt.set:2:0 ; ##11 ; rfdt.set:2:1 ;

+stdin.getb ; ##15 ; rfdt.set:3:0 ; ##16 ; rfdt.set:3:1 ;

+rfdt.passw.chk:∗1:∗2:∗3 ; . . .

The initial part of the PGLD program that results from its translation by means ofpglddii2pgld′ looks
as follows:

+stdin.getb ; ##5 ; rf.set:1:0 ; ##6 ; rf.set:1:1 ;

+stdin.getb ; ##10 ; rf.set:2:0 ; ##11 ; rf.set:2:1 ;

+stdin.getb ; ##15 ; rf.set:3:0 ; ##16 ; rf.set:3:1 ;

+rf.eq:1:0 ; ##19 ; ##22 ;

+rf.eq:2:0 ; ##25 ; ##28 ;

+rf.eq:2:0 ; ##31 ; ##34 ;

+rf.eq:3:0 ; ##37 ; ##40 ;

+rf.eq:3:0 ; ##43 ; ##46 ;

+rf.eq:3:0 ; ##49 ; ##52 ;

+rf.eq:3:0 ; ##55 ; ##58 ;

+passw.chk:000 ; ##59 ; ##60 ;

+passw.chk:001 ; ##59 ; ##60 ;

+passw.chk:010 ; ##59 ; ##60 ;

+passw.chk:011 ; ##59 ; ##60 ;

+passw.chk:100 ; ##59 ; ##60 ;

+passw.chk:101 ; ##59 ; ##60 ;

+passw.chk:110 ; ##59 ; ##60 ;

+passw.chk:111 ; . . .
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These PGLD programs take16 and58 instructions, respectively, up to and including the password-check
instructions.

Let b1, b2 andb3 be either0 or 1. Suppose that the three bits read in at the beginning of the execution
of these programs areb1, b2 andb3, in that order. In the case of the former program, it is easy tocheck
that the instruction+rfdt.passw.chk:∗1:∗2:∗3 will be executed while the contents of registers1, 2 and3
areb1, b2 andb3, respectively. In the case of the latter program, it is easy to check that the instruction
+passw.chk:b1b2b3 will be executed after execution of some test and jump instructions. This strongly
suggests that the programs are “behaviourally equivalent”.

The following theorem states rigorously that, for any PGLDdii program, the behaviour under execu-
tion coincides with the alternative behaviour under execution.

Theorem 12.1. For all PGLDdii programsP , |P |PGLDdii
= |P |′

PGLDdii
.

Proof:
Strictly speaking, we prove this theorem in the algebraic theory obtained by: (i) combining PGA with
BTA+REC+ATU+ABSTR, resulting in a theory with three sorts:a sortP of programs, a sortT of
threads, and a sortS of services; (ii) extending the result by taking| | for an additional operator from
sort P to sortT and taking the semantic equations and rule defining thread extraction for additional
axioms. We writeT for the set of all closed terms of sortT from the language of the resulting theory.

In the proof, we make use of an auxiliary function| , | : N × PPGLD → T which gives, for each
natural numberi and PGLD programu1 ; . . . ; uk, a closed term of sortT that denotes the behaviour of
u1 ; . . . ; uk when executed from positioni if 1 ≤ i ≤ k andS otherwise. This function is defined as
follows:

|i, u1 ; . . . ; uk| = |φi(ui) ; . . . ; φk(uk) ; ! ; ! ; (φ1(u1) ; . . . ; φk(uk) ; ! ; !)ω| if 1 ≤ i ≤ k ,

|i, u1 ; . . . ; uk| = S if ¬ 1 ≤ i ≤ k

(whereφj is as in the definition ofpgld2pga). It follows easily from the definition of| , | and the
axioms of PGA that if1 ≤ i ≤ k:

|i, u1 ; . . . ; uk| = a ◦ |i+ 1, u1 ; . . . ; uk| if ui = a ,

|i, u1 ; . . . ; uk| = |i+ 1, u1 ; . . . ; uk| E aD |i+ 2, u1 ; . . . ; uk| if ui = +a ,

|i, u1 ; . . . ; uk| = |i+ 2, u1 ; . . . ; uk| E aD |i+ 1, u1 ; . . . ; uk| if ui = −a ,

|i, u1 ; . . . ; uk| = |l, u1 ; . . . ; uk| if ui = ##l .

Let v1, . . . , vk be primitive instructions of PGLDdii, let

T = {τtau(|i, ψ(v1) ; . . . ; ψ(vk)| /rfdt RFDT s) | i ∈ [1, k] ∧ s : [1, I] → [0, N ]} ,

T ′ = {τtau(|l
′
i, ψ

′
1(v1) ; . . . ; ψ′

k(vk)| /rf RF s) | i ∈ [1, k] ∧ s : [1, I] → [0, N ]}

(whereψ, ψ′
j , l

′
i are as in the definitions ofpglddii2pgld andpglddii2pgld′), and letβ : T → T ′ be

the bijection defined by

β(τtau(|i, ψ(v1) ; . . . ; ψ(vk)| /rfdt RFDT s)) = τtau(|l
′
i, ψ

′
1(v1) ; . . . ; ψ′

k(vk)| /rf RF s) .
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For eachp′ ∈ T , write β∗(p′) for p′ with, for all p ∈ T , all occurrences ofp in p′ replaced byβ(p).
Then, using the equations concerning the auxiliary function | , | given above, it is straightforward to
prove that there exists a setE consisting of one derivable equationp = p′ for eachp ∈ T such that, for
all equationsp = p′ in E:

• the equationβ(p) = β∗(p′) is derivable;

• p′ ∈ T only if p′ can be rewritten to ap′′ 6∈ T using the equations inE from left to right.

