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Abstract We investigate the properties of an abstract negotiation framework where agents
autonomously negotiate over allocations of indivisible resources. In this framework, reaching
an allocation that is optimal may require very complex multilateral deals. Therefore, we are
interested in identifying classes of valuation functions such that any negotiation conducted
by means of deals involving only a single resource at a time is bound to converge to an
optimal allocation whenever all agents model their preferences using these functions. In the
case of negotiation with monetary side payments amongst self-interested but myopic agents,
the class of modular valuation functions turns out to be such a class. That is, modularity is a
sufficient condition for convergence in this framework. We also show that modularity is not a
necessary condition. Indeed, there can be no condition on individual valuation functions that
would be both necessary and sufficient in this sense. Evaluating conditions formulated with
respect to the whole profile of valuation functions used by the agents in the system would
be possible in theory, but turns out to be computationally intractable in practice. Our main
result shows that the class of modular functions is maximal in the sense that no strictly larger
class of valuation functions would still guarantee an optimal outcome of negotiation, even
when we permit more general bilateral deals. We also establish similar results in the context
of negotiation without side payments.
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1 Introduction

The problem of allocating a set of indivisible resources to a set of self-interested agents has
recently received much attention from the Artificial Intelligence and Multiagent Systems
communities [7,19,27] and has important applications ranging from electronic commerce
and industrial procurement [17], over the joint exploitation of earth observation satellites
[21], to Grid computing [15]. Much work in this area has focussed on combinatorial auctions
[10]. In this case, the allocation procedure is centralised, and the so-called winner determina-
tion problem is the problem of determining the allocation of resources maximising the sum
of the prices associated with the bids satisfied by that allocation.

A different perspective is taken when one assumes that the allocation process is distrib-
uted, in the sense that agents autonomously negotiate over the bundles of resources they
hold and that allocations emerge over time, as a consequence of a sequence of local deals
agreed upon by the agents in the system. This assumption is justified in many applications
where no central authority can be relied upon to decide on the allocation of resources. This
may, for instance, be the case in view of computational limitations of any potential centre,
or in view of its trustworthiness. In this case, the system designer will typically seek to set
up the system in such way that it nevertheless guarantees certain desirable properties, but
without directly interfering in the negotiation process itself. Similar considerations have led
to research areas such as distributed constraint optimisation [14] or distributed mechanism
design [25,26]. In this paper, we further analyse a framework for distributed negotiation over
indivisible resources recently investigated by a number of authors [4,12,13,29,30].

We assume a set of negotiating agents populating the system, and we model their prefer-
ences (over different bundles of resources) by means of valuation functions. In order to pursue
their own interests, agents agree on deals benefitting themselves but without planning ahead
(i.e. they are both rational and myopic [30]), thereby modifying the allocation of resources.
Negotiation is thus a local process; groups of individual agents come together to exchange
resources according to their individual interests, without regard for the system as a whole.
From a global point of view, on the other hand, a system designer may seek to ensure that
negotiation converges towards an allocation that is “optimal” according to a suitable metric.
This would typically be some form of aggregation of the individual agents’ preferences, i.e.
we can employ well-known formal tools from welfare economics and social choice theory
to characterise optimal allocations. Standard examples are the notions of Pareto optimality
and social welfare [2,22]. In this paper, we are mostly going to be interested in negotiating
allocations of resources that maximise utilitarian social welfare, i.e. the sum of individual
agent valuations.

The work described here is complementary to the large body of literature on mechanism
design and game-theoretic models of negotiation in multiagent systems (see e.g. [19,25,27]).
Rather than analysing the incentives of individual agents in detail, here, we simply assume
that agents are rational in the sense of never accepting a disadvantageous deal, but we do not
assume that they will necessarily attempt to negotiate the very best outcome for themselves
in every single step of a negotiation process. In fact, we assume that the system designer
does not know what the precise negotiation strategies used by the agents are. All that is
known is that no agent will ever accept a deal that would decrease their utility. Our inter-
ests concentrate on the interplay of the local and the global level: assuming that agents only
negotiate mutually beneficial deals, how does this affect social welfare for the system as a
whole?

Section 2 introduces the negotiation framework used in this paper. We are going to dis-
tinguish two variants of the framework. In the first one, agents may enhance deals with
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monetary side payments (framework with money) to make them more attractive to agents
who would otherwise have no incentive to agree to a particular deal. In the second variant of
the negotiation framework, agents are assumed not to have the option of using side payments
(framework without money). It is known that very complex multilateral deals are potentially
required to reach an optimal allocation [13,30]. When deals are restricted (e.g. to a limited
number of resources), it is only possible to guarantee an optimal outcome by also restricting
the problem space to agents whose preferences have certain properties. These properties are
modelled as restrictions to the class of valuation functions that agents may use to model their
preferences over alternative bundles of resources. Section 3 defines two such restrictions.
The first is the well-known class of modular (also known as additive) valuation functions.
The second is a further restriction on modular functions, where the valuation an agent may
place on any one resource is limited to a choice between three given values (representing
positive preference, negative preference, and indifference). Each choice of values for positive
and negative preference gives rise to a different class of restricted valuation functions (the
value for indifference is 0 in all cases).

In this paper, we study the conditions under which negotiation conducted by means of
the simplest deals, involving one item at a time (or 1-deal negotiation for short) still allows
us to reach an optimal allocation. The focus on 1-deals is motivated by practical concerns:
Negotiation protocols for 1-deals are certainly realisable in practice (witness the well-known
Contract-Net protocol [33]), while implementing any class of deals that is significantly more
complex is very challenging. Section 4 recalls (and slightly generalises) a result from the lit-
erature that shows that modelling preferences with modular valuation functions is a sufficient
condition for reaching an optimal allocation by means of rational (i.e. mutually beneficial)
1-deals. This applies to the framework with money, and a similar result is proved for negotia-
tion without money. However, modularity is not a necessary condition. This is demonstrated
in Sect. 5 by means of a counterexample. We also show that there can be no condition on
valuation functions that would be both necessary and sufficient for optimal allocations to
be negotiable by means of rational 1-deals. These results pertain to conditions on single
valuation functions, to be met by the functions of all the agents in the system. Section 5
concludes by showing that describing such a necessary and sufficient condition over the pro-
file of valuation functions of an entire agent society would be possible in theory, but that it
would be computationally intractable to evaluate any such condition in practice. This result
is obtained as a by-product of an NP-hardness proof for the problem of checking whether,
for a given profile of valuation functions, any sequence of rational 1-deals is bound to result
in an allocation with maximal social welfare, for a whole range of representation languages
for encoding valuation functions.

The main contribution of this paper, as far as the framework with money is concerned,
is to show that the class of modular valuation functions is maximal, in the sense that no
class strictly including the modular valuations functions would still be sufficient for 1-deal
negotiation. In fact, even if we allow for any kind of bilateral deals (each involving two
agents and any number of resources), we cannot guarantee convergence anymore as soon
as valuations are drawn from any superclass of the class of modular functions. The proof
detailed in Sect. 6 shows that, given any non-modular valuation function, it is always possible
to construct modular valuation functions for the other agents and select an initial allocation
of resources such that the optimal allocation cannot be reached by means of rational bilateral
deals alone. This is followed by a similar result for the framework without money, where
each of the aforementioned restrictions on the class of modular valuation functions turns
out to be both sufficient and maximal. We also show that when we change our requirements
from obtaining outcomes with maximal social welfare to obtaining outcomes that are merely
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Pareto optimal, then we lose the maximality property for the framework without money.
Finally, Sect. 7 concludes.

2 Myopic negotiation over indivisible resources

In this section, we introduce the decentralised negotiation framework used throughout this
paper and report a number of known technical results [13,30].

2.1 Negotiation problems and deals

In this framework, a finite set of agents negotiate over a finite set of indivisible resources.
A resource allocation is a partitioning of the resources amongst the agents (that is, every
resource has to be allocated to one and only one agent). As an example, the allocation A
defined by A(i) = {r1} and A( j) = {r2, r3} would allocate resource r1 to agent i , while
resources r2 and r3 would be owned by agent j . We are going to model the preferences of
agents by means of valuation functions mapping bundles of resources to real numbers. The
parameters of a negotiation problem are summarised in the following definition:

Definition 1 (Negotiation problems) A negotiation problem is a triple P = 〈N , R, V〉,
where

– N = {1, . . . , n} is a finite set of agents (n ≥ 2);
– R = {r1, . . . , rm} is a finite set of indivisible resources;
– V = 〈v1, . . . , vn〉 is a profile of valuation functions, such that for all i ∈ N , vi is a mapping

from 2R to R.

Sometimes we will talk about negotiation problems together with an initial allocation A0 :
N → 2R.

