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Abstract

We analyze the number of zeros of det(F(α)), where F(α) is the matrix exponent of a Markov Additive
Process (MAP) with one-sided jumps. The focus is on the number of zeros in the right half of the complex
plane, where F(α) is analytic. In addition, we also consider the case of a MAP killed at an independent
exponential time. The corresponding zeros can be seen as the roots of a generalized Cramér–Lundberg
equation. We argue that our results are particularly useful in fluctuation theory for MAPs, which leads to
numerous applications in queueing theory and finance.
c© 2010 Elsevier B.V. All rights reserved.

Keywords: Markov additive processes; Lévy processes; Queueing theory; Markov modulation; First passage; Roots of
Cramér–Lundberg equation; Argument principle

1. Introduction

In this paper we consider Markov Additive Processes (MAPs) with one-sided jumps. For
reasons of symmetry, we may restrict ourselves to the case of no negative jumps, which we will
do throughout this work. Loosely speaking, a MAP is a Lévy process in a Markov environment,
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in the sense that its characteristic exponent is determined by an independent Markovian
background process. MAPs thus constitute a natural generalization of a Lévy process, with
many analogous properties and characteristics. Any Lévy process (with no negative jumps) is
characterized by a Laplace exponent φ(α); its counterpart for MAPs is the matrix exponent
F(α), which is essentially a multi-dimensional analogue of φ(α).

In the theory of Lévy processes the celebrated Cramér–Lundberg (C–L) equation φ(α) = q,
where q ≥ 0, plays an important role. The MAP analogue of this equation has the form
det(F(α) − qI) = 0, where I is the identity matrix. We determine the number of zeros of
det(F(α)− qI) for a fixed q ≥ 0 in the right half of the complex plane, where F(α) is known to
be analytic in the absence of negative jumps. The proofs of our results are entirely analytic and
are based on elementary results and techniques.

Similarly to the theory of Lévy processes the roots of the generalized C–L equation play
an important role in the fluctuation theory, which leads to numerous application in queueing
theory and finance. The analysis of the number of roots is often an important first step when
considering a problem in this domain. We provide a number of examples in Section 3: one on
a dense class of Lévy processes that allows for positive and negative jumps, one on Markov-
modulated M/G/1 queue, one on first passage times, and one on martingale-based calculations.
This list of applications is far from complete, and is here to stress the importance of the present
problem, which we solve in a very general setting.

A number of special cases of the present problem can be found in the literature, see
e.g. [19,25,26]. A common, rather restrictive, assumption in these papers is that the process
X (t) evolves linearly between the jumps of the underlying Markov chain J (t). In [14] the case
of Markov modulated Brownian motion is considered. Finally, the case of Markov modulated
compound Poisson process is analyzed under a number of assumptions in [23]. In this respect
the findings of our paper considerably generalize results from the existing literature.

This paper is organized as follows. In Section 2 we provide some background on MAPs and
state our results. In Section 3 we discuss a number of applications of our results. The rest of the
paper is devoted to the proofs. We present two rather general results on the number of zeros of
certain functions in Section 4, and some analytic properties of the Laplace exponent of a Lévy
process without negative jumps in Section 5. Using this material we prove our main results,
i.e., Theorems 1 and 2, in Section 6.

2. Model and results

A right-continuous process (X (t), J (t))t≥0 is said to be a MAP if for any T > 0 it holds that
given {J (T ) = j}

(X (T + t)− X (T ), J (T + t))t≥0 is independent of (X (t), J (t))0≤t≤T

and has the same law as (X (t), J (t))t≥0 given J (0) = j. (1)

Loosely speaking, a MAP is a Lévy process in a Markov environment. Following [2, Ch. XI]
we assume that J (t) takes values in some finite set {1, . . . , N }, hence J (t) is a continuous-time
Markov chain. In this case the structure of a MAP is well understood. Namely, while J (t) is in
state i , the additive component X (t) evolves like some Lévy process X i (t). In addition, a jump
of J (t) from i to j 6= i triggers a jump of X (t) at the same time, which is distributed as some
random variable Ui j . It is assumed that the Markov chain J (t) is irreducible, and its transition
rate matrix is denoted through Q.
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In this paper we assume that X (t) has no negative jumps. Let φi (α) be the Laplace exponent
of the Lévy process X i (t):

φi (α) := log(Ee−αX i (1))

= aiα +
1
2
σ 2

i α
2
+

∫
∞

0
(−1+ e−αx

+ αx1{x<1})νi (dx), (2)

where (ai , σi , νi (dx)) is a Lévy triple, that is, ai ∈ R, σi ≥ 0 and νi (dx) is a measure on (0,∞)
satisfying

∫
∞

0 (1∧ x2)νi (dx) <∞. Note that restricting the support of measure νi (dx) to (0,∞)
amounts to forbidding negative jumps. Let G̃i j (α) := Ee−αUi j be the Laplace–Stieltjes transform
of the distribution of Ui j ≥ 0. Without loss of generality we set Ui i ≡ 0, and Ui j ≡ 0 whenever
qi j = 0.

Letting G̃(α) := (G̃i j (α)) and A ◦ B := (ai j bi j ), where A and B are two square matrices of
the same dimensions, we define

F(α) := Q ◦ G̃(α)+ diag(φ1(α), . . . , φN (α)) (3)

and note that

E[e−αX (t)1{J (t)= j} | J (0) = i] =
(

eF(α)t
)

i j
, (4)

see [2, Ch. XI, Prop. 2.2]. It is not difficult to see from (1) that the matrix exponent F(α) identifies
the law of the MAP (X (t), J (t)), the reasoning being the same as in the case of a Lévy process.
Finally, the absence of negative jumps implies that F(α) is finite for all α ∈ CRe≥0 and is analytic
in CRe>0, where CRe≥0

:= {α ∈ C : Re(α) ≥ 0} and CRe>0
:= {α ∈ C : Re(α) > 0}.

An important concept in fluctuation theory is the concept of ‘killing’, see e.g. [7,16]. Let eq
be an exponential random variable of rate q > 0 independent of the process (X (t), J (t)) then

E[e−αX (t)1{J (t)= j,t<eq } | J (0) = i] = (e(F(α)−qI)t )i j . (5)

Hence F(α) − qI can be seen as the matrix exponent of the MAP (X (t), J (t)), which is only
considered up to the time eq (at this random time the MAP is ‘killed’). The matrix F(α) − qI
frequently appears in the fluctuation theory for MAPs (or, equivalently, in the theory of storage
systems with MAP input), see for instance [10, Thm. 3.1], which motivates the importance of
structural properties of the zeros of det(F(α)− qI).

