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Price competition on graphs

Adriaan R. Soetevent∗

University of Amsterdam (ASE) and Tinbergen Institute

December 13, 2010

Abstract

This paper extends Hotelling’s model of price competition with quadratic
transportation costs from a line to graphs. I propose an algorithm to cal-
culate firm-level demand for any given graph, conditional on prices and firm
locations. One feature of graph models of price competition is that spatial dis-
continuities in firm-level demand may occur. I show that the existence result
of D’Aspremont et al. (1979) does not extend to simple star graphs. I conjec-
ture that this non-existence result holds more generally for all graph models
with two or more firms that cannot be reduced to a line or circle.

JEL classification: D43, L10, R12
Keywords: spatial competition, Hotelling, graphs.

1 Introduction

Firms face two opposing incentives in their decision where to locate relative to com-

petitors. A location as close as possible to one’s competitors maximizes the oppor-

∗Universiteit van Amsterdam, Amsterdam School of Economics/AE/IO, Roetersstraat 11, 1018
WB Amsterdam, The Netherlands, Ph: +31 - (0) 20 - 525 73 51; a.r.soetevent@uva.nl. Support
by the Netherlands Organization for Scientific Research under grant 457-07-010 is gratefully ac-
knowledged. The study benefited from comments by Pim Heijnen, Jeroen Hinloopen and Stephen
Martin.
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tunities to capture one’s competitors’ consumers. On the other hand, little spa-

tial or product differentiation increases price competition among firms. Ever since

Hotelling’s (1929) linear model of spatial (product) differentiation the debate on

which of these is the dominant force has been ongoing. In an important contribu-

tion, D’Aspremont et al. (1979) show the invalidity of Hotelling’s original claim that

with transportation cost linear with respect to distance, firms tend to minimally

differentiate. They demonstrate that, in a model with transportation cost quadratic

in distance, a price equilibrium solution exists for any pair of locations and firms

maximally differentiate. Irmen and Thisse (1998) conclude that, despite differences

in modeling assumptions, the outcome of most theoretical models is that firms seek

to differentiate in order to avoid price competition. They however show that when

the analysis is extended from one-dimensional to multi-dimensional characteristics

space while upholding the quadratic transportation costs, firms only maximally dif-

ferentiate in a single dimension and thus Hotelling was “almost right”.

The main contribution of this paper is to generalize Hotelling’s (1929) line model

of spatial (product) differentiation to graphs with consumers uniformly distributed

along the graph’s edges. The prime motivation for this extension is that in reality,

firms cannot locate just anywhere on a plane but are constrained by zoning, geog-

raphy and roads. As a result, observations of clustering by firms in physical space

are not the exclusive result from firm conduct but may well reflect the structure of

the product space.1 Recent empirical studies acknowledge this and use techniques

from spatial statistics to develop measures of spatial clustering that correct for this

(Picone et al., 2009).2 To the best of my knowledge, no theoretical models exist that

evaluate which location profit-maximizing firms would choose on a graph and what

price they would charge, conditional on their own location and those of competitors.

1Using a similar motivation, Eaton and Tweedle (2010) provide an alternative modification of
Hotelling’s model.

2The graphs presented are best interpreted as models of differentiation in physical space although
interpretations as a model of differentiation in product space may be possible.

2



Throughout this paper, firm’s location will be taken exogenous. That is, when we

consider the two-stage game with firms competing in prices in the second stage after

they have chosen their location in the first stage (anticipating the price competition

in the second stage), this paper focuses on the second stage taking the outcomes of

the first stage as given.

I develop a general notation to analyze this type of problem (Section 2). It is

unavoidable that the notation is somewhat unwieldy because of the circumstance

that one has to keep track of the shortest path of each consumer to each of the firms.

Therefore, I provide simple examples to illustrate every concept that is introduced.

Next, I present a formal algorithm that calculates firm-specific demand as a function

of the firm prices and their position in the graph in a market context with two

competing firms (Section 3). Implementation of this algorithm into software code

allows one to numerically evaluate for any given graph and firm position a firm’s

best-response to the price charged by the other firm.3

Importantly, a number of standard results do not carry over from the unit in-

terval to graph models of price competition. First, when transportation costs are

quadratic (as I will assume throughout), spatial discontinuities in firm-level demand

may occur. That is, consumer’s with a preference for firm i’s product are surrounded

by consumers with a preference for its competitor’s product. Second, in contrast to

D’Aspremont et al. (1979), the assumption of quadratic transportation cost is no

longer a sufficient condition for the existence of a Nash equilibrium in pure strategies.

In Section 4, two theorems are derived on the existence of pure- and mixed-

strategy price equilibria. The first theorem says that for arguably the simplest ex-

tension of the line model, the K1,3 graph, or “Hotelling line with a junction”, there

always exist firm location configurations for which the price competition game does

3The Matlab code together with documentation is available at the project’s web site,
www.tinyurl.com/pcgraphs. The main program PCGraphs.m calculates for any given graph and
firm locations in a number of iterations the best price-response of one firm given the price charged
by its competitor.
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not possess a pure-strategy Nash equilibrium. This non-existence result is the main

reason for not endogeneizing firm locations.4 This result leads to the conjecture that

every graph with at least one node with degree 3 has areas for which no equilibrium

price solution exists. The second theorem states that every two-firm graph model

of price competition has a mixed-strategy equilibrium for any configuration of firm

locations. The latter theorem extends Dasgupta and Maskin (1986b, Theorem 3)

who proved this for the line model.

The paper is related to studies on pricing on networks that have appeared, like

Bloch and Querou (2009). These studies however follow the modeling methodology

common in social network analysis with firms and consumers located at nodes. In

particular, the edges are “void” in the sense that they are not inhabited by a den-

sity of consumers but only serve the purpose of connecting two nodes. The graphs

presented in this paper are fundamentally different in the sense that, in the spirit

of Hotelling’s line model, Salop’s (1979) circular model and Von Ungern-Sternberg’s

(1991) pyramid model, consumers are assumed uniformly distributed along the nodes

and edges of the graph.5 As a consequence, a considerable amount of new notation

needs to be introduced.

A number of papers (Mills and Lav, 1964; Eaton and Lipsey, 1976; Greenhut,

Hwang and Ohta, 1976; Holahan and Schuler, 1981) have studied location choice

and price competition on two-dimensional spatial markets with constant transport

cost per unit distance and free entry. The starting point of this literature is the

well-known result first asserted by Lösch (1954) and formally proven by Bollobás

and Stern (1972) that, conditional on every consumer in the plane being served and

constant transport cost per unit distance, from a social planner’s point of view a

4Apart from this, implementing the first-stage is likely to prove difficult computationally: in
each step, given the position of the competitors, one needs to evaluate the profits associated with
infinite number of possible locations for firm i.

5Commuting behavior of consumers is not considered, see Claycombe and Mahan (1991); Raith
(1996) for theoretical contributions and Houde (2009) for a state-of-the-art empirical study.
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division of market demand into hexagons is optimal. Subsequent contributions have

questioned whether the hexagonal configuration is the unique equilibrium when the

number of firms is given and the extent to which this configuration results under

free entry.6 These studies have in common that consumers are assumed uniformly

distributed over a plane. The current paper is mainly concerned with studying the

generic properties of spatial models of product competition with consumers uniformly

distributed along the edges of a given graph. I do not study which firm configurations

result under entry for any particular (class of) graphs.

I limit attention to the situation with two firms and quadratic transportation cost

but the analytical approach can be extended in a straightforward manner to cover

situations with non-quadratic cost and multi-firm competition. In fact, as in the

pyramid model in Von Ungern-Sternberg (1991), graphs/network structures easily

allow for multi-firm competition. The difference with the model by Von Ungern-

Sternberg is that no analytical solutions are available for less stylized graphs. The

assumption of quadratic transportation cost, where disutility rises more than pro-

portional with distance is often thought to be more appropriate in models where

“distance” is not interpreted as a physical distance but proxies for the difference

between the characteristics of the product bought and the most preferred variety.

Within the current model, non-linear transportation costs may however proxy the

increased search cost: the greater the distance between the consumer and the firm,

the more crossroads the consumers has to take the right turn to reach the firm.

2 Model and notation

Consider a static noncooperative two-stage game with n single-store firms located

on a graph. Consumers are uniformly distributed along the graph. In the first stage,

6Eaton and Lipsey (1976) demonstrate that without entry and/or exit, next to the hexagonal
configuration, equilibrium configurations of squares and rectangles can occur but that the rectan-
gular lattice seems most robust to entry.
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firms choose a location on the graph, in the second stage each firms chooses price

given location.

