UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

An interface group for process components

Bergstra, J.A.; Middelburg, C.A.

DOI
10.3233/FI-2010-254

Publication date
2010

Document Version
Final published version

Published in
Fundamenta Informaticae

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2010). An interface group for process components.
Fundamenta Informaticae, 99(4), 355-382. https://doi.org/10.3233/FI-2010-254

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

https://doi.org/10.3233/FI-2010-254
https://dare.uva.nl/personal/pure/en/publications/an-interface-group-for-process-components(faff4835-d14b-4ef1-8909-9603fc176bf6).html
https://doi.org/10.3233/FI-2010-254

Fundamenta Informaticae 99 (2010) 355—-382 355
DOI 10.3233/FI-2010-254
10S Press

An Interface Group for Process Components®

Jan A. Bergstra, CornelisA. Middelburgf

Informatics Institute

University of Amsterdam

Science Park 107, 1098 XG Amsterdam, the Netherlands
{J.A.Bergstra,C.A.Middelbujg@uva.nl

Abstract. We take a process component as a pair of an interface and aidehawe study the
composition of interacting process components in thergethf process algebra. We formalize
the interfaces of interacting process components by mefas mterface group. An interesting
feature of the interface group is that it allows for distirgiing between expectations and promises
in interfaces of process components. This distinction coim® play in case components with both
client and server behaviour are involved.

Keywords: interface group, process component, process algebra

1. Introduction

Component interfaces are a practical tool for the developrogall but the most elementary architec-
tural designs. In [9], interface groups have been proposeaairaeans to formalize the interfaces of the
components of financial transfer architectures. The iaterfgroups introduced in that paper concern
component behaviours of a special kind, namely financiakfea behaviours of units of an organization.
In this paper, we introduce an interface group which corsbehaviours of a more general kind, namely
behaviours that can be viewed as processes specifiablepnatess algebra known A€P [5, 11]. The
behaviours in question are made up of actions. In the cassws,ithe intended purpose of the interface

*This research was partly carried out in the framework of #ugdard-project Symbiosis, which is funded by the Netheida
Organisation for Scientific Research (NWO).

fAddress for correspondence: Informatics Institute, Ursitg of Amsterdam, Science Park 107, 1098 XG Amsterdam, the
Netherlands

356 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

of a component is that it allows interaction of other compasevith that component only through fixed
actions.

An interface group is a commutative group intended for dbsay and analysing interfaces. The
interface group introduced in this paper concerns intedanf process components that request other
components to carry out methods and grant requests of otimepanents to carry out methods. The
interfaces in question represent the abilities to grantiests that are expected from other components
and the abilities to make requests that are promised to otiieponents. The ability to make a certain
request and the ability to grant that request are consideredncel out in interfaces. Thus, having an
empty interface is a sufficient condition on a process corapbfor being a closed system. Interfaces
as modelled by the interface group introduced in this papee ess structure than the signatures used
as interfaces in module algebra [6]. However, module akydbes not allow for distinguishing between
expectations and promises in interfaces of componentsoiin pf fact, it has a bias towards composing
components whose interfaces concern promises only.

We also present a theory about process components of whadhttirface group introduced forms
part. Like any notion of component, the notion of process poment underlying this theory combines
interface with content: a process component is consideigairaof an interface and a behaviour. Pro-
cesses as consideredAlCP are taken as the behaviours of process components. Theréfertheory
concerned is a development on topAfP. However, additional assumptions are made about the ac-
tions of which the processes are made up. Three kinds ofnasctice distinguished: the acts of making
requests referred to above, the acts of granting requdsisa@ to above, and the acts of carrying out
methods which result from making a request and grantingrédtptest at the same time. The use of the
presented theory about process components is illustrgteaelans of examples. A model of the theory
is constructed, using a notion of bisimilarity for processponents.

In the presented theory about process components, comepasitprocess components is in general
not associative. Little can be done about this becausenmiaiprocess into a component by adding
an interface to it inevitably results in encapsulation @& girocess. However, composition of process
components is associative when a certain condition on theegs components in question is fulfilled.
We couch this in a special associativity axiom for compormemposition.

In the presented theory about process components, preaessde at places, called loci, and requests
and grants are addressed to the processes residing atia . If the processes that are taken as the
behaviours of process components are looked at in isolatiomay be convenient to abstract from the
loci at which they reside. This abstraction gives rise totlagokind of processes. We treat this kind of
processes, referred to as localized processes, as well.

A system composed of a collection of process componentslisadsystem if the actions that make
up its behaviour include neither acts of making requestsacts of granting requests. It is generally
undecidable whether a system composed of a collection eegscomponents is a closed system. This
state of affairs forms part of the motivation for developihg theory about process components presented
in this paper. In the presented theory, having an emptyfateiis a sufficient condition for being a closed
system and it is decidable whether an interface is empty.

The structure of this paper is as follows. First, we revie@P (Section 2) and guarded recursion in
the setting ofACP (Section 3), and present the actions that make up the pexésing considered in
later sections (Section 4). Next, we introduce a theory almtegers (Section 5) and a theory about in-
terfaces (Section 6). Then, we extef@P, using the theories just introduced, to a theory about m®ce
components (Section 7). Following this, we go into the mnidtiat component composition is in gen-

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 357

eral not associative (Section 8) and discuss the connelstitwmeen empty interfaces and closed systems
(Section 9). After that, we give two examples of the use offftessented theory about process compo-
nents (Sections 10 and 11). Thereupon, we introduce a nofibisimilarity for process components
(Section 12) and construct a model of the presented theayt gdvocess components using this notion
of bisimilarity (Section 13). Following that, we extend ttieeory about process components developed
so far with localized processes (Section 14). Finally, w&ersome concluding remarks (Section 15).

2. Algebraof Communicating Processes

In this section, we shortly revie’hCP (Algebra of Communicating Processes), the algebraic yheor
about processes that was first presented in [7]. For a compsele overview ofACP, the reader is
referred to [11]. AlthouglACP is one-sorted, we make this sort explicit. The reason fariththat we
will extend ACP to a theory with four sorts in Section 7.

In ACP, it is assumed that a fixed but arbitrary finite setofions.A, with 6 ¢ A, has been given.
We write A; for AU {d}. Itis further assumed that a fixed but arbitrary commutagind associative
communicatiorfunction| : A5 x A5 — As, with§ | a = ¢ for all a € Ay, has been given. The function
| is regarded to give the result of synchronously performing tavo actions for which this is possible,
and to bey otherwise.

ACP has one sort: the sait of processesTo build terms of sorP, ACP has the following constants
and operators:

e thedeadlockconstan® : P;

e for eacha € A, theactionconstant : P;

¢ the binaryalternative compositiooperator+ : P x P — P;

¢ the binarysequential compositiooperator-: P x P — P;

e the binaryparallel compositioroperator|| : P x P — P;

e the binaryleft mergeoperator| : P x P — P;

e the binarycommunication mergeperator| : P x P — P;

e for eachH C A, the unaryencapsulatioroperatordoy : P — P.
Terms of sortd are built as usual for a one-sorted signature (see e.g. @82 Throughout the paper,
we assume that there are infinitely many variables of Boihcludingz, v, 2, 2/, ¥ andz’.

We use infix notation for the binary operators. The followpprgcedence conventions are used to
reduce the need for parentheses. The operatdoinds weaker than all other binary operators to build
terms of sorfP and the operator binds stronger than all other binary operators to build teofrsortP.

Let P and(be closed terms of soR, a € A, andH C A. Intuitively, the constants and operators
to build terms of sorP can be explained as follows:

e § can neither perform an action nor terminate successfully;
e ¢ first performs actior and then terminates successfully;

e P + () behaves either aB or as@, but not both;

358 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Table 1. Axioms ofACP

rty=y+a Al zlly=@ly+ylz)+z]y CML
(x+y)+z=z+(y+2) A2 allz=a-x CM2
r+r==x A3 a-zlly=a-(z]y) CM3
(x+y)-z=z-2+y- -2 A4 4y llz=zllzt+yl= CM4
(x-y)-z=z-(y-2) A5 a-z|b=(a|b) -z CM5
r+d==x A6 alb-x=(a|b) -z CM6
d-x=29 AT a-xz|b-y=(a|b) (z|y) CM7
(x+y)|lz=z|lz+y|z CMS8
x|ly+z)=zly+x|z CM9
Ou(a) =a ifag H D1
Op(a) =10 ifaec H D2 alb="bla C1
Oulw+y) = On(x) +0u(y) D3 (alb)|c=al (|0 c2

P - Q first behaves a® and on successful termination Bfit next behaves ag9;

P || @ behaves as the process that proceeds Ri#md(in parallel;

P || Q behaves the same &5|| @, except that it starts with performing an actionff

e P|Q behaves the same &5 (), except that it starts with performing an actionfofind an action
of Q synchronously;

e Oy (P) behaves the same & except that actions frorf{ are blocked.

