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Abstract

This paper considers extreme values attained by a centered, multidimensional Gaussian process X (t) =

(X1(t), . . . , Xn(t)) minus drift d(t) = (d1(t), . . . , dn(t)), on an arbitrary set T . Under mild regularity
conditions, we establish the asymptotics of

logP


∃t ∈ T :

n
i=1

{Xi (t) − di (t) > qi u}


,

for positive thresholds qi > 0, i = 1, . . . , n and u → ∞. Our findings generalize and extend previously
known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the
theory.
c⃝ 2010 Elsevier B.V. All rights reserved.

MSC: 60G15; 60G70

Keywords: Gaussian process; Logarithmic asymptotics; Extremes

1. Introduction

Owing to its relevance in various application domains, in the theory of stochastic processes,
substantial attention has been paid to estimating the tail distribution of the maximum value
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attained. In mathematical terms, the setting considered involves an R-valued stochastic process
X = {X (t) : t ∈ T } for some arbitrary set T and a threshold level u > 0, where the focus is on
characterizing the probability

P


sup
t∈T

X (t) > u


= P (∃t ∈ T : X (t) > u) . (1)

More specifically, the case in which X is a Gaussian process has been studied in detail. This
hardly led to any explicit results for (1), but there is quite a large body of literature on results
for the asymptotic regime in which u grows large. The prototype case dealt with a centered
Gaussian process with bounded trajectories for which the logarithmic asymptotics were found: it
was shown that

lim
u→∞

u−2 log P


sup
t∈T

X (t) > u


= −


2σ 2

T

−1
, (2)

where

σ 2
T := sup

t∈T
EX2(t).

See Adler [1, p. 42] or Lifshits [9, Section 12] for this and related results. The monographs
Lifshits [9] and Piterbarg [11] contain more refined results: under appropriate conditions, an
explicit function φ(u) is given such that the ratio of (1) and φ(u) tends to 1 as u → ∞

(so-called exact asymptotics). The logarithmic asymptotics (2) can easily be extended to the
case of noncentered Gausssian processes if the mean function is bounded. The situation gets
interesting if both trajectories and the mean function of the process are unbounded. In this respect
we mention Duffield and O’Connell [6] and Dębicki [3], where the logarithmic asymptotics of
P(supt≥0(X (t) − d(t)) > u) for general centered Gaussian processes X , under some regularity
assumptions on the drift function d , were derived; see also Hüsler [8], Dieker [5] and references
therein.

While the above results all relate to one-dimensional suprema, considerably less attention
has been paid to their multidimensional counterparts. One of few exceptions is provided by
the work of Piterbarg and Stamatović [12], who considered the case of two R-valued, possibly
dependent, centered Gaussian processes {X1(t1) : t1 ∈ T1} and {X2(t2) : t2 ∈ T2}. They found
the logarithmic asymptotics of

P(∃(t1, t2) ∈ T : X1(t1) > u, X2(t2) > u) (3)

for some T ⊆ T1 × T2, under the assumption that the trajectories of X1 and X2 are bounded.
In this paper our objective is to obtain the logarithmic asymptotics of (following the

convention that vectors are written in bold)

P(u) := P


∃t ∈ T :

n
i=1

{X i (t) − di (t) > qi u}


; (4)

here {X(t) : t ∈ T }, with X(t) = (X1(t), . . . , Xn(t))′, is an Rn-valued centered Gaussian
processes defined on an arbitrary set T ⊆ Rm , for some m, n ∈ N, the di (·) are drift functions
and qi > 0 are threshold levels, i = 1, . . . , n. Our setup is rich enough to cover both of the
cases in which P(u) corresponds to the event in which (i) it is required that there is a single
time epoch t ∈ R such that X i (t) − di (t) > qi u for all i = 1, . . . , n and (ii) there are n epochs
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(t1, . . . , tn) such that X i (ti )−di (ti ) > qi u for all i = 1, . . . , n. We get back to this issue in detail
in Remark 1, where it is also noted that the theory covers a variety of situations between these
two extreme situations.