Observe that the value of a valuation function only depends on the resources held by the
agent in question, i.e. agents are not concerned with resources held by other agents or any
other external factors. We are frequently going to use the abbreviation vi (A) for vi (A(i)),
representing the value assigned by agent i to the bundle it holds in allocation A.

Agents may agree on a deal to exchange some of the resources they possess. Such a deal
transforms the current allocation of resources A into a new allocation A′; that is, we can define
a deal as a pair δ = (A, A′) of allocations (with A �= A′). When speaking of a sequence of
deals 〈δ1, δ2, δ3, . . .〉, it is understood that the input allocation for δ2 is the output allocation
for δ1, the input allocation for δ3 is the output allocation for δ2, and so forth.

We should stress that this is a multilateral negotiation framework. A single deal may
involve the displacement of any number of resources between any number of agents. An
actual implementation of this abstract framework may, however, not allow for the same level
of generality. Sandholm [30] has proposed a typology of different types of deals, such as
swap deals involving an exchange of single resources between two agents or cluster deals
involving the transfer of a set of items from one agent to another. The simplest type of deals
are those involving only a single resource (and thereby only two agents).

Definition 2 (1-deals) A 1-deal is a deal δ = (A, A′) reallocating exactly one resource:
#{r ∈ R | ∃i, j ∈ N such that i �= j and r ∈ A(i) ∩ A′( j)} = 1.

Another important class of deals are those that may involve any number of resources, but
only two agents at a time.
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Definition 3 (Bilateral deals) A bilateral deal is a deal δ = (A, A′) between exactly two
agents: #{i ∈ N | A(i) �= A′(i)} = 2.

The above are conditions on the structure of a deal. Other conditions relate to the accept-
ability of a deal to a given agent. We assume that agents are rational in the sense of aiming
at maximising their individual welfare (utility/valuation). Furthermore, agents are assumed
to be myopic. This means that agents will not accept deals that would reduce their level of
welfare, not even temporarily, because they are either not sufficiently able to plan ahead or
not willing to take the associated risk (see also Sandholm’s work [30] for a justification of
such an agent model).

2.2 Negotiating with money

In the first variant of this framework, we will permit agents to enhance deals with monetary
side payments, in order to compensate other agents for a possible loss in valuation. This can
be modelled using a payment function p : N → R. Such a function has to satisfy the side
constraint

∑
i∈N p(i) = 0, i.e. the overall amount of money in the system remains constant.

If p(i) > 0, then agent i pays the amount of p(i), while p(i) < 0 means that it receives the
amount of −p(i). The following rationality criterion will define the acceptability of deals:

Definition 4 (Individual rationality) A deal δ = (A, A′) is individually rational (IR) if there
exists a payment function p such that vi (A′) − vi (A) > p(i) for all i ∈ N , except possibly
p(i) = 0 for agents i with A(i) = A′(i).

From a system designer’s perspective, we are interested in assessing the well-being of the
whole society, or social welfare [2,22], which is often defined as the sum of valuations of all
the agents.

Definition 5 (Social welfare) The social welfare sw(A) of an allocation A is defined as
follows:

sw(A) =
∑

i∈N
vi (A)

This is the utilitarian definition of social welfare. While this is the definition usually adopted
in the multiagent systems literature [31,36], we should stress that also several of the other
notions of social welfare developed in the social sciences (e.g. egalitarian social welfare
[2,22]) do have applications in the context of multiagent resource allocation [7].

We now recall two important known results. The first one makes the connection between
the local decisions of agents and the global behaviour of the system explicit [13]:

Lemma 1 (Rationality and social welfare) A deal δ = (A, A′) is IR iff sw(A) < sw(A′).

That is, side payments can be arranged in such a way that a given deal is beneficial for all
the agents involved if and only if that deal increases social welfare. The second result is the
fundamental convergence theorem for this negotiation framework [30]:

Theorem 1 (Maximising social welfare) Any sequence of IR deals will eventually result in
an allocation of resources with maximal social welfare.

That is, there can be no infinite sequence of IR deals, and any finite sequence that does not
culminate in an allocation with maximal social welfare can still be extended with a further
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IR deal. The main significance of this result, above and beyond the equivalence of rational
deals and social welfare-increasing deals stated in Lemma 1, is that any sequence of deals
satisfying the rationality criterion will eventually converge to an allocation that is socially
optimal. There is no need for agents to consider anything but their individual interests. Every
single deal is bound to increase social welfare and there are no local optima the system could
get stuck in.

2.3 Negotiating without money

What happens if we do not allow agents to enhance deals with monetary side payments (or
explicit utility transfers), in order to compensate other agents for a possible loss in value? In
this context, we shall assume that agents are cooperatively rational in the sense of accepting
deals that may not result in a strict increase in personal welfare, with the further condition
that at least one agent will strictly benefit from the deal.

Definition 6 (Cooperative rationality) A deal δ = (A, A′) is called cooperatively (CR)
rational if vi (A) ≤ vi (A′) for all i ∈ N and there exists an agent j ∈ N such that v j (A) <

v j (A′).

Note that, we have sw(A) < sw(A′) for any deal δ = (A, A′) that is CR, but not vice
versa. Clearly, in this general setting, it is not possible to guarantee that agents will eventually
reach an allocation with maximal social welfare, in the sense previously defined. A result
similar to Theorem 1 can be achieved, though, if we consider the Pareto optimality criterion
instead (an allocation is Pareto optimal when no other allocation is strictly better for one agent
without being worse for any of the others): any sequence of deals satisfying the cooperative
rationality criterion will eventually converge to a Pareto optimal allocation [13].

3 Modular valuation functions and variants

In this section, we introduce several classes of restricted valuation functions. These types
of functions will later be used to derive more specific results regarding negotiation when
agents use such functions to model their preferences. We are first going to define the well-
known class of modular functions. This is an important (see e.g. [27]), albeit simple, class
of functions that can be used in negotiation domains where there are no synergies (either
complementaries or substitutables) between different resources.

Definition 7 (Modular valuation) A valuation function v is modular if the following condi-
tion is satisfied for all bundles R1, R2 ⊆ R:

v(R1 ∪ R2) = v(R1) + v(R2) − v(R1 ∩ R2) (1)

The class of modular functions includes the class of additive functions.1 This may be seen
as follows. Let R be any non-empty bundle of resources and let r ∈ R. Then Eq. 1 implies
v(R) = v(R\{r}) + [v({r}) − v(∅)]. If we apply this step recursively for every resource in
R, then we end up with the following equation:

v(R) = v(∅) +
∑

r∈R

[v({r}) − v(∅)] (2)

1 A valuation function is additive if the valuation assigned to a set of resources is always the sum of valuations
assigned to its members.
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That is, in case v(∅) = 0, the value given to a set will be the sum of the values of its members
(i.e.v will be additive). Clearly, Eq. 2 also implies Eq. 1, i.e.the two characterisations of the
class of modular valuation functions are equivalent.

A further useful characterisation of the class of modular valuations functions is the fol-
lowing. A valuation function v is modular iff the following holds for every bundle R ⊆ R
and every pair of resources r1, r2 ∈ R\R:

v(R ∪ {r1, r2}) = v(R ∪ {r1}) + v(R ∪ {r2}) − v(R) (3)

The equivalence to Eq. 1 is readily checked (one direction is obvious; the other can be estab-
lished by a simple inductive argument).

We now introduce a restriction on the class of modular valuation functions, namely the
classes of modular functions with fixed α, β-values (or Mα,β for short). Intuitively, Mα,β

functions are suitable in domains where agents can only like, dislike, or possibly be indiffer-
ent towards any given resource in the system. The key point is that agents all agree on the
intensities used to indicate positive and negative preferences for each single resource. Mα,β

functions hence define a set of classes, each class being parametrised by the range of possible
values assigned to each resource.

Definition 8 (Modular functions with fixed α, β-values) A profile of valuation functions
〈v1, . . . , vn〉 is called modular with fixed α, β-values if

– there exists a list of coefficients α = (αr1 , . . . , αr|R|) ∈ (R+)|R|,
– there exists a list of coefficients β = (βr1 , . . . , βr|R|) ∈ (R−)|R|, and
– for each valuation function vi , there exist two sets S+

i , S−
i ⊆ R with S+

i ∩ S−
i = ∅, such

that for all bundles R ⊆ R, vi (R) can be computed as:

vi (R) = vi (∅) +
∑

r∈R∩S+
i

αr +
∑

r∈R∩S−
i

βr

Given two lists of coefficients α ∈ (R+)|R| and β ∈ (R−)|R|, the class Mα,β is defined as
the largest set of modular functions with fixed α, β-values.

