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NOTES AND PROBLEMS

MIXED NORMAL INFERENCE
ON MULTICOINTEGRATION

H. PETER BOSWIJK
University of Amsterdam

Asymptotic likelihood analysis of cointegration in I (2) models (see Johansen, 1997,
2006; Boswijk, 2000; Paruolo, 2000) has shown that inference on most parame-
ters is mixed normal, implying hypothesis test statistics with an asymptotic χ2 null
distribution. The asymptotic distribution of the multicointegration parameter estima-
tor so far has been characterized by a Brownian motion functional, which has been
conjectured to have a mixed normal distribution, based on simulations. The present
note proves this conjecture.

1. INTRODUCTION

The notion of multicointegration was introduced by Granger (1986) and Granger
and Lee (1990). Although originally developed for processes integrated of order
1 (I (1)), it has subsequently become clear that the phenomenon occurs naturally
in I (2) cointegrated vector autoregressive (VAR) models (see Johansen, 1992;
Engsted and Johansen, 1999). With {Xt }t≥1 a p-vector time series process, the
I (2) VAR model of order k is expressed as

�2 Xt = αβ ′ Xt−1 +��Xt−1 +
k−2

∑
j=1

�j�
2 Xt− j + εt , (1)

ᾱ⊥α′⊥�β⊥β̄ ′⊥ = α1β
′
1, (2)

where {εt }t≥1 is assumed to be an independent and identically distributed (i.i.d.)
N (0,	) sequence, and where α and β are p × r matrices (0 ≤ r < p), α1 and β1
are p × s matrices (0 ≤ s < p − r ), and �, {�j }k−2

j=1 and 	 are p × p matrices,
with 	 positive definite. (For an n × m matrix A of rank m < n, A⊥ denotes an
n × (n − m) matrix of rank n − m satisfying A′⊥ A = 0; and Ā = A(A′ A)−1, so
that Ā′ A = Im .) The model can be extended to include deterministic components
such as a constant and trend (see Rahbek, Kongsted, and Jørgensen, 1999) without
qualitatively affecting the results to follow.
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Paruolo and Rahbek (1999) show that the I (2) restriction (2) implies

� = αδβ ′
2 + ζ1β

′ + ζ2β
′
1,

where δ = ᾱ′�β̄2, β2 = (β,β1)⊥, ζ1 = �β̄, and ζ2 = �β̄1. Therefore, the model
(1) under this restriction becomes

�2 Xt = α(β ′ Xt−1 + δβ ′
2�Xt−1)+ ζ1β

′�Xt−1 + ζ2β
′
1�Xt−1

+
k−2

∑
j=1

�j�
2 Xt− j + εt . (3)

In this model, (β,β1)
′ Xt are I (1) linear combinations of the I (2) process Xt ,

and β ′ Xt further cointegrates with the I (1) process β ′
2�Xt to the I (0) linear

combinations

β ′ Xt + δβ ′
2�Xt = (β +β2δ

′�)′ Xt . (4)

This phenomenon is known as multicointegration, and also as polynomial coin-
tegration, because the right-hand-side expression in (4) is a first-order matrix
lag polynomial operating on Xt . Various alternative parametrizations of the I (2)
model have been proposed in the literature (see Johansen, 1997; Boswijk, 2000;
Mosconi and Paruolo, 2010). However, they do not affect inference on the multi-
cointegration parameter δ, which is the subject of this note.

Asymptotic likelihood-based inference on the parameters of (3) was studied by
Johansen (1997, 2006), Boswijk (2000), and Paruolo (2000). They showed that
under suitable identifying restrictions, the asymptotic distributions of the max-
imum likelihood estimators β̂ and β̂1 are scale mixtures of normals, where the
random scaling matrix is the distributional limit of the inverse observed informa-
tion matrix. This implies that likelihood ratio test statistics for smooth hypotheses
on β and β1 have an asymptotic χ2 null distribution, at least under particular con-
ditions on the hypotheses, derived by Boswijk (2000) and Johansen (2006). The
asymptotic distribution of the multicointegration parameter estimator δ̂, however,
at first sight does not appear to be mixed normal. It can be written as the distribu-
tion of the sum of two mixed normal random variables, but there is no common
conditioning set such that both are conditionally normally distributed, which com-
plicates deriving a valid inference procedure for δ. Yet, as noted by Paruolo (1995)
and Johansen (2006), Monte Carlo simulation of the Brownian motion function-
als that characterize the asymptotic distribution of δ̂ strongly suggests that δ̂ is
in fact asymptotically mixed normal. The present note provides a proof of this
conjecture, implying that likelihood-based inference on multicointegration can be
conducted using χ2 critical values.