Before we can state our main results, we introduce a number of useful notions. Firstly, Lévy
processes whose paths are non-decreasing are called subordinators. The number of processes
X i (t), i ∈ {1, . . . , N }which are not subordinators plays a crucial role in our work. We denote this
number by N∗. Secondly, Perron–Frobenius theory entails that there exists a unique eigenvalue
k(α), α ≥ 0 of F(α) with maximal real part. This eigenvalue is real and simple. Moreover, it is
well known that k(0) = 0 and

lim
t→∞

X (t)

t
= −k′(0+) a.s. for any J (0), (6)

where k′(0+) is the right-sided derivative of k(α) at 0. In this sense k′(0+) can be interpreted as
the asymptotic drift of −X (t). These results can be found in [2, Ch. XI].

We are now ready to state the main theorems.

Theorem 1. If q > 0, then det(F(α) − qI) has no zeros on the imaginary axis and has exactly
N∗ zeros (counting multiplicities) in CRe>0.
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Remark 2.1. The above result still holds if one considers det(F(α) − diag(q)), where q 6= 0
is a vector with non-negative elements. We note that F(α) − diag(q) can be seen as a matrix
exponent of a ‘killed’ MAP, where the killing rates depend on the state of J (t).

Interestingly, it turns out that in the situation without killing the statement becomes slightly less
clean, as we see in Theorem 2. Note the important role played by the asymptotic drift: the result
depends on whether the process eventually tends to −∞ or +∞.

Theorem 2. If N∗ 6= 0 and k′(0+) is finite and non-zero, then det(F(α)) has a unique zero on
the imaginary axis at α = 0 and N∗ − 1{k′(0+)≥0} zeros (counting multiplicities) in CRe>0.

We believe that the case when all the underlying Lévy processes X i (t) are subordinators, in
other words, N∗ = 0, is not of much interest. For completeness we make the following remark.

Remark 2.2. If N∗ = 0, then either X (t) ≡ 0 or det(F(α)) has no zeros in CRe>0. In the latter
case det(F(α)) has either a unique zero (at 0) or infinitely many distinct zeros on the imaginary
axis.

Earlier we mentioned that, when considering MAPs with one-sided jumps, we can without
loss of generality assume that there are no negative jumps. This claim is made precise in the
following remark.

Remark 2.3. Clearly, if (X (t), J (t)) is a MAP without positive jumps then (−X (t), J (t)) is a
MAP without negative jumps. Let F(α) be the matrix exponent of the latter MAP. In the case
of no positive jumps it is common to use φi (α) := log(EeαX i (1)) and G̃i j (α) := EeαUi j in
the definition (3) of the matrix exponent. As a consequence (X (t), J (t)) has the same matrix
exponent F(α). It is easy to see now that Theorems 1 and 2 also hold in the case of no positive
jumps, but now N∗ is defined as the number of processes which are not downward subordinators.

Finally, we make a note about a special class of MAPs, viz. time-reversible MAPs
(X (t), J (t)). This means that J (t) is time-reversible, and Ui j has the same distribution as U j i .
It is shown in [13] that in this case det(F(α)) has N∗ − 1{k′(0+)≥0} positive zeros (counting
multiplicities). Moreover, if α0 > 0 is a zero of det(F(α)) of multiplicity m then the null space
of F(α0) has rank m (such a zero is called semi-simple). Now we can use Theorem 2 to see
that all the zeros of det(F(α)) in CRe>0 are real and semi-simple. As argued in detail in [13],
these properties greatly simplify the analysis of the stationary distribution of the corresponding
Markov modulated storage system. They, however, do not hold in general (i.e., when dropping
the time-reversibility requirement), as demonstrated by the following example.

Example 2.1. We specify the jump-free MAP (X (t), J (t)) as follows. Let

Ui j ≡ 0, φ1(α) = α, φ2(α) = α + α
2, φ3(α) =

2
5
α, and

Q =

−1 1 0
0 −1 1
1 0 −1

 .
Note that the asymptotic drift of the MAP is nagative. Moreover, none of the Lévy processes
X i (t) is a subordinator. Hence F(α) should have 2 zeros in CRe>0 (counting multiplicities).
Clearly, det(F(α)) is a fourth order polynomial. The zeros are −3/2, 0, 2, 2. Thus the only zero
in CRe>0 is α = 2, which has multiplicity 2. The null space of F(2), however, has rank 1.
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3. Motivation and applications of the results

In this section we motivate our interest in the roots of det(F(α)− qI) = 0. This equation can
be seen as a matrix analogue of the famous C–L equation φ(α) = q for a Lévy process with
Laplace exponent φ(α). One would therefore expect that the roots are important in a wide range
of applications, and through the following examples we show that this is indeed the case.

3.1. A dense class of Lévy processes and the Cramér–Lundberg equation

We start by recalling that a distribution is called phase-type if it is the distribution of an
absorption time in a finite-state continuous-time Markov chain. Such a distribution is usually
characterized by the triplet (m, a, T ), where m is the number of phases, a is the initial distribution
and T is the transient transition rate matrix. Moreover, the vector t = −T 1 is interpreted as a
vector of exit intensities. The reader is advised to consult [2, Ch. III.4] for a further discussion of
phase-type distributions.

We consider a dense class of Lévy processes of the form X (t) = X+(t) − X P H (t), where
X+(t) is a Lévy process without negative jumps and X P H (t) is an independent compound Pois-
son process with intensity λ and jumps of phase-type with parameters (m, a, T ). This class of
processes received a lot of attention in the literature [4,21]. It is rich enough as it allows both
negative and positive jumps, but at the same time the analysis of various fluctuation identities re-
mains tractable. Importantly, the joint Laplace transform of the first passage over a negative level
and the corresponding overshoot can be expressed through the roots of the C–L equation with
positive real parts [4]. This leads to numerous applications in, e.g., finance and queueing theory.

The above C–L equation takes the following form:

φ+(α)− λ(a(T + αI)−1t+ 1) = q,

where φ+(α) is the Laplace exponent of X+(t). Often it is convenient to associate a certain
MAP (X0(t), J0(t)) with the above Lévy process. More concretely, we consider a MAP without
negative jumps whose matrix exponent is

F(α) =

φ+(α)− λ λa

t T + αI

 ;
that is, X0(t) evolves as X+(t) while J0(t) = 1 and as −t while J0(t) 6= 1. This corresponds to
‘levelling out’ the phase-type jumps into linear parts of gradient −1. Note also that exponential
killing of X (t) with rate q corresponds to the killing of (X0(t), J0(t)) with the same rate but only
when J0(t) = 1. Hence the MAP analogue of the C–L equation reads

d(α) := det

φ+(α)− λ− q λa

t T + αI

 = 0.