Let V denote the set of vertices (or nodes) and E the set of edges. G = (V,E) is a

connected graph and points in G are denoted by ω ∈ G, Points ω are two-dimensional

vectors. The set of all points is denoted as Ω = {ω : ω ∈ G}. Let d : Ω × Ω → <+

represent a real valued weight function representing the distance between two points

ω and ω′ in G. Individual edges are denoted as eu,v = (u, v) with u ∈ V , v ∈ V with

u and v the endvertices of the edge. Since the graph is undirected, the edges are

unordered: eu,v = ev,u; in the remainder we take u < v. An edge represents the set

of all points ω ∈ G between u and v, that is,

eu,v = {ω ∈ G : ω = λu+ (1− λ)v; for λ ∈ [0, 1]}.

In this formula, we use the two-dimensional vector representation of u and v. The

function d(eu,v) gives the length of edge eu,v. A path P0,k is a sequence v0e0,1v1 . . . ek−1,kvk

with no repeated vertex.

Firms and consumers can locate not only at vertices but also at any point of

an edge. This is a notable difference with other graph-theoretic applications in

economics which necessitates considerable extra notation. Firm i is denoted as fi,

i = 1, 2. If fi is located at point ω ∈ eu,v, we refer to eu,v as the home edge of fi and

denote it as efi .If two firms are located at the same edge, efi = efj .

Distances Determine the distance dv,fi of each vertex v ∈ V to each of the firms

fi and let

Cfi = {v ∈ V |dv,fi = min
j
dv,fj} for all i ∈ {1, 2, . . . , n}.

That is, Cfi is the set of vertices which are at least as close to firm i than to any of

the other firms. Note that Cfi ∩ Cfj is not necessarily empty, that is, vertices may
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belong to more than one set Cfi .
7

Shortest Paths Denote the different shortest paths (numbered m = 1, 2, . . .M)

between any two locations ω, ω′ ∈ G as P Sm

ω,ω′ . For simplicity, we do not index P S

with m when the shortest path between two points is unique, i.e. M = 1. The

shortest path P S
ω,ω′ is of the form ω(ω − v0)v0e0,1v1 . . . ek−1,kvk(vk − ω′)ω′, where

ω − v0 denotes the line segment of the home edge that connects ω with the first

vertex in P S
ω,ω′ . The difference between edges and line segments is that edges always

connect two vertices whereas line segments can connect any two points ω and ω′

conditional on ω, ω′ ∈ u ∪ eu,v ∪ v for u, v ∈ V . Line segments are thus always a

subset of a particular edge with its adjacent vertices. We write:

eω′,ω′′ = {ω ∈ G : ω = λω′ + (1− λ)ω′′; λ ∈ [0, 1]},

with eω′,ω′′ being an edge when ω′ and ω′′ are both vertices and a line segment

otherwise. Let V (P S
ω,ω′) be the set of all vertices included in P S

ω,ω′ , except possibly

ω and ω′ themselves when they happen to be a vertex. We will denote both the

shortest path between two points and the associated distance by d(P S
ω,ω′). v ∈ Cfi if

and only if P S
v,fi
≤ P S

v,fj
for all j.

2.1 Change Points

The function V 1(P S
ω,ω′ , V ) gives the vertex in the set V that is encountered first

(excluding ω itself in case ω is a vertex) when moving along the shortest path from

ω to ω′ for any ω, ω′ ∈ Ω. In particular, V 1(P S
ω,fi

, V ) gives the endpoint of the home

edge of ω that is part of P S
ω,fi

and V 1(P S
ω,fi

, V ) = ∅ if ω and fi are on the same edge.

It is important to note that for two consumers ω and ω′ both on edge e, it is possible

that V 1(P S
ω,fi

, V ) 6= V 1(P S
ω′,fi

, V ) for one or more values of i. This means that the

7If firms charge different prices, this set in general does not coincide with the set of vertices
served by a particular firm.
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shortest path from ω to fi uses one endpoint of e and the shortest path from ω′ to

fi the other. To account for this, we introduce the concept of change points.

Definition 1 A location at line segment eω,ω′ is a change point to firm i, denoted

ciω,ω′, if for the consumer located at ciω,ω′ there exist two different shortest paths P S1

ciu,v ,fi

and P S2

ciu,v ,fi
with

d(P S1

ci
ω,ω′ ,fi

) = d(P S2

ci
ω,ω′ ,fi

)

such that

V 1(P S1

ci
ω,ω′ ,fi

, V ) 6= V 1(P S2

ci
ω,ω′ ,fi

, V ). (1)

That is, for a change point, there exist two shortest paths travel to fi that differ in

the first vertex encountered (not including the change point when this is a vertex

itself) when traveling from the change point to fi. For example, in Figure 1, ω is

a change point with respect to fi because there are two shortest paths differing in

the first vertex encountered (v and v′, respectively) when moving from ω to fi. In

contrast, although there are different shortest paths from point d to fi, d is not a

change point because for all these shortest paths, the first vertex encountered when

moving from d to fi is the same, namely ω. Three lemma’s regarding the existence

of change points follow from this definition.

Lemma 1 Each firm has at most one change point ciu,v per line segment eω,ω′ \

{ω, ω′}.

Proof: All proofs are contained in the Appendix.

The lemma explicitly limits attention to the interior of line segments; line segments

equal to an edge plus their endpoints (i.e. eω,ω′ = u ∪ eu,v ∪ v for some adjacent

vertices u and v) may inhabit multiple change points with respect to a particular

firm, one in its interior and potentially one at each of the vertices u and v. Figure 2
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Figure 1: In graph G = (V,E), ω is a change point with respect to fi whereas point
d is not.

gives an example. Line segment eω,ω′ has two change points with respect to firm

i: From the interior change point ciω,ω′ , there are two shortest paths to firm i (each

with distance 13), one over vertex ω and the other over vertex ω′. The second change

point is ciω at vertex ω; at this vertex that there two different shortest paths to fi

each with distance 9, one over vertex ω∗ and the other over vertex ω
′′
. Lemma 1

provides an upper bound for the number of change points one has to search for. In a

graph with n firms and m edges, the number of change points will never exceed nm.

Lemma 2 If line segment eω,ω′ contains a change point ciω,ω′ with respect to fi, then

fi 6∈ eω,ω′.

Lemma 2 implies that there is always at least one vertex between a change point of

a firm and the firm itself, which ensures that the function V 1(·) in equation (1) is

always defined for change points.8

8The fact that the edge at which a firm located will never contain a change point with respect
to that firm further limits the potential number of change points to n(m− 1).
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Figure 2: Example graph with multiple change points at line segment eω,ω′ .

Lemma 3 Presence of Change Points

A line segment eω,ω′ has a change point with respect to firm i

a. in its interior if and only if

fi 6∈ eω,ω′ ∧ |d(P S
ω,fi

)− d(P S
ω′,fi

)| < d(eω,ω′), and

b. at one of its endpoints, say ω, if and only if there exist vertices v and v′ such

that

d(P S
ω,fi

)− d(P S
v,fi

) = d(eω,v) ∧ d(P S
ω,fi

)− d(P S
v′,fi

) = d(eω,v′) ∧

|d(P S
v,fi

)− d(P S
v′,fi

)| = |d(eω,v)− d(eω,v′)|.

The first part of Lemma 3 simply states that there is a change point with respect to

firm i at the interior of a line segment eω,ω′ if and only if the difference in shortest

path distance to firm i at the endpoints ω and ω′ is less than the length of eω,ω′ . The

second part states that an endpoint ω of a line segment is a change point if and only

if two vertices (other than ω if ω is a vertex itself) can be found such that for each of

these vertices, the shortest distance from the vertex to firm i plus the distance from

10



the vertex to ω equals the shortest path distance from ω to the firm and, moreover,

the absolute difference in the distance from the vertices to ω must equal the absolute

difference in shortest path distance from the vertices to fi.

Figure 3: Illustration of Lemma 3.

Figure 3 provides an illustration. The line segment ev,v′ contains a change point

in its interior because for ω = v and ω′ = v′ the conditions under a) are satisfied.

This change point is located at u and any line segment on ev,v′ with u as one of

its endpoints, e.g. eu,u′ in Figure 3, satisfies conditions b). It is also instructive

to see that ω̃ cannot be a change point for two reasons. First, according to part

a) of Lemma 3, the edge ev,v∗ cannot have a change point on its interior. Second,

for the point ω̃ and vertices v and v′, the third condition in part b) of Lemma 3

is not satisfied (but the first two are). Lemma 3 is particularly useful because, for

ω and ω′ vertices of graph G, it gives the necessary and sufficient conditions for

the presence of change points in terms of edge lengths and shortest path distances

between individual vertices and firms.