Compared to the one-dimensional setting, the multidimensional case requires various
technical complications to be settled. The derivations of logarithmic asymptotics usually rely
on an upper and lower bound, where the latter is based on the inequality

P(u) ≥ sup
t∈T

P


n

i=1

{X i (t) − di (t) > qi u}


.

Strikingly, in terms of the logarithmic asymptotics, this lower bound is actually tight, which is
essentially due to the common ‘large deviations heuristic’: the decay rate of the probability of
a union of events coincides with the decay rate of the most likely event among these events. A
first contribution of the present paper is that we show that this argument essentially carries over
to the multidimensional setting. In order to obtain the lower bound one needs asymptotics of
tail probabilities that correspond to multivariate normal distributions. In this domain a wealth of
results are available (see, e.g., Hashorva [7] and references therein), but for our purposes we need
estimates which are, in some specific sense, uniform. A version of such estimates, that is tailored
to our needs, is presented in Lemma 4.

The upper bound is based on what we call a ‘saddle point equality’ presented in Lemma 1.
It essentially allows us to approximate suprema of multidimensional Gaussian process X by a
specific one-dimensional Gaussian process, namely a properly weighted sum of the coordinates
X i of X. Formally, we identify weights wi = wi (t, u) ≥ 0 such that the inequality

P(u) ≤ P


∃t ∈ T :

n−
i=1

wi X i (t) >

n−
i=1

wi (uqi + di (t))


,

is logarithmically asymptotically exact, as u → ∞. The reduction of the dimension of the
problem allows us to use one-dimensional techniques (such as the celebrated Borell inequality).
Interestingly, the optimal weights can be interpreted in terms of the solution to a convex
programming problem that corresponds to an associated Legendre transform of the covariance
matrix of X. A different weighting technique has been developed in Piterbarg and Stamatović [12]
for the case n = 2, but without a motivation for the weights chosen. We recover the result
from Piterbarg and Stamatović [12] in Remark 5. Our analysis of (4) extends the results
from Dębicki [3] and Piterbarg and Stamatović [12], in the first place because Rn-valued
Gaussian processes are covered (for arbitrary n ∈ N). The other main improvement relates to
the considerable generality in terms of the drift functions allowed; these were not covered in
Piterbarg and Stamatović [12].

The paper is organized as follows. In Section 2 we introduce notation, describe in detail
the objects of main interest to us, and state our main result; we also pay special attention
to the rationale behind the assumptions that we impose. In Section 3 we illustrate the main
theorem by presenting a number of examples; one of these relates to Gaussian processes with
regularly varying variance functions. We also explain the potential application of our result in
queueing and insurance theory. In Section 4 we describe how the multidimensional process X
can be approximated by a one-dimensional process Z , obtained by appropriately weighting the
coordinates X i . We prove some preliminary results about the characteristics of the process Z .
This section also contains the saddle point equality mentioned above, Lemma 1, which is the
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crucial element of the proof of our main result. Section 4 also contains all other lemmas needed
to prove Theorem 1, as well as the proof of our main result itself.

2. Model, notation, and the main theorem

In this section we formally introduce the model, state the main theorem, and provide the
intuition behind the assumptions imposed.

2.1. Model and notation

Let T ⊆ Rm , for some m ∈ N. In this paper we consider an Rn-valued (separable) centered
Gaussian process X ≡ {X(t), t ∈ T } given by X(t) = (X1(t), . . . , Xn(t))′. Let the so-called drift
function be denoted by d(t) = (d1(t), . . . , dn(t))′. Now, denote the covariance matrix of X(t) by
Σt. Throughout the paper it is assumed that the matrix Σt is invertible for every t ∈ T . Here and
in the sequel, we use the following notation and conventions:

• We say v ≥ w if vi ≥ wi for all i = 1, . . . , n.
• We write diag(v) for the diagonal matrix with vi on the i th position of the diagonal.
• We define vw := diag(v)w′

= (v1w1, . . . , vnwn)′.
• For a ∈ R, we let i(a) be an n-dimensional vector (a, . . . , a)′ and also let 0 = (0, . . . , 0)′.
• We adopt the usual definitions of norms of vectors ‖x‖ := (⟨x, x⟩)1/2, where ⟨·, ·⟩ is the

Euclidean inner product.
• We let f (u) ∼ g(u) denote that limu→∞ f (u)/g(u) = 1.
• We write Rn

+ := {x ∈ Rn
: x ≥ 0, x ≠ 0}.