We write) ", P;, whereZ = {iy,...,i,} andP;,,..., P, aretermsofso®, for P, +...+F; .
The convention is that,_, P; stands fow if Z = ().

The axioms ofACP are the axioms given in Table 1. CM2—-CM3, CM5-CM7, C1-C3 addD4
are actually axiom schemas in whiehb andc stand for arbitrary constants of s@t(keep in mind that
also the deadlock constant belongs to the constants oP$3@mnd H stands for an arbitrary subset.df

For the main models chCP, the reader is referred to [5].

3. Guarded Recursion

In this section, we shortly review guarded recursion in ittirey of ACP.

Not all processes in a model &fCP have to be interpretations of closed terms of $drtThose
processes may be definable o¥&rP. A process in some model dfCP is definableover ACP if there
exists a guarded recursive specification a¥€ of which that process is the unique solution.

A recursive specificatioover ACP is a set of recursion equatiodX = tx | X € V} whereV is
a set of variables of soR and eaclt x is a term of sorlP from the language oACP that only contains
variables fromV/. Let E be a recursive specification ovACP. Then we writeV(E) for the set of all
variables that occur on the left-hand side of an equatiof.i®\ solutionof a recursive specificatiof

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 359

Table 2. Axioms for recursion
(X|E)=(tx|E) ifX=txe€eE RDP
E=X=(X|E) ifXeV(E) RSP

is a set of processes (in some modelA&IP) {px | X € V(E)} such that the equations &f hold if,
forall X € V(E), X stands fopx.

Let ¢ be a term of sorP from the language oACP containing a variableX. Then an occurrence
of X in t is guardedif ¢ has a subterm of the form - ¢ wherea € A andt’ is a term containing
this occurrence ofX. Let E be a recursive specification ova&ilCP. ThenE is aguarded recursive
specificationf, in each equationX = tx € F, all occurrences of variables i are guarded ofx can
be rewritten to such a term using the axioms\@IP in either direction and/or the equationsfihexcept
the equationX = tx from left to right. We are only interested in models A€P in which guarded
recursive specifications have unigue solutions.

For each guarded recursive specificatioand each variabl& € V(FE), we introduce a constant of
sortP standing for the unique solution &f for X. This constant is denoted B |E'). We often write
X for (X|E) if E is clear from the context. In such cases, it should also ke élem the context that
we useX as a constant.

The additional axioms for recursion are given in Table 2 hig table, we writgt x |E) for ¢ x with,
forallY € V(E), all occurrences dof in tx replaced by Y| E). Both RDP and RSP are axiom schemas.
Side conditions are added to restrict the variables, termdggaarded recursive specifications for which
X, tx and E stand. The equationsX |E) = (tx|E) for a fixed E express that the constantX |E)
make up a solution of. The conditional equation8 = X = (X|E) express that this solution is the
only one. RDP and RSP were first formulated in [8].

We write ACP+REC for ACP extended with the constants standing for the unique soisitif
guarded recursive specifications and the axioms RDP and RSP.

4. ACP for Cooperating Components

In this paper, we consider process components that coepeyanaking and granting requests to carry
out methods. The processes that are taken as the behavidhesse components are not made up of
arbitrary actions. In this section, we introduce the instganf ACP that is restricted to the intended
actions. This instance is calledCPcc (ACP for Cooperating Components).

Three kinds of actions are distinguishedAQCP¢¢: active actions, passive actions and neutral ac-
tions. The active actions may be viewed as requests to catrgame method and the passive actions
may be viewed as grants of requests to carry out some methadinlyla request to carry out some
method and granting that request at the same time resul@ripireg out the method concerned. The
initiative in carrying out the method is considered to beetaby the process making the request. This
explains why the request is called an active action and #@stgs called a passive action. The neutral
actions may be viewed as the results of making a request tp cat some method and granting that
request at the same time. A process that can perform actiemsonly behaves as a client and a process
that can perform passive actions only behaves as a server.

360 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

In ACP¢c, it is assumed that a fixed but arbitrary finite getf loci and a fixed but arbitrary finite
set M of methodshave been given. A locus is a place at which processes rdsitlgtively, a process
resides at a locus if it is capable of performing actions &t tocus. The same process may reside at
different loci at once. Moreover, different processes nesjde at the same locus at once. Therefore, we
do not necessarily refer to a unique process if we refer t@egss residing at a given locus.

Because processes may be composed of other processegjstnmeexplaining that different pro-
cesses may reside at the same locus at once. Taken for @ethsmselves, as usual in process algebra,
protocols in which processes at different loci are involeed obvious examples of processes that may
reside at different loci at once.

In ACPc, the set of actions! consists of:

e for eachf,g € £ andm € M, theactive actionf.m@Qg;

e for eachf,g € £ andm € M, thepassive action. f.mQg;

e for eachf,g € £ andm € M, theneutral actionf.m@Qg.
Intuitively, these actions can be explained as follows:

e f.mQ@Qg is the action by which a process residing at logugquests a process residing at logus
to carry out methoan;

e ~g.m@f is the action by which a process residing at logugants a request of a process residing
at locusg to carry out methodan;

e f.mQyg is the result of performing.m@g and~g.m@Q f at the same time.

In ACP ¢, the communication functioft As x As — Az is such that for allf, g € £ andm € M:
e fmQg|~gmQf = f.mQyg;

e fmQg|la=4dforallac A\ {~gmQf};

e a|~gmQf =¢§foralla e A\ {f.mQg};

o fmQg|a=dforallac A

The receive actions and send actions commonly used for hakitlg communication of data, see
e.g. [5], can be viewed as requests to carry out some comatiorianethod and grants of such requests,
respectively. However, the current set-up requires thiatritade explicit what are the loci at which the
sender and receiver involved reside.

Performing an active actiofim@g and a passive actiong.m@Q f simultaneously is not an instance
of CCS-like communication: the prefixing efto ¢.m@ f does not make it the complementary action of
g.mQf,

The chosen forms of active actions and passive actions isguther things connected with the fact
that actions of the formg.m and~ f.m will be introduced in Section 14 to permit abstraction frdm t
loci at which processes reside if they are looked at in igmat

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 361

Table 3. Axioms offNT

O0+k=k INT1
—k+k=0 INT2
(k+)+n=k+(+n) INT3
E+l=1+k INT4
sg(0) =0 SG1
sg(1) =1 SG2
sg(—1)=-1 SG3
(

sg(k +sg(k)) = sg(k) SG4

5. Integers

In this section, we present an algebraic theory about indeghich will be used in later sections. The
presented theory is calldi\T.

INT has one sort: the so of integers To build terms of sorf, INT has the following constants
and operators:

e the constant : Z;

e the constant : Z;

¢ the binaryadditionoperator+ : Z x Z — Z;
e the unaryadditive inverseperator— : Z — Z;
e the unarysignumoperatorsg : Z — Z.

Terms of sorfZ are built as usual for a one-sorted signature. Througheupdper, we assume that there
are infinitely many variables of so#, includingk, [andn.

As usual, we use infix notation for the binary operatprand prefix notation for the unary operator
—. The following additional precedence convention is usedettuce the need for parentheses. The
operator+ binds weaker than the operater

The constants and operatorsIdfT are adopted from integer arithmetic and need no furtheragmepl
tion. The operatosg is useful where a distinction between positive integergatiee integers and zero
must be made.

The axioms ofINT are the axioms given in Table 3. Axioms INT1-INT4 are the mgoof a
commutative group. Axioms SG1-SG4 are the defining axiomg.of

The initial model ofINT is considered the standard modelSiT.

6. Interface Group for Cooperating Components

In this section, we present an algebraic theory about extedf. The presented theory is calléd: .
In Section 7, we will consider process components whichalert as pairs of an interface and a process

362 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

that is made up of active actions, passive actions, andaledtions. Interfaces are built from two kinds
of interface elements.
The set ofinterface elementsonsists of:

e for eachf,g € £ andm € M, theactive interface elementm@Qg;
e for eachf,g € £ andm € M, thepassive interface elemenif.m@Qg.

