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We define a percolation problem on the basis of spin configurations of the two-dimensional XY model.
Neighboring spins belong to the same percolation cluster if their orientations differ less than a certain threshold
called the conducting angle. The percolation properties of this model are studied by means of Monte Carlo
simulations and a finite-size scaling analysis. Our simulations show the existence of percolation transitions
when the conducting angle is varied, and we determine the transition point for several values of the XY
coupling. It appears that the critical behavior of this percolation model can be well described by the standard
percolation theory. The critical exponents of the percolation transitions, as determined by finite-size scaling,
agree with the universality class of the two-dimensional percolation model on a uniform substrate. This holds
over the whole temperature range, even in the low-temperature phase where the XY substrate is critical in the
sense that it displays algebraic decay of correlations.

DOI: 10.1103/PhysRevE.81.031117 PACS number�s�: 05.50.�q, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

Consider the XY or planar model on the square lattice
with periodic boundary conditions, described by the reduced
Hamiltonian

H = −
J

kBT
�
�ij�

s�i · s� j , �1�

where the sum is over all nearest-neighbor pairs and the s�i
are two-dimensional unit vectors labeled by the site number
i. We restrict the nearest-neighbor interaction to be ferromag-
netic, i.e., J�0.

When the temperature of this model is lowered, it under-
goes a phase transition of an interesting character, which was
explained by Kosterlitz and Thouless �1�. More exact results
for the exponents were obtained by Nienhuis �2� for an O�2�
model in the same universality class. These results show that
the renormalization exponent yt of the temperature is equal
to 0, which means that the temperature-driven transition is of
infinite order, i.e., the specific-heat singularity is extremely
weak. In contrast, the magnetic susceptibility displays a very
strong divergence when the temperature is lowered to the
transition point.

At temperatures T�0 below the transition point there is
no spontaneous long-range order in the sense that the mag-
netization is zero �3�. Instead, the low-temperature phase re-
sembles a critical state; the correlations decay algebraically,
with exponents that are still dependent on the temperature.

Recently, there has been ample attention to percolation
problems defined on a critical substrate, see e.g., Refs. �4–8�.
and references therein. It thus appears that, for Potts and
O�n� models, the universal properties of such percolation
transitions do reflect the nature of the critical substrate.

These investigations are based on model representations with
discrete degrees of freedom.

It is thus interesting to investigate related problems using
a substrate with continuous degrees of freedom. For instance,
the mechanical properties of static granular matter can be
analyzed in terms of the so-called force networks �9,10�. By
introducing a threshold force, such that forces exceeding the
threshold form clusters, a percolation transition is seen at a
critical force threshold. This approach was applied to differ-
ent models for granular piles that are expected to belong to
different universality classes. It was found that also the cor-
responding percolation behavior could discriminate between
the different models �11�. This might suggest that such sub-
strate dependence is a general phenomenon for critical mod-
els with continuous degrees of freedom, i.e., the critical be-
havior of the percolation clusters might generally reflect the
long-range correlations of the original degrees of freedom.

In order to shed more light on this issue, the present work
investigates a percolation problem using the substrate of the
two-dimensional XY model. In particular we are interested
how the universal properties of the percolation transition will
depend on the temperature of the underlying XY model. We
define the percolation problem such as to depend only on the
XY configuration and not on any additional random vari-
ables. This is achieved by introducing a “conducting angle”
� such that neighboring spins whose orientations differ by
less than � are connected by a percolation bond. This name is
based on the analogy with a conductance problem of con-
ducting units on a lattice such that neighboring units are in
electrical contact only if their orientations match to a suffi-
cient degree.

It is clear that this conducting angle also defines a thresh-
old pair energy, below which a pair of neighboring XY spins
is connected by a percolation bond. These percolation bonds
define a bond percolation configuration involving a complete
decomposition of the lattice in percolation clusters. An ex-
ample of an XY configuration with the corresponding perco-
lation cluster decomposition is shown in Fig. 1. It is obvious
that the resulting bond percolation configurations will not*waguo@bnu.edu.cn

PHYSICAL REVIEW E 81, 031117 �2010�

1539-3755/2010/81�3�/031117�6� ©2010 The American Physical Society031117-1

http://dx.doi.org/10.1103/PhysRevE.81.031117


percolate for �=0 and that they will percolate for �=� and
larger. We are thus left with the task to find the percolation
threshold �c and the critical exponents as a function of the
temperature. To answer these questions, we perform simula-
tions of the two-dimensional �2D� XY spin model, which are
described in Sec. II. Section III presents the numerical re-
sults, including the critical parameters. We include a short
discussion in Sec. IV.