Throughout the paper not all vectors are of dimension n (for instance t is of dimension m), but
the above notation should be understood with obvious changes.

With each Σt we associate the matrix Kt = (ki, j (t))i, j≤n , defined as

Kt = diag(∂
−1/2
1,1 (t), . . . , ∂−1/2

n,n (t))Σ−1
t diag(∂

−1/2
1,1 (t), . . . , ∂−1/2

n,n (t))

with Σ−1
t = (∂i, j (t))i, j≤n . We mention that ki, j (t) ∈ [−1, 1] and that −ki, j (t) is commonly

interpreted as some sort of partial correlation between X i (t) and X j (t) controlling all other
variables Xk(t), k ≠ i, j .

2.2. Main result

Throughout the paper, we impose the following assumptions.

A1 supt∈T ki, j (t) < 1 for all i ≠ j, i, j = 1, . . . , n.
A2 supt∈T (X i (t) − εdi (t)) < ∞ a.s. for all i = 1, . . . , n and all ε ∈ (0, 1].

If a process X and a drift function d comply with assumptions A1–A2, then to shorten the
notation, we will write that (X, d) satisfies A1–A2.

For a point t ∈ T and a vector q > 0, define

MX,d,q(u, t) := inf
v≥uq


v + d(t),Σ−1

t (v + d(t))

,

MX,d,q(u; T ) :=
1
2

inf
t∈T

MX,d,q(u, t).

With these preliminaries we are ready to state our main result. The following theorem can be
seen as an n-dimensional extension of [12, Theorem 1] and [3, Theorem 2.1].
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Theorem 1. Assume that (X, d) satisfies A1–A2. Then, for any q > 0,

log P (∃t ∈ T : X(t) − d(t) > uq) ∼ −MX,d,q(u; T ) as u → ∞. (5)

Remark 1. The result stated in Theorem 1 enables us to analyze, with Ti ⊆ R,

P


n

i=1


sup
ti ∈Ti

(X i (ti ) − di (ti )) > uqi


. (6)

To see this, let T := T1 × · · · × Tn . Also define processes {Yi (t) : t ∈ T }, i = 1, . . . , n, such that
Yi (t) := X i (ti ), for i = 1, . . . , n. Analogously, let mi (t) := di (ti ), i = 1, . . . , n. Then (6) equals

P (∃t ∈ T : Y(t) − m(t) > uq) ,

which, under the proviso that A1–A2 are complied with by the newly constructed (Y, m), fits in
the framework of Theorem 1. This example naturally extends to the situation where the sets Ti
are of dimension higher than 1.

2.3. Discussion of the assumptions

In this subsection we motivate the assumptions that we imposed.

Remark 2. Assumption A1 plays a crucial role in the proof of Lemma 4. It can be geometrically
interpreted as follows. For a fixed t ∈ T , the distribution of X(t) equals that of Bt N , where
Bt is a matrix such that Σt = Bt B ′

t and N is an Rn-valued standard normal random variable.
For some quadrant Qt, we need in the proof of Lemma 4 a lower estimate of P(X(t) ∈ Qt) =

P(N ∈ B−1
t Qt). For i = 1, . . . , n let ei be, as usual, the standard basis vectors of Rn . Then the

cosine of the angle αi, j between B−1
t ei and B−1

t e j is given by

cos(αi, j ) =


B−1

t ei , B−1
t e j


‖B−1

t ei‖ ‖B−1
t e j‖

=


ei ,Σ−1

t e j


‖B−1

t ei‖ ‖B−1
t e j‖

=
∂i, j (t)

∂i,i (t)∂ j, j (t)
= ki, j (t).

