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We present a flexible nonlinear reaction coordinate analysis method for the transition path ensemble
based on the likelihood maximization approach developed by Peters and Trout �J. Chem. Phys. 125,
054108 �2006��. By parametrizing the reaction coordinate by a string of images in a collective
variable space, we can optimize the likelihood that the string correctly models the committor data
obtained from a path sampling simulation. The collective variable space with the maximum
likelihood is considered to contain the best description of the reaction. The use of the reweighted
path ensemble �J. Rogal et al., J. Chem. Phys. 133, 174109 �2010�� allows a complete reaction
coordinate description from the initial to the final state. We illustrate the method on a z-shaped
two-dimensional potential. While developed for use with path sampling, this analysis method can
also be applied to regular molecular dynamics trajectories. © 2010 American Institute of Physics.
�doi:10.1063/1.3491818�

I. INTRODUCTION

Numerical studies of rare events in high-dimensional
complex systems, such as chemical reactions in solution or
protein conformational changes, are often conducted with bi-
ased simulations methods such as umbrella sampling,1 blue
moon sampling,2 metadynamics,3 etc. These methods bias
the systems along a predefined reaction coordinate in order
to sample the rarely visited parts of phase space: the transi-
tion state �TS� region. A major drawback of such biasing
methods is that they all require in some way a description of
the relevant reaction coordinate �RC�. Instead, one would
like to extract a reaction coordinate from the simulation it-
self. In fact, such a procedure is often used. Visual inspection
of preliminary molecular dynamics �MD� or Monte Carlo
�MC� simulations suggests some tentative relevant collective
variables for the rare event. The subsequent use of these
collective variables in the rare event sampling method then
gives rise to a free energy profile or landscape in terms of
these variables and the prospective transition state �en-
semble�. However, there is no guarantee that this particular
choice of the reaction coordinate will lead to meaningful
results. A poorly chosen RC might then result in a com-
pletely wrong mechanism and a statistically unmeasurable
rate constant.4 A systematic way of finding and extracting a
reaction coordinate would therefore be very useful. In this
paper, we are concerned with such a systematic reaction co-
ordinate extraction for rare events. Any systematic method
would require the sampling of unbiased reactive trajectories,
i.e., without prior knowledge of the RC. The transition path
sampling �TPS� method5 was designed to harvest a collection

of unbiased dynamical trajectories that connect the initial
with the final state. The resulting transition path ensemble
provides the basis for the RC analysis.

At the heart of the RC analysis is the concept of the
commitment probability or committor pB. This quantity is
defined for a certain high-dimensional configuration r as the
probability that a trajectory initialized with random momenta
from this configuration reaches the final state B before the
initial state A. The dividing surface in the configuration
space is then given by those configurations that have equal
commitment probability for either state, i.e., pB= pA=0.5.
Because the transition path ensemble sampled by TPS con-
tains all true dynamical paths connecting the two states, we
can label those configurations in the path ensemble with
committor 0.5 as transition states, thus forming a transition
state ensemble. Moreover, the committor function pB�r� is
the best possible reaction coordinate, as it represents a
progress variable that smoothly changes from 0 to 1 and at
each step of the reaction/transition gives the probability to
complete the reaction.6 The transition path theory �TPT� pro-
vides the framework for a complete description of the statis-
tical properties of the transition path ensemble in terms of
the committor function and the equilibrium distribution, and
gives expressions for the path probability density, the prob-
ability current, as well as the reaction rate.6,7 Still, the com-
mittor function itself does not immediately give physical in-
sight into the reaction mechanism, as it is a function of a
high-dimensional configuration space r. The task of the RC
analysis is thus to approximate the committor using a low
dimensional parametrization in terms of collective variables,
such as distances between atoms or angles, that can yield
insight in the reaction.

A straightforward way to test whether a prospective col-
lective variable q parametrizes the committor was put for-a�Electronic mail: p.g.bolhuis@uva.nl.
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ward in Ref. 8 in order to find a pertinent reaction coordinate
for isomerization in alanine dipeptide. The approach consists
of generating by a constraint method �e.g., umbrella
sampling1 or blue moon sampling2� an ensemble of configu-
rations rq for the value of q characterized by the location of
the transition state, and then computing the committor values
pB�rq� for this ensemble. The distribution of the committor
P�pB�r�� can evaluate the quality of the prospective reaction
coordinate q. If the distribution is peaked around 0.5, then q
is a qualitatively good RC, and if it is bimodal, it is poor.

This committor analysis, although powerful, is computa-
tionally very expensive because for each prospective RC, an
ensemble of configurations and their committor values must
be evaluated. A more efficient approach was proposed by Ma
and Dinner in Ref. 9. Instead of computing the committor
many times for different prospective RCs, they computed it
once for many different configurations, chosen such that the
pB values were approximately uniformly distributed. One
way of doing so is to use the transition path ensemble ob-
tained by TPS. For each configuration treated, the computed
committor value is stored in a database, together with a long
list of collective variables. Using a genetic neural network
�GNN�, one can search for combinations of collective vari-
ables that best fit the committor data. While already much
more efficient than the original committor analysis, the GNN
approach is still expensive due to the explicit computation of
the committor data on top of the TPS simulations.