We write ZF € for the set of all interface elements.

Obviously,ZF¢€ is a proper subset 0d. The interface elements are those actions that are allcwed t
occur in interfaces. The interface part of a process comuaransists of the active and passive actions
that the process part of that process component may be eaplpérforming. Thus, the interface part
of a process component serves its intended purpose: itsailu@raction of other process components
with that process component only through the active andiymsstions occurring in it. The interface
elementsf.m@g and~g.m@Q f are considered each other inverses. That is, if both occam interface,
they cancel out.

Active interface elements are usually included in the fat® of a process component to couch that
it expects the ability to grant certain requests from thdrenment in which it is put. Passive interface
elements are usually included in the interface of a procesgonent to couch that it promises the ability
to make certain requests to the environment in which it is fite environment in which the process
component is put may be composed of different process coamp®nTo couch that it expects an ability
from a number of process components or it promises an abdity number of process components,
the relevant interface element is included the number oddiconcerned in the interface of the process
component.

In Section 7, we shall see that the choice to permit multigieuarences of interface elements fits
in very well with our intention to arrive at process compatsethat are always composable. In work on
components, it is common that components are not always asaie. This is generally caused by the
exclusion of multiple occurrences of interface elements[f). An example of the need for multiple
occurrences of interface elements in interfaces of prooasgponents is found in Section 11.

The distinction between active interface elements andymsgerface elements made here is a case
of distinction between expectations and promises becausddce elements are actions that process
components may be capable of performing. If the interfaeenehts would be actions that process
components must be capable of performing, it would be a cadistinction between requirements and
provisions.

Interfaces can be considered multisets over the set oftdlkdnterface elements in which multiplic-
ities of elements may be negative too, since occurrenceassiye interface elements in an interface can
be counted as negative occurrences of their inverses.

IFGcc has the sorZ from INT and in addition the soi of interfaces To build terms of sorl,
IFG¢c has the following constants and operators:

e theempty interfaceonstan® : I,
e for eache € ZF¢, theinterface elementonstant : I;
¢ the binaryinterface combinatiomperator+ : I x I — I

¢ the unaryinterface inversioroperator— : I — 1.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 363

To build terms of sorZ, IFG¢c has the constants and operatordf' and in addition the following
operator:

o for eachf,g € £ andm € M, the unarymultiplicity operator# ¢ ,,a, : I — Z.

Terms of the sort§ andZ are built as usual for a many-sorted signature (see e.g1@®2, Throughout
the paper, we assume that there are infinitely many variatblgsrtI, includings, j andh.

We use infix notation for the binary operaterand prefix notation for the unary operatet The
following precedence convention is used to reduce the neegdrentheses. The operater binds
weaker than the operater.

Let I and.J be closed terms of solt f,g € £, andm € M. Viewing interfaces as multisets with
multiplicities from Z, the constants and operatorsIBfG ¢ to build terms of sorl can be explained as
follows:

¢ 0isthe interface in which the multiplicity of each activeerface element i8;

f.m@yg is the interface in which the multiplicity of.m@Qg is 1 and the multiplicity of each other
active interface element i§

e ~f.m@Qyg is the interface in which the multiplicity of.m@f is —1 and the multiplicity of each
other active interface element(s

e [+ J is the interface in which the multiplicity of each activearface element is the addition of
its multiplicities inI andJ;

e —/ is the interface in which the multiplicity of each activearface element is the additive inverse
of its multiplicity in 1.

The operatorsf ¢ ,,,a,, One for eacly, g € £ andm € M, can simply be explained as follows:
® #r.mag(I) is the multiplicity of f.m@g in I.

We write) ;7 I;, whereZ = {iy,...,i,} andl;,,..., I;, areterms of sod, for I;, +... + [;
The convention is that,_; I; stands fol if Z = ().

The axioms of FG¢¢ are the axioms dfNT and the axioms given in Table 4. IFG5 and M1-M5 are
actually axiom schemas in whighandg stand for arbitrary members @gfandm stands for an arbitrary
member ofM. Axioms IFG1-IFG4 are the axioms of a commutative group atioha IFG5, called the
reflection law states that.g.m@Qf is taken as the inverse gftm@g. Axioms M1-M5 are the defining
axioms of#; .-

The initial model of[FG¢c is considered the standard modelBfzcc.

Other interface groups for cooperating components areeieaile. For example, addinig+ i = 0,
or equivalently; = —i, to the axioms ofFG¢¢ yields an interface group with torsion. This addition
means that no distinction is made between an active ineedbament and the passive interface element
that is its inverse. This is not unfamiliafFG¢cc without torsion goes with the observable actions of
CCS [17], whereas8FG ¢ with torsion goes with the events of CSP [13].

n*

364 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Table 4. Axioms off FGcc

0+i=1 IFG1
—1+1=0 IFG2
(i+j7)+h=i+(G+h) IFG3
it =g+ IFG4
fmQg+ ~g.mQf =0 IFG5
#f.mag(0) = M1
#fm@g(’m@g) 0 ff£f'Vvm#m'Vg#g M2
may(f-mQg) = 1 M3
#f.mo (—i) = #f mQg (i) M4
#tmag(i+7) = #fmag (i) + #tmag(4) M5

7. Algebra of Cooperating Components

In this section, we take up the extensionAdfP ¢ to a theory about process components. The result is
called ACC (Algebra of Cooperating Components).

Recall that active actions may be viewed as requests to oatrygome method, passive actions may
be viewed as grants of requests to carry out some method, akidgra request to carry out some method
and granting that request simultaneously may be viewedragmg out the method concerned.

Passive actions, active actions and neutral actions g@ameswith input actions, output actions and
internal actions in formalisms based on I/O automata [14]thbse formalisms, an active action, its
matching passive action, and the neutral action resulting fperforming them simultaneously are
viewed as the same action in different roles. Moreover, dioracannot have different roles in the
same component and two components are only composableéfadt action shared by them, the role of
the action is active in one and passive in the other. By vigwim action in its different roles as different
actions and using the interface group introduced in Sediome can dispose of these restrictions on
components and their compositionACC.

In the preceding sections, we have already been gone inte sbthe general ideas that underlie the
design of ACC. Those ideas, which concern the interfaces and behavidym®ocess components, can
be summarized as follows:

e behaviours of process components are processes made upekiihds of actions: active actions,
passive actions and neutral actions;

e for each active action, there is a unigue passive action wiifch it can be performed syn-
chronously, and vice versa;

e interfaces of process components consist of active and/pasdions that the process components
may be capable of performing;

¢ looked upon as an interface element, each active actiorhkgsssive action with which it can be
performed synchronously as its inverse, and vice versa;

e ininterfaces of process components, there may be elemdhtsnwltiple occurrences.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 365

The remaining general ideas concern the process compdnetitemselves:

e if aprocess is turned into a process component by addingerfidoe to it, the process is restricted
by the interface with respect to the active and passive rz&tioat it can perform to force that the
behaviour of the process component complies with its iaterf

e if two process components are composed, the interface afoiimposed process component is the
combination of the interfaces of the two process comporamisthe behaviour of the composed
process component is the parallel composition of the behawiof the two process components
restricted by the combination of the interfaces of the twacpss components.

The point of view on the composition of two process compamnémiplies that every interaction
between the composed process components amounts to pedoam active action occurring in the
interface of one and a matching passive action occurringéririterface of the other simultaneously. It
also implies that, if all occurrences of an (active or passiction in the interface of a process component
are cancelled out by composition with another process coemtothis action is blocked in the behaviour
of the composition of these process components. The blgairthe action takes place even if its
inverse is not included in the actions that make up the behawf the other process component. It is
possible that the inverse is not included because the &tesfconcern expectations and promises instead
of requirements and provisions (see also Section 6). Theiwaghich is dealt with this possibility
can be explained as follows: (i) if a promised ability to makeequest is not provided, making the
request is blocked and (ii) if an expected ability to grantguest is not required, granting the request is
blocked. Notice further that, if not all occurrences of atiaacin the interface of a process component are
cancelled out by composition with another process compottea action is not blocked in the behaviour
of the composition of these process components. A simifacefs achieved by the constraints from the
component model presented in [20].

ACC has the sorP from ACP¢, the sortsl andZ from IFG¢c, and in addition the sor€ of
componentsTo build terms of sorC, ACC has the following operators:

¢ the binarybasic componendperatorc: I x P — C;
e the binarycomponent compositiooperator]| : C x C — C.