For line segments eω,ω′ with a change point ci with respect to firm i, the distance to

firm i is by definition increasing when moving towards ci and decreasing when moving
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away from ci. For line segments eω,ω′ without change point ci ∈ eω,ω′ \ {ω, ω′}, it is

also useful to know whether the distance to firm i is increasing or decreasing when

moving from ω to ω′. To this end, we write

diω,ω′ = +1 if d(ω̂, fi)− d(ω̃, fi) > 0 ∀ ω̃, ω̂ ∈ eω,ω′ s.t. d(ω, ω̃) < d(ω, ω̂), and

diω,ω′ = −1 if d(ω̂, fi)− d(ω̃, fi) < 0 ∀ ω̃, ω̂ ∈ eω,ω′ s.t. d(ω, ω̃) < d(ω, ω̂).

Thus diω,ω′ = +1 (−1)if the distance to firm i is increasing (decreasing) when moving

from ω to ω′.

3 Firm-level demand

Shortest paths and change points are all based on distances and are as such exoge-

nous. The position of marginal consumers instead is dependent on the prices charged

by the firms and as a consequence endogenous to the model. Denote the utility a

consumer located at point ω derives from buying at firm i by U(ω, d(ω, fi),p) with

p an n× 1 price vector. We follow D’Aspremont, Gabszewicz and Thisse (1979) and

assume nonlinear transportation cost. That is, we consider the utility function

U(ω, d(ω, fi),p) = V − cd(ω, fi)
α − pi, with α > 1, (2)

where c denotes the importance of transportation cost and V is assumed large enough

such that all consumers ω ∈ Ω will buy in equilibrium. If a consumer buys at all,

she will purchase one unit of the good. This leads to the following general quantity

demanded for firm i as a function of prices p and conditional on firm locations:

qi(p) = {ω : ω ∈ G(V,E), U(ω, d(ω, fi), p) ≥ U(ω, d(ω, fj),p) ∀j 6= i}.

In the remaining part of this paper, we restrict attention to the case with two

firms (i, j ∈ {1, 2}). To derive demand for each individual firm, we need to identify

the position of the marginal consumers who are indifferent between buying at either
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firm for given prices. Since we consider graphs, in most cases there are multiple

marginal consumers which complicates matters compared to D’Aspremont, Gab-

szewicz and Thisse (1979). Denote with Sfi be the set of line segments served by

firm i, conditional on prices pj, j = 1, 2. Sfi ∩ Sfj is not necessarily an empty set.

Let S =
⋃
i Sfi . The derivation on firm level demand thus boils down to determining

Sfi , for all firms i.

The algorithm we introduce determines in a systematic and computationally ef-

ficient way the position of all marginal consumers at graph G and thereby firm level

demand conditional on prices and location. The algorithm divides graph G into dif-

ferent, mutually exclusive, line segments eω,ω′ \ {ω′} which do not contain a change

point except possibly at the point of origin ω. The algorithm uses the following

straightforward principle:

Proposition 4 Consider the line segment eω,ω′, suppose that ω ∈ Sfi and that there

are no change points with respect to firm i and j on eω,ω′ \ {ω, ω′}.

• If ω 6∈ Sfj , eω,ω′ \ {ω} contains at most one consumer y indifferent between

buying from firm i and buying from firm j only if

a (diω,ω′ = +1) ∧ (djω,ω′ = −1);

b (diω,ω′ = +1) ∧ (djω,ω′ = +1) ∧ (ω ∈ Cfj) ∧ (ω 6∈ Cfi);

c (diω,ω′ = −1) ∧ (djω,ω′ = −1) ∧ (ω 6∈ Cfj) ∧ (ω ∈ Cfi);

– In all other cases, eω,ω′ \ {ω} does not inhabit an indifferent consumer.

• If ω ∈ Sfj , consumers on eω,ω′ \ {ω} are indifferent between buying from either

firm if and only if

(diω,ω′ = djω,ω′) ∧ (ω ∈ Cfi) ∧ (ω ∈ Cfj).
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Otherwise,

eω,ω′\{ω} ∈ Sfi∧eω,ω′\{ω} 6∈ Sfj if


diω,ω′ = −1 ∧ djω,ω′ = +1, or

diω,ω′ = djω,ω′ = +1 ∧ ω ∈ Cfi ∧ ω 6∈ Cfj , or

diω,ω′ = djω,ω′ = −1 ∧ ω 6∈ Cfi ∧ ω ∈ Cfj .

eω,ω′\{ω} 6∈ Sfi∧eω,ω′\{ω} ∈ Sfj if


diω,ω′ = +1 ∧ djω,ω′ = −1, or

diω,ω′ = djω,ω′ = +1 ∧ ω 6∈ Cfi ∧ ω ∈ Cfj , or

diω,ω′ = djω,ω′ = −1 ∧ ω ∈ Cfi ∧ ω 6∈ Cfj .

The condition that ω ∈ Sfi and ω 6∈ Sfj implies that ω itself is not the location

of a marginal consumer. In situation (a), the transportation cost to buy from firm

i is increasing when moving from ω to ω′ whereas the transportation cost to buy

from firm j is decreasing. In situation (b), the distance to both firm i and firm j is

increasing when moving from ω to ω′ but because the point of departure ω is closer

to firm j and transportation costs are assumed quadratic, transportation cost to buy

from firm i is increasing more rapidly than transportation cost to buy from firm j.9

The opposite holds in the third situation. Here the distance to both firm i as firm j

is decreasing when moving from ω to ω′ but since the point of departure ω is closer to

firm i and transportation costs are a quadratic function of distance, transportation

cost to buy from firm j is decreasing more rapidly than transportation cost to buy

from firm i.

In all three cases (a) to (c) the implication is that there may exist a point y ∈ eω,ω′

such that consumers to the left of y (i.e. those closer to ω than consumer y) prefer

buying from firm i whereas those to the right of y will buy from firm j, eω,y ∈ Sfi
and ey,ω′ ∈ Sfj , with y the marginal consumer indifferent between buying from either

firm i or firm j:

U(y, d(y, fi),p) = U(y, d(y, fj),p).

In case there is no indifferent consumer y ∈ eω,ω′ , all consumers at the line segment

will buy from firm i, that is: eω,ω′ ∈ Sfi .
9This holds more general for any α > 1.
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The second part of the proposition states that if the point of departure ω is itself

the location of an indifferent consumer, all consumers located at line segment eω,ω′

will be indifferent too if and only if ω is at equidistance from both firms and these

shortest path distances are either both increasing or both decreasing when moving

from ω to ω′: eω,ω′ ∈ Sfi ,∈ Sfj . In all other cases, consumers on the line segment

have a strict preference for buying from one of the firms. If the distance to one of

the firms is decreasing when moving from ω to ω′ while it is increasing for the other

firm, consumers prefer to buy from the firm the distance to which is decreasing.

If the distance to both firms is decreasing (increasing) when moving from ω to ω′,

consumers prefer to buy from the firm whose distance to the source vertex is largest

(smallest).

We have the following corollary for line segments eω,ω′ with ω ∈ Sfi that contain

a change point with respect to firm j 6= i.

Corollary 5 Let line segment eω,ω′ contain a change point c with respect to fj,

ω ∈ Sefi and ω ∈ Cfi.

If ω 6∈ Sfj , eω,c ∈ Sfi.

If ω ∈ Sfj , consumers on eω,c \ {ω} are indifferent between buying from either

firm if and only if (diω,ω′ = +1) ∧ (ω ∈ Cfi) ∧ (ω ∈ Cfj).

The corollary tells us that for a line segment eω,ω′ with ω served exclusively by firm

i, all consumers located between ω and change point cj with respect to firm j will

prefer buying from firm i to buying from firm j. The second part gives conditions for

these consumers to be indifferent, given that consumers at point ω are indifferent.

We now continue with the algorithm which determines demand given firms’ locations

and prices.
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3.1 The demand algorithm for two firms

In what follows, consumers at edge or line segment eω,ω′ indifferent between buying

from either firm i or j are denoted as yi,jω,ω′ and the position of a change point at

eω,ω′ with respect to firm j is denoted as cjω,ω′ . With yfi,fj we denote the indifferent

consumer located (if anywhere) along the shortest path between firm i and j, and

with yfi (yfj) the indifferent consumer located (if anywhere) on a part of the home

edge of firm i (j) not included in the shortest path.10

Given a graph G = (V,E) and given the position of firms 1 and 2 in G, first

calculate

• The shortest path P S
v,v′ for all unordered pairs of vertices (v, v′) ∈ V ;11

• the shortest path P S
f1,f2

connecting f1 and f2;

• for all vertices v ∈ V and firms i = 1, 2 whether v ∈ Cfi ;

• for each edge eu,v ∈ E whether it inhabits any change points civ and ciu,v,

i = 1, 2.

In the first step, the location of the marginal consumer (if any) along the shortest

path between firms f1 and f2 is determined. This gives us an initial set S of locations

for which we know by which firm each point is served.12 In each subsequent step,

this set is expanded by adding to S all edges which have at least one endpoint, say

10Conceptually, it is straightforward to extend the algorithm to the more general case with n > 2
firms.