The outline of the remainder of this note is as follows: Section 2 summarizes
the asymptotic distributions of β̂, β̂1, and δ̂, as obtained by Johansen (1997,
2006) and Paruolo (2000) (and in a mixture of their notation). In Section 3 the
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main result is stated and proved. The final section discusses some extensions. The
Appendix contains proofs of some auxiliary lemmas.

The following notation is used: The vec operator stacks the columns of a matrix
into a column vector, and the (conditional) variance matrix of a random matrix X
is always understood as the (conditional) variance matrix of vecX . Integrals such
as
∫ 1

0 X (u)du and
∫ 1

0 X (u)dW(u) are often abbreviated as
∫ 1

0 X du and
∫ 1

0 X dW,
respectively.

2. PRELIMINARY ASYMPTOTIC RESULTS

The starting point of the asymptotic analysis is the multivariate invariance prin-
ciple: as n → ∞,

n−1/2
	un

∑
t=1

εt
L−→ W (u), u ∈ [0,1],

where W is a p-vector Brownian motion with variance matrix 	. The i.i.d.
normality of {εt }t≥1 is sufficient but not necessary for this result to hold. From
W , define

W1 = (α′	−1α)−1α′	−1W,

W2 =
(
ᾱ′

1 − ᾱ′
1	α2(α

′
2	α2)

−1α′
2

)
W,

with α2 = (α,α1)⊥. These are two independent vector Brownian motions of
dimensions r and s and with variance matrices denoted 	1 and 	2, respectively.
Furthermore, (W1,W2) is independent of the (p −r − s)-vector Brownian motion
W3 = α′

2W .
Johansen (2006) shows that

n−1/2

(
β ′

2�X	un

β ′

1 X	un


)
L−→
(

H0(u)

H1(u)

)
=
(

A03W3(u)

A12W2(u)+ A13W3(u)

)
, u ∈ [0,1],

where A03, A12, and A13 are conformable matrices, depending on the parameters,
with A03 and A12 nonsingular. Define H2(u) = ∫ u

0 H0(v)dv ,

H∗(u) =
⎛⎜⎝H0(u)

H1(u)

H2(u)

⎞⎟⎠ , u ∈ [0,1],

and

H∗∗ =
∫ 1

0
H∗(u)H∗(u)′du, Hi j =

∫ 1

0
Hi (u)Hj (u)′du, i, j = 0,1,2. (5)
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Let ψ ′ = (α′	−1α)−1α′	−1�; it can be shown that ψ ′β̄2 = ᾱ′�β̄2 = δ.
Johansen (2006, Thm. 4) and Paruolo (2000, Thms. 4.1 and 4.2) prove the fol-
lowing results for the maximum likelihood estimators1 β̂, β̂1, and ψ̂ based on a
sample {Xt }n

t=1, with starting values {X1−k, . . . , X0}:⎛⎜⎜⎜⎜⎝
nβ̄ ′

2(ψ̂ −ψ)

nβ̄ ′
1(β̂ −β)

n2β̄ ′
2(β̂ −β)

nβ̄ ′
2(β̂1 −β)

⎞⎟⎟⎟⎟⎠ L−→

⎛⎜⎜⎜⎜⎝
B∞

0

B∞
1

B∞
2

C∞

⎞⎟⎟⎟⎟⎠ , (6)

where

B∞ =
⎛⎜⎝B∞

0

B∞
1

B∞
2

⎞⎟⎠= H−1∗∗
∫ 1

0
H∗ dW′

1, C∞ = H−1
00

∫ 1

0
H0 dW′

2. (7)

Because W1 is independent of (W2,W3) and H∗ is defined from (W2,W3), it
follows that W1 is independent of H∗. Similarly, W2 is independent of W3 and
hence H0. This implies

B∞|H∗ ∼ N (0,	1 ⊗ H−1∗∗ ), C∞|H0 ∼ N (0,	2 ⊗ H−1
00 ). (8)

Thus both B∞ and C∞ have a conditionally normal and hence mixed normal
distribution, but with a different conditioning set. Therefore (B∞,C∞) is not
jointly normal conditional on the same information: The distribution of B∞|H0
is not normal, and C∞|H∗ has a degenerate distribution. This lack of joint mixed
normality was analyzed in more detail by Boswijk (2000).