We thus observe that A1 entails that, for all t ∈ T , there is no pair of vector B−1
t ei and B−1

t ei ,
with i ≠ j , that ‘essentially coincide’, i.e., the angles remain bounded away from 0. Therefore,
for any x ∈ B−1

t Qt, one can always find a set At such that x ∈ At ⊂ B−1
t Qt and At has a

diameter that is bounded, and a volume that is bounded away from zero, uniformly in t ∈ T .

Remark 3. For ε = 1, assumption A2 assures that the event
t∈T

{X(t) − d(t) > uq}

is not satisfied trivially. The following example shows that if A2 is not complied with, then it
is not ensured that we remain in the realm of exponential decay. Consider a one-dimensional
case in which X ≡ {X (t) : t ≥ 0} is a standard Brownian motion, and for any δ > 0 let
d(t) := (1+ δ)


2t log log t . From the law of the iterated logarithm we conclude that the process

X does not satisfy A2 for every ε ∈ (0, 1]. On the other hand we have (take t := u4)

P


sup
t≥0


X (t) − (1 + δ)


2t log log t


> u


≥ P


uN

1 + (1 + δ)u


2 log(4 log u)
> 1


,
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where here N is the real-valued standard normal random variable. On the logarithmic scale the
latter probability behaves roughly, for u large, as

−(1 + δ)2 log log u.

For the case of n = 1, A2 has been required in [3, Theorem 2.1] as well.

Remark 4. The drift functions di , i = 1, . . . , n, are not assumed to be increasing, but under
assumption A2 we have ℓi := inft∈T di (t) > −∞. Because we are interested in the asymptotic
behavior of the probability in (5) as u → ∞, we can assume that u > u0 := − mini (ℓi/qi ), and
therefore the coordinates of uq + d(t) stay positive for all t ∈ T . In what follows we shall always
assume that u > u0.

3. Examples

In this section we present examples that demonstrate the consequences of Theorem 1. We
focus on computing the decay rate MX,d,q(u; T ) in two cases: (i) the case of X having bounded
sample paths a.s.; (ii) the case of the X i having stationary increments, regularly varying variance
functions, and di (·) being linear. While in the former example the drift functions do not influence
the asymptotics, in the latter example the drifts do have an impact on the decay rate.

3.1. Bounded sample paths and drift function

We here analyze the case of (X, d) satisfying

B1 The process X has bounded sample paths a.s.
B2 There exists D < ∞ such that |di (t)| ≤ D for all t ∈ T and i = 1, . . . , n.

We note that under B1–B2, it trivially holds that assumption A2 is complied with as well.
Assumptions B1–B2 are satisfied when T is compact, X has continuous sample paths a.s. and d
is continuous for instance. Let us introduce the following notation:

IX,q(T ) := inf
t∈T

inf
v≥q


v,Σ−1

t v

.

The following corollary is an immediate consequence of Theorem 1.

Proposition 1. Assume that (X, d) satisfies A1 and B1–B2. Then,

log P (∃t ∈ T : X(t) − d(t) > uq) ∼ −
u2

2
IX,q(T ), as u → ∞.

The above proposition states that in the ‘bounded case’ that we are currently considering, we
encounter the same asymptotic decay as in the driftless case (d ≡ 0).

Remark 5. Some special cases of Proposition 1 have been treated before in the literature. In
particular, let X1 ≡ {X1(t1) : t1 ∈ T1} and X2 ≡ {X2(t2) : t2 ∈ T2} be two centered and bounded
R-valued Gaussian processes. We introduce the notation σi (ti ) :=

√
Var(X i (ti )), r(t) :=

Corr(X1(t1), X2(t2)) and also

cq(t) := min


q1

σ1(t1)

σ2(t2)

q2
,
σ1(t1)

q1

q2

σ2(t2)


.
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Then, upon combining Proposition 1 with Remark 1, we obtain, with T ⊆ T1 × T2,

log P (∃(t1, t2) ∈ T : X1(t1) > q1u, X2(t2) > q2u)

∼ −
u2

2
inf

(t1,t2)∈T

1

(min {σ1(t1)/q1, σ2(t2)/q2})
2


1 +

(cq(t) − r(t))2

1 − r2(t)
1{r(t)<cq(t)}


,

as u → ∞. Observe that the above formula is also valid for r(t) = ±1. This recovers the result
of Piterbarg and Stamatović [12].