II. ALGORITHM

For reasons of efficiency, we make use of a cluster algo-
rithm �12� to simulate the XY model. We applied the single-
cluster algorithm formulated by Wolff �13� to the model on
the square lattice. We recall the steps involved in one Wolff
cluster flip:

�1� choose an arbitrary direction as the y direction and
denote by �i the angle between the spin si� and the y axis.
Define an Ising spin si= �1 with the same sign as the y
component of si�. Thus, the nearest-neighbor interaction term
in Hij between spins i and j reads

Hij = − Ks�i · s� j = − Ksi
xsj

x − Ksi
ysj

y = − Ksi
xsj

x

− K cos��i�cos�� j�sisj , �2�

where K�J /kBT. As far as the dependence of Hij on the
Ising variables si and sj is concerned, this is an Ising cou-
pling between the two spins with strength Kij
=K cos �i cos � j. One may update the Ising variables using a
cluster algorithm that takes into account these position-
dependent couplings. The following steps are used to update
the y components of the spins.

�2� Choose a spin randomly, say on site i. For each
nearest-neighbor site j of i, connect i and j by a bond with
probability pij =max�0,1−e−2Kij�. Then do the same for each
of the nearest-neighbor sites of each newly connected site,
and so on. The process continues until no more new sites are
connected. Then, the construction of the cluster, which con-
tains all sites connected via some path of bonds to site i, is
finished.

�3� Change the sign of the y components of all spins in
that cluster.

III. NUMERICAL RESULTS AND ANALYSIS

During the simulations, we constructed percolation cluster
decompositions on the basis of a chosen conducting angle �.
For each such decomposition we sampled several quantities
in order to estimate the second moment of the cluster size
distribution S2, the probability P that there exists a cluster
that wraps the system, a dimensionless ratio Q that can be
related to the Binder cumulant, and the cluster size distribu-
tion function ns. We shall proceed to introduce these quanti-
ties in more detail and list their expected finite-size scaling
properties.

Since we are using finite systems with periodic boundary
conditions, we define a “wrapping cluster” �14� as a perco-
lation cluster that connects to itself along at least one of the
periodic directions. For each XY configuration S we thus
define a quantity p�S ,�� that has the value 1 if there exists a
wrapping cluster, and p�S ,��=0 otherwise. Thus, for a sys-
tem with finite-size L, the probability P�K ,� ,L� that a wrap-
ping cluster exists is given by

P�K,�,L� = �p�S,��� , �3�

where the ensemble average is taken for an XY system with
linear size L and coupling K. If there is a percolation transi-
tion at a conducting angle �c, one expects that � plays the
role of a temperaturelike variable and thus that the finite-size
scaling behavior �15� of P is described by

P�K,�,L� = P�c� + a�� − �c�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯ ,

�4�

where yp controls the scaling of � and acts as a temperature-
like exponent, corresponding with the bond dilution expo-
nent in the language of the percolation model. The exponents
y1, y2, etc. are correction-to-scaling exponents, which are
unknown in principle. The constant P�c�, which is defined as
the value of P at �c in the limit L→�, and the exponent yp
are universal, but the universality class of the present perco-
lation problem remains to be determined.

The second moment S2 of the percolation cluster size dis-
tribution can also be viewed as the mean size of the cluster
containing an arbitrary point. It is defined as

S2 =
1

N2	�
i

Nc

si
2
 , �5�

where si is the size of the i-th cluster, Nc the total number of
clusters for a configuration, and N=L2 is the volume of the
system. The quantity S2 is also closely related with the gen-
eralization �RC of the q-state Potts magnetic susceptibility to
the random-cluster model, applied to the special case q=1.
This relation is expressed as �RC=NS2.