The conditional variances in (8) are estimated consistently by the estimated
variance matrix based on the inverse observed information matrix, in the sense
that

v̂ar

⎛⎜⎜⎜⎜⎝
nβ̄ ′

2(ψ̂ −ψ)

nβ̄ ′
1(β̂ −β)

n2β̄ ′
2(β̂ −β)

nβ̄ ′
2(β̂1 −β)

⎞⎟⎟⎟⎟⎠ L−→
(

	1 ⊗ H−1∗∗ 0

0 	2 ⊗ H−1
00

)
, (9)

where in general we use the notation v̂ar(θ̂) = (−∂2�(θ)/∂θ∂θ ′)−1
θ=θ̂

for the in-
verse observed information matrix, with �(θ) the (concentrated) log-likelihood.
Note that in (9) and in similar results below, v̂ar(·) is not a consistent estimator
of the unconditional asymptotic variance matrix of the argument (as would be the
case in conventional, stationary asymptotic theory), but of its conditional asymp-
totic variance. In the remainder of this note, Wald and t-test statistics should al-
ways be taken as based on the maximum likelihood estimator and its conditional
variance estimated by the inverse observed information.
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Letting θ denote the full vector of cointegration parameters, these results imply
the following sufficient conditions for likelihood ratio or Wald test statistics for
smooth hypothesesH0 : g(θ) = 0 to have an asymptotic χ2 null distribution: First,
g(θ̂) needs to be asymptotically linear in B∞ and C∞, in the sense that for some
suitable sequence of norming matrices Dn ,

D−1
n

(
g(θ̂)− g(θ)

) L−→ G

(
vecB∞

vecC∞

)
, (10)

with G a matrix of full row rank. Partitioning G conformably with (vec(B∞)′,
vec(C∞)′)′, a second condition is that G is block-diagonal, i.e., G = diag(G B,
GC ) (for some choice of Dn) . As discussed by Boswijk (2000) and Johansen
(2006), the block-diagonality condition is sufficient but possibly not necessary for
mixed normal inference. Indeed, Theorem 1 in the next section implies another
sufficient condition, which does not require G = diag(G B,GC ).

The asymptotic distribution of the estimated multicointegration parameter δ̂ =
ψ̂ ′β̂2 is obtained from (6), together with nβ ′

1(β̂2 − β̄2)=−n(β̂1 −β1)
′β̄2 +op(1),

which yields (Paruolo, 2000, Thm. 4.2)

n(δ̂ − δ)′ L−→ B∞
0 −C∞ A, (11)

with A = β̄ ′
1ψ . Its estimated conditional variance matrix, still based on the inverse

observed information, satisfies

v̂ar
(

n(δ̂ − δ)′
) L−→ 	1 ⊗ (H−1∗∗ )00 + (A′	2 A)⊗ H−1

00 =: VB0 + VC A. (12)

This implies that hypotheses on δ do not satisfy (10) unless the restriction A =
β̄ ′

1ψ = 0 is satisfied; in all other cases, the asymptotic distribution of δ̂ is charac-
terized by the sum of two random variables that are marginally but not necessarily
jointly mixed normal. As noted by Paruolo (1995) and Johansen (2006), however,
Monte Carlo simulation of (11)–(12) suggests that inference on δ is asymptoti-
cally mixed normal even if A �= 0. In the next section, this result will be proved.