Consider, for example, the class M(2,1),(−20,−7) over resources {r1, r2}, and let v1 and v2

be two valuation functions drawn from this class such that v1(∅) = v2(∅) = 0, S+
1 = {r1},

S−
1 = {r2}, S+

2 = {r2}, and S−
2 = ∅. Then, the values of v1 and v2 are as shown in the

following table:

R v1(R) v2(R)

∅ 0 0
{r1} 2 0
{r2} −7 1
{r1, r2} −5 1

Observe that the union of all classes of modular functions with fixed α, β-values is the class
of modular functions.

4 Sufficient classes of valuation functions

While Theorem 1 shows that, in principle, it is always possible to negotiate an allocation of
resources that is optimal from a social point of view, deals involving any number of agents
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and resources may be required to do so [13,30]. In particular, the most basic type of deal,
which involves moving a single resource from one agent to another and which is the type of
deal implemented in most systems realising a kind of Contract-Net protocol [33], is certainly
not sufficient for negotiation between agents that are not only rational but also myopic.2 This
is best explained by means of an example. Let N = {1, 2, 3} and R = {r1, r2, r3}. Suppose
the valuation functions of these agents are defined as follows (over singleton sets):

v1({r1}) = 5 v1({r2}) = 4 v1({r3}) = 0
v2({r1}) = 0 v2({r2}) = 5 v2({r3}) = 4
v3({r1}) = 4 v3({r2}) = 0 v3({r3}) = 5

Furthermore, for any bundle R not listed above, suppose vi (R) = 0 for all i ∈ N . Let A0 with
A0(1) = {r2}, A0(2) = {r3} and A0(3) = {r1} be the initial allocation, i.e. sw(A0) = 12.
The optimal allocation is A∗ with A∗(1) = {r1}, A∗(2) = {r2} and A∗(3) = {r3}, which
yields a social welfare of 15. All other allocations have lower social welfare than both A0

and A∗. Hence, starting from A0, the deal δ = (A0, A∗) would be the only deal increasing
social welfare. By Lemma 1, δ would also be the only deal that is IR. This deal, however,
involves all three resources and affects all three agents. In particular, δ is not a 1-deal. Hence,
if we choose to restrict ourselves to IR deals, then 1-deals are not sufficient to negotiate allo-
cations of resources with maximal social welfare. Of course, for some particular negotiation
problems, IR 1-deals will be sufficient. The difficulty lies in recognising the problems where
this is so.

The structural complexity of deals required to be able to guarantee socially optimal out-
comes partly stems from the generality of the framework. By introducing restrictions on the
class of admissible valuation functions, it could conceivably be the case that it is possible to
ensure convergence to an allocation with maximal social welfare by means of simpler deals.
In other words, if all valuation functions belong to a certain restricted class of functions,
then this may turn out to be a sufficient condition for convergence to a social optimum by
means of structurally simple deals. In this section, we establish two such results for modular
valuation functions and 1-deals.

4.1 Framework with money

It turns out that in domains where all valuation functions are modular, it is always possible to
reach a socially optimal allocation by means of a sequence of rational deals involving only a
single resource each. This is a slight generalisation of a result originally proved for the case
of additive valuations [13], and our proof closely follows that original proof.

Theorem 2 (Convergence in modular domains) If all valuation functions are modular, then
any sequence of IR 1-deals will eventually result in an allocation with maximal social welfare.

Proof By Lemma 1, any IR deal results in a strict increase in social welfare. Together with the
fact that the number of distinct allocations is finite, this ensures that there can be no infinite
sequence of IR deals (termination). It therefore suffices to show that for any allocation that
does not have maximal social welfare there still exists an IR 1-deal that would be applicable.

2 Dunne and colleagues [11,12] have analysed the computational complexity of checking whether, for a given
scenario, 1-deal negotiation is sufficient (a topic which we will also address in Sect. 5.3). Andersson and
Sandholm [1] have run several experiments to analyse the quality of allocations that can be attained using
1-deals in practice.
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We are going to use the alternative characterisation of modular valuation functions given
by Eq. 2. For any allocation A, let f A be the function mapping each resource r to the agent
i that holds r in situation A. Then, for modular domains, the formula for social welfare (see
Definition 5) can be rewritten as follows:

sw(A) =
∑

i∈N
vi (∅) +

∑

r∈R
v′

f A(r)({r})

with v′
i (R) = vi (R) − vi (∅). Now assume, we have reached an allocation of resources

A that does not have maximal social welfare, i.e. there exists another allocation A′ with
sw(A) < sw(A′). Considering the above definition of social welfare and observing that∑

i∈N vi (∅) is a constant that is independent of the current allocation, this implies that at
least one resource r must satisfy the inequality v′

f A(r)({r}) < v′
f A′ (r)({r}), i.e. the agent

owning r in allocation A values that resource less than the agent owning it in allocation A′.
But then the 1-deal consisting of passing r from agent f A(r) to agent f A′(r) would already
increase social welfare and thereby be rational. ��

Like Theorem 1, the above establishes an important convergence result towards a global
optimum by means of decentralised negotiation between self-interested agents. In addition,
provided all valuation functions are modular, convergence can be guaranteed by means of
a much simpler negotiation protocol, which only needs to cater for agreements on 1-deals
(rather than multilateral deals over sets of resources).

4.2 Framework without money

We now prove a similar result for the variant of our framework that does not allow for
monetary side payments.

Theorem 3 (Convergence in Mα,β -domains) Let Mα,β be a class of modular functions with
fixed α, β-values. If all valuation functions are drawn from Mα,β , then any sequence of CR
1-deals will eventually result in an allocation of resources with maximal social welfare.

Proof By Definition 6, any CR deal results in a strict increase in social welfare. Together
with the fact that the number of distinct allocations is finite, this ensures that there can be no
infinite sequence of CR deals (termination). It therefore suffices to show that for any alloca-
tion that does not have maximal social welfare there still exists a CR 1-deal that would be
applicable. If an allocation A does not have maximal social welfare then it must be the case
that some agent i holds a resource r and that there is another agent j in the system such that
vi ({r}) < v j ({r}). That is, either (1) some agent i holds a resource r with vi ({r})−vi (∅) = 0,
and there is another agent j in the system with v j ({r}) − vi (∅) = αr , or (2) some agent i
holds a resource r with vi ({r})− vi (∅) = βr , and there is another agent j in the system such
that either v j ({r}) − v j (∅) = 0, or v j ({r}) − v j (∅) = αr . In each case, passing r from i to j
would be a CR deal, so either negotiation has not yet terminated or we are in situation with
maximal social welfare. ��

Theorem 3 generalises a previous result stating that any sequence of CR 1-deals will
eventually result in an allocation with maximal social welfare in case all agents are using
so-called 0–1 functions to model their preferences [13]. A valuation function vi is a 0–1
function if it is additive and vi ({r}) = 0 or vi ({r}) = 1 for all r ∈ R. That is, the class of
0–1 functions is like the class M(1,1,...,1),(0,0,...,0), except that the former does not allow for
non-zero values to be assigned to the empty set.
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5 Necessity issues

As explained earlier, the convergence results of the previous section may be considered
results on sufficient conditions on valuation functions for convergence by means of rational
1-deals. This naturally raises the question whether there may be a corresponding set of nec-
essary conditions on valuation functions. In this section, we are going to give a negative
answer to this question. We are first going to show that all valuation functions belonging
to the class of modular functions (which we have shown to be a sufficient condition for
convergence by means of 1-deals) is not a necessary condition. Then we are going to show
that, in fact, there can be no condition on individual valuation functions that would be both
necessary and sufficient in this sense. Of course, it is possible to formulate a necessary and
sufficient condition for convergence by means of 1-deals for profiles of valuation functions
(i.e. if we are allowed to give conditions on how the valuations of different agents should
relate to each other). However, as we are going to show, evaluating such a condition would
be computationally intractable.3

5.1 Modularity is not necessary

Modularity is not a necessary condition for convergence by means of IR 1-deals. We dem-
onstrate this by means of the following example. Suppose R = {r1, r2} and there are two
agents with valuation functions v1 and v2 defined as follows:

v1(∅) = 0 v2(∅) = 0
v1({r1}) = 10 v2({r1}) = 10
v1({r2}) = 10 v2({r2}) = 10

v1({r1, r2}) = 0 v2({r1, r2}) = 0

These functions are not modular. The situation is as follows: each agent is willing to hold
a single resource, and has no preference as to which resource it actually holds. The optimal
allocations are those where each agent holds exactly one resource. Furthermore, as may eas-
ily be checked, IR 1-deals are sufficient to move to the optimal allocation for this scenario,
despite the functions not being modular. Hence, modularity cannot be a necessary condition
for convergence.