To build terms of sorP, ACC has the constants and operator\efP o and in addition the following
operator:

e the binaryinterface compliant encapsulatimperatord : I x P — P.

To build terms of sorl, ACC has the constants and operator$iif ¢ to build terms of sorl. To build
terms of sortZ, ACC has the constants and operator§ldf ¢ to build terms of sorf.

Terms of the different sorts are built as usual for a manyesiosignature. Throughout the paper, we
assume that there are infinitely many variables of €grincludingu, v, v’ andv’.

We use infix notation for the binary operatorWe writed;(P), wherel is a term of sorl and P is
a term of sortP, for 9(1, P).

Let C andD be closed terms of so, P be a closed term of soR, andI be a closed term of sort
I. Viewing interfaces as multisets with multiplicities frdf) the operators aACC to build terms of sort
C can be explained as follows:

366 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Table 5. Axioms ofACC

c(i,r) = c(i,0;()) CC1
cliz2) | <. 9) = cli + 1.3u(@) | Ty (w) ce
SE(# .mag(i) =1 = 9;(f.mQg) = f.mQgq El
SE(# f.mag(i) =0 = 9;(f.mQg) =4 E2
Sg(# mag(i)) = —1 = 9;(f.mQg) = 6 E3
sg(#g.mas(i) = =1 = di(~f.mQg) = ~f.mQg E4
sg(#.may (i) = 0= 0i(~fmAg) =4 E5
sg(#g.mar(i) =1= 0;(~f.mQg) E6
0;(f.mQg) = f.mQg E7
9:(0) = E8
iz +y) = 9i(x) + 9i(y) E9
0i(x - y) = 0i(x) - 0:(y) E10

e c(I, P) is the process component of which the interfacé &nd the behaviour i®, except that
active actions of which the multiplicity id is not positive and passive actions with an inverse of
which the multiplicity in/ is not negative are blocked,;

e C || D, is the process component of which the interface is the coatioin of the interfaces af’
and D and the behaviour is the parallel composition of the behasiof C' and D, except that
active actions of which the multiplicity in the combinatiar the interfaces of” and D is not
positive and passive actions with an inverse of which thetipligity in the combination of the
interfaces of”' and D is not negative are blocked.

The operatop can be explained as follows:

e 0;(P) behaves the same @& except that active actions of which the multiplicity inis not
positive and passive actions with an inverse of which thetipligity in I is not negative are
blocked.

The operatop is an auxiliary operator used in the axioms concerning E®cemponents.

The axioms ofACC are the axioms oACP, the axioms ol FG¢¢, and the axioms given in Table 5.
E1-E7 are actually axiom schemas in whitland g stand for arbitrary members @ andm stands
for an arbitrary member oM. Axioms CC1 and CC2 are axioms concerning process comp®aeit
axioms E1-E10 are the defining axioms of the auxiliary opet Together they formalize the intuition
about process components given above in a direct way. Itysb@mtause they are used in axioms E1-E6
that the multiplicity operatorsf,,a, are included in the theorfiG¢c and the signum operatsg is
included in the theoryNT.

Guarded recursion can be added\t0C as it is added té CP in Section 3. We writeA\CC+REC for
ACC extended with the constants standing for the unique solsitad guarded recursive specifications
and the axioms RDP and RSP.

In Section 13, we will construct a model afCC+REC using a notion of bisimilarity for process
components.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 367

Table 6. Associativity axiom for component composition

NfgermemFpmagli+j+h) =0V

#tmag(t) =0V #s,a0,0() =0V #5may(h) =0V

Sg(#f.mag (1) = s8(# f.mag (1)) A S8(F# f.mag(F) = s&(#.mag(h))) =
(c(i,2) [[c(d, y)) I e(h, 2) = c(i,) || (c(4,9) || c(h, 2))

8. On the Associativity of Component Composition

In this section, we show that component composition is iregmot associative and couch in a special
axiom that component composition is associative when aicecbndition on its operands is fulfilled.
Let f,g € £, and letm, m’,m” € M be such thatn’ # m”, and take

Cy = c(~gmQf + gm'Qf ~gmQf - g.m'Qf)
Cy = c(f.mQg, f.mQg) ,
C3 = c(~g.mQf + gm"Qf ~g.m@Qf - gm”"Qf) .

We easily derive from the axioms &fCC that

(C][Co) || Cs =
c(gm’Qf, fmQqg-g.m'Qf) || C3 =
c(~gmQf + gm'Qf + g.m"Qf, f.mQg - gm'Qf -§) ,

CL|[(C2 | Cs) =
C1 || c(g.m”Qf, f.mQg-gm’"Qf) =
c(~gmQf + gm'Qf + gm"Qf, f.mQg - g.m"Qf -9) .

Hence, we have thdC || Co) || C5 # C1 || (C2 || C3).

The associativity axiom for component composition is giwvemable 6. It is not known to us whether
the condition in this axiom is a necessary condition for eisgivity of component composition. We
remark that the condition in this axiom is always fulfilledlife compaosition concerns components that
are composable in the sense that is found in formalisms bas&@® automata.

Below, we will sketch the justification of the associativiyiom. For that purpose, we first shortly
introduce the approximation induction principle, whictsteen introduced before in the setting\@?P.

Guarded recursion gives rise to infinite processesAGC+REC, closed terms of so® that de-
note the same infinite process cannot always be proved eguakhns of the axioms cACC+REC.

To remedy this, we can add the approximation induction gwlado ACC+REC. The approximation
induction principle,AIP in short, was first formulated in the setting ACCP in [8]. It formalized the
idea that two processes are identical if their approxinmatiop to any finite depth are identical. The
approximation up to depth of a process behaves the same as that process, except dratdt perform
any further action aften actions have been performed. Approximation up to depthphrased in terms
of the unaryprojectionoperatorr,,. For a comprehensive treatment of projections and AlP,gbder is
referred to [5].

368 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

We proceed with the justification of the associativity axigiven in Table 6. It can be proved that
all closed substitution instances of this axiom are detevfitom the axioms oACC+REC, the axioms
for the projection operators andlIP. Moreover, the mode® Acc+rec of ACC+REC that will be
constructed in Section 13 can be expanded with operatianthéoprojection operators such that the
axioms for the projection operators addP hold in the expansion. Because all elements of the sets
associated with the sor®, I andC in Bacc+rec are interpretations of closed terms, it follows that
the associativity axiom holds ® AccrEC-

9. Closed Systems and I nterfaces of Process Components

In this short section, we discuss the connection betweesedleystems and empty interfaces. The
intuition is that a system is a closed system if the actioas thake up its behaviour include neither
active actions nor passive actions.

We first shortly introduce the alphabet operator, which heenkintroduced before in the setting of
ACP.

The set of actions that can be performed by a process is dakedlphabet of the process. We can
add the unanalphabetoperatora to ACC+REC to extract the alphabet from a process. The alphabet
operator was first added toCP+REC in [3]. To deal with infinite processes, the projection opers
occur in the axioms for this operator. For a comprehensa@tnent of alphabets, the reader is referred
to [5].

Let I be a closed term of softand P be a closed term of soR. Thenc(I, P) is aclosed systerii
a(01(P)) C{fmQg | f,g € L;m € M}.

It can be proved that, for each closed tefrof sortI and closed ternP of sort P, the following
is derivable from the axioms dACC+REC, the axioms for the alphabet operator, the axioms for the
projection operators andIP:

I =0= c(I,P)is aclosed system .

It is generally undecidable whethe(I, P) is a closed system. However, it is decidable whether 0.
This illustrates the usefulness combining a process withi@nface in the way presented in this paper.

10. An Example

In this section, we illustrate the use ACC by means of an example concerning buffers with capacity
one. We assume a finite sBtof data withe € D and, for eachl € D, a method:; for communicating
datumd. We take the elemerte D for an improper datum.
We consider the three buffer procesdes B,, and B, that are defined by the guarded recursion
equations
By = Z ~5.cqQf - (g.cqQf + g.ccQf) - By ,
deD\{e}
B, = Z ~f.cqQg - (h.cq@g + h.c,Qg) - By ,
deD\{e}
By, = Z ~g.cq@Qh - (r.cy@h + r.cc@Qh) - By, ,
deD\{e}

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 369

respectively. The processék, B, and B), always reside at the lodi, g andh, respectively.B; is able
to pass data from a process residing at loctis a process residing at locys B, is able to pass data
from a process residing at locyfsto a process residing at lociis and By, is able to pass data from a
process residing at locusto a process residing at locus By, B, and B, are faulty in the sense that
they may deliver an improper datum instead of the datum tcelieetted.