In analogy with the Potts susceptibility, we expect the
following finite-size-scaling behavior for S2 in the neighbor-
hood of a percolation threshold at �c

S2 = L2yh−2d�a0 + a1�� − �c�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯� ,

�6�

where yh is the fractal dimension of critical percolation clus-
ters. At the percolation threshold �c, this equation reduces to

<θ θi j

( a ) ( b )

FIG. 1. �Color online� Construction of a bond percolation con-
figuration �b� from an XY spin configuration �a�. If the angle �ij

between a pair �i , j� of neighboring spins is less than a given angle
�, the neighboring spins are connected by a bond, so that the lattice
decomposes into a system of percolation clusters. The threshold
was chosen as �=� /6 in this figure.
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S2 = L2yh−2d�a0 + b1Ly1 + b2Ly2 + ¯� . �7�

We also define a dimensionless ratio related to the Binder
cumulant �16� as

Q =
S2

2

3S2
�2� − 2S4

, �8�

where S2
�2� is defined as

S2
�2� =

1

N4	��
i

Nc

si
2�2
 , �9�

and S4 as

S4 =
1

N4	�
i

Nc

si
4
 . �10�

The relation with the Binder cumulant is based on the fact
that Eq. �8� is obtained when the Binder ratio �m2�2 / �m4� of
magnetization moments of the Ising model is expressed in
the language of the q=2 random-cluster model. In analogy
with the Binder cumulant, we expect that, in the neighbor-
hood of the percolation threshold, it behaves like

Q�K,�,L� = Q�c� + a1�� − �c�Lyp + ¯ + b1Ly1 + b2Ly2 + ¯ .

�11�

A. Wrapping probability as a function of �

We simulated XY systems with linear sizes L=8, 16, 32,
64, 128, and 256 at different inverse temperatures: K=0,
0.001, 0.01, 0.10, ¯, 5.00, and 10.00. For K=0.9 and 1.0,
system sizes up to L=1024 and 2048 were simulated, respec-
tively. Typically, 107 XY configurations were sampled. The
samples were taken at intervals consisting of one Metropolis
sweep and four Wolff clusters. For each of these XY configu-
rations, percolation cluster decompositions were constructed
with several different values of the conducting angle.

Some results for the wrapping probability P�K ,� ,L� as a
function of the conducting angle are shown in Figs. 2–4.
These figures show clear intersections corresponding with
percolation thresholds. Furthermore, the behavior appears to

be remarkably similar for different values of the XY coupling
K. We applied the least-squares method to fit the wrapping
probability by the finite-size scaling Eq. �4�. The results for
the percolation threshold �c are shown in Fig. 5 as a function
of the XY coupling K. They are also included in Table I for
each value of K, together with the results for the exponent yp
and the universal probability P�c�. The results for the latter
quantity reproduce, within error bounds, the literature value
P�c�=0.690473725 which applies to the ordinary two-
dimensional percolation model �14,17,18�.
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FIG. 2. �Color online�. Wrapping probability versus � at K
=0.5. The curves are added as a guide for the eye.
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FIG. 3. �Color online�. Wrapping probability versus � at K=1.
The lower figure shows the details in the vicinity of �c, where the
finite-size effect becomes relatively strong. The curves are added as
a guide for the eye.
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FIG. 4. �Color online�. Wrapping probability versus � at K
=2.0. The curves are added as a guide for the eye.
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B. Dimensionless ratio Q as a function of �

We also sampled the ratio Q for systems at different in-
verse temperatures. Some of the data for K=1.0 are shown in
Fig. 6. These data display the same general behavior as the
wrapping probability in Sec. III A. Furthermore, the data for
other values of K �not shown� display a very similar behav-
ior, as also seen in the preceding subsection.

A least-squares analysis of the data for Q�K ,� ,L� on the
basis of the finite-size scaling Eq. �11� results in the esti-
mates of yp, Q�c�, and the percolation threshold �c. The esti-
mates of yp and �c are in agreement with those found by
fitting P�K ,� ,L�. The estimates of the universal value Q�c�

are also listed in Table I for each K. Their values are in
agreement with the literature value �19� 0.870 53�2� for the
ordinary two-dimensional percolation model.