Assume that T + αI is invertible otherwise φ(α) has a pole. Then by a well-known formula for
block matrices we obtain

d(α) = det(T + αI) det
(
(φ+(α)− λ− q)− λa(T + αI)−1t

)
and hence we recover the roots of the original C–L equation. One can show that det(T + αI)
and d(α) cannot be simultaneously 0 if the phase-type representation is minimal (m is the least
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possible number of phases leading to the same distribution). Thus the C–L equation and its MAP
analogue have the same roots.

Recall that Theorem 1 still holds for state-dependent killing, see Remark 2.1.
Hence Theorem 1 implies that if q > 0 then the number of roots of the C–L equation with
positive real parts is m or m + 1 according to whether X+(t) is a subordinator or not. This
result was proven in [4] using the very special structure of this problem and the Wiener–Hopf
factorisation.

3.2. Markov modulated M/G/1 queue

Following [23] we consider a Markov modulated M/G/1 queue. The so-called free process of
such a queue is a Markov modulated compound Poisson process minus linear drift, where the
jumps correspond to the service times; hence it is a MAP without negative jumps. The workload
process is obtained by reflecting the free process at 0. In the powerful paper [23], the transforms
are determined for both the waiting time and the number of customers (at arrival epochs as well
as at an arbitrary time). The basis of this result is a Wiener–Hopf type equation and the analysis
of the number of zeros of det(F(α) − qI) in the right half-plane, see [23, Lemma 3.1] for the
latter. It is noted that this crucial Lemma is a special case of our Theorems 1 and 2. In [23] it is
assumed that all X i (t)+ t are compound Poisson processes, there are no jumps at the switching
epochs, and the service times are light-tailed, that is F(α) is analytic in the neighborhood of 0.
We anticipate that our results may open the possibility of relaxing some of these assumptions.

3.3. First passage process

The first passage time over level −x is defined through

τx = inf{t ≥ 0 : X (t) < −x}, (7)

where x ≥ 0. It is known that the property (1) still holds when choosing T = τx . In the absence
of negative jumps this property implies that the first passage process (τx , J (τx )) is a MAP itself.
Hence there exists a matrix-valued function Λ(q) characterizing the law of the first passage
process:

E[e−qτx1{J (τx )= j} | J (τ0) = i] =
(

eΛ(q)x
)

i j
.

Compare this to the setting of Lévy processes, where τx is known to be a Lévy process itself. It
should be noted that J (τx ) never jumps to a state j if X j (t) is a subordinator, because in these
states a new minimum cannot be attained, so that Λ(q) is a N∗ × N∗-dimensional matrix. It was
observed before that the knowledge of the matrix exponent Λ(q) of the first passage process is of
crucial importance in fluctuation theory for MAPs [17]; as a consequence, it also plays a pivotal
role when analyzing storage systems with MAP input [22,24], and financial models in a Markov
modulated environment [4].

Using our main results we can determine Λ(q) under minor assumptions. It is noted that the
well-known Wald martingale can be generalized to the MAP setting. Namely, it takes the follow-
ing form: e−λX (t)vJ (t), where (λ, v) are such that F(λ)v = 0, see for example [2, Prop. XI.2.4].
Applying the optional stopping theorem to the killed version of the Wald martingale with
τ = τx ∧ t yields

Ei [e−λX (τ )1{τ<eq }vJ (τ )] = vi ,
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where λ and v are such that Re(λ) > 0 and (F(λ) − qI)v = 0. The dominated convergence
theorem applies since X (τ ) ≥ −x for all t ≥ 0. We thus obtain

eλx
∑

j

Pi (τx < eq , J (τx ) = j)v j = vi .

By noting that Pi (τ0 = 0) if i corresponds to a non-subordinator, we get

eΛ(q)x v∗ = e−λx v∗,

where v∗ is a vector of N∗ elements of v corresponding to non-subordinators. Differentiate the
above equation at x = 0 to find that Λ(q)v∗ = −λv∗. But Theorem 1 states that there are exactly
N∗ possible choices of (λ, v) assuming that all the zeros of det(F(α)−qI) in CRe>0 are distinct.
Thus under this assumption we can find all the eigenvalues and eigenvectors of Λ(q), which is
enough to determine Λ(q) through its Jordan normal form. The case of q = 0 is slightly more
subtle. In this case a similar conclusion can be reached using Theorem 2 under the additional
assumption that k′(0+) is finite and non-zero.

The assumption of zeros being distinct is often made in the literature, see e.g., [3,23]. Actually,
it is enough to assume that the zeros are semi-simple: multiplicities of the zeros coincide with
the ranks of corresponding null spaces. Even this weaker assumption does not always hold as
demonstrated in Example 2.1. If, however, one considers time-reversible MAPs, then the latter
assumption does hold and, moreover, the zeros are all real as shown in [13]. One can see that
the above method of determining Λ(q) will certainly fail if there exists an eigenvalue of Λ(q)
whose algebraic multiplicity is strictly larger than its geometric multiplicity. What are the objects
associated to F(α) − qI leading to such eigenvalues and the corresponding Jordan chains? It
turns out that one has to resort to the theory of analytic matrix functions and generalized Jordan
chains. In [9] we present this general theory and solve a number of open questions. It is noted
that Theorem 1 plays a crucial role in the underlying argumentation.

3.4. Martingale calculations

Various problems related to MAPs can be approached by the use of the Wald martingale,
see [2, Section XI.4a] and the above Section 3.3. It is essential for this approach that the
number of zeros of det(F(α) − qI) is sufficiently large. Moreover, the celebrated Kella–Whitt
martingale can be generalized to the MAP setting too, see [5], where also many applications
of this martingale are discussed. Most of these results require identification of some unknown
constants, which can be done by solving a system of linear equations. There is an open problem
however: one needs to show that the number of equations is sufficient, where this number is
closely related to the number of zeros of det(F(α) − qI) in CRe>0. Our main result can be seen
as an important step towards an answer to these problems.

Let us provide an example. We consider an arbitrary MAP without negative jumps and its
reflection at 0 as in [5, Section 4]. Let (W, J ) be a random vector distributed as the stationary
version of the reflected process. The pair (W, J ) characterizes the steady-state buffer content
of a queue driven by the underlying MAP. For stability one has to require that (X (t), J (t)) has
a negative asymptotic drift, which is the same as k′(0+) > 0, see (6). In [5] it is shown that
the Laplace–Stieltjes transform of (W, J ) can be expressed in terms of F(α) and a generally
unknown row vector `. More precisely,

(Ee−αW1{J=1}, . . . ,Ee−αW1{J=N }) = α`F(α)−1, (8)
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where α ∈ CRe≥0. The authors observed that the computation of the unknown vector ` in general
is a difficult problem, and proposed to set up a system of linear equations of the type `vi = 0,
where F(λi )vi = 0 and λi ∈ CRe>0. In addition, they noted that firstly `i = 0 if X i (t) is
a subordinator, and secondly `1 = k′(0+), where 1 is a vector of 1-s. Hence the unknown
constants can be identified if there exist N∗ − 1 vectors vi , and moreover their restrictions v∗i
and in addition 1∗ are linearly independent. But our Theorem 2 shows that there are exactly
N∗ − 1 zeros of det(F(α)) in CRe>0. Hence if these zeros are semi-simple then the number of
equations is sufficient. Finally, the linear independence follows from the fact that v∗i -s and 1∗ are
the eigenvectors of Λ(0) as hinted in Section 3.3.