3.2. Stationary increments, linear drift

This section focuses on the logarithmic asymptotics of {X(t) − i(t) : t ≥ 0}, where
X(t) = SY(t) for some invertible matrix S and, as usual, Y(t) = (Y1(t), . . . , Yn(t))′. We assume
that, for i = 1, . . . , n,

C1 {Yi (t) : t ≥ 0} are mutually independent, R-valued, centered Gaussian processes with
stationary increments.

C2 The variance functions σ 2
i (t) := Var(Yi (t)) are regularly varying at ∞ with indexes

αi ∈ (0, 2). Without loss of generality we assume that 0 < α1 ≤ · · · ≤ αn < 2. Moreover,
assume that there exists κ ∈ {1, . . . , n} such that σ 2

1 ∼ · · · ∼ cκσ 2
κ for some ci > 0 and

limt→∞ σκ(t)/σκ+1(t) = 0 (if κ = 1, then set cκ = 1; if the first condition is satisfied with
κ = n, then the second one is redundant).

C3 limt→0 σ 2
i (t)| log |t ||1+ε < ∞ for some ε > 0.

We analyze

P (∃t ≥ 0 : X(t) − i(t) ≥ uq) . (7)

Probabilities of this type play an important role in risk theory, describing the probability of
simultaneous ruin of multiple (dependent) companies; see Avram et al. [2] for related results.
The one-dimensional counterpart of (7) was considered in Dębicki [3] in the context of Gaussian
fluid models. Related examples and further references can be found in the monograph [10]. In
the following proposition we derive the logarithmic asymptotics of (7).

With ci as in C2, set

C := diag(1, c2, . . . , cκ , 0, . . . , 0)

and

J (C, S, q, α) := inf
t≥0

inf
v≥q


S−1(v + i(t)), C S−1(v + i(t))


tα

.

Proposition 2. Assume that Y satisfies C1–C3, and S is an invertible matrix. Then, for {X(t) :

t ≥ 0} := {SY(t) : t ≥ 0},

log P (∃t ≥ 0 : X(t) − i(t) ≥ uq) ∼ −
u2

2σ 2
1 (u)

J (C, S, q, α1), as u → ∞.

Proof. We start by checking that A1–A2 are satisfied for (X, i). Indeed, let us note that the matrix
Kt = K is constant. Besides, since S is invertible, then K is invertible too, which combined with
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the fact that K is positive-definite and ki,i = 1, straightforwardly implies that assumption A1 is
satisfied.

Since Y has stationary increments, then under C1–C3 limt→∞ Yi (t)/t = 0 almost surely and
therefore (using that X consists of linear combinations of the Yi , i = 1, . . . , n) assumption A2 is
complied with; see [4, Lemma 3] for details. Now following Theorem 1,

MX,i,q(u; [0, ∞)) =
1
2

inf
t≥0

inf
v≥uq


S−1(v + i(t)), R−1

t S−1(v + i(t))


=
1
2

inf
t≥0

inf
v≥q


S−1(uv + ui(t)), R−1

ut S−1(uv + ui(t))


=
u2

2
inf
t≥0

inf
v≥q


S−1(v + i(t)), R−1

ut S−1(v + i(t))

,

where the matrix R−1
t equals diag(σ−2

1 (t), . . . , σ−2
n (t)), which is the inverse of the covariance

matrix of Y. Using the regular variation of σ 2
i (·), we find that, as u → ∞,

σ 2
1 (u)R−1

ut → t−α1C, as u → ∞.

By virtue of the uniform convergence theorem we arrive at

MX,i,q(u; [0, ∞)) ∼
u2

2σ 2
1 (u)

inf
t≥0

inf
v≥q


S−1(v + i(t)), C S−1(v + i(t))


tα1

,

as u → ∞. This completes the proof. �

4. The proof of the main theorem

This section is devoted to the proof of our main result – Theorem 1. We will achieve this by
establishing an upper bound and a lower bound. We start by presenting the following ‘saddle
point equality’ that plays a crucial role in the upper bound.