3. MAIN RESULT

This section studies asymptotic inference on the multicointegration parameter δ,
based on the limit in distribution of the standardized estimator, as implied by
(11)–(12):

v̂ar(δ̂′)−1/2vec(δ̂ − δ)′ L−→ (VB0 + VC A
)−1/2 (vecB∞

0 −vec(C∞ A)
)=: Z . (13)

When δ is a scalar parameter, Z may be interpreted as the limit in distribution of a
t-statistic of δ̂. More generally, a likelihood ratio or Wald test statistic for a simple
hypothesis on δ will converge in distribution, under the null hypothesis, to Z ′Z .
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The main result is Theorem 1, which states that the triplet (B∞
0 , B∞

1 ,C∞) is
jointly mixed normal. This directly implies that the distribution of Z is standard
normal, conditionally on (VB0 ,VC A), and hence also unconditionally, so that stan-
dard inference applies to δ̂. A generalization of this result implied by Theorem 1
will be discussed in the next section.

In order to prove Theorem 1, we first need some auxiliary lemmas, proved
in the Appendix. We introduce the subscript coupling notations a = {0,1} and
b = {0,2} so that B∞

a = (B∞′
0 , B∞′

1 )′, Hb = (H ′
0, H ′

2)
′, and Hbb = ∫ 1

0 Hb H ′
b du.

This leads to

VBa = var(B∞
a |H∗) = 	1 ⊗

(
(H−1∗∗ )00 (H−1∗∗ )01

(H−1∗∗ )10 (H−1∗∗ )11

)
= 	1 ⊗ (H−1∗∗ )aa . (14)

The first lemma provides a convenient expression for the blocks of (H−1∗∗ )aa .

LEMMA 1. Let H∗∗ and Hi j , i, j = 0,1,2,a,b, be as defined in (5), and define

Hi j |k = Hi j − Hik H−1
kk Hkj , i, j,k = 0,1,2,a,b.

Then

(H−1∗∗ )aa =
(

H−1
00|2 + H−1

00|2 H01|2 H−1
11|b H10|2 H−1

00|2 −H−1
00|2 H01|2 H−1

11|b
−H−1

11|b H10|2 H−1
00|2 H−1

11|b

)
. (15)

A simpler expression for the first diagonal block (H−1∗∗ )00 is available, but the
expression in Lemma 1 is most convenient for our purposes. In particular, using
the fact that H1 = A12W2 + A13W3, and H0 and H2 are defined from W3, the
lemma implies that W2 appears in (H−1∗∗ )aa and hence VBa in the linear func-
tional H01|2, and in the quadratic functional H11|b. The next lemma characterizes
conditions for conditional independence between stochastic integrals and such
functionals of a vector Brownian motion.

A function or kernel K on [0,1]2 is said to be symmetric if K (u,v) = K (v,u)
for all (u,v) ∈ [0,1]2, and positive semidefinite if

∫ 1
0
∫ 1

0 K (u,v)g(u)g(v)dudv ≥
0 for all continuous functions g on [0,1].

LEMMA 2. Let W be a vector Brownian motion on a probability space
(	,F,P), independent of G ⊂F . Let X and Y be G-measurable vector processes
satisfying E

(∫ 1
0 (X X ′ + Y Y ′)du

)
< ∞, and let K be a positive semidefinite

G-measurable kernel on [0,1]2. Then, conditionally on G,
∫ 1

0 XdW ′ is indepen-
dent of

∫ 1
0 Y W ′ du and

∫ 1
0
∫ 1

0 K (u,v)dW(u)dW(v)′ if and only if, with probability
one,∫ 1

0

(∫ u

0
X (v)dv

)
Y (u)′ du = 0,

∫ 1

0
K (u,v)X (u)du = 0, v ∈ [0,1].
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We are now in a position to prove the main result.

THEOREM 1. Let B∞
a = (B∞′

0 , B∞′
1 )′,C∞,VBa and Z be as defined in (7),

(14), and (13), and let VC = 	2 ⊗ H−1
00 . Then we have

(
B∞

a

C∞

)∣∣∣∣∣(VBa ,VC
)∼ N

((
0

0

)
,

(
VBa 0

0 VC

))
, (16)

so that inference on δ is asymptotically mixed normal; i.e.,

Z
∣∣(VBa ,VC

) ∼ N (0, Ir(p−r−s)). (17)

Proof. Define

Z Ba = V −1/2
Ba

vecB∞
a , ZC = V −1/2

C vecC∞.