The above list of applications, where the number of zeros of det(F(α) − qI) is required, is
far from complete. Knowledge of the number of zeros is essential in the analysis of a Markov-
modulated risk model, see e.g., equation (10) in [18]. Another example is a Markov-modulated
feedforward network in [15], especially if one is interested in replacing fluid input by a more
general Lévy process. We conclude by mentioning [6], see in particular Thm. 5.2, where loss
rates for MAPs with two reflecting barriers are computed assuming that the number of zeros is
sufficient.

4. On the number of zeros of certain functions

This section presents two general results on the number of zeros of certain functions (that
is, functions satisfying a given set of assumptions) in a bounded domain. We would like to
stress that we rely in this section on techniques that were developed earlier. To enhance the
paper’s transparency, we have isolated these results from the rest of the paper; for the sake of
completeness their proofs are given in Appendix A.

In the following we assume that

D ⊂ C is a bounded domain with boundary γ,
where γ is a piecewise smooth simple loop.

(9)

One can find the basic notions of complex analysis in, e.g., [12]. We use B(z, r) to denote an
open ball of radius r > 0 centered at a point z ∈ C.

The first theorem concerns the number of zeros of the determinant of a matrix-valued function
in a bounded domain.

Theorem 3. Let M(z) = (mi j (z)) be a n× n-matrix-valued function and f (z) := det(M(z)). If

A1 mi j (z) are analytic on D and continuous on D ∪ γ ,
A2 ∀i ∈ {1, . . . , n}, z ∈ γ :

∑
j 6=i |mi j (z)| ≤ |mi i (z)| 6= 0,

A3 f (z) 6= 0 for z ∈ γ ,

then f (z) and
∏n

i=1 mi i (z) have the same number of zeros in D.

Proof. See Appendix A. �

The main idea of the proof of Theorem 3 is taken from [11], where the authors use the
following procedure. First they introduce an additional parameter t ; the original function is
retrieved by taking t = 1. For t = 0, however, the function has a nice form (that is, it
nicely factorizes) making the analysis of the number of zeros easy. Then essentially continuity
arguments are used to conclude that the number of zeros, as a function of the new parameter t , is
constant. This basic idea used in a related context can be also found in [8,25].
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It is noted that Theorem 3 does not allow f (z) to be zero on the boundary of the domain. The
analysis of the number of zeros becomes substantially harder if this assumption does not hold. In
case of a simple zero on the boundary the following powerful result may be used.

Theorem 4 shows that if a function of interest and a given sequence of ‘approximating’
functions satisfy certain assumptions, then the functions in the tail of the sequence have the
same number of zeros as the original function. This turns out to be useful in situations where
the approximating functions have particular crucial properties (such as being analytic) which the
original function does not necessarily have.

Theorem 4. Let complex functions f (z), fn(z), n ∈ N satisfy the following assumptions for
some z0 ∈ γ :

A1 f (z), fn(z), n ∈ N are analytic on D and continuous on D ∪ γ ,
A2 fn(z)→ f (z) and f ′n(z)→ f ′(z) as n→∞ uniformly in z ∈ D,
A3 f (z0) = f1(z0) = f2(z0) = · · · = 0 and f (z) 6= 0, z ∈ γ \ {z0},
A4 ∃ε > 0, such that fn(z), n ∈ N are analytic on B(z0, ε),

f ′(z0) := lim
z→z0,z∈D

f (z)− f (z0)

z − z0

exists, is non-zero and coincides with limn→∞ f ′n(z0).

Then for large enough n, the functions fn(z) are non-zero on γ \ {z0} and have the same number
of zeros in D as the function f (z).

Proof. The proof of this result relies on a technical argument borrowed from [1] and is given in
Appendix A. �

5. Analytic properties of the Laplace exponent

In this section we discuss some analytic properties of the Laplace exponent of a Lévy process
without negative jumps. These properties will turn out to be crucial in the analysis of the zeros
of det(F(α)). Throughout this section we assume that X (t) is a Lévy process without negative
jumps, (α, σ, ν(dx)) is the associated Lévy triple, and φ(α) is the Laplace exponent of X (t),
cf. (2).

We start by recalling a number of well-known facts about Lévy processes, see [7] or [16] for a
general reference. It is well known that φ(α) is finite on CRe≥0. Due to dominated convergence,
the derivative of φ(α), α ∈ CRe>0 can be computed by interchanging the differentiation and
integration operators when using representation (2). It then follows easily that φ(α) is analytic
on CRe>0. If it is additionally assumed that the jumps of X (t) are bounded by a constant, then
similar arguments show that φ(α) is analytic on C. These facts can be found in [16].

The following two lemmas play an important role in the analysis of the zeros of det(F(α)).
Their proofs do not provide much intuition and hence are given in Appendix B.

Lemma 5. At least one of the following holds:

(i) Re(φ(α)) ≤ 0 for all α ∈ CRe≥0,
(ii) lim|α|→∞,α∈CRe≥0 |φ(α)| = ∞.

Lemma 6. For α ∈ CRe≥0
\ R it holds that φ(α) 6∈ (0,∞) and, in addition, φ(α) 6= 0 if X (t)

is not a compound Poisson process.
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We finish this section with a simple lemma.

Lemma 7. For any c > 0 function φ(α) − c has no zeros in CRe≥0 if X (t) is a subordinator,
and has a unique simple zero otherwise.

Proof. Lemma 6 shows that φ(α) 6= c for α ∈ CRe≥0
\ R. It remains to analyze the case when

α ≥ 0. It is well known that φ(0) = 0 and φ(α), α ≥ 0 is convex. The claim then follows from
another well-known fact, viz. that φ(α) ≤ 0 if X (t) is a subordinator and limα→∞ φ(α) = ∞

otherwise. �

From Lemma 7 we see that a special role is played by subordinators, which was to be expected
in view of Theorem 2.