11The Floyd-Warshall algorithm (see e.g. Bertsekas, 1991, p. 82-83) calculates the shortest path
from each vertex to each other vertex. PS

v,v′ minimizes
∑

p∈P d(p) among all paths connecting v
and v′.

12Note that there can be change points at PS
f1,f2

, but these can only occur at the vertices because
by the definition of a shortest path, the distance to firm i must always increase when one moves
over PS

f1,f2
towards f2. For this reason, these change points are irrelevant in determining firm level

demand from consumers at PS
f1,f2

. An example is a graph in the form of a kite with firm 2 located
at the rope and firm 1 at the top of the kite. This graph has a change point with respect to firm 1
at the vertex where the rope is attached to the kite. Firms can have a change point on the part of
the home edge of the other firm that does not belong to the shortest path.
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ω, in S. This is repeated until S = G. Note that the algorithm does not terminate

before S = G whenever G is a connected graph. Because ω is in S, we know for this

source vertex to which firm(s) it is closest and by which firm(s) the point is served

and we can apply Proposition 4 and Corollary 5 from which firm each consumer at

eω,ω′ will buy. The demand algorithm reads as follows:

FIRM LEVEL DEMAND ALGORITHM

0. Set S0
fi

= ∅ ∀i. S0 =
⋃
i S

0
fi

.

1. Let t = 1. Consider all edges eu,v such that eu,v ∈ P S
f1,f2
∨eu,v = ef1∨eu,v = ef2 .

a. Determine whether yf1,f2 ∈ P S
f1,f2

, yf1,f2 ∈ ef1 or yf1,f2 ∈ ef2 , if any. This

determines for each consumer ω ∈ P S
f1,f2

whether ω ∈ S1
fi

or ω 6∈ S1
fi

for

all firms i.

b. For i = 1, 2:

i if efi does not inhabit a change point with respect to firm 3− i, yf1,f2

determines for each consumer ω ∈ efi whether ω ∈ S1
fj

or ω 6∈ S1
fj

for

all firms j.

ii if efi inhabits a change point with respect to firm 3 − i, subdivide

the edge in the line segments efi,c1fi
, and ec1fi ,v

, with v the vertex of

efi that does not belong to P S
f1,f2

. Determine for each of these line

segments eu,v the location of an indifferent consumer yi,ju,v (if any) using

Proposition 4. This determines for each consumer ω ∈ eu,v whether

ω ∈ S1
fi

or ω 6∈ S1
fi

for all firms i.

c. S1 = S0 ∪
(⋃

i S
1
fi

)
.

2. Set t = t+ 1. Consider all edges eu,v with eu,v \ {u, v} 6∈ St−1 and u ∈ St−1.
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a. If eu,v does not contain a change point, determine the location of yi,ju,v (if

any) using Proposition 4. This determines for each consumer ω ∈ eu,v

whether ω ∈ Stfi or ω 6∈ Stfi for all firms i.

b. If eu,v inhabits k ≥ 1 change points, subdivide the edge in the line seg-

ments e
u,c

i1
u,v
, e
c
i1
u,v ,c

i2
u,v
, . . . , e

c
ik−1
u,v ,c

ik
u,v
, e
c
ik
u,v ,v

and perform step 2a for each line

segment separately by considering first e
u,c

i1
u,v

, then e
c
i1
u,v ,c

i2
u,v

and so on until

e
c
ik
u,v ,v

.

c. St = St−1 ∪
(⋃

i S
t
fi

)
.

3. Repeat step 2 until S = G.

3.2 Example

Consider the simple graphG = (V,E) depicted in Figure 4 with the locations of firm 1

and 2 denoted by f1 and f2. Consumers are uniformly distributed along the edges and

vertices of the graph and face quadratic transportation cost. In this graph, e1,2 is the

home edge of firm 1 and e3,4 is the home edge of firm 2. P S
f1,f2

= (f1−v2)e2,3v3(v3−f2);

V (P S
f1,f2

) = {v2, v3}; Cf1 = {1, 2, 6, 8, 9} and Cf2 = {3, 4, 5, 7, 10}. For the moment,

suppose that firm 1 charges a price p1 = 20 and firm 2 a price p2 = 10.

For the consumer located at point x, P S
x,f1

= x−v2v2−f1 and P S
x,f2

= x−v5v3v3−

f2, thus V 1(P S
x,f1

) = {2} and V 1(P S
x,f2

) = {5}

The change points for firm 1 and firm 2 are depicted in Figure 5. Firm 1 has four

change points: c12,6 at edge e2,6; c
1
3,5 at edge e3,5, c

1
7,10 at edge e7,10 and c17 at vertex 7.

For example, at point c17, the distance to firm 1 via vertex 4 and 5 are equal. Firm

2 also has four change points: c21,6, c
2
2,5, c

2
5,7 and c27,10.

Step 1 First we determine from which firm the consumers along P S
f1,f2

buy. This

situation is akin to the problem analyzed by D’Aspremont et al. (1979): if the

marginal consumer yf1f2 is located at P S
f1,f2

, consumers on the path P [f1, y
f1
f2

) prefer
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Figure 4: Example graph G = (V,E) with uniformly distributed consumers and two
firms f1 and f2. Edge lengths in italics.

Figure 5: Change points and shortest path between f1 and f2 in graph G = (V,E).

buying from firm 1 and those on the path P (yf1f2 , f2] prefer buying from firm 2; if

yf1f2 6∈ P S
f1,f2

and d
y
f1
f2
,f1

< (>)d
y
f1
f2
,f2

, all consumers will buy from firm 2 (firm 1).

Figure 6 shows the position of the marginal consumer yf1f2 in the example graph

along the shortest path between the two firms, given that p1 = p2. When firms

charge the same price, the marginal consumer is naturally located midway between

firm 1 and 2. We have:

• e1,2, e2,3, e3,y1,2 ∈ S1
f1

and ey1,23,4 ,4
∈ S1

f2
and S1 = S0 ∪

(⋃
i S

1
fi

)
.

19



Figure 6: Illustration of the subsequent steps of the demand algorithm, conditional
on p1 = p2. Consumers located at the dashed lines buy from firm 2, consumers at
the dotted lines buy from firm 1.

Step 2 – Iteration 1 There are seven edges with one of their endpoints in S1: e1,8,

e1,6, e2,6, e2,5, e3,5, e4,7 and e4,10. First consider the edge e1,8 with vertex 1 as one of

its endpoints. This edge does not have change points and vertex v1 ∈ Sf1 , v1 6∈ Sf2 .

Because (d1v1,v8 = +1) ∧ (d2v1,v8 = +1) and v1 ∈ Cf1 ∧ v1 6∈ Cf2 , Proposition 4 states

that edge e1,8 does not contain an indifferent consumer. For this reason, e1,8 ∈ S2
f1

.

Next consider edge e1,6 which contains a change point c21,6 with respect to firm 2.

The edge is therefore split in the line segments v1−c21,6 and c21,6−v6. For the first line

segment, (d1
v1,c11,6

= +1)∧(d2
v1,c21,6

= +1) and demand on this segment thus falls to firm

1 according to Proposition 4. For the second segment, (d1
c11,6,v2

= +1)∧(d2
c21,6,v2

= −1)

and this segment thus may contain a consumer indifferent between buying from either

firm 1 or 2. It however turns out that there is not, such that c21,6 − v6 ∈ S2
f1

. Next
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consider edge e2,6. Vertex 2 ∈ Sf1 and 6∈ Sf2 . Edge e2,6 contains a change point c12,6

with respect to firm 1 and we subdivide the edge into the line segments v2− c12,6 and

c12,6−v6. Both v2 and c12,6 ∈ Cf1 and 6∈ Cf2 . Since (d1
v2,c12,6

= +1)∧ (d2
v2,c22,6

= +1) and

(d1
c12,6
, v6 = −1)∧ (d2

c22,6,v6
= +1), Proposition 4 says that neither segment contains an

indifferent consumer, such that e2,6 ∈ S1
f1

. Results for the remaining four edges are

summarized below:

e2,5 v2 ∈ Sf1 ,∈ Cf1 and 6∈ Sf2 , 6∈ Cf2 . One change point c22,5; subdivision into

line segments v2 − c22,5 and c22,5 − v5. (d5
v2,c22,5

= +1) ∧ (d2
v2,c22,5

= +1), no

indifferent consumer at v2 − c22,5. (d1
c22,5,v6

= +1) ∧ (d2
c22,5,v6

= −1). There is

a potential indifferent consumer at c22,5 − v6 according to Proposition 4(a).