From (8), it directly follows that Z Ba |H∗ ∼ N (0, Ir(p−r)) and ZC |H0 ∼
N (0, Is(p−r−s)). Note that conditioning on a process X in fact means condi-
tioning on the σ -field generated by {X (u)}u∈[0,1]. We will use the notation X ≡ Y
if both processes or random variables generate the same σ -field, and X ⊂ Y if the
σ -field generated by X is contained in the σ -field generated by Y .

The result Z Ba |H∗ ∼ N (0, Ir(p−r)) implies that Z Ba is independent of H∗, and
hence also of (ZC ,VBa , H0) ⊂ (H0,W1) ≡ H∗, so that

Z Ba |(ZC ,VBa , H0) ∼ N (0, Ir(p−r)). (18)

We will show that conditionally on H0, ZC is independent of VBa . This implies
ZC |(VBa , H0) ∼ N (0, Is(p−r−s)), and together with (18), this implies

(
Z Ba

ZC

)∣∣∣∣∣(VBa , H0
)∼ N

((
0

0

)
,

(
Ir(p−r) 0

0 Is(p−r−s)

))
.

Because this conditional distribution of (Z Ba , ZC ) does not depend on
(
VBa , H0

)
,

the same joint N (0, I(r+s)(p−r)−s2) distribution applies conditionally on(
VBa ,VC

) ⊂ (VBa , H0
)
. This directly implies (16) and (17), noting that VB0 =

EVBa E ′ with E = Ir ⊗ (Ip−r−s,0), and VC A = (A′ ⊗ Ip−r−s)VC (A ⊗ Ip−r−s).

Recall that ZC = vec
(

H−1/2
00

∫ 1
0 H0 dW′

2	
−1/2
2

)
and VBa = 	1 ⊗ (H−1∗∗ )aa ,

where (H−1∗∗ )aa is given by (15). This means that, conditionally on H0, ZC is
independent of VBa if

∫ 1
0 H0 dW′

2 is independent of H01|2 and H11|b; the other



1572 H. PETER BOSWIJK

ingredients of (H−1∗∗ )aa are fixed conditional on H0. Using H1 = A12W2 + A13W3
for fixed matrices A12 and A13, with |A12| �= 0, it follows that

H01|2 =
∫ 1

0
(H0 − H02 H−1

22 H2)H ′
1 du

=
∫ 1

0
H0|2 H ′

1 du

=
∫ 1

0
H0|2W ′

2 duA′
12 +

∫ 1

0
H0|2W ′

3 duA′
13,

where H0|2(u) = H0(u) − H02 H−1
22 H2(u). By Lemma 2, this implies that∫ 1

0 H0 dW′
2 is conditionally independent of H01|2, because∫ 1

0

(∫ u

0
H0 dv

)
H0|2(u)′ du =

∫ 1

0
H2(u)H0|2(u)′ du = 0.

Next,

H11|b =
∫ 1

0
H1 H ′

1 du−
∫ 1

0
H1 H ′

b duH−1
bb

∫ 1

0
Hb H ′

1 du

= A12

(∫ 1

0
W2W ′

2 du−
∫ 1

0
W2 H ′

b duH−1
bb

∫ 1

0
HbW ′

2 du

)
A′

12,

where the final equality follows from H1 = A12W2 + A13W3 = A12W2 +
A13 A−1

03 H0 and the fact that H0 is contained in Hb. From this, we find

A−1
12 H11|b A′−1

12 =
∫ 1

0

(∫ u

0
dW2

)(∫ u

0
dW2

)′
du

−
∫ 1

0

(∫ u

0
dW2

)
H ′

b duH−1
bb

∫ 1

0
Hb

(∫ u

0
dW2

)′
du

=
∫ 1

0

∫ 1

0
K (u,v)dW2(u)dW2(v),

where

K (u,v) = 1−u ∨ v − H̃b(u)′ H−1
bb H̃b(v),

with H̃i (u) = ∫ 1
u Hi dv , i = 0,1,2,b. Applying again Lemma 2, we find that con-

ditionally on H0,
∫ 1

0 H0dW ′
2 is independent of H11|b, because∫ 1

0
K (u,v)H0(u)du =

∫ 1

v

(∫ u

0
H0 dw

)
du −

∫ 1

0

(∫ u

0
H0 dw

)
Hb(u)′ duH−1

bb H̃b(v)