Lemma 1. Let A be any positive-definite matrix. Then,

sup
w∈Rn

+

⟨w, q⟩
2

⟨w, Aw⟩
= inf

v≥q


v, A−1v


,

for any vector q ∈ Rn
+. Moreover, if v⋆ is the optimizer of the infimum problem in the right-hand

side, then w⋆
:= A−1v⋆ is an optimizer of the supremum problem in the left-hand side.

Proof. Decompose A = B B ′ for some nondegenerate matrix B. Then,

⟨w, q⟩
2

⟨w, Aw⟩
=

⟨w, q⟩
2

‖B ′w‖2 and

v, A−1v


= ‖B−1v‖2.

Now, for w ∈ Rn
+, the Cauchy–Schwarz inequality yields

⟨w, q⟩ = inf
v≥q

⟨w, v⟩ = inf
v≥q


B ′w, B−1v


≤ ‖B ′w‖ inf

v≥q
‖B−1v‖.

Dividing both sides by ‖B ′w‖ > 0 and optimizing the left-hand side of the previous display, we
arrive at

sup
w∈Rn

+

⟨w, q⟩
2

⟨w, Aw⟩
≤ inf

v≥q


v, A−1v


.
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To show the opposite inequality, assume that v⋆ is such that

inf
v≥q


v, A−1v


=


v⋆, A−1v⋆


.

The Lagrangian function of the above problem is given by L(v, λ) :=

v, A−1v


− ⟨λ, v − q⟩ for

λ ≥ 0, and due to complementary-slackness considerations we necessarily have that A−1v⋆
≥ 0,

and if (A−1v⋆)i > 0, then v⋆
i = qi . Thus take w⋆

= A−1v⋆
∈ Rn

+, so that

⟨w⋆, q⟩
2

⟨w⋆, Aw⋆⟩
=


A−1v⋆, q

2
A−1v⋆, v⋆

 =


v⋆, A−1v⋆


.

Indeed, the last equality is equivalent to
A−1v⋆, q − v⋆


= 0,

but recall that if (A−1v⋆)i ≠ 0, then (q − v⋆)i = 0. Hence finally,

sup
w∈Rn

+

⟨w, q⟩
2

⟨w, Aw⟩
≥ inf

v≥q


v, A−1v


,

which proves the opposite inequality. This finishes the proof. �

The main idea behind the proof of the upper bound of Theorem 1 is that the Rn-valued process
X(t) − d(t) can be effectively replaced by a suitably chosen R-valued Gaussian process. The
asymptotics of the latter process can then be handled using the familiar techniques for real-valued
Gaussian processes.

For any vector w ∈ Rn
+ define

Zu,w(t) :=
⟨w, X(t)⟩

⟨w, uq + d(t)⟩
,

and observe that (with u > u0; cf. Remark 4)

P (∃t ∈ T : X(t) − d(t) > uq) ≤ P


sup
t∈T

Zu,w(t) > 1


.

The vector w in the process Zu,w can be seen as a vector of weights assigned to the coordinates
of X. For fixed u and w the process Zu,w is a centered Gaussian process. We shall show that it
also has almost surely bounded sample paths.

Lemma 2. Under A1–A2, the process Zu,w is a centered Gaussian process with bounded sample
paths almost surely, for each w ∈ Rn

+ and u > u0. Moreover,

sup
t∈T

Zu,w(t)
P
→ 0 as u → ∞.

Proof. Without loss of generality we can assume that ‖w‖ = 1. For any L ≥ 1, recalling the
definition of ℓ from Remark 4,

P


sup
t∈T

Zu,w(t) > L


= P (∃t ∈ T : ⟨w, X(t)⟩ > ⟨w, Luq + Lℓ + L(d(t) − ℓ)⟩)

≤ P (∃t ∈ T : ⟨w, X(t)⟩ > ⟨w, L(uq + ℓ) + (d(t) − ℓ)⟩)
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≤ P (∃t ∈ T : ⟨w, X(t) − d(t)⟩ > ⟨w, L(uq + ℓ) − ℓ⟩)

≤ P


n−

i=1

wi sup
t∈T

(X i (t) − di (t)) > L ⟨w, uq + ℓ⟩ − ⟨w, ℓ⟩



≤ P


n−

i=1

sup
t∈T

(X i (t) − di (t))+ > L min
i

(uqi + ℓi )/
√

n − ‖ℓ‖


,

where the last probability tends to zero with L → ∞ due to A2. This proves that Zu,w has
bounded sample paths almost surely.