Because|ψ(v1);. . . ;ψ(vk)| = |1, ψ(v1);. . . ;ψ(vk)| and|ψ′
1(v1);. . . ;ψ

′
k(vk)| = |l′1, ψ

′
1(v1);. . .;ψ

′
k(vk)|,

this means that|v1 ; . . . ; vk|PGLDdii
and|v1 ; . . . ; vk|

′
PGLDdii

are solutions of the same guarded recursive
specification. Because guarded recursive specifications have unique solutions, it follows immediately
that |v1 ; . . . ; vk|PGLDdii

= |v1 ; . . . ; vk|
′
PGLDdii

. ⊓⊔

13. Discussion of Semantic Approaches

In Sections 9 and 12, the meaning of PGLDdii programs is explained by means of different translations
into PGLD programs. In both sections, the intended behaviour of a PGLDdii program under execution is
described as the behaviour of the translated program under execution on interaction with some para-target
service. The translation from Section 9 is extremely simple, but the translation from Section 12 is fairly
complicated. The para-target service used in Section 9 to describe the behaviour of a PGLDdii program
and the one used in Section 12 are equally simple. However, the former service is far more powerful:
it turns a processed method into a basic action if the method corresponds to a proto-instruction. By its
power, the translation can be kept simple if that service is used. Because of the simpler translation of
PGLDdii programs into PGLD programs and the equally simple para-target service used, the approach
followed in Section 9 to define the meaning of PGLDdii programs is preferable.

A manifestation of the difference in complexity of the translations of PGLDdii programs from Sec-
tions 9 and 12 is that the former translation replaces each primitive instruction of PGLDdii by one prim-
itive instruction of PGLD, whereas the latter translation gives rise to a combinatorial explosion. Recall
thatI stands for the number of registers involved in the instantiation of proto-instructions andN stands
for the greatest natural number that can be contained in those registers. The translation from Section 12
replaces each primitive instruction of PGLDdii that is not a proto-instruction by one primitive instruction
of PGLD as well, but replaces each proto-instruction by a sequence of

(2 ·N + 1) ·
∑I

i=1(N + 1)i−1 + 3 · ((N + 1)I − 1) + 1 = (5 ·N + 1) · (((N + 1)I − 1)/N) + 1

primitive instructions of PGLD.
If a new programming feature is added to a known program notation such as PGLD and the starting

point of the approach to define the meaning of the programs from the extended program notation is
translation of those programs into programs from the known program notation, then we can conceive of
several approaches:

• give a translation by which each program from the extended program notation is translated into a
program from the known program notation that exhibits on execution the same behaviour;
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• give a translation by which each program from the extended program notation is translated into
a program from the known program notation that exhibits on execution the same behaviour by
interaction with a given para-target service that does not turn any processed method into a basic
action;

• give a translation by which each program from the extended program notation is translated into
a program from the known program notation that exhibits on execution the same behaviour by
interaction with a given para-target service that turns certain processed methods into basic actions.

We consider an approach earlier in this list preferable provided that the translation concerned does not
become too complicated. In the case where the translation becomes too complicated with all three
approaches, it is desirable to look for another starting point. This may end up in direct thread extraction,
i.e. assigning a thread to each program as this was done for PGA in Section 3.

In the case of PGLDdii, it is obvious that the first approach in the list given above does not work.
However, it is virtually impossible to find out that the thirdapproach is preferable to the second one with-
out actually producing definitions of the meaning of PGLDdii programs according to both approaches.

14. Conclusions

We have studied sequential programs that are instruction sequences with dynamically instantiated in-
structions. We have defined the meaning of the programs concerned in two different ways, which both
involve a translation into programs that are instruction sequences without dynamically instantiated in-
structions. In one of the two ways, the translation is very simple and does not lead to increase in the length
of a program or the number of steps needed by a program. That way is considered the preferred one.
The preferred way made it necessary for the use mechanism that was introduced in [7] to be generalized.
In [6], we demonstrate that dynamic instruction instantiation is a useful programming feature.

In this paper, we have followed the approach of projection semantics, starting from the perception of
a program as an instruction sequence. This means that programs are considered at a much lower level
than usual in theoretical computer science. This allows forbringing the interface between software and
hardware better into the picture, which becomes increasingly important to a growing number of develop-
ments related to computer architecture. The usual approaches to define the meaning of programs, such
as operational semantics, denotational semantics and axiomatic semantics, are based on the view that the
details of program execution should be abstracted from as much as possible. This makes comparisons
with those approaches virtually impossible.

In [10], we have modelled and analysed micro-architectureswith pipelined instruction processing
in the setting of program algebra, basic thread algebra, andMaurer computers [13, 14]. In that work,
which we consider a preparatory step in the development of a formal approach to design new micro-
architectures, dynamically instantiated instructions were not taken into account. An option for future
work is to look at the effect of dynamically instantiated instructions on pipelined instruction processing.
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