We turn these three buffer processes into process comphgradding interfaces to them. To be
exact, we turn the processé¥, B,, and B, into the process componentsi/s, By), c(I,, By), and
c(1y, By,), where

Iy = Z NS.cd@f—i—Zg.cd@f,

deD\{e} deD

I, = Z ~f.cq@g + Zh.cd@g)
deD\{e} deD

I, = Z ~g.cq@h + Zr.cd@h .
deD\{e} deD

We have a look at the component compositidii;, B) || (c(Iy, By) || c({n, Br)) — which equals
(c(If,By) || (14, By)) || c(In, Bp,) by the associativity axiom for component composition. ltdiws
from axioms CC1 and CC2 that

c(Ly, By) Il (c(Lg, By) |l (In; Br)) - -
= c(Iy + Ig + In; O1,41,+1, 01, (By) || 01,41, (01, (By) || 01, (Bn)))) -

Moreover, it follows from axioms IFG1-IFG5 that

It +1,+ 1) = Z ~S.cqQf + g.cc@Qf + h.ccQg + Zr.cd@h
deD\{e} deD

and from axioms INT1-INT4, SG1-SG4, IFG5, M1-M5, E1-E1Q RSP that

51f+1g_+1h (01, (By) | 91,41, (81,(Bg) || 91, (Bn)))
= Orp41,+1,(By || By || Bn) -

Hence, we have by axiom CC1 that

c(Iy, By) || (g, By) || ¢(n, Br))

=c Z ~S.cqQf + g.ccQf + h.ccQg + Zr.cd@h,Bf | By || Bh> .
deD\{e} deD

It can further be shown by means of the axiomsA&fP+REC that the behaviour of(/¢, By) ||
(c(1g4,By) || <(In, By)) is essentially a buffer with capacity three. This bufferqass, which resides
alternately at the locff, ¢ andh, is able to pass data from a process residing at laciesa process
residing at locug. It is faulty in the sense that it may deliver an improper datostead of the datum to
be delivered. Moreover, the improper datum may be delivateéde locus; or the locush instead of the
locusr.

370 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

The process component!;, By) || (c({y, By) || ¢(Ix, By)) does not have an empty interface. It
follows from axioms IFG1-IFG5 that composing it with a pres&€omponent whose interface is

Z fcq@s + ~f.ccQg + ~g.cc@Qh + ZNh.cd@r
deD\{e} deD

would result in an empty interface. This shows that an empiigriace requires composition with a
process component that promises to handle the delivery iofijproper datum at the logj, h andr.

11. Another Example

In this section, we illustrate the use AlCC by means of an example in which a single buffer with
capacity one is used to pass data between three componentssiime a finite s@t of data, a function
F:D — D and, for eachl € D, a methode; for communicating daturd. We also assume methods
way, was, was, sli, sl andslg for controlling the cooperation of the three components share the
buffer.

We consider the processés, P, and P that are defined by the guarded recursion equations

Py = ~haway@Qf Y ~s.cg@f - g.cg@Qf - ~hosli@Qf - Py

deD

Py = ~hwas@f - Y ~g.cqQf - g.cpa)@f - ~h.sl,Qf - Py,
deD

Py = ~hwaz@f - Y ~g.cqQf - 1.cq@f - ~h.sl3Qf - Py,
deD

respectively. All three processes always reside at Igcug is able to pass data from a process residing
at locuss to a process residing at locys P, is able to apply an operation to data hold by a process
residing at locug, andP; is able to pass data from a process residing at lgdosa process residing at
locusr. The processeB;, P, and P; are called the entry process, the main process and the ege$s,
respectively. We also consider the buffer proc&sand the control procesS defined by the guarded
recursion equations

B = ZNf.cd@g - f.cg@g - B,
deD

C= Zf.wal@h - f.sliQh - fowao@h - foslo@h - fiwas@h - f.sls@Qh - C
deD

respectively. The process&sandC always reside at the logiandh, respectively.B is able to pass data
from a process residing at locyigo a process residing at locisandC is able to control the cooperation
of three processes residing at logusuch that they take turns in doing a number of steps.

We turn all these processes into process components bycadderfaces to them. To be exact,
we turn Py, P», P3, B andC' into the process component§ly, P;), c(I2, P»), c(I3, P3), c(J, B) and

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 371

c(H,C), where

I =) (~5.04Qf + g.cgQf) + ~h.war @ f + ~h.shQf
L = def(fvg'ccz@f +9.cqQf) + ~h.was@Qf + ~h.sl,@Qf |
I3 = deZD(Ng.cd@f +71.cqQf) + ~howazQf + ~h.slz3Qf |
deD
J = eZ(Nf.cd@g + ~f.cq@Qg + f.cg@Qg + f.cqQg) ,
H= j"e.zpual@h + fiwas@h + f.waz@h + f.sl1@Qh + f.slo@h + f.sl3@h .

Notice thatg.c;@Q f occurs once in botli; and I, and~g.c;@Q f occurs once in botl, and I3, whereas
their inverses occur twice if.

We have a look at(Iy, P1) || (c(I2,) || (c(I3, P3) || (c(J,B) || c(H,C)))). It follows from the
axioms of ACC+REC that

(I, Pr) || (c(Iz, Bo) || (eI, B5) || (c(J, B) || <(H, C))))

= C<Z(~8.Cd@f +r.cqQf), P | Py || Ps || B c) .

deD

This would not be case ¥ f.c,@Qg and f.c;@Qg would occur only once iy. The behaviour of(I, P;) ||
(c(I2, P) || (c(I3, P3) || (c(J, B) || c(H,C)))) is essentially a process that is able to receive data from
a process residing at locysapply ' to the received data, and send the results to a processngsiti
locusr. Each cycle of the process is accomplished as follows: Fysteceives a datum and puts it in
buffer B, then P, gets the datum from buffeB, appliesF to it and put the result back in buffdé?, and
finally P; gets the result from buffeB and sends the resulf controls thatP;, P, and P; do not start
their part of the cycle prematurely.

12. Bisimilarity of Process Components

In this section, we give a structural operational sematicA CC+REC and define a notion of bisimilar-
ity based on it. This notion of bisimilarity will be used in&m®n 13 to construct a model sfCC+REC.
Henceforth, we will writeZg, whereS € {P, I, C}, for the set of all closed terms of s&#tfrom the
language oACC+REC. Moreover, we will writeZ,;"" for the set of all closed terms of sd¢ftfrom the
language oINT.
The following relations are the primary relations used ia 8tructural operational semantics of
ACC+REC:

e aunary relation®, ,/ C 7p, for eacha € A;
e abinary relation, C Tp x Tp, for eacha € A;
e aunary relationf.m@Qge=" C 71, for eachf,g € £, m € M andN € T}NT;

e a binary relatiorhaslF C 7¢ x Ty;

372 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

e aunary relation®, / C 7¢, for eacha € A;
e a binary relation=. C 7¢ x 7c, for eacha € A.

We write P %, \/ instead ofP € %/, P %, P’ instead of(P, P') ¢ %,, f.m@Qg =% I instead of
I € fm@Qge", C haslIF I instead of(C, I) € haslF, C %,/ instead ofC ¢ %../, andC 2. C’
instead of(C, C") € %.. The relations can be explained as follows:

e P % ./ processP is capable of first performing and then terminating successfully;
e P % P’ processP is capable of first performing and then proceeding as proce3s

f-m@Qg =V I: f.mQg occursN times in interfacd;

C haslF I: the interface of componedt is I;
e C' % /. componenC is capable of first performing and then terminating successfully;
e C' 5. C': component is capable of first performing and then proceeding as componéfit

The following relations are auxiliary relations used in #teictural operational semantics A€C+
REC:

e aunary relationf.m@Qge=" C Ty, for eachf,g € £ andm € M;
e aunary relationf.mQge— C 7y, for eachf,g € £ andm € M,;
e aunary relationf.mQge="IF C 7¢, for eachf, g € £ andm € M,
e aunary relationf. mQge~ IF C 7¢, for eachf, g € £ andm € M.