The last probability also tends to zero with L ≥ 1 fixed and u → ∞. On the other hand, for
any L < 1 we have

P


sup
t∈T

Zu,w(t) > L


= P (∃t ∈ T : ⟨w, X(t) − Ld(t)⟩ > L ⟨w, uq⟩)

≤ P


n−

i=1

sup
t∈T

(X i (t) − Ldi (t))+ > uL min
i

qi/
√

n


,

where the last probability tends to zero with u → ∞ by virtue of A2. We therefore have that
supt∈T Zu,w(t) converges to 0 in probability. �

The above considerations remain true even if w depends on u and t. This observation allows
us to optimize the variance of the process Zu,w, while retaining its sample path properties. Notice
that

Var(Zu,w(t)) =
⟨w,Σtw⟩

⟨w, uq + d(t)⟩2 .

Therefore, take w⋆
≡ w⋆(u, t) such that

⟨w⋆,Σtw⋆⟩

⟨w⋆, uq + d(t)⟩2 = inf
w∈Rn

+

⟨w,Σtw⟩

⟨w, uq + d(t)⟩2 (8)

and denote by Yu(t) the process Zu,w⋆(t) with the weights w = w⋆ chosen as above. Let σ 2
u (t) be

the variance function of the process Yu(t). Then, by Lemma 1,

σ−2
u (t) = MX,d,q(u, t). (9)

To estimate the tail of the supremum of the process Yu(t) we intend to use Borell’s
inequality [1, Theorem 2.1]. To apply this result, we need to verify that the expectation of
supt∈T Yu(t) vanishes as u → ∞. This is done in the next lemma.

Lemma 3. Under A1–A2, with u0 as in Remark 4,
1. MX,d,q(u; T ) > 0 for each u > u0;
2. limu→∞ MX,d,q(u; T ) = ∞;
3. limu→∞ E supt∈T Yu(t) = 0.

Proof. From Lemma 2 we know that for a fixed u the process Yu has bounded sample paths
almost surely. This implies that supt∈T σ 2

u (t) < ∞. But

sup
t∈T

σ 2
u (t) = sup

t∈T
(MX,d,q(u, t))−1

=
1
2
(MX,d,q(u; T ))−1

and claim (1) follows.
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The proof of (2) is a consequence of the fact that under A2

P


sup
t∈T

Yu(t) > 1


→ 0 as u → ∞,

and for N being a standard normal random variable

P


sup
t∈T

Yu(t) > 1


≥ sup
t∈T

P (Yu(t) > 1) = P


N > inf
t∈T


MX,d,q(u, t)


.

To prove the last claim, observe that the almost sure boundedness of sample paths of Yu(t)
implies that E supt∈T Yu(t) < ∞ and it easily follows that the family (supt∈T Yu(t))u is uniformly
integrable. Now claim 3 follows from the second part of Lemma 2. �

Before we proceed to the proof of Theorem 1 we state a technical lemma, which is a
prerequisite for the proof of the lower bound.

Lemma 4. Under A1, there exist constants C1 < ∞, C2 > 0 such that for any t ∈ T

log P (X(t) − d(t) > uq) ≥ −
1
2

MX,d,q(u, t) − C1 M1/2
X,d,q(u, t) + C2.

Proof. Set

Qt := {x ∈ Rn
: x > uq + d(t)},

and let Bt be such that Bt B ′
t = Σt. Then X (t) d

= BtN , where N is an Rn-valued standard
normal random variable with the density function

f (x) = Dn exp


−
1
2

⟨x, x⟩


,

for some normalizing constant Dn . In this notation, we have

P (X(t) − d(t) > uq) = P (X(t) ∈ Qt) = P

N ∈ B−1

t Qt


.