5.2 There is no sufficient and necessary class

In fact, it is possible to show that there can be no class of valuation functions that would be
both sufficient and necessary. It suffices to produce two concrete functions v1 and v2 such
that (i) each of them would guarantee convergence if all agents were to use it, and (i i) there is
a scenario where some agents are using v1 and others v2 and convergence is not guaranteed.
This is so, because assuming that a necessary and sufficient class exists, (i) would imply that
both v1 and v2 belong to that class, while (i i) would entail the contrary. We give two such
functions for the case of two agents and two resources (the argument is easily augmented to
the general case):

3 While the analysis in this section applies to the framework of negotiation with money, a similar case may
be made for negotiation without money.
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v1(∅) = 0 v2(∅) = 0
v1({r1}) = 1 v2({r1}) = 5
v1({r2}) = 2 v2({r2}) = 5

v1({r1, r2}) = 3 v2({r1, r2}) = 5

The function v1 is modular, i.e. all agents using that function is a sufficient condition for
guaranteed convergence to an optimal allocation by means of IR 1-deals (Theorem 2). Clearly,
convergence is also guaranteed if all agents are using v2. However, if the first agent uses v1

and the second v2, then the allocation A with A(1) = {r1} and A(2) = {r2} is not socially
optimal and the only deal increasing social welfare (and thereby, the only IR deal) would be
to swap the two resources simultaneously. Hence, no condition on all agents’ valuation func-
tions can be both sufficient and necessary to guarantee convergence to an optimal allocation
by means of IR 1-deals alone.

5.3 Evaluating conditions on profiles of valuations functions is intractable

Our argument for the non-existence of any necessary and sufficient condition for guaranteed
convergence has directly exploited the fact that we were looking for a single condition to be
met by the valuation functions of all agents. The problem could be circumvented by looking
for suitable conditions on negotiation problems as a whole, where different valuation func-
tions may meet different such conditions. That is, we could try to formulate a condition for
profiles 〈v1, . . . , vn〉 of valuation functions. Clearly, such a condition does exist: trivially,
〈v1, . . . , vn〉 meets that condition iff convergence to an optimal allocation is guaranteed for
any initial allocation when agents are using the valuation functions 〈v1, . . . , vn〉. Of course,
phrased like this, this condition is of no practical use. What we would require is a “sim-
ple” condition on valuation profiles. The condition of modularity (for single valuations), for
instance, clearly is such a simple condition.

To make this notion of simplicity precise, we first need to fix a representation language for
valuation functions. Then we can ask whether or not it is the case that checking a particular
condition for valuation profiles represented in this language is a tractable decision problem.
As we are going to argue in this section, for a wide range of representation languages, there
can be no condition on valuation profiles that would be simple in this sense.

Formally, a representation language over R is defined in terms of a language L ⊆ �∗,
where � is some finite set of symbols, and a function f : L × 2R → Q mapping each pair
of a word (representing a valuation function) and a set of resources to a rational number.
A representation language is said to be polynomial-time computable if the computation of
f (v, R) can be done in polynomial time with respect to the number of symbols in v and
the size of R, for any v ∈ L and R ⊆ R. We will continue to write v(R) as a shorthand
for f (v, R). Most widely-used languages fit this definition. We will discuss several of them
below. Note that there are also exceptions though, such as the so-called OR-language, mainly
used in the combinatorial auction literature [24], which is not polynomial-time computable.

Checking whether a given profile of valuation functions guarantees convergence to an
allocation with maximal social welfare by means of IR 1-deals is equivalent to a decision
problem that has been referred to as 1-convergence (1-Conv) in the literature [7,11].

Definition 9 (1-convergence problem) Given a negotiation problem 〈N , R, V〉, with V being
represented in the representation language REP , the 1-convergence problem 1- Conv(REP)

is the problem of checking whether any sequence of IR 1-deals (originating from any initial
allocation) will eventually result in an allocation with maximal social welfare.
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1-Conv has been shown to be coNP-complete in case valuations are represented using the
so-called SLP form, which encodes valuation functions as straight-line programs [11]. This
means that checking whether a profile of valuation functions given in SLP form satisfies the
necessary and sufficient condition for successful 1-deal negotiation is also coNP-complete,
hence computationally intractable. In the sequel, we are going to extend this complexity result
to a whole range of representation languages, which only have to meet very weak conditions
for the hardness result to apply.

We are going to establish our hardness result via a reduction from the so-called valuation
improvement problem (Vip) problem, which is closely related to the problem of finding the
maximum of a valuation function. These problems are known to be NP-hard for a wide range
of representation languages.

Definition 10 (Valuation improvement problem) Given a valuation function v, expressed in
a particular representation language REP , and a bundle Q ⊆ R, the valuation improvement
problem Vip(REP) is the problem of checking whether there exists a bundle Q′ ⊆ R such
that v(Q) < v(Q′).

Our proof will apply to representation languages that are r-composed, where r is a particu-
lar resource. Roughly, a representation language REP satisfies this property, if for any valua-
tion function v that can be represented in REP we can also represent certain functions that are
like v, except that they either return 0 or the same value as v reduced by a particular constant,
depending on whether or not r is included in the bundle being evaluated. (We stress that this
is an artificial property of a language, specifically designed to suit the reduction to follow.)

Definition 11 (r-composition) Let REP and REP ′ be two representation languages for val-
uation functions and let r ∈ R be a resource. REP is said to be an r -composition over REP ′
if for all v ∈ REP and for all x ∈ {v(R) | R ⊆ R}, the functions v and v defined below
belong to REP ′ and the number of symbols needed to represent both functions is polynomial
in |v| (the number of symbols needed to encode v) and in the number of resources.4

v(R) =
{

v(R) − x if r ∈ R
0 otherwise

v(R) =
{

v(R) − x if r /∈ R
0 otherwise

For the sake of simplicity, we will say that a representation language REP is r -composed
(for some given resource r ) if there exist some representation language REP ′ over which
REP is an r -composition.

Our result will apply to any representation language REP that is r -composed over some
representation language REP ′ for which the valuation improvement problem Vip(REP ′)
is either NP-hard or coNP-hard. As many interesting representation languages satisfy these
properties, the results presented here are fairly general. Let us briefly mention some of the rep-
resentation languages commonly used in multiagent resource allocation [7]. In the following,
r is any resource chosen from R.

4 Note that encoding the function v (or v) as a sequence of bits requires encoding v, r , and x . Unfortunately,
x may be a huge fractional number. Thus, if we choose to encode x directly as a sequence of bits, the total
number of bits may not be polynomial in |v| and |R|. To overcome this problem, instead of encoding x , one
may encode the bundle R whose value under v is x . This way, the size of v remains polynomial in |v| and
|R|. This will be of some importance in the proof to follow, as we will use a reduction to a decision problem
in which the size of instances will also be polynomial in |v| and |R|. For representation languages REP that
encode the numbers used to make up the values of v directly (such as e.g. the k-additive form discussed in the
sequel), this point is of course not an issue, as the complexity of representing those numbers is already being
accounted for when we consider the complexity of representing v.
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– The k-additive form [8,18] models a valuation function v as a set of coefficients αT for
T ⊆ R and |T | ≤ k, and fixes v(R) = ∑

T ⊆R αT . That is, αT is the marginal value of
obtaining all the items in T together, beyond the value associated with any of its strict
subsets. Vip is NP-hard for the k-additive form for any k ≥ 2 [34]. Also, for any k ∈ N,
the k-additive form is an r -composition over the (k+1)-additive form. To see this, observe
that given a representation {αT } of v, we can represent v by means of the coefficients {α′

T }
defined as follows: α′{r} := α∅ − x , α′

T ∪{r} := αT for T �= ∅, and αT := 0 for all T not
containing r (and similarly for v).

– Posiforms of degree k [5], which are a generalisation of the k-additive form that also permit
the definition of marginal values for not obtaining certain resources, are r -compositions
over posiforms of degree k+1. The argument for r -composability is similar to the one
given above, and NP-hardness of the Vip follows from the corresponding result for the
k-additive form (or from observing that it is equivalent to a standard NP-hard combinatorial
problem known as Weighted Max k- Constraint Sat [3]).

– The language of weighted propositional formulas associates resources with propositional
variables and encodes valuation functions as sets of weighted formulas [7,34]. The value
of a bundle is then given by the sum of the weights of the formulas that are “true” over
that bundle. This language is an r -composition over itself: to construct a representation of
v given a representation of v, we rewrite each weighted formula (ϕ,w) as (ϕ ∧ r, w) and
add the weighted formula (r,−x). Clearly, Vip is NP-hard for this language, by virtue of
an immediate reduction from Sat [3,34]. Many sublanguages of this general framework
will also satisfy r -composability and NP-hardness of the associated Vip [34]. These lan-
guages include the languages advocated by Boutilier and Hoos [6], amongst others, for
the compact representation of bids in combinatorial auctions.

– The SLP (straight-line program) representation is an r -composition over itself. Intuitively,
SLPs are computer programs without loops, taking a bundle of resources as input and
returning the associated valuation as output. Here, Vip is also NP-hard [12].