C. Second moment S2 at the percolation threshold

We simulated the model with system sizes L=8, 16, 32,
64, 128, 256, and 512 at the estimated percolation threshold
�c for each K and sampled the second moment S2 of the
cluster size distribution. Samples were taken at intervals con-
sisting of one Metropolis sweep and four Wolff clusters. The
numbers of samples taken for system sizes L=8 to 32, L
=64 to 128, and L=256 to 512 are 107, 4	106, and 2
	106, respectively. For K=1.0, which is in the vicinity of
the Kosterlitz-Thouless �KT� transition, additional simula-
tions took place for system sizes L=1024 and 2048, involv-

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10

θ c

K=J/kBT

FIG. 5. �Color online� Percolation threshold �c versus K. For
K=0, the critical value of the conducting angle is 1.610 78 radians
or about 92 degrees. This value applies to a system of randomly
oriented conductors on the square lattice. The curve is added as a
guide for the eyes and estimated error bars are smaller than the size
of the symbols.

TABLE I. Numerical results for the percolation threshold �c, the bond dilution exponent yp, the fractal
dimension yh, the universal wrapping probability P�c�, and the universal dimensionless ratio Q�c�. The exact
values for two-dimensional percolation exponents are yp=3 /4 and yh=91 /48=1.895833¯

K �c yp yh P�c� Q�c�

0 1.61078�2� 0.750�2� 1.8961�3� 0.6906�2� 0.8708�3�
0.001 1.60994�2� 0.748�3� 1.8961�3� 0.6908�3� 0.8707�5�
0.010 1.60252�2� 0.750�2� 1.8959�3� 0.6905�3� 0.8706�3�
0.100 1.52866�2� 0.751�2� 1.8959�3� 0.6905�3� 0.8708�5�
0.200 1.44651�2� 0.752�2� 1.8958�3� 0.6903�4� 0.8708�5�
0.500 1.18179�2� 0.750�2� 1.8956�3� 0.6903�3� 0.8709�5�
0.750 0.91074�2� 0.751�2� 1.8957�3� 0.6901�5� 0.8704�5�
0.800 0.85002�2� 0.749�5� 1.8957�3� 0.6905�3� 0.8702�5�
0.900 0.72804�2� 0.751�4� 1.8958�3� 0.6902�4� 0.8705�5�
1.000 0.62209�2� 0.74 �2� 1.894 �2� 0.6907�4� 0.8705�5�
1.100 0.55695�1� 0.753�3� 1.8954�5� 0.6902�6� 0.8709�5�
1.120 0.54815�1� 0.752�3� 1.8958�2� 0.690 �1� 0.8706�5�
1.200 0.51869�1� 0.751�2� 1.8959�2� 0.6903�5� 0.8707�5�
1.500 0.44598�2� 0.753�3� 1.897 �2� 0.6907�3� 0.8708�5�
2.000 0.37560�2� 0.752�3� 1.895 �1� 0.6900�8� 0.8708�3�
5.000 0.22851�1� 0.751�2� 1.8958�3� 0.690 �1� 0.8708�5�

10.00 0.15981�2� 0.751�4� 1.895 �1� 0.689 �3� 0.8708�5�
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FIG. 6. �Color online�. Dimensionless ratio Q versus conducting
angle � for K=1.0. The curves are added as a guide for the eye.
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ing several times 106 samples per system size.
Some data for S2 are shown as a function of the system

size L in Fig. 7. Since logarithmic scales are used, linear
behavior corresponds with power-law behavior, in accor-
dance with scaling. This figure applies to the case K=1.0,
which is close to the KT transition. Small deviations from
linearity, which are due to corrections to scaling, are visible.
Plots for other values of K �not shown� display a somewhat
better approximation to linear behavior.

We fitted S2 by the finite-size-scaling formula Eq. �7� and
thus obtained estimates of the fractal dimension yh, which
are listed in Table I for several values of K. For K=1.0, a
satisfactory fit could only be obtained by discarding system
sizes L
128 and including system sizes up to L=2048.

D. Distribution ns of the cluster size s

At the percolation transition �c, the requirement that the
cluster size distribution scales in a covariant way yields a
power law for this distribution

ns�s,�c� � s−�, �12�

where � is a critical exponent equal to 1+d /yh, with d=2
dimensions and the fractal dimension yh of the percolation
clusters. For the ordinary d=2 percolation model, one has
yh=91 /48 �20,21�, and thus �=187 /91.