Now let x⋆
= x⋆(u, t) ∈ B−1

t Qt be such that

MX,d,q(u, t) = inf
x∈Qt


x,Σ−1

t x

= inf

x∈B−1
t Qt

⟨x, x⟩ =

x⋆, x⋆


,

and let At := B(x⋆, 1) ∩ B−1
t Qt, where B(x⋆, 1) is a ball in Rn of radius 1 and center x⋆. Then,

P

N ∈ B−1

t Qt


≥

∫
At

f (x)dx.

Set ∆(x, x⋆) := ⟨x, x⟩ − ⟨x⋆, x⋆⟩. Then

P

N ∈ B−1

t Qt


≥ DnVol(At) exp


−

1
2

MX,d,q(u, t) −
1
2

sup
x∈At

∆(x, x⋆)


.

Since

∆(x, x⋆) ≤ 2‖x − x⋆
‖

x⋆, x⋆

1/2
+ ‖x − x⋆

‖
2,
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we have that

sup
x∈At

∆(x, x⋆) ≤ 2diam(At)M1/2
X,d,q(u, t) + diam2(At).

Therefore the claim follows if diam(At) and Vol(At) can be bounded uniformly in t ∈ T from
above and below, respectively.

Observe that, by the construction of At, diam(At) ≤ 1. Besides, the quadrant Qt is spanned
by the standard basis (ei ) in Rn fixed in the point uq + d(t). The cosine of the angle αi, j

between B−1
t ei and B−1

t e j is given by cos(αi, j ) = ki, j ; see Remark 2. Under A1 this angle
is bounded away from zero, uniformly in t ∈ T . Therefore inft∈T Vol(At) > 0. This completes
the proof. �

Now we are ready to prove the main theorem.

Proof of Theorem 1. Put P(u) := P (∃t ∈ T : X(t) − d(t) > uq). We split the proof into two
parts: the lower and the upper bound.

Lower bound: The lower bound follows directly from Lemma 4 and the inequality

log P(u) ≥ sup
t∈T

log P (X(t) − d(t) > uq) .

Upper bound: Let w⋆
: R+ × T → Rn

+ be the mapping chosen in (8). Now as in the definition of
the process Yu ,

P(u) ≤ P

∃t ∈ T :


w⋆, X(t)


>

w⋆, uq + d(t)


= P


sup
t∈T

⟨w⋆, X(t)⟩
⟨w⋆, uq + d(t)⟩

> 1


= P


sup
t∈T

Yu(t) > 1


,

where the passage from the n-dimensional quadrant to the tangent increases the probability.
Recall that the variance σ 2

u (t) of Yu(t) equals (MX,d,q(u, t))−1; cf. (9). Moreover, thanks to
Lemma 3, the Gaussian process Yu has bounded sample paths almost surely. Therefore, Borell’s
inequality implies that

P


sup
t∈T

Yu(t) > 1


≤ 2 exp


−


1 − E sup

t∈T
Yu(t)

2

MX,d,q(u; T )


.

Now from (2) and (3) of Lemma 3 we obtain

lim sup
u→∞

log P


sup
t∈T

Yu(t) > 1


MX,d,q(u; T )
≤ −1

and the claim follows. �

Remark 6. From the proof of the upper bound we obtain the useful inequality

P

∃t ∈ T : w⋆ X (t) > w⋆(uq + d(t))


≤ P


∃t ∈ T :


w⋆, X(t)


>

w⋆, uq + d(t)


,

which we have proven to be exact in terms of logarithmic asymptotics. Let v⋆
≡ v⋆(u, t) be such

that 
v⋆

+ d(t),Σ−1
t (v⋆

+ d(t))

= inf

v≥uq


v + d(t),Σ−1

t (v + d(t))

.
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Then the optimal weights w⋆ are given by w⋆(u, t) = Σ−1
t v⋆(u, t), or alternatively, due to

Lemma 1, by

w⋆(u, t) = arg sup
w∈Rn

+

⟨w, uq + d(t)⟩2

⟨w,Σtw⟩
.

Observe that the weights do not depend on u in the case of d ≡ 0.
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