We should also note that our result does not cover languages such as the so-called “bundle
form” (which simply lists the valuation for each bundle in a large table) or the XOR-language
used in combinatorial auctions [7,24], which is like the bundle form, except that there is an
implicit monotonicity assumption. These languages lack succinctness for most interesting
classes of valuation functions, and as a consequence the associated Vip problem is linear in
the size of the representation.

We are now ready to present our theorem on the intractability of 1-Conv. Our proof
employs a polynomial-time Turing reduction (as opposed to the more widely used Karp
reductions).5

Theorem 4 (Complexity of 1-convergence) Let REP be a polynomial-time computable
representation language. If the following conditions hold, then 1- Conv(REP) is NP-hard
under polynomial-time Turing reductions, even with only two agents:

– there exist a resource r ∈ R and a representation language REP ′ over which REP is an
r-composition;

– the Vip problem for this representation language REP ′ is NP-hard; and
– the zero-valued valuation function v0 ≡ 0 is representable in REP .

5 To be precise, we are using a polynomial-time truth-table reduction, which is a special case of a Turing
reduction [20]. Recall that polynomial-time Turing (and truth-table) reductions do not allow us to distinguish
between NP- and coNP-hardness [16,20], which explains why our NP-hardness result is not at odds with the
known coNP-hardness result for the special case for the SLP form [11].
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Proof In the following, we will show NP-hardness using a Turing reduction from the Vip
problem. More precisely, we will show that, given an oracle deciding the 1-Conv(REP)
problem in a single time unit, we can build a deterministic algorithm solving the Vip(REP’)
problem in polynomial time. The proof is constructive, i.e. the algorithm will be given below.

Let 〈v, Q〉 be an instance of the Vip problem over the REP ′ representation. Note that the
number of bits required to encode such an instance is bounded from above by O(|v| + |R|).
Let v0 be the zero-valued valuation function, and let the set of agents be N = {1, 2}. Now
define two valuation functions (where r is the fixed resource mentioned in the theorem):

v(R) =
{

v(R) − v(Q) if r ∈ R
0 otherwise

v(R) =
{

v(R) − v(Q) if r /∈ R
0 otherwise

Clearly, these two valuation function can be represented in REP , because of the r -composi-
tion property. Based on these functions, we can now define two instances of 1-Conv using
two agents and the same set of resources, as follows: Let I be the 1-Conv instance for two
agents with valuation functions v and v0; and let I be the 1-Conv instance with v and v0. We
will show next that deciding whether these instances are 1-convergent or not will eventually
give us the answer to the Vip problem 〈v, Q〉.

First of all, note that if the answer to the Vip problem over 〈v, Q〉 is NO (i.e. if Q is an
optimal bundle), then both I and I are 1-convergent. The reason is that 0 will be the highest
value the functions v and v can take in this case, and moving resource r from an agent to
another in I or I will lead to an optimal allocation if the current allocation is not already
optimal. By contraposition, we can deduce the following:

– If I or I are not 1-convergent, then the answer to the Vip problem is YES.

Consider now the case where both problems are 1-convergent. By definition of v and v,
the answer to the Vip problem is YES iff there exists an allocation A such that v(A) > 0
or there exists an allocation A such that v(A) > 0. This in turn is equivalent to checking
whether there exists an allocation A such that sw(A) > 0 for I or there exists an allocation
A such that sw(A) > 0 for I. Checking whether there exist allocations with social welfare
exceeding 0 can be done the following way: First, identify allocations A0 with sw(A0) = 0
for I and A0 with sw(A0) = 0 for I. Such allocations are easily constructed. Simply set
A0 = 〈∅, R〉 and A0 = 〈R,∅〉, yielding v(∅) + v0(R) = v(R) + v0(∅) = 0. Then, because
both problem instances are assumed to be 1-convergent, checking whether there exist allo-
cations that are superior to A0 and A0 can be reduced to checking whether there are any IR
1-deals that would be applicable from these allocations. This can be checked in polynomial
time. To summarise:

– If both I and I are 1-convergent, then consider allocations A0 = 〈∅, R〉 and A0 = 〈R,∅〉.
If there exists an IR 1-deal from A0 for I or if there exists an IR 1-deal from A0 for I,
then the answer to the Vip problem is YES, otherwise it is NO.

This covers all possible cases. Hence, given our oracle for 1-Conv, we can always decide
Vip in polynomial time. Our reduction is summarised by the algorithm shown
in Fig. 1. ��
We stress that the decision problem 1-Conv, for which we have given a complexity analysis
here, is not intended to be viewed as a problem to be solved by any of the participating par-
ties during negotiation. Instead, this is a (hypothetical) problem that would have to be solved
by someone who wants to check whether an agent society with a given profile of valuation
functions could be expected to solve any given resource allocation problem in an optimal
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Fig. 1 Algorithm summarising the reduction from 1-Conv to Vip

manner by means of 1-deals alone. By establishing NP-hardness, we have shown that this
would be an infeasible prospect.

To conclude this section, we recall that the NP-hardness result for 1-Conv entails that, for
many common representation languages, checking whether profiles of valuation functions
will guarantee convergence by means of IR 1-deals is intractable. Therefore, searching for a
condition over profiles of valuation functions is unrealistic. As we have shown that no con-
dition on single valuation functions is both sufficient and necessary, and as, on top of that,
we have just argued that checking conditions on profiles of functions is intractable in most
cases, the best thing we can do is to investigate whether some restricted classes of valuation
functions can be identified as being maximal. This is what we shall do in the next section.

6 Maximal classes of valuation functions

Recall that valuation functions being modular is a sufficient condition for convergence by
means of IR 1-deals. In previous work [9], we have shown that the class of modular valuation
functions are also maximal with respect to the class of 1-deals. This is to say that for no
class of valuation functions strictly including the class of modular functions, we would still
be able to ensure the same kind of convergence result. The significance of this (surprising)
result can only be fully appreciated when considered together with the “negative” result on
necessary and sufficient conditions discussed in the previous section.

In this section, we are going to substantially strengthen the known maximality theorem
by proving maximality with respect to the much larger class of bilateral deals, and we are
also going to establish two related results for the framework without money.

6.1 Framework with money

The class of bilateral deals includes all 1-deals. Hence, by Theorem 2, if all valuation func-
tions are modular, then negotiation by means of IR bilateral deals guarantees an outcome
with maximal social welfare. We now show that this ceases to be the case as soon as just a
single valuation is non-modular. That is, the class of modular valuation functions is maximal
with respect to the class of bilateral deals if we wish to ensure convergence for the framework
with money. This result applies to negotiation problems with three or more agents (naturally,
for two agents the class of bilateral deals is sufficient).

Theorem 5 (Maximality w.r.t. bilateral deals) Let M be the class of modular valuation
functions. Then for any class of valuation functions F such that M ⊂ F , there are a
negotiation problem with valuation functions drawn from F and an initial allocation such
that no sequence of IR bilateral deals will lead to an allocation with maximal social welfare.
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Proof Observe that for |R| ≤ 1, any valuation function is modular, i.e. the theorem holds
vacuously in these cases. Therefore, without loss of generality, from now on we assume that
there are at least two distinct resources in the system.

We first prove the claim for the case of three agents 1, 2, 3 and two resources r1, r2 and
then argue how this immediately generalises to the general theorem. Let v1 be any valuation
function over {r1, r2} that is not modular. We will show how to construct modular valuation
functions v2 and v3 and an initial allocation A0 such that moving to an optimal allocation is
not possible by means of bilateral deals alone. v1 can be expressed in k-additive form using
coefficients a, b, c, d ∈ R:6

v1 = a + b · r1 + c · r2 + d · r1 · r2

Given that v1 is non-modular we know that d �= 0. We distinguish two cases:

(1) First, suppose d > 0. We define v2 and v3 as follows:

v2 =
(

b + 1

3
d

)

· r1 +
(

c + 1

3
d

)

· r2

v3 =
(

b + 1

3
d

)

· r1 +
(

c + 1

3
d

)

· r2

Furthermore, let A0 be such that agent 2 holds r1 and agent 3 holds r2. Hence, sw(A0) =
a + b + c + 2

3 d . Let A∗ be the allocation where both resources are held by agent 1. We
have sw(A∗) = a + b + c + d > sw(A0). The direct deal δ = (A0, A∗) would not
be bilateral. In fact, we can easily check that there are no IR bilateral deals from A0:
First, as agents 2 and 3 have identical modular valuation functions, no deal between them
would be IR. Second, the deal where agent 2 is selling r1 to agent 1 is reducing social
welfare by 1

3 d and similarly for the deal where agent 3 is selling r2 to agent 1. There are
no other bilateral deals from A0. Hence, A0 is not optimal, but negotiation by means of
IR bilateral deals is stuck.