Calculation shows that this consumer yv6
c22,5

indeed exists. Thus v2 − yv6c22,5 ∈ S
2
f1

and yv6
c22,5
− v6 ∈ S2

f1

e3,5 v3 ∈ Sf2 ,∈ Cf2 and 6∈ Sf1 , 6∈ Cf1 . One change point c13,5; subdivision into line

segments v3 − c13,5 and c13,5 − v5. (d5
v3,c13,5

= +1) ∧ (d2
v3,c13,5

= +1), no indifferent

consumer at v3 − c13,5. (d1
c13,5,v5

= −1) ∧ (d2
c13,5,v5

= +1). There is a potential

indifferent consumer at c22,5 − v6 according to Proposition 4(a). Calculation

shows that this consumer does not exist. Thus e3,5 ∈ S2
f2

.

e4,7 By similar reasoning as for e1,8, no indifferent consumers along this edge and

e4,7 ∈ S2
f2

.

e4,10 Idem.

See the upper right panel of Figure 6 for an illustration.

Step 2 – Iteration 2 The remaining edges e6,9, e5,7 and e7,10 are added in the

next iteration (t = 3) of step 2. It turns out that for the posted prices, none of them

contains an indifferent consumer. The bottom left panel of Figure 6 shows firm level

demand for both firms in this case.
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3.3 Spatial discontinuities in firm level demand

In situations where firms charge the same price and the entire market is covered, each

consumer buys at the firm to which she is closest and an individual firm’s customers

are simply the agents who are closer to this firm than to any other firm. As Figure 6

shows, a firm’s customers base is a connected group of agents. It is instructive to

notice that when firms charge different prices, this no longer has to hold and the

spatial distribution of firm level demand may be less intuitive. Figure 7 shows the

case where p1 = 50 and p2 = 10. Compared to Figure 6, firm 1 now charges a higher

price and receives less demand as a result. Remarkably however, some consumers at

edge e2,5 prefer buying from firm 1, while being surrounded by consumers who have

a preference for firm 2’s product. The example thus gives the following result:

Result 6 The two-firm graph model of price competition may lead to spatial discon-

tinuities in firm level demand when transportation cost are quadratic.

The intuition behind this result is that although firm 2 is cheaper, these consumers

are closer to firm 1. Since distance enters quadratically in the utility function for

these consumers the difference in distance outweighs the price difference. For the

other agents on e2,5, the price difference outweighs the difference in distance. The

possibility of observing spatial discontinuities in an individual firm’s demand distin-

guishes price competition on graphs from the common line and circular models like

D’Aspremont et al. (1979) and Salop (1979).

4 Equilibrium existence

4.1 Pure strategy price equilibria

This section will illuminate the conditions that need to hold for a graph with given

firm locations to have a unique pure Nash-equilibrium in prices. I show by example
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Figure 7: Illustration of spatial discontinuities in firm-level demand, p1 = 50; p2 = 10.
Consumers located at the dashed lines buy from firm 2, consumers at the dotted lines
buy from firm 1.

that even with quadratic transportation cost, there is no clear-cut relation between

equilibrium existence and graph characteristics such as the number of nodes or the

degree of individual nodes. This motivates me to introduce the concept of demand

plateau which allows me to extend the idea of “hinterlands” to graphs. It turns out

that equilibrium existence is closely related to the presence of unshielded hinterlands.

It is instructive to return to D’Aspremont et al. (1979) and to discuss the intuition

behind their result that the version of the price competition model with quadratic

transportation costs has a unique equilibrium in pure strategies whereas the model

with linear transportation costs as proposed by Hoteling (1929) has not. To this end,

I introduce a distinction between shielded and unshielded hinterlands.

Definition 2 Shielded Hinterland

The shielded hinterland of firm i is the set of consumers whose shortest path to any

firm j 6= i leads through the location of firm i.

This definition of shielded hinterland is what in most textbooks (e.g. Martin,

2002) is defined (implicitly) as the hinterland for firm i. In the classic Hotelling line,
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depicted in Figure 8 (neglect node D for the moment), firm 1’s hinterland are the

set of consumers located between endpoint A and firm 1, and firm 2’s hinterland are

the consumers between firm 2 and endpoint B. Firm i can increase its hinterland

by moving closer to its competitor but in doing so, the less this opponent has to

decrease price to capture (part of) the hinterland of firm i. However, with quadratic

transportation cost, the hinterland captured for a given price decrease is less than

with linear transportation cost.

Figure 8: The complete bipartite K1,2 graph: The Hotelling line.

Figure 9: The complete bipartite K1,3 graph: The Hotelling line with a junction.

In graph-theoretic terms, the Hotelling line as drawn in Figure 8 is a complete

bipartite K1,2 graph, that is, a tree with one internal node and 2 leaves (edges).13

13A graph G is bipartite if its vertices can be divided into two classes H1 and H2 such that
H1 ∩ H2 = ∅ and H1 ∪ H2 = V (G) and every edge joins a vertex of H1 to a vertex of H2. A
bipartite graph G is called a complete bipartite graph is the graph contains all possible edges
joining edges in the two distinct classes. Star graphs with k+1 nodes are complete bipartite graphs
with k leaves and are also denoted as Sk. The star S3 (or K1,3) with three edges is also called a
claw. Because node D in Figure 8 serves no real purpose and can be left out, the Hotelling line
may as well be described as a K1,1 graph: two nodes joined by one edge. See e.g. Bollobás (1998)
for a formal treatment of graph theory.
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The most straightforward extension of the Hotelling line is the K1,3 graph depicted

in Figure 9, a star graph that more informally can be described as a “Hotelling line

with a junction”. To deal with graphs, I generalize the definition of hinterland such

that it also covers patches of consumers not necessarily behind one firm as seen from

the perspective of its competitor. It is useful to introduce the concept of demand

plateaus before giving the formal definition of these unshielded hinterlands.14

Definition 3 Demand plateau

A demand plateau Ďij between firm i and j is a compact set of consumers each of

whom has the same difference in distance to firm i and firm j.

For a market with two firms, the difference in travel distance to firm 1 and 2 is

the same all consumers on the plateau, which means that once a firm has lowered

price enough to make the customer at one end of the plateau buy from him, only a

relatively small further decrease is needed to gain more market share at the plateau.

In the extreme case of linear transportation cost, when a firm undercuts enough to

win one consumer of the plateau, the firm by definition receives demand from all

consumers of the plateau.

Definition 4 Unshielded hinterland

The unshielded hinterland of firm i consists of the union of the demand plateaus Ďik

for which the following two conditions hold:

i the consumers in demand plateau Ďik are at least as close to firm i than to any

of the other firms;

ii for all consumers in plateau Ďik, the shortest path to firm k does not lead

through the location of firm i.

14The name ‘plateau’ is inspired by the three-dimensional graphs with the difference in distance
to firm 1 and 2 on the z-axis.
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The shielded hinterlands in Figure 8 are both examples of demand plateaus. In

the case of a line with two firms, the two definitions coincide as all hinterlands are

also shielded hinterlands. This does not hold for graphs. To see this consider the

simple four-node graph in Figure 9 (ignore the Greek letters). The consumers on the

line C−D are not a shielded but an unshielded hinterland to firm 2: these consumers

form a compact set, the difference in distance to the two firms is the same for all

consumers in the set and all consumers are closer to firm 2 than to firm 1, whereas

their shortest path to firm 1 does not include the location of firm 2. The concept of

hinterland is generalized as follows:

Definition 5 Hinterland

The hinterland of firm i consists of the union of demand plateaus Ďik of which the

consumers are as least as close to firm i than to any of the other firms.

In other words, the hinterland of firm i consists of the union of its shielded and

unshielded hinterlands. In Figure 9, the hinterland of firm 2 are the consumers at

line segment ef2,B and those located along edge eCD, but not the consumers at line

segment eD,f2 . To reiterate, the definition of hinterland conveys the idea that for

firm 2, once it has lowered price far enough to receive demand from the consumer at

point D, it is relatively easy, and therefore attractive, to try to capture all demand

originating from the line C−D. The reason is that when one starts at point f2, once

one has reached point D and continues to travel along eCD, the distance to firm 2 is

no longer decreasing.15

It is easy to show by example that – given our formulation where consumers

reside on the edges – any attempt to relate equilibrium existence and price dynamics

to general characteristics of the graph (e.g. its connectivity and degree distribution)

15This property of hinterlands holds as well for models with non-quadratic transportation costs.
In case of linear transportation costs for example, when the consumers at point D buy from firm
2, all consumers along the line eCD will buy from firm 2.
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Figure 10: Four node structure with firms located at nodes with degree 3 (upper-left
panel). The upper right panel depicts the resulting price dynamics. The bottom pan-
els shows equilibrium firm level demand in two (bottom-left) and three dimensions
(bottom right)

are doomed to be unfruitful. For example, consider the four node structure in the

upper-left panel of Figure 10. This graph is complete, apart from the edge between

nodes 2 and 4 and firms 1 and 2 are located at nodes 1 and 3, respectively. The

other panels shows that prices converge to a unique equilibrium in a small number

of steps (p∗1 = p∗2 ≈ 11417). The bottom panels show that in equilibrium, demand

is split between the two firms and each firm earns about 11417/2 = 5508. In fact,

the bottom-right panel of Figure 10 illustrates that this graph is very similar to the
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familiar Hotelling model with consumers on a unit interval. Other than in the model

discussed by D’Aspremont et al., consumers are non-uniformly distributed but their

density is somewhat higher towards the middle of the line.