We write f.mQg =T I and f.mQg =~ I instead ofl € f. mQg=" andI € f.mQgE=", respectively.
We write f.m@Qg 1 IF(C) andf.m@Qg £~ IF(C) instead ofC' € f.mQgEeTIFandC € f.mQge"IF,
respectively. The relations can be explained as follows:

e f.m@Qg =T I: f.mQg occurs a positive number of times in interfake
e f.mQg E" I: f.mQg occurs a negative number of times in interfdce
e f.m@Qg =TIF(C): f.mQg occurs a positive number of times in the interface of compbte
e f.m@Qg e~ IF(C): f.mQg occurs a negative number of times in the interface of compiofie

The auxiliary relations are for convenience only.
The structural operational semanticsAdf C+REC is described by the rules given in Tables 7 and 8.

The following uniqueness property of the relatiohsn@Qg =V will be used in Section 13 to con-
struct a model oACC+REC.

Lemmal2.l. Letf,g € £Landm € M. Then for alll € Ty, there exists atv € 7" such that for all
N’ € TNT with f.m@g =" T we have thaiV = N’ holds in the initial model ofNT.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 373

Table 7. Rules for operational semanticsA@fP+REC

a5/

a a a ! a /
T =/ Y=y T =T Y=Y

/

Ty Sy Ty Y ety zhy Sy

Y=y

ellyy zllyz zllyally zllyz|y

b b
mﬂ)p\/,y—q,\/ mﬂ)p\/vy_)py/
—————alb=c ———————alb=c

zlly =/ vy =y
mﬂ)px/: yi)p\/ xi)pmlv yi)py/
—a|b:c —a|b=c
zlly =’ wlly =y

x5,/ x5,z

zllyy zly=ay

a b a b
R VA TRV m_)p\/vy_)py/
—Ca|b:c —C/a|b:c
zy =y Ty =y
R N T r=a,y =y
. alb=c . alb=c
Ty = zly = 2|y
xS,/ x5, 2
IV gm T g
On(x) =%/ Ou(z) =, On(z')
(tx|E) 2, (tx|E) 2, o'
| >ap\/X:t E | —— X=1ix€E
(XIE) =/ (X|E) = =
Praoof:
Straightforward, by induction on the structurelof O

A bisimulation B is a triple of symmetric binary relationBp C 7p x 7Tp, By C 71 x 71, and
Bec C 7¢ x 1¢ such that:

e if Bp(P1,) andP; %, ./, thenP, %, \/,
o if Bp(P;, P,) andP; =, P}, then there exists &, € 7p such that?, =, P, andBp (P}, P});

o if Bi(I1,I2) and f.m@g =M1 I3, then there exists aV, € TJNT such thatf.m@g =72 I, and
N1 = No;

e if Bc(Cq,C2) andC haslF Iy, then there exists aly € 71 such thatCy haslF 1> and By ([, I2);

374 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Table 8. Additional rules for operational semantics\6fC+REC

- —— [#F [Vm#EmM Vg £
fmQgE" fmQg fmQgEe" f.m'Qg

f#Fvm#EM vVg#g

fm@Qg "t vgm@f fm@Qge°~g . maf
f.m@g =F i fm@g =i, fmQg ! j

fmage’0 fmageF—i fm@geFtt i+ 4

u haslF i, v haslF j

c(i,z) haslFi wl|vhaslFi+j
fm@geri, sg(k)=1 fmQge*i,sgk)=—1
fm@geti fmQgE" 1

whaslF i, fmQgE"14 whaslFi, fmQg="1

f-m@g T IF(u) fm@Qg =7 IF(u)
w Lm0 fmQgEt i xS gmafET i o ZTRL Y
c(i, x) ——af'M@gc c(i,x) —>me©gc\/ c(i,) —>f'mggC
xwpx',f.m@gE+i xum gmQf =" 1 mwpm/
c(i,) fm, c(i,a’) c(i, x) ~fmBs, c(i,z’) c(i,) fm@s, c(i,z’)
u Lm0, v, fmQgETIF(u||v) u —)men@gc\/7 gmQf E7IF(u | v) —>f'm@gc\/
f-mQg ~f.mQg f-mQg
ullv E25% v ullv e ullv—=v
v £mes, v, fmQgETIF(u|v) v —)men@gc\/7 gmQf E7IF(u | v) v —>f'm@gc
f-mQg ~f.mQg f.mQg
ullv—=cu ullv ——=cu ullv —=u
f.-mQg + ~fm@Qg — fmQg
u—>u, fmQgETIF(u||v) uv—" v, gmQf E"IF(ulv) U= u
fmag ~f.mQg f.-mQg
ullv=—=cu||v e % ullv—=cu[|v
v —>f‘m@gc v, fmQgETIF(ul|v) v —>Nf‘m@'qC v, gmQf E7IF(u || v) —>f‘m@‘qc !
f-mQg ’ ~f.mQg ’ f.mQg /
ullv =—=cullv ullv =" u v ullv —=culv
U =/, UV =%/ U e/, V= v
alb=c alb=c
ullv—=cy/ ul|v—=cw
uﬂcu',vﬁc\/ u o, v
— alb=¢c ———alb=c
ull v ullv S ||
T = fm@qp\/ fm@QgeTi =« —>~f‘m@gp\/ gmQf E" 1 T ——af‘m@gp\/
= @ = @ = Q
Bi(w) L%,y Bilw) “Lm20, Bilw) Lm0,
——%f mQag ', fmQgeE"i =z —>me©gp 2, gmQAQf =" 1 T A——%f‘m@gp x

fmQg =

Bi(x) L% Bi(a') Bi(x) 21 B2’y Bi(e) LR, Bi(a)

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 375

e if Bc(Cy,Cy) andCy 2./, thenCy 5./,
e if Bc(Cy,Cy) andCy %, CY, then there exists @, € 7¢ such thatCy, %, C5 and Bc(Cf, C5).

Let S € {P,I,C}, and lett;,t2 € 75. Thent; andt, arebisimilar, writtent;, < to, if there exists a
bisimulation B such thatBg (1, t2).

The following congruence property of bisimilarity will besed in Section 13 to construct a model of
ACC+REC.

Theorem 12.1. (Congruence)
Bisimilarity is a congruence with respect to the operatdrda 6C+REC to build terms of sorP, I or
C.

Proof:

In the terminology of [16],Z is a given sort and the relationgm@g=", one for eachV € 7 N7,
constitute a relation parametrized by closed terms of thie %0 BecauseZ is a given sort, we can
safely identify closed terms of soz that are semantically equivalent and replace the third gatgpof
bisimulations given above to:

o if BI(Ila _[2) and f.mQgq =2 I, thenf.m@Qygqg =R L.

Because the relationg m@ge" constitute a relation parametrized by closed terms of angaat,
we can safely replace the rules for the operational sensantith the conclusiong.m@g =* i and
f-m@Qg £~ i by the rules

f.mag =N fom@g =N
——sg(N)=1 and —— sg(N)=-1,
fmQge* fmQg e~ i

where N stands for an arbitrary closed term fraf™". By these replacements, bisimilarity becomes
an instance of bisimilarity by the definition given in [16]dathe rules for the operational semantics of
ACC+REC become a complete transition system specification in pamthdt by the definitions given
in [16]. Hence, it follows by Theorem 4 from [16] that bisimuilty is a congruence with respect to all
operators oACC+REC to build terms of sorP, I or C. O

13. A Bisimulation Modd of ACC+REC

In this section, we construct a model€C+REC using the notion of bisimilarity defined in Section 12.
It is @ model in which all processes are finitely branching, they have at any stage only finitely many
alternatives to proceed.

Henceforth, we will writeJynT for the initial model ofINT, andZ for the set associated with the
sortZin Jinr.

Thebisimulation modefB occ1rec is the expansion diix, the initial model ofINT, with

e for each sortS € {P,I, C}, the setlg/<;

376 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

e for each constand, : S of ACC+REC with S € {P,I, C}, the element, € 75/ defined by
Qo = [OO]ﬁ;

o for each operatof, : S — S’ of ACC+REC with S, 5" € {P,I, C}, the operatior), : 7s /< —
Tg /= defined by, ([t].=) = [01(t)];

e for each operatof, : S x S’ — S” of ACC+REC with 5,5, 5" € {P,I,C}, the operation
0y 1 T/ x Ter [— Tgn [« defined byO, ([t1], [t2]o) = [O2(t1, t2)]o;

o foreach operatof ; ,,a,:I — Zwith f, g € Landm € M, the operatiorﬁf.m@g:?i/i — Zde-

fined byﬁf.m@g([l]ﬁ) is the unique interpretation M of all N € 7" for which f.m@g £V
1.