(2) Now suppose d < 0. Choose a very large � ∈ R (in fact, any � > |b + 2
3 d| will do) and

define v2 and v3 as follows:

v2 =
(

b + 2

3
d

)

· r1

v3 =
(

c + 1

2
d

)

· r2 − � · r1

Furthermore, let A0 be such that agent 2 holds r1 and agent 1 holds r2. Hence, sw(A0) =
a + b + c + 2

3 d . Let A∗ be the allocation where agent 1 holds r1 and agent 3 holds r2,
i.e. sw(A∗) = a + b + c + 1

2 d . This sum is greater than sw(A0), because d is negative.
That is, there exists a better allocation than A0 and that allocation is not reachable by
means of a single bilateral deal. It remains to be checked that no bilateral deal applicable
in A0 would be IR: First, the only possible deal between agents 1 and 2 would be to give
r1 to agent 1, which would decrease social welfare by | 1

3 d|. Second, the only possible
deal between agents 1 and 3 would be to give r2 to agent 3, which would decrease social
welfare by | 1

2 d|. Third, the only possible deal between agents 2 and 3 would be to give
r1 to agent 3, which would also reduce social welfare (due to our choice of �).

6 The k-additive form has been introduced in Sect. 5.3. Here (and in the sequel), we use a simplified notation:
an agent with valuation function v1 assigns value a to the empty bundle, increases their valuation of the bundle
by b on receiving r1, by c on receiving r2, and by an additional amount of d if both r1 and r2 are being
received.
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According to the characterisation of modular functions given by Eq. 3 in Sect. 3, if there are
more than two resources in the system, then v1 must still be non-modular with respect to two
of the resources and a particular fixed allocation as far as the other resources are concerned.
We can distribute these other resources amongst agents 1 and 2 according to this particular
partial allocation and define v2 such that agent 2 places prohibitively high positive or negative
values on them so that these additional resources will never be involved in any IR deal. For
example, if v1 = 2 · r1 + 3 · r2 − 1 · r1 · r2 + 5 · r1 · r2 · r3, then v1 is non-modular with respect
to {r1, r2} for the fixed partial allocation where agent 1 receives r3. Then, if we add the term
−100 ·r3 to the definition of v2, our proof given above (with d = 5−1) still applies. Clearly,
this is a general approach that applies to any non-modular function v1. Hence, it is sufficient
to consider the case of two resources, as done above. ��
Observe that the theorem only makes an existential statement, so there is no need to prove
anything for more than three agents, although examples for larger numbers of agents can be
constructed in the same manner as done in the proof. Clearly, for the special case of just two
agents, bilateral deals do guarantee convergence—whatever the valuation functions may be.

Theorem 5 entails our earlier result [9] on the maximality of modular valuation functions
with respect to 1-deals, because every 1-deal is also a bilateral deal. We state this result here
as a corollary.

Corollary 1 (Maximality w.r.t. 1-deals) Let M be the class of modular valuation functions.
Then for any class of valuation functions F such that M ⊂ F , there are a negotiation
problem with valuations drawn from F and an initial allocation such that no sequence of IR
1-deals will lead to an allocation with maximal social welfare.

The original direct proof of Corollary 1 [9] has been considerably more complex than
our proof of Theorem 5. We reproduce that proof in Appendix, because beyond of what
follows from Theorem 5 that proof also shows that the class of modular valuation functions
is maximal with respect to 1-deals even for problems with only two agents.

Why is Corollary 1 significant? As argued earlier, while the full abstract negotiation frame-
work introduced at the beginning of this paper would be difficult to implement, designing a
system that only allows for pairs of agents to agree on deals over one resource at a time is
entirely feasible. As we would like to be able to guarantee socially optimal outcomes in as
many cases as possible, also for such a restricted negotiation system, we would like to be
able to identify the largest possible class of valuation functions for which such a guarantee
can be given. However, our discussion in Sect. 5 has shown that there can be no class of
valuation functions that exactly characterises the class of negotiation problems for which
negotiating socially optimal allocations by means of rational 1-deals is always possible. Still,
there are classes of valuation functions that do guarantee optimal outcomes by means of
1-deal negotiation. As shown by Theorem 2, the class of modular functions is such a class
and it is certainly a natural, albeit simple and limiting, class to consider. An obvious question
to ask is therefore whether this class can be enlarged in any way without losing the desired
convergence property. Corollary 1 settles this question by giving a negative answer: For any
agent with a non-modular valuation function there exist modular valuation functions (for
the other agents) and an initial allocation such that rational 1-deals alone do not suffice to
negotiate an allocation of resources with maximal social welfare. This is the case even for
small systems with just two agents.7

7 As an aside we remark here that there may well be further such classes (that are both sufficient and maximal),
but we have not been able to identify any such class that would also be interesting. An example for a class of
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Theorem 5 substantially sharpens the previously known maximality result (here stated
as Corollary 1). It says that even if we are able to implement a negotiation framework in
which agents can successfully negotiate arbitrary bilateral deals (requiring a rich negotiation
protocol, going well beyond of what is possible in many existing systems today), we cannot
give guarantees for socially optimal outcomes, unless all agents have preferences that are
expressible in terms of modular valuation functions alone. Given the very limited expres-
sive power of modular preferences and the seemingly powerful concept of general bilateral
negotiation, this result is both sobering and surprising.

Can Theorem 5 be generalised even further? As we shall argue next, it can but not in
interesting ways. For instance, the class of modular valuation functions is also maximal with
respect to the class of bilateral deals enriched with one specific trilateral deal, such as e.g. the
deal that moves r1 from agent 1 to agent 2 and at the same time r2 from agent 1 to agent 3 (to see
this, revisit the proof of Theorem 5 and observe that having this additional deal available would
not have made a difference for the argument used). However, this specific extension is of
course of no practical interest. Extending Theorem 5 to larger classes of deals that are natural
and interesting does not seem possible. For instance, it is not the case that the class of modular
valuations functions would be maximal with respect to the class of all bilateral and trilateral
deals together. Put differently, at least for some superclasses of M we can always guarantee
convergence by means of IR deals that involve at most three agents each. This follows from
known results: Observe that two resources suffice to construct a non-modular function. In
a domain with two resources any deal can involve at most four agents. But in fact, a deal
involving four agents must be the composition of two independent deals between two agents
each, and it is known that such a deal can always be decomposed without violating IR [13].

6.2 Framework without money

We now turn our attention to the framework without money and study maximality ques-
tions for the family of classes Mα,β of modular valuation functions with fixed α, β-values
introduced in Sect. 3. We shall prove two theorems. The first establishes maximality with
respect to CR 1-deals. The second shows that when we lower our ambitions from negotiating
allocations with maximal social welfare to negotiating Pareto optimal allocations, then we
lose the maximality property.

As we have seen in the proof of Theorem 3, for any class Mα,β , all valuation functions
being drawn from that class is a sufficient condition for convergence to an allocation with
maximal social welfare by means of CR 1-deals. It turns out that any such class is also
maximal.

Theorem 6 (Maximality w.r.t. 1-deals) Let Mα,β be a class of modular valuation functions
with fixed α, β-values. Then for any class of valuation functions F such that Mα,β ⊂ F ,
there are a negotiation problem with valuation functions drawn from F and an initial allo-
cation such that no sequence of CR 1-deals will lead to an allocation with maximal social
welfare.

Proof Suppose agent 1 has a valuation function v1 �∈ Mα,β . We shall construct a negotiation
problem with two further agents with valuation functions in Mα,β and an initial allocation

Footnote 7 continued
valuation functions that is sufficient but not interesting is the class of pseudo-constant functions. A valuation
function vi is pseudo-constant iff there exists a c ≥ 0 such that vi (R) = c for all R �= ∅ and vi (∅) = 0.
Clearly, if all agents use such a function, then IR 1-deals will be possible until an allocation with maximal
social welfare has been reached—but this is of course a very limited model of agent preferences.
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such that that allocation is not optimal, but no CR 1-deal can improve upon it. We distinguish
two cases:
(1st case) Suppose there exist a bundle R and a resource r such that v1(R ∪ {r}) − v1(R) �∈
{0, αr , βr }. Let λ = v1(R∪{r})−v1(R). We define v3 = ∑

x∈R∪{r} βx ·x+∑
x∈R\(R∪{r}) αx ·

x and give all of R\(R ∪ {r}) to agent 3. That is, agent 3 gets its single most preferred bun-
dle and will not be willing to participate in any deals. We also allocate all of R to agent 1.
It remains to define v2 and to determine the location of r in the initial allocation A0. Let
v′

2 = ∑
x∈R βx · x . An agent equipped with the valuation function v′

2 would dislike all the
items in R and be indifferent towards all others. We will define v2 of agent 2 in terms of v′

2,
by additionally specifying that agent’s attitude towards r . The location of r and the value
agent 2 places on r depend on λ:

(1) If λ > αr , then we give r to agent 2 and define v2 = v′
2 + αr · r .