Figure 11: Four node structure with firms located at nodes with degree 3 (upper-left
panel). The upper right panel depicts the resulting price dynamics. The bottom pan-
els shows equilibrium firm level demand in two (bottom-left) and three dimensions
(bottom right)

Now consider the same graph but with the two firms located at nodes 2 and 4

(Figure 11). In this case, there is no price equilibrium in pure strategies. The upper-

right panel of this Figure 11 shows that when firms follow a Markov alternating move

price adjustment process, long periods of undercutting by relatively small amounts
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are followed by a price hike. The reason is that, in this configuration of graph and

firm locations, there is a considerable unshielded hinterland: the consumers located

at the edge connecting nodes 1 and 3.16 For both firms, it is attractive to undercut

the other firm to receive demand from these consumers, until prices have decreased

to the point that for one of the firms it is more attractive to retreat and to raise

prices. That the existence of a price equilibrium in pure strategies can be elusive is

also illustrated by the two pentagons in Figure 12. The only difference between the

two graphs is that the position of firm 1 in the right pentagon is somewhat closer to

node 5. Whereas the first configuration has a pure-strategy price equilibrium, the

second, almost identical configuration has not.

D’Aspremont et al. (1979) have shown that in the linear Hotelling model, price

equilibria are not defined for some positions of the firms on the line (if they are too

close), but that these are defined for all possible firm locations when transportation

costs are quadratic. The examples above show that for graphs, imposing quadratic

costs is not sufficient to guarantee price equilibria in pure strategies.

We thus have that:

Result 7 In graph models of price competition, the assumption of quadratic trans-

portation cost is not sufficient for the existence of pure-strategy price equilibria.

Contrast this result with Economides (1986) who shows that with consumers

uniformly distributed on the unit interval with utility described by (2), firms will

in equilibrium maximally differentiate whenever α ≥ 5/3.17 In the graph depicted

in Figure 11, firms are maximally differentiated (they cannot be further apart),

α = 2 > 5/3, but no equilibrium exists. In particular for K1,3 graph, the most

straightforward extension of the Hotelling line depicted in Figure 9, one can prove

16All these consumers are at equidistance from firm 1 and 2, so this is an unshielded hinterland
to both firm 1 and firm 2.

17For 1.26 < α < 5/3, equilibria in locations exist but the locations of the equilibria are strictly
interior.
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the following:

Theorem 8 For every K1,3 graph, there exists a configuration of firm locations for

which the price competition game does not possess a pure-strategy Nash equilibrium.

The proof shows that no pure-strategy equilibrium exists if all firms are at equidis-

tance from the junction and the longest edge is not inhabited by any of the firms.

Consider Figure 9. Intuitively, the equidistance condition implies that all consumers

along edge eCD will always flock to the same supplier. As a result, competition will

be heavy, but with prices low, each firm will find it in its interest to raise price to

increase its profits. The result will probably hold for all K1,q graphs with q > 2.

Thus, the most minor graph-theoretic extension of the D’Aspremont et al. (1979)

two-firm line model with quadratic transportation costs is sufficient to lead to a non-

existence result. I conjecture, but do not prove, that this result holds for all graph

models of price competition involving two or more firms:

Conjecture 9 For every graph G = (V,E) with a least one node having degree 3 or

higher, there exists a configuration of firm locations for which the price competition

game does not possess a pure-strategy Nash equilibrium.

The condition that at least of the graph’s has to be of degree 3 or higher effec-

tively rules out the structures for which we know that they do have a pure-strategy

equilibrium, such as the line and circle.

4.2 Mixed-strategy price equilibria

The unshielded hinterland causes demand discontinuities that lead to non-existence

of equilibria in pure strategies. However, for the model with two firms, mixed-

strategy price equilibria do exist because the profit functions πi(p1, p2) (i = 1, 2) are

bounded and weakly lower semi-continuous in pi and
∑2

i=1 πi(p) is upper-semicontinuous
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(Dasgupta and Maskin, 1986a, Theorem 5). For the model with two firms, we there-

fore have the following positive result, which essentially extends Theorem 3 in Das-

gupta and Maskin (1986b).

Theorem 10 The two-firm graph model of price competition has a mixed-strategy

equilibrium for all configurations of firm locations.

Remark This theorem does not use the assumption of quadratic transportation

cost. This implies that the result extends to graph models where consumers face

other forms of nonlinear or linear transportation cost.

5 Summary and discussion

This paper is a first contribution to the analysis of graph models of price competition.

The algorithm introduced allows one to numerically evaluate firm-level demand and

profits for all graphs where consumers are uniformly distributed along the edges and

face quadratic transportation cost and where two firms compete in prices conditional

on their location. One important phenomenon for this type of models is that spatial

discontinuities in demand may occur. The most important result is that the existence

result by D’Aspremont et al. (1979) for the K1,2 graph does not extend to the K1,3

graph, the graph that resembles their original model very closely.

I believe that the framework presented in this paper offers ample scope for fu-

ture research. Besides proving or falsifying the conjecture on the non-existence of

pure-strategy price equilibria for graphs, natural directions for further investigation

include the analysis of markets with three or more firms, issues related to endogenous

entry and markets where consumers face non-linear, but not necessarily quadratic

transportation costs. Furthermore, whereas the present paper presents numerical

evaluations for a number of specific graphs, it is worthwhile to investigate more sys-

tematically the relationship between graph characteristics, firm locations within the
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graph and pricing equilibria. One of the results in D’Aspremont et al. (1979) is that

for the line model with linear transportation cost, pure-strategy equilibria exist if

firms are far enough apart. Are there classes of graphs for which a similar result can

be obtained?

Another avenue for research is the study of the relationship between graph char-

acteristics, firm location and the occurrence and characteristics (length, amplitude,

symmetry) of price cycles. The static models studied in this paper do not lend

themselves to a multi-period interpretation. Theoretical Edgeworth cycles, first de-

scribed by Edgeworth (1925), are characterized are strongly asymmetric periods of

price cuts followed by a rapid price increase. Edgeworth cycles received solid game-

theoretic foundations by Maskin and Tirole (1988). Theoretically, Edgeworth price

cycles are most likely to occur in markets characterized by homogenous goods and

extremely price-sensitive consumers. Consistent with this, one particular market in

which asymmetric price cycles have been consistently found is the market for retail

gasoline. Typically, these studies start with the observation of price cycles in a cer-

tain market, verify whether or not the cycles are asymmetric, and, conditional on

finding asymmetries, look for the possible causes.18 Noel (2009) for example decom-

poses asymmetric price cycles into a part that can be explained by Edgeworth cycles

and a part driven by other unknown sources. Less attention has been paid to why

some firms are cycling and other are not. Exceptions are Noel (2007a) and De Roos

and Katayama (2010) who use a Markov switching-regression model and allow for

differences in the price cycles of major firms and independents. The location of a

firm on a given road network relative the location of its competitors might be an

important additional variable explaining the occurrence and shape of price cycles.

18These empirical studies give evidence for price cycles in the US (Castanias and Johnson, 1993;
Lewis (forthcoming); Lewis and Noel (forthcoming)), Canada (Noel, 2007a, 2007b; Eckert, 2003),
Australia (Wang, 2009; De Roos and Katayama, 2010). Bachmeier and Griffin, 2003 do not uncover
asymmetric cycles.
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Appendix

Proof of Lemma 1

Suppose there are two different change points ciω,ω′ and c̃iω,ω′ at line segment eω,ω′ \

{ω, ω′}. Then there exist different shortest paths P S1

ci
ω,ω′ ,fi

and P S2

ci
ω,ω′ ,fi

, and P S1

c̃i
ω,ω′ ,fi

and P S2

c̃i
ω,ω′ ,fi

such that

d(P S1

ci
ω,ω′ ,fi

) = d(P S2

ci
ω,ω′ ,fi

) and d(P S1

c̃i
ω,ω′ ,fi

) = d(P S2

c̃i
ω,ω′ ,fi

) (A.1)

ω = V 1(P S1

ci
ω,ω′ ,fi

, V ) 6= V 1(P S2

ci
ω,ω′ ,fi

, V ) = ω′ (A.2)

and

ω = V 1(P S1

c̃i
ω,ω′ ,fi

, V ) 6= V 1(P S2

c̃i
ω,ω′ ,fi

, V ) = ω′. (A.3)

Since the change points are not identical, one of them, say ciω,ω′ , is closer to ω and c̃iω,ω′

is closer to ω′. This implies that d(P S1

ci
ω,ω′ ,fi

) < d(P S1

c̃i
ω,ω′ ,fi

) and d(P S2

ci
ω,ω′ ,fi

) > d(P S2

c̃i
ω,ω′ ,fi

).