6. Proofs of the main results

The primary goal of this section is to prove our main results, viz. Theorems 1 and 2.
Throughout this section we assume that (X (t), J (t)) is a MAP without negative jumps, and
F(α) is the associated matrix exponent as defined in (3). In the following we extensively use a
bounded domain DR , defined through

DR := {α ∈ C : Re(α) > 0, |α| < R}. (10)

Note that this domain satisfies (9). Furthermore, recall that a square n × n matrix M = (mi j ) is
called non-strictly diagonally dominant if ∀i : |mi i | ≥

∑
j 6=i |mi j |. If, moreover, M is irreducible

and at least one of the above inequalities is strict then M is called irreducibly diagonally
dominant. It is well known that an irreducibly diagonally dominant matrix is non-singular, see
for instance p. 226 of [20].

The following lemma is a key result on the way to prove the main theorems. It allows us to
restrict our attention to a bounded domain DR instead of considering the whole CRe≥0. Note that
this is an essential prerequisite required by Theorems 3 and 4.

Lemma 8. Let C > 0 then there exists R > 0 such that for any α ∈ CRe≥0
\ DR and any

c1, . . . , cN ∈ CRe>0
∪ {0}, such that ci < C for all i , the following holds true. If c 6= 0, or

N∗ > 0 and α 6= 0, then the matrix

Q + diag(φ1(α), . . . , φN (α))− diag(c)

is irreducibly diagonally dominant.

Proof. Choose i ∈ {1, . . . , N } and note that

eRe(φi (ir)) = |eφi (ir)| = |Ee−ir X i (1)| ≤ 1, r ∈ R.

Therefore, Re(φi (α)) ≤ 0 for all α on the imaginary axis. This statement and Lemma 5 imply
that there exists Ri > 0, such that, for all α ∈ CRe≥0

\ DRi and ci < C it holds that

|qi i + φi (α)− ci | > −qi i or Re(φi (α)) ≤ 0, (11)

where the qi i = −
∑

j 6=i qi j < 0 (i = 1, . . . , N ) are the diagonal elements of the transition rate
matrix Q. But Re(φi (α)) ≤ 0 implies |qi i + φi (α)− ci | ≥ −qi i , because Re(ci ) ≥ 0. Note that
this inequality is strict unless ci = φi (α) = 0, because ci takes values in CRe>0

∪ {0}. We see
that for R = max{R1, . . . , RN } our matrix is non-strictly diagonally dominant.
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Assume for a moment that ∀i : |qi i + φi (α) − ci | = −qi i , then ci = 0 and φi (α) = 0 for
all i . To finish the proof, it is enough to show that N∗ > 0 and α 6= 0 imply that φi (α) 6= 0
for some i . Take i , such that X i (t) is not a subordinator, which is possible due to N∗ > 0. Then
φi (α) 6= 0 for all α ∈ CRe≥0

\ R by Lemma 6 (ii). Considering φi (r), r ∈ R+, we note that
limr→∞ φi (r) = ∞, thus φi (r) has no zeros larger than some constant Ci . Clearly, we were
initially able to choose R > Ci . Hence φi (α) 6= 0 for α ∈ CRe≥0

\ (DR ∪ {0}), which concludes
the proof. �

Note that if matrix Q+diag(φ1(α), . . . , φN (α))−diag(c) is irreducibly diagonally dominant,
then so is

Q ◦ G̃(α)+ diag(φ1(α), . . . , φN (α))− diag(c),

because 0 < |G̃i j (α)| ≤ 1 and G̃i i (α) = 1 for α ∈ CRe≥0. Moreover, it is easy to see from the
above proof that det(F(α)) ≡ 0 on CRe>0 if and only if ∀i, j : φi (α) ≡ 0 and G̃i j (α) ≡ 1, which
is the same as X (t) ≡ 0. Furthermore, it is a trivial consequence of the above lemma that F(α)
is non-singular for all α on the imaginary axis except α = 0, whenever N∗ > 0. On the other
hand, a simple non-degenerate example of X (t) can be constructed with N∗ = 0, such that F(α)
is singular at infinitely many points on the imaginary axis (let X i (t), i ∈ {1, . . . , N } be Poisson
processes and set Ui j ≡ 0).

In the remainder of this section we distinguish between two cases: killing is present
(Section 6.1, containing the proof of Theorem 1) and no killing (Section 6.2, containing the
proof of Theorem 2).

6.1. Killing is present

We are ready to prove our first main result, Theorem 1. The statement of the theorem is an
immediate consequence of Lemma 8, Theorem 3 and Lemma 7.

Proof of Theorem 1. Apply Lemma 8 to see that there exists R > 0, such that F(α) − qI is
irreducibly diagonally dominant (and thus non-singular) for α ∈ CRe≥0

\ DR , because q > 0.
Now we can apply Theorem 3 to show that det(F(α) − qI) and

∏N
i=1(qi i + φi (α) − q) have

the same number of zeros in DR , and no zeros in CRe≥0
\ DR , because of diagonal dominance.

Conclude by noting that the latter function has exactly N∗ zeros in DR according to the statement
of Lemma 7. �

Next we study the limiting behavior of the zeros of det(F(α) − qI) in CRe>0 as the killing
rate q > 0 converges to 0. This is an important step in the analysis of the case of no killing.

Theorem 9. If N∗ > 0 then the zeros of det(F(α)− qnI) in CRe>0 converge as qn ↓ 0 to some
limit points z1, . . . , zN∗ ∈ CRe>0

∪ {0} (not necessarily distinct). The set

Z :=
N∗⋃
i=1

{zi } ∪ {0}

is the set of all the distinct zeros of det(F(α)) in CRe≥0, and the multiplicity of a zero
z ∈ Z , z 6= 0 is given by the number of zeros of det(F(α)− qnI) converging to z.

Proof. Let Z0 be the set of all the distinct zeros of det(F(α)) in CRe≥0. Recall that det(F(α)) is
not identically zero, because N∗ > 0. Now Hurwitz’s theorem [12, p. 173] shows that every zero
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of det(F(α)) in CRe>0 (analyticity region) of multiplicity m is a limit point of exactly m zeros of
det(F(α)− qnI). Recall also that det(F(α)) has a unique zero on the imaginary axis, which is at
0. Clearly, Z0 can have at most finitely many elements, so it remains to show that for sufficiently
large n0 the zeros of det(F(α)− qnI), for n > n0, are arbitrarily close to the elements of Z0.