The well-definedness of the operations associated withpgkeators ofACC+REC in B acc+REC
follows immediately from Theorem 12.1, except for the ofierss associated with the operatg#s ,,,q ;-
The well-definedness of the operations associated with peeators#;,,,a, in Bacc+rec follows
immediately from Lemma 12.1 and the definition of bisimiari

We have the following soundness result.

Theorem 13.1. (Soundness)
LetS € {Z,P,I,C} and lett, ¢’ € Tg. Thent = t’ is derivable from the axioms df CC+REC only if
t = t' holds iINBACC+REC-

Proof:

It is sufficient to prove the soundness of each axiom separadd@causeB ccirec IS an expansion
of Jin, it is not necessary to prove the soundness of the axionidl'df For each of the remaining
axioms except M1-M5, soundness is easily proved by constgua witnessing bisimulation (for the
witnessing bisimulations for the axioms ACP+REC, see e.g. [4]). What remains are the proofs for
axioms M1-M5. The soundness of these axioms follow immebjidtom the definition ofﬁéf.m@g and
the rules of the operational semantics.

We have a completeness result in the case where only finitegtiaecursive specifications are used
in which the right-hand sides of the equations are lindanearity of terms of sortP is inductively
defined as follows:

e Jislinear;

e if a € A, thenais linear;

e if a € AandX is avariable, them - X is linear;
e if t andt’ are linear, then + ¢’ is linear.

A linear recursive specificatioover ACP is a guarded recursive specificati¢X = tx | X € V}
over ACP in which eachtx is linear. We writefTSﬁi“, whereS € {Z, P, 1, C}, for the set of all closed
terms of sortS from the language cACC+REC with the constants for solutions of guarded recursive
specifications restricted to the ones for solutions of filiitear recursive specifications.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 377

Theorem 13.2. (Completeness)
LetS € {Z,P,I,C}, and lett,t' € T8, Thent = ¢ is derivable from the axioms ofCC+REC if
t = t' holds in®B accirEC-

Proof:
PBacc+rEC IS an expansion of the initial model 8NT and, for eachS € {P,I,C} andt,t’ € 7Tg,
t = t' holds inBacctruc iff ¢ < /. Therefore, it is sufficient to prove that, for eashe {P,I,C}
andt,t’ € Tn, ¢ = ¢ is derivable from the axioms ofCC+REC if ¢ <> ¢'. We will only give a brief
outline of the proof.

Assume that the axioms &FG¢c, the axioms ofACP+REC, and the axioms oACC+REC have
the following properties:

1. foreacht € Tgm from the language cACC+REC, there exist &' € Tlﬁi“ from the language of
IFGcc and at” € T4 from the language cACP+REC such that = (', ") is derivable from
the axioms ofACC+REC,;

2. foreachS € {P,I,C} andt,t’ € Tsﬂm from the language dACC+REC, t = t’ is derivable from
the axioms ofACC+REC only if t = ¢/;

3. for eacht’,s' € 7" from the language ofFGcc andt”,s” € T8™ from the language of
ACP+REC, (', t") < (s, s") only if ¢ = &' andt” & s";

4. for eacht,t’ € Tlﬁin from the language dfFG¢c, t = t' is derivable from the axioms aF G
if t &¢;

5. for eacht,t’ € Tﬁm from the language oACP+REC, ¢ = ¢ is derivable from the axioms of
ACP+RECif t =t

Then, for eactt € {P,I,C} andt,t € 7" from the language cACC+REC, t = ¢’ is derivable from
the axioms ofACC+REC if ¢t & ¢/

Hence, in order to prove the theorem, properties 1 to 5 habe foroved yet. It is straightforward
to prove property 1, and property 2 is a corollary of Theoréd 10wing to operational conservativity,
which is easily proved using Theorem 8 from [16], both bi&mily as induced by the rules for the
operational semantics with regard to the terms from thedagg of[FG¢c and bisimilarity as induced
by the rules for the operational semantics with regard toté¢heas from the language dfCP+REC
agree with bisimilarity as induced by the rules for the operal semantics with regard to the terms
from the language cACC+REC. Using this and known results such as Theorem 4.4.1 from [tLi§]
straightforward to prove property 3, 4 and 5. O

14. Localized Processes

If processes are looked at in isolation, it is convenientlistract from the loci at which they reside.
This brings us to consider processes made up of actions dbtires f.m and~f.m. These processes
are called localized processes. In this section, we extgn@ with localized processes. The resulting
theory is calledACC;,.

This is a variation of Theorem 4.12 from [1].

378 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Henceforth, actions frord will also be called non-localized actions, and processedemg of
actions fromA will also be called non-localized processes.

In ACCy;,, we have, in addition to the sgt of non-localized actions, the sétA of localized actions
consisting of:

e for eachf € £ andm € M, theactive localized actiorf.m;
e for eachf € £ andm € M, thepassive localized actionf.m.
Intuitively, these localized actions can be explained devis:

e f.m is the action by which a localized process requests a praesiting at locus to carry out
methodm;

e ~f.misthe action by which a localized process grants a requespofcess residing at locysto
carry out methodn.

It is not possible to perform localized actions synchrohpus

Different from ACC, ACC;, has two sorts of processes. ThatA€;C,, has the sort€, P, I and
Z from ACC, and in addition the soi.P of localized processesTo build terms of sorC, ACC,;,, has
the constants and operators A€ C to build terms of sorC. To build terms of sorP, ACC,, has the
constants and operators A€ C to build terms of sorP and in addition the following operators:

o for eachf < £, the unaryplacemenbperator@Q; : LP — P.
To build terms of sorLLP, ACC;;, has the following constants and operators:
e thedeadlockconstan® : LP;

for eacha € LA, thelocalized actiorconstani : LP;

the binaryalternative compositiomperator+ : LP x LP — LP;

the binarysequential compositiooperator- : LP x LP — LP;

the binaryparallel compositioroperator]| : LP x LP — LP;

the binaryleft mergeoperator| : LP x LP — LP;

for eachH C A, the unaryencapsulatioroperatordy; : LP — LP.

To build terms of sor, ACC, has the constants and operator\@fC to build terms of sorI. To build
terms of sorZ, ACC;, has the constants and operators\6fC to build terms of sor.

Terms of the different sorts are built as usual for a manyesiosignature. We assume that there are
infinitely many variables of so.P, includingr, s, " ands’.

The constants and operators to build terms of E@tneed no further explanation. They differ from
the constants and operators to build terms of Boim that: (i) the (non-localized) action constants are
replaced by the localized action constants and (ii) the comeation merge operatois removed.

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 379

Table 9. Axioms for placement of localized processes

@f(é) =4 P1

Qf(g.m) = g.mQf P2
Qf(~g.m) —~gm@f P3
Qp(r+s) = Qf(r) + Qp(s) P4
Qp(r-s) =Qp(r) - Qp(s) Pb

Table 10. Axiom for parallel composition of localized preses

rlls=r|s+s|[r Ml

Let L be a closed term of soltP. Intuitively, the operators: ; can be explained as follows:

e Q/(L) behaves a% with each actiory.m replaced byy.m@f and each actiorg.m replaced by
~g.mQf,

In other words @ turns localized processes into non-localized processgdaloing them as a whole in
locusf.

The axioms ofACC,, are the axioms oACC, the axioms given in Tables 9 and 10, and copies of
axioms A1-A7, CM2-CM4 and D1-D4 from Table 1 withy andz replaced by different variables of
sortLP, a standing for an arbitrary constant of s&/P and H standing for an arbitrary subset 6fA.
Axioms P1-P5 are the defining axioms@f. Axiom M1 replaces axiom CM1. The latter axiom is not
suited for the localized case because it is not possiblerfonpe localized actions synchronously.

Guarded recursion can be added\0Cy, as itis added t&.CP in Section 3. We writeACC;,+REC
for ACCy,, extended with the constants standing for the unique solsitodd guarded recursive specifica-
tions and the axioms RDP and RSP.

As an example of a localized process, we give the localizéfédyprocessB’ defined by the guarded
recursion equation

B = wa.cd . f.Cd -B'".

deD

If g andh are different loci, then the processeg(B’) and@,(B’) reside at different loci, but apart
from that they are the same. The connection betweeand the buffer procesB defined in Section 11
is couched in the equatioB = @,(B’), which is derivable from the axioms ¢fCC;,+REC. The
placement operators are primarily useful in cases whegesbof the same process coexist at different
loci. However, they are also useful otherwise to obtain nterse descriptions of processes. Much more
complicated processes than buffers with capacity one a@etkto illustrate this.