This contradicts (A.1) so ciω,ω′ and c̃iω,ω′ cannot both be change points.19

Proof of Lemma 2

The shortest distance between two points is the length of the line connecting the two

points. If fi ∈ eω,ω′ the shortest path distance from each point x ∈ eω,ω′ to fi is equal

to the length of the line segment ex,fi , d(ex,fi). For these x’s, there cannot exist two

distinct shortest paths such that d(P S1
x,fi

) = d(P S2
x,fi

) = d(ex,fi). In other words, none

of the points x ∈ eω,ω′ can be a change point with respect to fi.

Proof of Lemma 3

First I prove the necessity of the conditions for interior change points. From Lemma 2

we know that if eω,ω′ contains a change point w.r.t. fi, it cannot contain fi itself.

Suppose that c is a change point for fi at the interior of eω,ω′ and that the distance

19Note that the change point ciω at the endpoint ω in Figure 2 would not satisfy equation (A.2).
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from c to ω is ε > 0. From the definition of change points, it follows that there exist

shortest paths P S1
c,fi

and P S2
c,fi

such that

d(P S1
c,fi

) = d(P S2
c,fi

), V 1(P S1
c,fi
, V ) = ω and V 1(P S2

c,fi
, V ) = ω′.

Because

d(P S1
c,fi

) = d(P S2
c,fi

)⇔ d(P S
ω,fi

) + ε = d(P S
ω′,fi

) + [d(eω,ω′)− ε]

it follows that

|d(P S
ω,fi

)− d(P S
ω′,fi

)| = |d(eω,ω′)− 2ε| < d(eω,ω′).

Sufficiency follows from noting that when eω,ω′ contains no change point and fi 6∈

eω,ω′ , d(P S
ω′,fi

) = d(P S
ω,fi

) + d(eω,ω′).

Next consider the presence of a change points on one of the endpoints of eω,ω′ ,

say ω. For ω being a change point, it follows that there exist two shortest paths such

that

V 1(P S1
ω,fi

, V ) 6= V 1(P S2
ω,fi

, V ).

Take v = V 1(P S1
ω,fi

, V ) and v′ = V 1(P S2
ω,fi

, V ). Because ω is a change point,

d(P S1
ω,fi

) = d(P S2
ω,fi

) = d(P S
ω,fi

)

which implies

d(P S1
ω,fi

) = d(eω,v) + d(P S
v,fi

) = d(eω,v′) + d(P S
v′,fi

),

and thus the conditions in Lemma 3 are satisfied. This proves the necessity of the

conditions.

To prove sufficiency suppose that ω is an endpoint of eω,ω′ but not a change point.

According to b), we know that there exist two vertices v and v′ adjacent to ω and

that

d(P S
ω,fi

) = d(eω,v) + d(P S
v,fi

) = d(eω,v′) + d(P S
v′,fi

). (A.4)
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If ω is not a change point, it must hold that for one of these vertices, say v, there

exists a point ω∗ with

ω∗ = ω + λ(v − ω), with λ > 0,

such that

d(P S
ω∗,fi

) > d(P S
ω,fi

).

However, since ω∗ is closer to v than ω, it must also hold that d(eω∗,v) < d(eω,v). But

this and equation (A.4) together imply that

d(P S
ω∗,fi

) = d(e∗ω, v) + d(P S
v,fi

) < d(P S
ω,fi

)

and we arrive at a contradiction. Thus ω must be a change point.

Proof of Proposition 4

From ω ∈ Sfi it follows that at point ω, the utility difference between buying from

firm i and buying from firm j 6= i is nonnegative:

∆U ≡ U(ω, d(ω, fi),p)− U(ω, d(ω, fj),p) = c[d(ω, fj)
α − d(ω, fi)

α] + (pj − pi) ≥ 0,

(A.5)

with the difference equal to zero if and only if ω ∈ Sefj . Write d(ω, fj) = d(ω, fi) + z

with z > 0 if and only if ω ∈ Cfi and ω 6∈ Cfj ; z < 0 if and only if ω 6∈ Cfi and

ω ∈ Cfj , and z = 0 if and only if ω ∈ Cfi and ω ∈ Cfj . By definition, for the location

y ∈ eω,ω′ of a marginal consumer, it has to hold that

∆U = c[d(y, f2)
α − d(y, f1)

α] + (p2 − p1) = 0. (A.6)

For ease of exposition, we denote by x ≥ 0 the distance between the points ω and y,

x ≡ d(ω, y).

Given that no change points are present at the interior of eω,ω′ , we have one of

the following situations:
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a. djω,ω′ = −1 and diω,ω′ = +1;

b. djω,ω′ = +1 and diω,ω′ = +1;

c. djω,ω′ = −1 and diω,ω′ = −1, or

d. djω,ω′ = +1 and diω,ω′ = −1.

Figure 5 shows examples of each of the four cases.

Note that ∂d(y, fi)/∂x = diω,ω′ and ∂d(y, fj)/∂x = djω,ω′ such that the derivative

of ∆U with respect to x can be written as

∂∆U

∂x
= αc

[
d(y, fj)

α−1∂d(y, fj)

∂x
− d(y, fi)

α−1∂d(y, fi)

∂x

]
= αc

[
d(y, fj)

α−1djω,ω′ − d(y, fi)
α−1diω,ω′

]
.

Furthermore,

d(y, fj) = djω,ω′ · x+ d(ω, fj) = djω,ω′ · x+ d(ω, fi) + z

and

d(y, fi) = diω,ω′ · x+ d(ω, fi),

such that

d(y, fj)− d(y, fi) =
(
djω,ω′ − d

i
ω,ω′

)
x+ z. (A.7)

For situations a to d, we thus have

a. d(y, fj)− d(y, fi) = −2x+ z;

b and c. d(y, fj)− d(y, fi) = z;

d. d(y, fj)− d(y, fi) = 2x+ z.

Now first consider the case for which ω 6∈ Sfj , that is, the inequality in equation

(A.5) is strict. This implies that there can only be a marginal consumer y ∈ eω,ω′ if
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∂∆U/∂x < 0. From equation (A.7) it readily follows that when situation a obtains,

∂∆U/∂x is positive for all points y ∈ eω,ω′ . For situation b (c), ∂∆U/∂x < 0 only

if z < 0 (z > 0) and for situation d, ∂∆U/∂x < 0 does not impose conditions on z.

Since z < 0 (z > 0) if and only if ω 6∈ Cfi ∧ ω ∈ Cfj) (ω ∈ Cfi ∧ ω 6∈ Cfj)).

In case ω ∈ Sfj , the point of departure is itself the location of a marginal consumer

and points on the interior of eω,ω′ are locations of marginal consumers if and only if

∂∆U/∂x for all x ∈ [0, d(ω, ω′)]. That is, if and only if

diω,ω′ = djω,ω′ ∧ d(ω, fi) = d(ω, fj),

that is, the distance to either firm should be increasing or decreasing when moving

along eω,ω′ from ω to ω′ and point ω is at equidistance from firm i and firm j:

ω ∈ Cfi ∧ ω ∈ Cfj . This may happen only in situations b and c. In situation a,

eω,ω′ \ {ω} 6∈ Sfi and eω,ω′ ∈ Sfj ; in situation d, eω,ω′ ∈ Sfi and eω,ω′ \ {ω} 6∈ Sfj .

This completes the proof.

Proof of Corollary 5

Suppose ω ∈ Sfi , ω ∈ Cfi and eω,ω′ \ {ω} contains a change point c with respect to

firm j. Then djω,c = +1 on the line segment eω,c j eω,ω′ . None of the conditions

in Proposition 4 is satisfied and thus eω,ω′ does for inhabit a marginal consumer if

ω 6∈ Sfj ; according to Proposition 4, for ω ∈ Sfi , all consumers at eω,ω′ \ {ω} are

indifferent between buying from either firm if and only if diω,ω′ = djω,ω′ = +1 and

ω ∈ Cfi and ω ∈ Cfj .

Proof of Theorem 8

Consider K1,3 graph as shown in Figure 9, with d(A, f1) = η, d(f1, D) = δ, d(D, f2) =

ε, d(f2, B) = θ and d(eCD) ≡ ξ. d(eAD) ≡= η + δ and d(eBD) ≡ ε + θ. The proof

consists of showing that for any value of dAD, dBD and d(eCD), there exists at least

one configuration of firm locations for which no equilibrium in pure strategies exist.
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Assume without loss of generality that eCD is at least as long as the two other

edges, i.e. ξ ≥ d(eAD) and ξ ≥ d(eBD). Locate firm 1 at edge eAD and firm 2 at edge

eBD each firm at one of the other two edges. Furthermore, assume that ε ≥ δ > 0,

that is: firm 1 is at least as close to node D as firm 2.