Suppose the latter claim is not true. So we can pick a sequence of the zeros which are at least ε
away from the elements of Z0. Apply Lemma 8 to see that we can choose R > 0, such that the ze-
ros of det(F(α)−qnI), n ∈ N in CRe>0 are all in DR . Thus, given the above sequence of zeros, we
can choose a converging subsequence (DR is bounded) with some limit z0. Clearly, det(F(z0)) =

0 and z0 ∈ CRe≥0 which means that z0 ∈ Z0, and, thus, the above sequence cannot exist. �

It is easy to see that the above proof also shows that if N∗ = 0 then either X (t) is degenerate
or F(α), α ∈ CRe>0 is non-singular. Considering the question about the number of zeros of
det(F(α)), we note that there is essentially one thing left unknown: the number of zeros which
converge to 0 as the killing rate goes to 0. We address this seemingly simple question in what
follows.

6.2. No killing

We now concentrate on the proof of Theorem 2. The statement of Theorem 2 shows that a
critical role is played by the sign of the asymptotic drift. The next lemma presents a relation
between the sign of the asymptotic drift and the sign of det(F(0+))′, the right-sided derivative
of det(F(r)), r ≥ 0 at 0.

Lemma 10. It holds that

sign(k′(0+)) = (−1)N−1sign(det(F(0+))′). (12)

Proof. Let λ1(α), . . . , λN−1(α), λN (α) = k(α) be the eigenvalues of F(α), then det(F(α)) =∏N
i=1 λi (α). So we have

det(F(0+))′ = k′(0+)
N−1∏
i=1

λi (0),

because k(0) = 0. Hence it is enough to show that
∏N−1

i=1 (−λi (0)) > 0.
Take any i < N and set λ = λi (0). If λ is real then it is negative, since k(0) = 0 is a simple

eigenvalue with the maximal real part. If, however, λ has a non-zero imaginary part and is of
multiplicity m, then there is an eigenvalue λ̄ (complex conjugate of λ) of multiplicity m. The
product of these 2m eigenvalues is a positive number. �

The next lemma specifies the number of zeros of det(F(α)) in CRe>0 under the additional
assumption of analyticity.

Lemma 11. Let N∗ > 0 and k′(0+) 6= 0. If the function det(F(α)) is analytic in some open
neighborhood of 0, then it has N∗ − 1{k′(0+)≥0} zeros in CRe>0.

Proof. Consider the setting of Theorem 9. In view of this result, we only need to show the
following: (A) if k′(0+) > 0 then exactly one zero out of the N∗ zeros of det(F(α) − qnI) in
CRe>0 converges to 0, and (B) if k′(0+) < 0 then none of these zeros converges to 0. Using
Lemma 10 we note that k′(0+) 6= 0 implies det(F(0))′ 6= 0, so the multiplicity of the zero of
det(F(α)) at 0 is 1. The assumption of analyticity in the neighborhood of 0 allows us to apply



1788 J. Ivanovs et al. / Stochastic Processes and their Applications 120 (2010) 1776–1794

Hurwitz’s theorem to show that there is exactly one zero of det(F(α) − qnI) converging to 0.
Note that this zero either converges from CRe>0 or from CRe<0. So it remains to show that the
first case corresponds to k′(0+) > 0 and the second to k′(0+) < 0. Before we proceed we note
that (−1)N det(F(0) − qnI) > 0, which follows by an argument similar to the one appearing in
the proof of Lemma 10.

We restrict ourselves to the domain of reals and assume without loss of generality that
k′(0+) > 0. So (−1)N−1 det(F(0))′ > 0 by Lemma 10. Now for any small δ > 0 we can
pick x ∈ (0, δ), such that (−1)N−1 det(F(x)) > 0. Hence for large enough n the inequality
(−1)N−1 det(F(x)− qnI) > 0 holds. This means that det(F(x)− qnI) and det(F(0)− qnI) have
opposite signs, thus by continuity there exists xn ∈ (0, x), such that, det(F(xn)− qnI) = 0. This
concludes the proof. �

It is noted that the second paragraph of the above proof uses an idea from Prop. 9 of [11].
Now we outline the proof of Theorem 2. We start by constructing a sequence of functions,

which approximates det(F(α)). Then Lemma 8 is applied to bound the region of zeros of the
above functions. Next, using Theorem 4, we relate the number of zeros of det(F(α)) to the
number of zeros of an approximating function from the tail of the sequence. Finally, due to the
enlarged region of analyticity of the approximating functions, Lemma 11 can be applied to obtain
the latter number.

In order to implement the above ideas, we introduce a sequence of ‘truncations’ of
(X (t), J (t)). For every n ∈ N define a MAP (X [n](t), J (t)) through

ν
[n]
i (dx) := 1{x≤n}νi (dx) and U [n]i j := Ui j1{Ui j≤n}, (13)

where the other characteristics are kept unchanged. Using self-evident notation, we note that
G̃[n]i j (α), φ

[n]
i (α), and thus det(F [n](α)) are analytic on C (see the introduction to Section 5).

Next we consider a sequence of functions det(F [n](α)) and prove some convergence results
required by Theorem 4. In the following lemma we implicitly assume that the derivative of
any function f (α) at a point α0 on the imaginary axis is understood in the following sense:
limh→0,h∈CRe≥0( f (α0 + h)− f (α0))/h. It is noted that f (α) may be infinite for all α ∈ CRe<0,
and yet f ′(α0) is well-defined and finite.

Lemma 12. If EX i (1) and EUi j exist for all i and j , then for any R > 0 it holds that

det(F [n](α))→ det(F(α)) and det(F [n](α))′→ det(F(α))′ (14)

as n→∞ uniformly in α ∈ DR . Moreover,

lim
n→∞

det(F [n](0))′ = det(F(0))′ ∈ (−∞,∞). (15)

Proof. The statements of the lemma follow immediately from the following two observations:
(A) φ[n]i (α), G̃[n]i j (α) as well as their derivatives converge to the corresponding ‘non-truncated’

functions as n → ∞ uniformly in α ∈ CRe≥0, and (B) |φi (α)|, |φ
′

i (α)|, |G̃i j (α)| and |G̃ ′i j (α)|

are bounded on DR . Statement (B) follows from (A) and the fact that the corresponding truncated
functions are bounded for every n, which is true, because DR is bounded and functions φ[n]i (α)

and G̃[n]i j (α) are analytic on C.

With regard to statement (A) we only show uniform convergence of the derivatives of φ[n]i (α),
because the other results are either trivial or follow by a similar argument. That is we show that
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∆n(α) := |∂φ
[n]
i (α)/∂α − ∂φi (α)/∂α| → 0 as n → ∞ uniformly in α ∈ CRe≥0. Recall that

EX i (1) <∞ implies
∫
∞

1 xνi (dx) <∞. Now use dominated convergence to see that

∆n(α) =

∣∣∣∣∣∂
∫
∞

n (−1+ e−αx )νi (dx)

∂α

∣∣∣∣∣ =
∣∣∣∣∫ ∞

n
xe−αxνi (dx)

∣∣∣∣
≤

∫
∞

n
xνi (dx),

which goes to 0 as n→∞. �

It is not difficult to show using (6) that k′(0+) ∈ [−∞,∞) and, moreover,

k′(0+) is finite if and only if ∀i, j : EX i (1) and EUi j exist. (16)

Hence the above lemma can be applied whenever k′(0+) 6= −∞.
We are now ready to prove Theorem 2. In this proof we use X [∞](t) to denote the process

X (t).