An example of the data for ns is shown in Fig. 8 as a
function of cluster size s, for XY coupling K=1.0. This figure
uses logarithmic scales. The data points are, in a wide range
of cluster sizes, well approximated by straight lines, corre-
sponding with a scale-invariant distribution according to a
power law. The slopes of these lines are close to the value of
� that applies to the ordinary percolation model. The curves
in Fig. 8 can obviously be brought to an approximate data
collapse by introducing suitable prefactors, but it appears
that there is still an appreciable finite-size dependence. Simi-
lar plots for other values of K �not shown� display practically
the same behavior.

For a numerical determination of � from the data for ns,
we use a least-squares analysis in the range of s where ns is
almost linear when plotted as in Fig. 8, thus excluding small

clusters smaller than 20, and the largest clusters exceeding a
size Lyh /10. Even then, two correction terms had to be in-
cluded in order to obtain satisfactory residuals, according to
the fit formula

ns�s,�c,L� = a0s−��1 + a1sy1 + a2Ly2� , �13�

where the term with coefficient a2 is significant only for K
�1. Satisfactory fits were obtained for all inverse tempera-
tures. For example, for K=0.75, we fitted the data simulta-
neously for system sizes L=32,64, ¯ ,512 using the above
formula and found �=2.055�2�, y1=−0.57�1� with �2 per de-
gree of freedom almost equal to 1. For K=2.0, a fit of the
data for system sizes L=32,64, ¯ ,512 yielded �=2.054�2�,
y1=−1.0�1�, and y2=−1.6�1�, again with a satisfactory value
of �2 as compared with the number of degrees of freedom.

We thus obtained estimates of the exponent � that agree
well with the value �=187 /91=2.0549¯ for the ordinary
2D percolation model, for several temperatures of the XY
model.

IV. DISCUSSION

The numerical results presented in Sec. III for the expo-
nents �, yh, and yp, as well as for the universal probability
P�c� and the universal ratio Q�c�, agree accurately with the
literature values applying to the two-dimensional percolation
model. Thus our analysis shows the existence of a transition
in the ordinary percolation universality class, independent of
the XY temperature. This result is as expected in the high-
temperature phase where the XY spins display strong random
disorder, but may seem somewhat surprising in the critical
region including the low-temperature range. The problem
discussed here can be viewed as a correlated percolation
problem, in which the bond probabilities correlate as the
nearest-neighbor differences in the XY model. For such long-
range correlated percolation Weinrib �22� formulated a gen-
eralized Harris criterion to decide if the correlations are rel-
evant for the percolation behavior or not. The critical
behavior is expected to be in the universality class of ordi-
nary �uncorrelated� percolation if a�2 for correlations de-
caying with distance as r−a with  the percolation correlation
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FIG. 7. �Color online� Second moment S2 of the cluster size
distribution versus finite-size L, for XY coupling K=1.0. The curve
is added as a guide for the eyes and estimated error bars are smaller
than the size of the symbols.
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length exponent =4 /3. Indeed in the case at hand a=2 and
the correlations should thus be irrelevant. It stands in a
strong contrast with a recent analysis �7� of a percolation
problem defined on the basis of the two-dimensional O�n�
model where n is a continuously variable parameter. For the
O�2� model, which belongs to the same universality class as
the XY model, it was found �7� that the percolation transition
was driven by a bond dilution field that is only marginally
relevant, i.e., yp=0 at that transition, while yp=3 /4 for ordi-
nary percolation. It thus appears that the character of a per-
colation transition on a critical substrate depends on the pre-
cise definition of the percolation problem. The percolation
problem of Ref. �7� was defined within regions separated by
loops as defined in the context of the O�n� loop model. These
loops obviously display fractal properties �6� at O�n� critical-
ity and thus affect the nature of the percolation transition. In
contrast, the spatial variation in the angle between neighbor-

ing XY spins is very smooth near criticality, and does not
display boundarylike structures, even at the KT transition.
While it is natural that the KT transition is reflected in some
way in the behavior of the percolation transition at the criti-
cal value of the conducting angle such effects are exposed by
our numerical results only in terms of slow convergence in
the analysis of the finite-size data.
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