First consider the decision problem for consumers located at vertices A–D:

• Consumers at vertex A are indifferent if p1 = p2 + c(δ + ε)2 + 2cη(δ + ε);

• consumers at vertex B are indifferent if p1 = p2 − c(δ + ε)2 − 2cθ(δ + ε);

• consumers at vertex C are indifferent if p1 = p2 + c(ε2 − δ2) + 2cξ(ε − δ) =

p2 + z1 + z2;

• consumers at vertex D are indifferent if p1 = p2 + c(ε2 − δ2) = p2 + z1,

with z1 ≡ c(ε2 − δ2) and z2 ≡ 2cξ(ε− δ). Note that z1, z2 ≥ 0 iff. ε ≥ δ.

This implies that firm 1 receives zero demand if

p1 > p2 + cmax{(δ + ε)2 + 2η(δ + ε), ε2 − δ2 + 2ξ(ε− δ)}

and firm 2 receives zero demand if

p1 < p2 − c(δ + ε)2 − 2cθ(δ + ε),

see Figure 5 for a graphical representation.

Figure 5 shows that demand for firm 1 falls to zero when consumers at vertex

C (panel I) or vertex A (panel II) become indifferent between buying from either

firm. The first (second) panel applies when ξ is relatively large (small) compared to

η. Note that demand for firm 2 falls to zero once consumers at vertex B become

indifferent (panel IV ); a situation as depicted in panel V – with consumers at vertex

B buying from firm 1 but firm 2 still receiving positive demand from eCD – cannot

occur because we assume that ε ≥ δ.
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This implies that any equilibrium (p∗1, p
∗
2) must satisfy the condition

|p∗1 − p∗2| ≤ cmax{(δ + ε)2 + 2(δ + ε) max(η, θ), ε2 − δ2 + 2ξ(ε− δ)},

because otherwise, one of the two firms may gain from decreasing its price to the

delivered price of the other.

In the remaining part of the proof, I assume that (ε2 − δ2) + 2ξ(ε − δ) ≤ (δ +

ε)2 + 2η(δ+ ε), i.e. ξ ≤ ξ∗ ≡ (δ+ ε)(δ+ η)/(δ− ε). This condition – which is always

satisfied for ε close enough to δ – guarantees that a situation as in panel I of Figure 5

will not occur.

In this case, the profit functions of firm 1 and 2 are given by:

π1(p1, p2) =



(ξ + η + δ + ε+ θ)p1 if p1 ≤ p2 − c(δ + ε)(δ + ε+ 2θ)(
ξ + η + p2−p1

2c(δ+ε)
+ δ+ε

2

)
p1 if p2 − c(δ + ε)(δ + ε+ 2θ) < p1 ≤ p2 + z1(

ξ + η + ε(p2−p1)
c(ε2−δ2) + δ + ε

)
p1 if p2 + z1 < p1 ≤ p2 + z1 + z2(

η + p2−p1
2c(δ+ε)

+ δ+ε
2

)
p1 if p2 + z1 + z2 < p1 ≤ p2 + c(δ + ε)(δ + ε+ 2η)

0 if p1 > p2 + c(δ + ε)(δ + ε+ 2η)

and

π2(p1, p2) =



1 if p2 < p1 − c(δ + ε)(δ + ε+ 2η)(
ξ + θ + p1−p2

2c(δ+ε)
+ δ+ε

2

)
p2 if p1 − c(δ + ε)(δ + ε+ 2η) ≤ p2 < p1 − z1 − z2(

θ + ε(p1−p2)
c(ε2−δ2)

)
p2 if p1 − z1 − z2 ≤ p2 < p1 − z1(

θ + p1−p2
2c(δ+ε)

+ δ+ε
2

)
p2 if p1 − z1 ≤ p2 < p1 + c(δ + ε)((δ + ε) + 2θ)

0 if p2 ≥ p1 + c(δ + ε)(δ + ε+ 2θ)

Suppose that (p∗1, p
∗
2) is an equilibrium and that p∗2 − c(δ + ε)(δ + ε+ 2θ) < p∗1 ≤

p∗2 + z1. Taking first order conditions for the relevant part of the profit functions

gives us

p∗1 =
4

3
c(δ + ε)

[
ξ + η +

1

2
θ

]
+ c(δ + ε)2

p∗2 =
4

3
c(δ + ε)

[
θ +

1

2
(ξ + η)

]
+ c(δ + ε)2 (A.8)
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This set of prices is within the given range if

p∗1 − p∗2 ≤ c(ε2 − δ2)⇔ 2(ξ + η − θ) ≤ ε− δ ⇔ ξ + dAD − dBD ≤ (ε− δ)/2. (A.9)

Such an equilibrium with firm 1 charging low prices, which corresponds to panel

IV in Figure 5, thus only occurs when ξ or η are relatively small or θ is relatively

large. Intuitively, these are situations for which firm 1 is very competitive because

its shielded hinterland (η) is small, firm 2 has a large shielded hinterland (θ) of itself

and/or the unshielded hinterland (ξ) is too small for firm 2 to warrant price cuts.

Now suppose that (p∗1, p
∗
2) is an equilibrium but that p∗2 + z1 < p∗1 ≤ p∗2 + z1 + z2,

a situation as in panel III. Again taking first order conditions for the relevant part

of the profit functions gives us

p∗1 =
2c

3ε

(
ξ + dAD +

1

2
(dBD + ε)

)
(ε2 − δ2)

p∗2 =
2c

3ε

(
1

2
(ξ + dAD) + dBD −

ε

2

)
(ε2 − δ2) (A.10)

This set of prices is within the given range if

ξ + dAD − dBD ≤
6ξε

δ + ε
+ ε and ξ + dAD − dBD > 3ε. (A.11)

Intuitively, the likelihood of observing an equilibrium situation as in panel III, with

demand at eBC split between firm 1 and 2 is increasing with ξ.

Finally suppose that (p∗1, p
∗
2) is an equilibrium with p2 + z1 + z2 < p1 ≤ p2 + c(δ+

ε)(δ + ε+ 2η), a situation depicted in panel II. Taking first order conditions for the

relevant part of the profit functions now yields

p∗1 =
4

3
c(δ + ε)

[
η +

1

2
(ξ + θ)

]
+ c(δ + ε)2

p∗2 =
4

3
c(δ + ε)

[
ξ + θ +

1

2
η

]
+ c(δ + ε)2 (A.12)

For this set of prices, p∗1 > p∗2 + z1 + z2 if and only if

ξ + dAD − dBD > 2ξ + (ε− δ) +
3ξ(ε− δ)
ε+ δ

(A.13)
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Note that 0 < ξ + dAD − dBD < 2ξ because we have assumed that ξ ≥ dAD and

ξ ≥ dBD. Now take ε = δ > 0, that is, both firms are located at equidistance from

vertex D. From the above it is clear that for this configuration of firm locations,

no price equilibrium in pure strategies exists: the pairs (p∗1, p
∗
2) in (A.8) and (A.12)

are not an equilibrium because the conditions (A.9) and (A.13) are not satisfied

when ε = δ and the pair (p∗1, p
∗
2) in (A.10) is not an equilibrium because for ε = δ,

p∗1 = p∗2 = 0 and each firm can strictly increase profits by slightly increasing its price.

This completes the proof.20

20As an example of a situation for which an equilibrium does exist, take ξ = 24, η = 5, δ = 1, ε = 2
and θ = 6, such that dAD=6 and dBD = 8. In this case, condition (A.11) is satisfied, and (A.10)
gives p∗1 = 35, and p∗2 = 22 with corresponding profits π1(p∗1, p

∗
2) = 1014 and π2(p∗1, p

∗
2) = 384.
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Figure 12: Examples of a complete graph with five nodes (pentagon). In the panels
left, the distance between firm 1 and node 5 is 0.4 times the total length of edge e15.
A price equilibrium in pure strategies exists for this constellation (p∗1 ≈ 10479; p∗2 ≈
9840). In the right panels, the distance between firm 1 and node 5 is 0.2 times the
total length of edge e15. In this situation, no equilibrium exists, the reason being
that the unshielded hinterland at edge e14 has increased and has become the cause
of an ongoing price war.
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Figure 13: Examples of changes in utility when moving along eω,ω′

Figure 14: Proof Theorem 8. Division market into demand for firm 1 (dotted green
lines) and demand for firm 2 (solid red lines
. The blue diamonds represent marginal consumers.
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