Proof of Theorem 2. Note that for all n ∈ N ∪ {∞} it holds that

φ
[n]
i (α) = φ

[1]
i (α)−

(
−

∫ n

1
(−1+ e−αx )νi (dx)

)
= φ

[1]
i (α)− gn

i (α),

where gn
i (α) := −

∫ n
1 (−1 + e−αx )νi (dx). It is an easy exercise to show that for all α ∈ CRe≥0

functions gn
i (α) take values in CRe>0

∪ {0} and are bounded in absolute value by a common
constant C = 2 maxi {νi (1,∞)}. So we can apply Lemma 8 to the MAP (X [1](t), J (t)) to show
that there exists R > 0, such that the matrices Q + diag(φ[n]1 (α), . . . , φ

[n]
N (α)) are irreducibly

diagonally dominant for all n ∈ N ∪ {∞} and all α ∈ CRe≥0
\ (DR ∪ {0}). Hence the zeros of

det(F [n](α)), n ∈ N ∪ {∞} in CRe≥0 are all in DR ∪ {0}. Now use (16) and Lemma 12 to see
that Theorem 4 applies. So it remains to analyze the number of zeros of det(F [n](α)) in CRe≥0

for a large n.
First note that X i (t) is a subordinator if and only if X [n]i (t) is a subordinator. Thus the number

of non-subordinators corresponding to any truncated MAP is N∗. Secondly, Lemmas 12 and 10
show that k[n]′(0+) has the same sign as k′(0+) for n large enough. Now Lemma 11 completes
the proof. �
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Appendix A. Proofs of the results from Section 4

Proof of Theorem 3. Define f (z, t) := det(Mt (z)) for t ∈ [0, 1], where Mt (z) is a n × n
matrix obtained from M(z) by multiplying the off-diagonal elements by t . Note that f (z, 0) =∏n

i=1 mi i (z) and f (z, 1) = f (z). Moreover, f (z, t) 6= 0 for all z ∈ γ . To see this use
assumption A3 when t = 1 and A2 when t < 1. In the second case Mt (z), z ∈ γ is strictly
diagonally dominant and thus non-singular, see p. 226 of [20]. Since f (z, t) is a continuous
function on D × [0, 1], one can choose δ > 0, such that f (z, t) 6= 0 on [0, 1] × Eδ , where
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Eδ := {z ∈ D : y ∈ γ, |z − y| < δ} is a boundary strip of D. This is true, because otherwise
there exists a converging sequence of the zeros with a limit (z∗, t∗), such that z∗ ∈ γ and
f (z∗, t∗) = 0.

Let nt denote the number of zeros (counting multiplicities) of the function ft (z) := f (z, t)
in D. Take some piecewise smooth simple loop γ ′ ⊂ Eδ (which is possible) and write using the
argument principle

nt =
1

2π i

∮
γ ′

f ′t (z)

ft (z)
dz.

Note that nt is integer-valued and continuous, because f ′t (z)/ ft (z) is continuous in t uniformly
in z ∈ γ ′. This means that nt is constant. �

Proof of Theorem 4. We start by noting that there exists δ > 0, such that f (z) 6= 0 on
Eδ := {z ∈ D : y ∈ γ, |z − y| ≤ δ}, because otherwise there would exist a converging sequence
(zn) in D with a limiting point z∗ ∈ γ , such that f (zn) = 0 for all n. But then f (z∗) = 0
and limn→∞( f (z∗) − f (zn))/(z∗ − zn) = 0, which contradicts the assumptions. Now take a
piecewise smooth simple loop γ ′ ⊂ Eδ and write using the argument principle and the fact that
fn
′(z)/ fn(z) converges uniformly to f ′(z)/ f (z) on γ ′:

k =
1

2π i

∮
γ ′

f ′(z)

f (z)
dz = lim

n→∞

1
2π i

∮
γ ′

fn
′(z)

fn(z)
dz,

where k is the number of zeros of f (z) inside γ ′. Thus for a sufficiently large n the numbers of
zeros of f (z) and fn(z) inside γ ′ are the same.

It remains to show that fn(z) has neither zeros in Eδ , nor in γ \ {z0}, for sufficiently large
n. Uniform convergence f ′n(z)→ f ′(z), z ∈ D and continuity of f ′n(z) on D ∪ {z0} imply that
f ′(z) is continuous on D ∪ {z0}, where f ′(z0) is defined in the statement of the theorem. Now
it is easy to see that one can pick η > 0, such that for a sufficiently small ε > 0 and large n the
following holds:

| f ′n(z)− f ′(z0)| <
1
2
η < η < | f ′(z0)|, z ∈ D ∩ B(z0, ε),

which implies

| f ′n(z)− f ′(z0)| ≤
1
2
η < η < | f ′(z0)|, z ∈ D ∩ B(z0, ε).

Here we assume that ε is taken small enough, so that the fn(z) are analytic on B(z0, ε). Note that
for a sufficiently small ε > 0 one can connect the points z0 and z ∈ D ∩ B(z0, ε) by a piecewise
smooth path γ̃ , so that γ̃ ⊂ D ∩ B(z0, ε) and the length of γ̃ is less than 2|z − z0|, because the
contour of D is assumed to be piecewise smooth. Now

| fn(z)− f ′(z0)(z − z0)| =

∣∣∣∣∫
γ̃

( fn
′(s)− f ′(z0))ds

∣∣∣∣
≤ 2|z − z0|max

s∈γ̃
| fn
′(s)− f ′(z0)| ≤ η|z − z0|

and

| fn(z)| ≥ | f
′(z0)(z − z0)| − | fn(z)− f ′(z0)(z − z0)|

≥ (| f ′(z0)| − η)|z − z0| > 0

for z ∈ D ∩ B(z0, ε), z 6= z0 and sufficiently large n.



J. Ivanovs et al. / Stochastic Processes and their Applications 120 (2010) 1776–1794 1791

Finally, consider the set E ′ := (γ ∪ Eδ)\ B(z0, ε). The set E ′ is compact and f (z) 6= 0 on E ′,
thus fn(z) 6= 0 on E ′ for sufficiently large n, which completes the proof. �

Appendix B. Proofs of the results from Section 5

In order to prove the two lemmas from Section 5 we need to discuss some additional properties
of Lévy processes and to prove a technical lemma. It is known that

X (t) has paths of bounded variation iff

σ = 0 and
∫ 1

0
xν(dx) <∞.