In the structural operational semanticsAof C,,+REC, the following relations are used in addition
to the ones used in the structural operational semantid<C6+REC:

e aunary relation®, / C 7pp, for eacha € LA,;

e abinary relation®,, C Tpp x 7Lp, for eacha € LA.

380 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

Table 11. Additional rules for operational semantic\6fCy,

/

g.m ~g.m g.m ~g.m ’
=y Ty T r o T

.mQ ~g.mQ@ .mQ ~g.mQ
Qp(r) LM @p(r) 2L @p(r) L @) @p(r) SR @y(r)

We write L %, |/ instead ofL € %,/ andL %, L' instead of(L, ') € %,. The relations can be
explained as follows:

e L %,/ localized procesg is capable of first performing and then terminating successfully;

e L %, L' localized process is capable of first performing and then proceeding as localized
processP’.

The structural operational semanticsA€C,,+REC is described by the rules for the operational
semantics oACC+REC, the rules given in Table 11, and copies of the rules withioetside-condition
a|b = cfrom Table 7 with%, \/ and-%, replaced by%,, / and-%,,, respectivelyz, 2, y andy’ replaced
by different variables of soil. P, a standing for an arbitrary constant of sé/P and H standing for an
arbitrary subset of A.

Constructing a bisimulation model &fCC,,+REC can be done on the same lines as constructing a
bisimulation model oACC+REC.

15. Conclusions

In this paper, we have built on earlier work &CP and earlier work on interface groupd&CP was
first presented in [7] and interface groups were proposeél]infj/e have introduced an interface group
for process components and have presented a theory abagisproomponents of which that interface
group forms part. The presented theory is a developmentpoftd CP. We have illustrated the use
of the theory by means of examples, and have given a bisifanlaemantics for process components
which justifies the axioms of the theory.

Two interesting properties of the interface group for pesceomponents introduced in this paper
are: (i) the interface combination operatpris not idempotent and (ii) for each g € £ andm € M,
the interface element constantsn@g and~g.m@jf are each other inverses. Property (i) allows for
expressing that a process component expects from a numperoglss components an ability or promises
a number of process components an ability. Property (igwall for establishing on the basis of its
interface that a process component composed of other groocegponents is a closed system.

The distinction between active interface elements andyesgerface elements made in this paper
corresponds to the distinction between import servicesexpdrt services made in [18]. Adaptations
of module algebra [6] that allow for this kind of distincti@me investigated in [10]. However, interface
groups are not considered in those investigations. Presessconsidered iiCP have been combined
with interfaces before inCRL [12] and PSF [15], two tool-supported formalisms for tlescription and
analysis of processes with data. Howevery{®RL and PSF, interfaces serve for determining whether
descriptions of processes are well-formed only.

The intended purpose of the interface of a process compasémat it allows interaction of other
process components with that process component only thréiwed actions. For that reason, we de-

J.A. Bergstra and C.A. Middelburg/ An Interface Group foo&ss Components 381

liberately refrained from including behavioural inforriwett in component interfaces. In recent work on
components whose behaviours are similar to the behaviamsidered in process algebra, behavioural
information is included in component interfaces. The mosl-known representative of a formalism
for such rich interfaces is the formalism of interface awter|{2]. In interface automata, the purpose of
the behavioural information is to decide, given the integfaof two components, whether there exists
an environment in which the composition of those componentsee of deadlock. In the case of the
behaviours considered in the theory developed in this p#emake no sense because it would require
the inclusion of a complete description of the behaviour pfacess component in its interface.

Several issues on which much work on component-based diggigsses, such as compatibility and
refinement between components, have not been considet@d paper. An interesting option for future
work is to investigate those issues in the setting presdnttds paper. We expect that the technique to
make use of redundancy in a context introduced in the setfidg"P in [21] can be useful for checking
whether two components are compatible. We expect that amsirin of the theory developed in this
paper with abstraction, in a way similar to the extensiorAGfP with abstraction in [5], is needed
for verifying whether one component refines another compbn&he extension in question makes it
possible to make use of the algebraic verification techrsidbet exist forACP with abstraction.

Acknowledgements

We thank two anonymous referees for suggesting improvesyadrihe presentation of the paper.

References

[1] Aceto, L., Fokkink, W. J., Verhoef, C.: Structural Opgomal Semantics, inHandbook of Process Algebra
(J. A. Bergstra, A. Ponse, S. A. Smolka, Eds.), Elsevier, téndem, 2001, 197-292.

[2] de Alfaro, L., Henzinger, T. A.: Interface Automate SEC/FSE 2001ACM Press, 2001, 109-120.

[3] Baeten, J. C. M., Bergstra, J. A., Klop, J. W.: ConditibAgzioms and«/-Calculus in Process Algebra,
Formal Description of Programming Concepts (M. Wirsing, Ed.), North-Holland, 1987, 53-75.

[4] Baeten, J. C. M., Verhoef, C.. Concrete Process Algelira, Handbook of Logic in Computer Science
(S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, Eds.), vol. I%f@d University Press, Oxford, 1995,
149-268.

[5] Baeten, J. C. M., Weijland, W. PProcess Algebravol. 18 of Cambridge Tracts in Theoretical Computer
Science Cambridge University Press, Cambridge, 1990.

[6] Bergstra, J. A., Heering, J., Klint, P.: Module Algebdmurnal of the ACM37(2), 1990, 335-372.

[7] Bergstra, J. A., Klop, J. W.: Process Algebra for Syncimes Communicationnformation and Contral
60(1-3), 1984, 109-137.

[8] Bergstra, J. A., Klop, J. W.: Process Algebra: Speciftcatand Verification in Bisimulation Semantics,
Proceedings Mathematics and Computer Sciend@ll Hazewinkel, J. K. Lenstra, L. G. L. T. Meertens,
Eds.), 4, North-Holland, 1986, 61-94.

[9] Bergstra, J. A., Ponse, A.Interface Groups and Financial Transfer ArchitecturesElectronic Re-
port PRG0702, Programming Research Group, University osténdam, May 2007, Available from
http://www.science.uva.nl/research/prog/publications.html.

382 J.A. Bergstra and C.A. Middelburg / An Interface Group foo&ss Components

[10] Feijs, L. M. G., Qian, Y.: Component Algebr&cience of Computer Programmiri, 2002, 173-228.

[11] Fokkink, W. J.:Introduction to Process Algebydexts in Theoretical Computer Science, An EATCS Series,
Springer-Verlag, Berlin, 2000.

[12] Groote, J. F., Ponse, A.: The Syntax and SemantigsGiL, Algebra of Communicating Processes 1994
(A. Ponse, C. Verhoef, S. F. M. van Vlijmen, Eds.), Workshimp&omputing Series, Springer-Verlag, 1995,
26-62.

[13] Hoare, C. A. R.Communicating Sequential ProcessBsentice-Hall, Englewood Cliffs, 1985.

[14] Lynch, N., Tuttle, M.: Hierarchical Correctness Prodér Distributed Algorithms,Proceedings 6th ACM
Symposium on Principles of Distributed ComputiAGM Press, 1987, 137-151.

[15] Mauw, S., Veltink, G. J.: A Process Specification Forisral Fundamenta Informaticad.3(2), 1990, 85—
139.

[16] Middelburg, C. A.: An Alternative Formulation of Opeianal Conservativity with Binding Terms]ournal
of Logic and Algebraic Programming5(1-2), 2003, 1-19.

[17] Milner, R.: Communication and Concurrencirentice-Hall, Englewood Cliffs, 1989.

[18] Panhl, C.: An Ontology for Software Component MatchingASE 2003M. Pezze, Ed.), 2621, Springer-
Verlag, 2003, 6-21.

[19] Sannella, D., Tarlecki, A.: Algebraic Preliminariesn: Algebraic Foundations of Systems Specification
(E. Astesiano, H.-J. Kreowski, B. Krieg-Briickner, EdSpringer-Verlag, Berlin, 1999, 13-30.

[20] Scheben, U.: Hierarchical Composition of Industriah@onentsScience of Computer Programmirig(1—
2), 2005, 117-139.

[21] Vaandrager, F. W.: Some Observations on Redundancydardext, in: Applications of Process Algebra
(J. C. M. Baeten, Ed.), vol. 17 @ambridge Tracts in Theoretical Computer Scieneambridge University
Press, Cambridge, 1990, 237-260.

[22] Wirsing, M.: Algebraic Specification, itdandbook of Theoretical Computer Scielidevan Leeuwen, Ed.),
vol. B, Elsevier, Amsterdam, 1990, 675—788.