= H̃2(v)−
∫ 1

0
H2 Hb(u)′ duH−1

bb H̃b(v) = 0.
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The final equality follows from H2 = (0, Ip−r−s)Hb, and hence H̃2 =
(0, Ip−r−s)H̃b. Thus we have shown that

∫ 1
0 H0 dW′

2 is independent of both
H01|2 and H11|b, and hence of VBa . n

4. DISCUSSION

Theorem 1 states that the maximum likelihood estimator of the multicointegra-
tion parameter δ has an asymptotically mixed normal distribution. This means
that a likelihood ratio or Wald test statistic of a simple hypothesis H0 : δ = δ0
will have an asymptotic χ2

r(p−r−s) null distribution, arising as the distribu-
tion of Z ′Z . More generally, it is not hard to prove that test statistics of
smooth hypotheses H0 : g(δ) = 0, with g a continuously differentiable func-
tion with derivative G(δ) of full row rank, will have an asymptotic χ2 null
distribution.

A further extension is to consider hypotheses on β, β1, and δ together.
For example, Mosconi and Paruolo (2010) consider possibly overidentifying
restrictions of the form (β ′,δ)′ = h(φ), where h is a linear function of a pa-
rameter vector φ. Extending Johansen’s (2006) Theorem 5.1, we may obtain
conditions on h such that the restricted log-likelihood is locally asymptoti-
cally quadratic. As indicated by Johansen (2006), these conditions entail that
φ can be partitioned as (φ1,φ2), with nφ̂1 and n2φ̂2 converging in distribu-
tion to linear functions of (B∞

0 , B∞
1 ,C∞) and B∞

2 , respectively. From The-
orem 1 we know that (B∞

0 , B∞
1 ,C∞) is jointly mixed normal, but it can be

shown that (B∞
0 , B∞

1 ,C∞) is not independent of B∞
2 and its conditional variance

	1 ⊗ (H−1∗∗
)

22. This implies that hypotheses that only restrict B0 = β̄0′
2 (ψ −ψ0),

B1 = β̄0′
1 β, and C = β̄0′

2 β1 but leave B2 = β̄0′
2 β unrestricted (where θ0 denotes

the true value of θ ) can be tested based on asymptotically χ2 likelihood ratio
statistics. In other words, hypotheses that involve β and δ only allow for mixed
normal inference if they do not restrict B2.

NOTE

1. The cointegration parameters have been identified by c′β = Ir and c′
1β1 = Is , where c and c1

are known conformable matrices. The results given here are for c = β̄ and c1 = β̄1, from which the
results for general (c,c1) can be derived.
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APPENDIX: Proofs of Lemmas

Proof of Lemma 1. We use the following well-known result for partitioned inverses;
see, e.g., Magnus and Neudecker (1988, p. 11):

(
A11 A12

A21 A22

)−1

=
⎛⎝ A−1

11|2 −A−1
11|2 A12 A−1

22

−A−1
22 A21 A−1

11|2 A−1
22 + A−1

22 A21 A−1
11|2 A12 A−1

22

⎞⎠ , (A.1)

where A11|2 = A11 − A12 A−1
22 A21, and where A11, A22, and A11|2 are assumed to be

nonsingular. It is convenient to define a reordered version of H∗∗:

H†† =

⎛⎜⎜⎝
H11

(
H10 H12

)(
H01

H21

) (
H00 H02

H20 H22

)⎞⎟⎟⎠=
(

H11 H1b

Hb1 Hbb

)
,

so that (H−1∗∗ )00 is identical to the middle diagonal block of H−1
†† , (H−1∗∗ )11 is the first

diagonal block, and (H−1∗∗ )01 is the part of H−1
†† corresponding to the second row and first

column of blocks. Applying (A.1) to H†† with A11 = H11, A12 = H1b, and H22 = Hbb
directly leads to

(H−1∗∗ )11 = H−1
11|b,
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and

(H−1∗∗ )bb =
(

H00 H02

H20 H22

)−1

+
(

H00 H02

H20 H22

)−1(
H01

H21

)
H−1

11|b (H10, H12)

(
H00 H02

H20 H22

)−1

.