(2) If αr > λ > 0, then we give r to agent 1 and define v2 = v′
2 + αr · r .

(3) If 0 > λ > βr , then we give r to agent 2 and define v2 = v′
2 + βr · r .

(4) If βr > λ, then we give r to agent 1 and define v2 = v′
2 + βr · r .

In case (1), for example, social welfare would increase by λ − αr if we were to give r to
agent 1, but this deal is not CR. Indeed, there is no CR deal starting from A0. In case (2),
social welfare would increase by αr − λ if agent 1 were to give r to agent 2, but while this is
the only rational 1-deal for agent 2, it is not rational for agent 1. The situation for the other
two cases is similar. This concludes the proof for the first case.
(2nd case) Now suppose that v1(R ∪ {r}) − v1(R) ∈ {0, αr , βr } for all bundles R and
resources r . Given that v1 �∈ Mα,β , this means that v1 cannot be modular. Hence, by Eq. 3,
there exist a bundle R and resources r1, r2 �∈ R such that v1(R ∪ {r1, r2}) �= v1(R ∪ {r1}) +
v1(R ∪ {r2}) − v1(R).

We will again use agent 3 to allow us to focus on an interesting subset of resources: give
all of R \ (R ∪ {r1, r2}) to agent 3 and define v3 such that agent 3 perceives this as the best
possible situation and will not participate in any deals. So below we only need to specify
allocations and v2 with respect to R ∪ {r1, r2}. We will refer to the following four (partial)
allocations:

A A1 A2 A12

Agent 1 R R ∪ {r1} R ∪ {r2} R ∪ {r1, r2}
Agent 2 {r1, r2} {r2} {r1} ∅

The marginal valuation of receiving {r1, r2} will be either more or less than the sum of the
marginal valuations of the two individual items:

(1) Suppose v1(R ∪ {r1, r2}) > v1(R ∪ {r1}) + v1(R ∪ {r2}) − v1(R). Define v2 = [v1(R ∪
{r1})− v1(R)] · r1 +[v1(R ∪ {r2})− v1(R)] · r2 +∑

x∈R βx · x . Clearly, v2 ∈ Mα,β . We
have v1(A)+v2(A) = v1(R)+v1(R ∪{r1})+v1(R ∪{r2})−2 ·v1(R) = v1(R ∪{r1})+
v1(R ∪ {r2})− v1(R). Also, v1(A1)+ v2(A1) = v1(R ∪ {r1})+ v1(R ∪ {r2})− v1(R) =
v1(A2) + v2(A2) and v1(A12) + v2(A12) = v1(R ∪ {r1, r2}). Now, if A is made initial
allocation, then there is no CR 1-deal available, despite A12 being socially preferable.

(2) Suppose v1(R ∪ {r1, r2}) < v1(R ∪ {r1}) + v1(R ∪ {r2}) − v1(R). Define v2 = [v1(R ∪
{r1})−v1(R)]·r1+[v1(R∪{r1, r2})−v1(R∪{r1})]·r2+∑

x∈R βx ·x . Clearly, v2 ∈ Mα,β .
We have v1(A)+v2(A) = v1(A1)+v2(A1) = v1(A12)+v2(A12) = v1(R∪{r1, r2}) and
v1(A2)+ v2(A2) = v1(R ∪ {r1})+ v1(R ∪ {r2})− v1(R). Hence, if the initial allocation

123



Auton Agent Multi-Agent Syst (2010) 20:234–259 253

is A1, then moving to A2 would increase social welfare, but there is no possible CR
1-deal.

This covers all cases, and we are done. ��
Next, we analyse the situation where we aim for a Pareto optimal outcome rather than an
outcome maximising social welfare. As any allocation with maximal social welfare is also
Pareto optimal, Theorem 3 shows that CR 1-deals will always lead to a Pareto optimal allo-
cation if all valuation functions are drawn from the same Mα,β . Our next theorem shows
that the Mα,β classes are not maximal, however. We give a constructive proof by showing
how Mα,β can be extended without jeopardising convergence.8

Theorem 7 (Lack of maximality) Let Mα,β be a class of modular valuation functions with
fixed α, β-values. Then there exists a class of valuation functions F with Mα,β ⊂ F , such that
any sequence of CR 1-deals will eventually result in a Pareto optimal allocation, whenever
all valuation functions are drawn from F .

Proof (sketch) Fix some r ∈ R. Define F := Mα,β ∪ {v} with v(R) = a whenever r ∈ R
and v(R) = 0 otherwise, where a is chosen to be any positive number different from αr . (So
we have v �∈ Mα,β , as required.) Suppose all valuation functions are drawn from F . Then it
is not hard to show that any sequence of CR 1-deals will converge to a Pareto optimal alloca-
tion. The proof is similar to that of Theorem 3. Note that an agent with valuation function v

is only interested in obtaining r , will never give away r (whatever is being offered in return),
and will give away any other resources without expecting anything in return. ��

7 Conclusion

This paper makes a contribution to the theoretical analysis of a negotiation framework where
rational but myopic agents agree on a sequence of deals regarding the reallocation of a num-
ber of indivisible resources. We have shown that the use of modular valuation functions
to model agent preferences is a sufficient condition, if side payments are allowed, to guar-
antee final allocations with maximal social welfare in case agents only negotiate 1-deals
(involving one resource each). When no side payments are permitted, any class of Mα,β

functions would be sufficient. We have then seen, however, that this is not a necessary con-
dition for optimal outcomes and, indeed, there can be no condition on (individual) valuation
functions that would be both necessary and sufficient in this sense. Furthermore, we have
shown that, while a necessary and sufficient condition on profiles of valuation functions
obviously does exist, checking such a condition is intractable for many representation lan-
guages used for encoding agent preferences. We have therefore concentrated on establishing
maximality results. In the framework with money, there is no superclass of the class of
modular valuation functions that would still ensure convergence by means of either 1-deals
or the much larger class of bilateral deals. For the framework without money we have also
proved maximality with respect to 1-deals. On the other hand, if we only require Pareto
optimal outcomes, this kind of maximality property ceases to hold.

To summarise the main results more formally, let us introduce the Conv(.,.) problem,
a generalisation of the 1-convergence problem presented in Sect. 5.3. Given a negotiation

8 We label this theorem as a negative result (on the lack of a maximality property) rather than as a positive
result (on the sufficiency of a superclass of Mα,β ), because we believe that this highlights what is most
interesting about it: The superclass used in the proof is hardly of practical interest, but the lack of maximality
is insightful, given the strong affirmative maximality results proved earlier.
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problem where all valuation functions of the agents belong to some class F , the convergence
problem Conv(F, T ) is the problem of checking whether any sequence of deals of type
T (originating from any initial allocation) will result in an allocation with maximal social
welfare. When the valuation functions are encoded using a particular representation language
REP , this problem is referred to as Conv(REP, T ). Regarding types of deals, we have con-
sidered 1-deals, bilateral deals, and arbitrary deals as far as their structure is concerned, and
we have distinguished IR deals (individually rational deals with side payments) from CR
deals (cooperatively rational deals without side payments). Let M be the class of modular
functions, and let Mα,β be the class of modular functions with fixed α, β-values for some
given vectors α and β. Using this notation, the main results reported in this paper may be
summarised as follows. We first give the results pertaining to the framework with money:

– Theorem 1: For any class F , Conv(F , IR deals) always answers YES. (This result is due
to Sandholm [30].)

– Theorem 2: Conv(M, IR 1-deals) always answers YES.
– Section 5.1: There exist classes F �⊆ M such that Conv(F , IR 1-deals) always answers

YES.
– Section 5.2: There exists no class F such that for all classes F ′ we have that F ′ ⊆ F if

and only if Conv(F ′, IR 1-deals) always answers YES.
– Theorem 4: Conv(REP , IR 1-deals) is NP-hard (under Turing reduction) for many rep-

resentation languages REP .
– Theorem 5: There exists no class F ⊃ M such that Conv(F , IR bilateral deals) always

answers YES.

In addition, the proof of Corollary 1 shows that the maximality result of Theorem 5 continues
to hold even for the case of just two agents when we replace “bilateral deals” by the weaker
“1-deals”. For the setting without money, we have obtained these results:

– Theorem 3: Conv(Mα,β , CR 1-deals) always answers YES, for any vectors α and β.
– Theorem 6: There exists no class F ⊃ Mα,β (for any vectors α and β) such that Conv(F ,

CR 1-deals) always answers YES.

Finally, Theorem 7 demonstrates that maximality is not as pervasive a notion as our other
results may suggest: for the framework without money, it fails to apply when we aim for
Pareto optimality rather than maximal social welfare.