(B.1)

The Laplace exponent of such a process has a unique representation of the form

φ(α) = a′α +
∫
∞

0
(−1+ e−αx )ν(dx). (B.2)

Note that any subordinator has paths of bounded variation, so it can be written in the form given
in (B.2). If, in addition, a′ = 0 then such a subordinator is called pure jump subordinator.

The first lemma is similar to Prop. 2 on p. 16 of [7], and will only be used to prove Lemma 5.

Lemma 13. It holds that

lim
|α|→∞,α∈CRe≥0

α−2φ(α) = σ 2/2. (B.3)

Moreover, if φ(α) has representation (B.2) then

lim
|α|→∞,α∈CRe≥0

α−1φ(α) = a′. (B.4)

Proof. First note that

| − 1+ e−y
+ y| ≤ 3|y|2 for y ∈ CRe≥0.

This inequality holds, because if |y| ≥ 1 then | − 1 + e−y
+ y| ≤ 2 + |y| ≤ 3|y| ≤ 3|y|2.

On the other hand if |y| < 1 then using a power series expansion we have | − 1 + e−y
+ y| =

|y2/2! − y3/3! + · · · | ≤ |y|2(1/2! + |y|/3! + · · ·) ≤ 3|y|2.
Now we see that |α|−2

| − 1+ e−αx
+ αx | ≤ 3x2 when α ∈ CRe≥0, α 6= 0 and x > 0. Since∫ 1

0 x2ν(dx) <∞, dominated convergence gives

lim
|α|→∞,α∈CRe≥0

α−2
∫ 1

0
(−1+ e−αx

+ αx)ν(dx) = 0

and then (B.3) follows from (2). The second part can be proven in the same way by noting that
| − 1+ e−y

| ≤ 2|y| for y ∈ CRe≥0. �

Proof of Lemma 5. If the Gaussian component σ 2 (see (2)) is non-zero or φ(α) can be written
as in (B.2) with a′ 6= 0, then the result follows trivially from Lemma 13. If, on the other hand,
φ(α) =

∫
∞

0 (−1 + e−αx )ν(dx), then it is easy to see that Re(φ(α)) ≤ 0 for α ∈ CRe≥0. It
follows from (B.1) that the only case left is the following:

φ(α) = aα +
∫
∞

0
(−1+ e−αx

+ αx1{x<1})ν(dx),
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where
∫ 1

0 xν(dx) = ∞. We now show that in this case statement (i) holds. Note that |
∫
∞

1 (−1+
e−αx )ν(dx)| is bounded for all α ∈ CRe≥0, so we can truncate Lévy measure ν(dx) to the
interval (0, 1).

Step 1. We show that Im(φ(u + iv))/v→∞ as |v| → ∞ uniformly in u ≥ 0. Note that

Im(φ(u + iv)) = av +
∫ 1

0
(vx − e−ux sin(vx))ν(dx)

is an odd function in v, thus it is enough to consider the case when v > 0. Note also that
vx − e−ux sin(vx) ≥ 0 when x > 0. Thus we have for any ε > 0

Im(φ(u + iv))
v

≥ a +
∫ 1

ε

(
x −

e−ux sin(vx)

v

)
ν(dx)

≥ a +
∫ 1

ε

xν(dx)−
∫ 1

ε

1
v
ν(dx)→ a +

∫ 1

ε

xν(dx) as v→∞.

Send ε to 0 and use
∫ 1

0 xν(dx) = ∞ to complete the proof of the first step.
Step 2. We show that given any constants M > 0 and V > 0 one can choose a large U > 0,

so that Re(φ(u + iv)) > M for all u and v such that |v| ≤ V and u > U . First recall that the
process we consider has paths of unbounded variation and thus is not a subordinator. It is well
known that in this case φ(u)→∞ as u →∞. Next note that

∂Re(φ(u + iv))
∂v

= −

∫ 1

0
xe−ux sin(vx)ν(dx)

and ∣∣∣∣∣
∫ 1

0
xe−ux sin(vx)ν(dx)

∣∣∣∣∣ ≤ V
∫ 1

0
x2ν(dx) <∞,

when |v| ≤ V . So it is enough to choose U such that φ(u) > M + V 2
∫ 1

0 x2ν(dx) for all u > U .
Now pick any M > 0. The result of Step 1 implies that there exists a large enough V > 0,

so that |Im(φ(u + iv))| > M for all u ≥ 0 and all v satisfying |v| > V . Combining this with
the result of Step 2, we see that there exists U > 0, such that |φ(α)| > M when α ∈ CRe≥0 and
|α| > U + V , which implies (i). �

The above proof provides more information than stated in the lemma. Namely, we can add
that the first statement is true at least for those X (t) which are not pure jump subordinators. If
X (t) is a compound Poisson process then |φ(r)| is bounded for all r ∈ [0,∞), and thus the first
statement of the above lemma does not hold.

Proof of Lemma 6. Let u ≥ 0, v 6= 0 and assume that φ(u + iv) ≥ 0, then

au +
1
2
σ 2(u2

− v2)+

∫
∞

0
(−1+ e−ux cos(vx)+ ux1{x<1})ν(dx) ≥ 0,

av + σ 2uv +
∫
∞

0
(−e−ux sin(vx)+ vx1{x<1})ν(dx) = 0.

Divide the second equation by v, multiply it by u and subtract it from the first inequality to
obtain:

1
2
σ 2(−u2

− v2)+

∫
∞

0

(u

v
e−ux sin(vx)− 1+ e−ux cos(vx)

)
ν(dx) ≥ 0.
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Now note that

cos r +
q

r
sin r ≤ eq when q ≥ 0, r 6= 0

with equality when q = 0 and cos r = 1. This shows that the integrand is non-positive, which
proves (i).

Finally, from the above we conclude that φ(u + iv) = 0 if and only if either (A) X (t) ≡ 0, or
(B) σ 2

= 0, u = 0, and∫
∞

0
(1− cos(vx))ν(dx) = 0, av +

∫
∞

0
(− sin(vx)+ vx1{x<1})ν(dx) = 0.

It can be further deduced that in the latter case a = −
∫ 1

0 xν(dx). Therefore we have that

φ(α) =

∫
∞

0
(−1+ e−αx )ν(dx)

with
∫ 1

0 xν(dx) <∞, which means that X (t) is a compound Poisson process. �

Note that if X (t) is not identically zero and for some α0 ∈ CRe≥0
\R it holds that φ(α0) = 0,

then Lemma 6 implies that X (t) is a compound Poisson process. Moreover, the above proof
shows that α0 lies on the imaginary axis.
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