Next, applying (A.1) again to(
H00 H02

H20 H22

)−1

=
⎛⎝ H−1

00|2 −H−1
00|2 H02 H−1

22

−H−1
22 H20 H−1

00|2 H−1
22 + H−1

22 H20 H−1
00|2 H02 H−1

22

⎞⎠
yields

(H−1∗∗ )00 = H−1
00|2

+H−1
00|2
(

Ip−r−s ,−H02 H−1
22

)(H01

H21

)
H−1

11|b (H10, H12)

(
Ip−r−s

−H−1
22 H20

)
H−1

00|2

= H−1
00|2 + H−1

00|2 H01|2 H−1
11|b H10|2 H−1

00|2.

Finally, (H−1∗∗ )01 equals the first block of −H−1
bb Hb1 H−1

11|b, which from the partitioned

expression of H−1
bb leads to (H−1∗∗ )01 = −H−1

00|2 H01|2 H−1
11|b. n

Proof of Lemma 2. Let Ỹ (u) = ∫ 1
u Y (v)dv . Because Ỹ (1) = 0 and W (0) = 0, integra-

tion by parts yields∫ 1

0
Y (u)W (u)′ du =

∫ 1

0
Y (u)

(∫ u

0
dW(v)′

)
du =

∫ 1

0
Ỹ (u)dW(u)′.

Next, for a positive definite K , Mercer’s theorem (see Tanaka, 1996) states that

K (u,v) =
∞
∑
i=1

λi fi (u) fi (v), (A.2)

where {λi }i≥1 and { fi }i≥1 are the eigenvalues (Tanaka, 1996, refers to 1/λi as the eigen-
values) and orthonormal eigenfunctions of K , solving the integral equation∫ 1

0
K (u,v) f (u)du = λ f (v).

This implies that∫ 1

0

∫ 1

0
K (u,v)dW(u)dW(v)′ =

∫ 1

0

∫ 1

0

∞
∑
i=1

λi fi (u) fi (v)dW(u)dW(v)′

=
∞
∑
i=1

λi

(∫ 1

0
fi dW

)(∫ 1

0
fi dW

)′
,
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where the second equality (term by term integration) follows from uniform convergence
of the series representation in (A.2), together with the fact that the eigenfunctions are
orthonormal and hence bounded in L2. The basic properties of the Itô integral imply⎛⎜⎜⎝
∫ 1

0 X dW′∫ 1
0 Ỹ dW′∫ 1
0 fi dW′

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣G ∼ N

⎛⎜⎜⎝
⎛⎜⎝0

0

0

⎞⎟⎠ ,

∫ 1

0

⎛⎜⎜⎝
X X ′ XỸ ′ X f ′

i

Ỹ X ′ Ỹ Ỹ ′ Ỹ f ′
i

fi X ′ fi Ỹ ′ fi f ′
i

⎞⎟⎟⎠du

⎞⎟⎟⎠ .

Therefore
∫ 1

0 X dW′ is conditionally independent of
∫ 1

0 Y W ′ du and
∫ 1

0 fi dW′ if and only if

∫ 1

0
X (u)Ỹ (u)du =

∫ 1

0

(∫ u

0
X (v)dv

)
Y ′ du = 0, (A.3)

(the first equality follows from integration by parts), and∫ 1

0
X (u) fi (u)du = 0. (A.4)

This in turn implies that
∫ 1

0 X dW′ is conditionally independent of
∫ 1

0 Y W ′ du and∫ 1
0
∫ 1

0 K dWdW′ if and only if both (A.3) holds and (A.4) holds for all eigenfunctions
fi corresponding to nonzero eigenvalues. The latter condition is equivalent to∫ 1

0
K (u,v)X (u)du =

∞
∑
i=1

λi fi (v)

∫ 1

0
fi (u)X (u)du = 0, v ∈ [0,1].

Hence the components of X are eigenfunctions of K corresponding to zero eigenvalues.
n