We consider these not only surprising results, but also useful characterisations of negoti-
ation domains that can be handled reliably using simple negotiation protocols, catering only
for Contract-Net-like deals over single items between pairs of agents, rather than the full
range of multilateral deals foreseen in the abstract framework. Such theoretical results affect
both the design of agents and of negotiation mechanisms. For instance, if a given mechanism
can only handle 1-deals, then it may be inappropriate to design myopic agents with very rich
preference structures to use such a mechanism.

In the introduction, we have argued for distributed approaches to resource allocation.
Of course it would be over-simplistic to merely distinguish a centralised approach, à la
combinatorial auction, versus a purely distributed approach. The truth is that there exists an
entire spectrum of approaches between these two extremes. Very often, for instance, even if
an auctioneer is available, it is desirable anyway to reduce part of the burden of the compu-
tational task usually assigned to it. One way to do so is to delegate it to the bidders instead.
This distribution of the computation of the winner determination problem has been studied
by some authors, including Vidal and colleagues [23,35]. What remains centralised in these
approaches, however, is the fact that agents must be aware of the bids placed by other agents
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during the process to compute their new bid. That is, while the computation of the solution
is indeed distributed, the process itself remains centralised. In our approach, on the other
hand, we assume that agents agree locally on beneficial deals, without requiring any sort of
global perception of the situation. Also, while the actual allocation is modified once and for
all in the case of combinatorial auctions, our setting regards negotiation as a continuously
evolving process with a sequence of local steps incrementally modifying the allocation of
resources within the system. In that sense, it is closer to combinatorial exchanges [32]. But
even these are centralised mechanisms where a central authority makes all the decisions and
has to perform all the computation.

The present paper continues recent work on convergence properties for distributed nego-
tiation schemes [13,30]. Some related work, notably by Dunne and colleagues [11,12], has
concentrated on the computational complexity of decision problems arising in the context of
such negotiation frameworks. The complexity of the most fundamental problem in resource
allocation, namely social welfare optimisation, has been known for some time. The under-
lying decision problem, i.e. checking whether a given negotiation problem admits a solution
where the sum of valuations exceeds a given value, is NP-complete [28].9 This can be shown,
for instance, via a reduction from the well-known Set Packing problem [16]. Dunne et al.
[12] have introduced the 1- Path problem and analysed its complexity: given two allocations
A and A′ with sw(A) < sw(A′), check whether it is possible to reach A′ from A by means of
a sequence of rational 1-deals. Dunne et al. [12] have shown that 1- Path is NP-hard. Recent
results have further strengthened this complexity bound and established that the problem is in
fact PSPACE-complete [11]. The closely related problem 1- Conv [7,11], discussed earlier
in the context of checking conditions for guaranteed convergence with respect to full valua-
tion profiles, asks whether any sequence of individually rational 1-deals would culminate in
an allocation with maximal social welfare. As we have seen, 1- Conv is intractable. This has
been a known result for the case where valuation functions are represented as straight-line
programs [11], which we have extended here to a wider class of preference representation
languages.
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Appendix: Direct proof of Corollary 1

We give a direct proof of Corollary 1 that demonstrates that this results applies even for
systems with just two agents.

Proof The proof is constructive. We will show that for any non-modular valuation function
v1 on m resources, it is possible to construct a modular valuation function v2 (with vi ≡ 0
for all other agents i , if any) and an initial allocation such that no optimal allocation can be
reached by means of IR 1-deals. This implies that M∪ {v1} does not guarantee convergence

9 As explained in Sect. 5.3, complexity results apply to a particular decision problem with respect to a partic-
ular representation language for the input (here, the valuation functions of the agents). However, in practice,
it is the case that most of the results mentioned here have been established for several of the most common
representations, so we omit giving such details here.
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by means of IR 1-deals. Because v1 is non-modular, we can apply Eq. 3 to show that there
must exist a bundle X and distinct resources r1, r2 /∈ X such that ε, defined as follows, is not
equal to 0:

ε = v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − v1(X ∪ {r1, r2}) (4)

From now on, A12|, A|12, A1|2 and A2|1 will refer to allocations in which r1 and r2 belong
to one of the first two agents, resources in X are owned by 1, and resources in Y = R\(X ∪
{r1, r2}) by 2, as shown in the following table.

A12| A|12 A1|2 A2|1
Agent 1 {r1, r2} ∪ X X {r1} ∪ X {r2} ∪ X
Agent 2 Y {r1, r2} ∪ Y {r2} ∪ Y {r1} ∪ Y

Let us build a modular valuation function v2 defined as follows: ∀R ⊆ R,

v2(R) =
∑

r∈{r1,r2}∩R

αr +
∑

r∈R∩Y

ω −
∑

r∈R∩X

ω (5)

with ω = 14×max |v1|+1. Let � = v2(Y ) = |Y |×ω.10 As the rest of the proof shall reveal,
the value of ω has been chosen such that the social welfare of each of these four allocations is
greater than that of any other allocation. Of course, this will imply that the optimal allocation
has to be among these four. The values of αr1 and αr2 will be chosen later. The social welfare
of each of these four allocations can then be written as follows:

sw(A|12) = � + αr1 + αr2 + v1(X)

sw(A12|) = � + v1(X ∪ {r1, r2})
sw(A1|2) = � + αr2 + v1(X ∪ {r1})
sw(A2|1) = � + αr1 + v1(X ∪ {r2})

It remains to be shown that depending on the value of ε, we can always choose an initial
allocation among these four and values of αr1 and αr2 such that (a) this initial allocation
does not have optimal social welfare, (b) there is only one rational deal from this allocation,
(c) this deal leads to the optimal allocation, but (d) this rational deal would involve more than
one resource. We will have to consider two cases for Eq. 4: the case of ε > 0 and the case of
ε < 0.

(1st case) Suppose ε > 0. Let us choose αr1 = v1(X ∪ {r1}) − v1(X) − ε
4 and αr2 =

v1(X ∪ {r1, r2}) − v1(X ∪ {r1}) + ε
4 .

Let us first show that the four allocations have a greater social welfare than any other. With
the help of Eq. 4, observe that both |αr1 | and |αr2 | are less than 3 × max |v1|. Thus, all four
allocations have a social welfare of at least �−|αr1 |−|αr2 |−max |v1| ≥ �−7×max |v1| >

�− ω
2 . All other allocations have a social welfare lower than �−ω+|αr1 |+|αr2 |+max |v1| ≤

� − ω + 7 × max |v1| < � − ω
2 . Thus, the social welfare of each of the four allocations is

greater than that of any other allocation.
Now let us show that A2|1 is the optimal allocation. More precisely, let us show that

sw(A|12) < sw(A1|2), that sw(A12|) < sw(A1|2) and that sw(A1|2) < sw(A2|1). By substi-
tuting the values of αr1 and αr2 and using Eq. 4, the social welfare of each allocation can be
written as follows:

10 Here, max |v1| is the maximal value that v1 may take, for any bundle of resources.
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sw(A|12)= � + v1(X ∪ {r1, r2})
sw(A12|)= � + v1(X ∪ {r1, r2})
sw(A1|2)= � + v1(X ∪ {r1, r2}) + ε

4

sw(A2|1)= � + v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − ε

4

= � + v1(X ∪ {r1, r2}) + 3

4
ε

Here, A2|1 is clearly the optimal allocation. If we choose A1|2 as the initial allocation, then
the only 1-deals involving resources r1 or r2 are δ(A1|2, A12|) and δ(A1|2, A|12). These deals
decrease social welfare, and thus are not IR by Lemma 1. Thus, it is not possible to reach the
optimal allocation A2|1 starting from A1|2 using only 1-deals.

(2nd case) Suppose ε < 0. Let us choose αr1 = v1(X ∪ {r1}) − v1(X) − ε
4 and αr2 =

v1(X ∪ {r2}) − v1(X) − ε
4 . Note that, again, both |αr1 | and |αr2 | are less than 3 × max |v1|.

Thus, by the same argument as in the first case, the four allocations all have greater social
welfare than any other allocation.

The optimal allocation is now A12|. To see this, let us show that sw(A1|2) < sw(A|12),
that sw(A2|1) < sw(A|12), and that sw(A|12) < sw(A12|).

sw(A|12) = � + v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − ε

2
sw(A12|) = � + v1(X ∪ {r1, r2})

= � + v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − ε

sw(A1|2) = � + v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − ε

4

sw(A2|1) = � + v1(X ∪ {r1}) + v1(X ∪ {r2}) − v1(X) − ε

4

Here, A12| is clearly the optimal allocation. If we choose A|12 as the initial allocation, then
the only 1-deals involving r1 or r2 are δ(A|12, A1|2) and δ(A|12, A2|1). These deals decrease
social welfare, and thus are not IR by Lemma 1. Thus, it is not possible to reach the optimal
allocation A12| starting from A|12 using only 1-deals. ��
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