Best and Hummer10,11 developed an efficient reaction
coordinate analysis technique by combining the equilibrium
probability distribution with path ensemble distributions. In
this method, the conditional probability p�TP �r� for a con-
figuration with a certain value of the reaction coordinate r to
lie on a transition path TP connecting the initial and final
states is expressed by the Bayesian relation p�TP �r�
= p�r �TP�p�TP� / peq�r�. Here, peq�r� denotes the equilibrium
distribution as a function of r, p�r �TP� is the distribution of
configurations with a certain r visited along transition path-
ways in the TPS ensemble, and the factor p�TP� is the over-
all likelihood to be on a transition path.11 p�TP �r� is large for
r corresponding to configurations that are part of transition
pathways but are rarely visited in an equilibrium simulation.
Thus, the maximum of p�TP �r� corresponds to transition
states, i.e., the configurations with the maximum probability
that trajectories going through them are reactive.10 For diffu-
sive dynamics, p�TP �r�=2pB�r��1− pB�r��, where pB�r� is the
committor averaged over all configurations with r. For a
good reaction coordinate, all transition states approximately
have the same value of r and thus, p�TP �r� should be peaked
around the transition state value of r. In contrast, if r is a
poor reaction coordinate, the lack of correlation between r
and p�TP �r� will render this distribution featureless. In this
sense, the Best–Hummer approach can determine the quality
of a chosen reaction coordinate. The method requires an ac-
curate equilibrium distribution in the transition region, which
might be difficult to obtain. In addition, in Ref. 6 it is argued
that p�r �TP� is not sufficient for describing the RC and that
the probability current as following from TPT is more infor-
mative about the reaction mechanism.

Peters and Trout12,13 developed a likelihood maximiza-

tion �LM� method that eliminated any committor computa-
tion, but only uses data from the shooting points of a TPS
simulation. They realized that the TPS shooting move could
be interpreted as an instance of a committor computation
with only one trajectory. Hence, the estimate for pB is zero or
unity. Nevertheless, based on the TPS shooting point en-
semble data, one can search for the best model reaction co-
ordinate that reproduces the data using a likelihood maximi-
zation. To obtain unbiased instances of a committor
computation, Peters and Trout adjusted the regular shooting
move into “aimless shooting,” such that it produced random-
ized velocities and at the same time remained in the neigh-
borhood of the transition state region, where the commitment
probability P�TP �x� is close to its maximum. Subsequently,
the aimless shooting point data are fitted to a reaction coor-
dinate composed of a linear combination of tentative collec-
tive variables. Screening all possible combinations of candi-
date collective variables for the maximum likelihood yields
the best reaction coordinate model for the given data. Peters
and Trout show that this approach works and applied it to the
nucleation in the Ising model.12 The method has also been
used for finding reaction coordinates in protein folding.14,15

Escobedo16 and co-workers developed a similar method to
find reaction coordinates in the forward flux sampling
method based on least-squares fitting of the commitment
probability.

The LM procedure by Peters and Trout is powerful, but
still suffers from two drawbacks. �1� It only gives informa-
tion around the TS region of the reaction, whereas in some
processes information on the entire reaction is required to
understand the complex mechanism. �2� A nonlinear approxi-
mation to the RC is usually more difficult to find and opti-
mize than a linear one. In this paper, we address these two
points simultaneously by allowing for a nonlinear description
of the reaction coordinate that completely describes the re-
action from the initial to the final state. Note that by nonlin-
earity, we mean not the nonlinearity of the collective vari-
ables themselves �previous works often use nonlinear
collective variables such as angles12,17,18�, but the nonlinear
correlation between these collective variables describing the
entire reaction. This nonlinear description is based on ideas
from the string method as developed by Vanden-Eijnden and
co-workers.19,20 �We also note that Peters and Trout already
suggest to use a string optimization procedure,12 although
not for the reaction coordinate optimization.�

We will illustrate our new approach on the z-potential
�see Ref. 21 and Fig. 6�. This two-dimensional �2D� potential
has two stable states separated by one barrier. Hence, diffu-
sive �Langevin� dynamics in this potential will exhibit clas-
sical two state behavior with a well-defined rate constant.
However, the pathways connecting the two stable states fol-
low, on average, a pattern resembling the letter z. First, the
system has to move into the x direction before it can move
into the y direction, but then it has also to move back in the
x direction along the diagonal, cross the barrier, and, when
on the other side, it has to transverse once more into the
�positive� x direction. This convoluted reaction pathway is
easy to understand when plotting the potential in the x ,y
plane. However, when the potential is projected onto the x
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coordinate only, the reaction coordinate is less clear. The free
energy as a function of x only still gives a two state potential,
but when pushing the system along the x axis starting from
the initial state, it will not reach the final state unless pushed
very hard. A large degree of hysteresis is the result and the
true transition state will be avoided. Similarly, when only y is
known and the system is pushed into that direction, the TS
region will be avoided and hysteresis is the result. In fact,
only by taking into account the correlation between the x and
y parameters, and defining the RC to follow the z shape as
well, will allow a smooth transition from the initial to final
state and vice versa without hysteresis. Clearly, such a RC
must be nonlinear. This simple 2D model hence is a good test
case to develop nonlinear RC methods.

The LM scheme by Peters and Trout requires the use of
the aimless shooting algorithm. However, for complex diffu-
sive problems, we would like to be able to use the one-way
shooting method with flexible path length22 for the RC
analysis. Here, we show that using the shooting point en-
semble as obtained from the one-way shooting algorithm
leads to a bad fit of the committor pB when using a linear
description of the RC. We also show that this linear fit im-
proves by cutting the shooting point ensemble such that only
the data close to the TS region are selected. Cutting the
shooting point ensemble indeed improves the reaction coor-
dinate, but is somewhat arbitrary. In fact, the aimless shoot-
ing procedure naturally restricts the shooting point ensemble
to the phase space region close to the TS. The improvement
of the RC only applies to the transition state region. As men-
tioned above, any linear RC will never be able to fit the
entire mechanism in the z-potential. Although the LM proce-
dure also takes into account nonlinear fits, we propose the
use of a fully flexible RC in the form of a string of images.
Such a string is a discrete representation of the reaction co-
ordinate. Using the LM optimization for the string then leads
to the best nonlinear model for the RC. To compute the like-
lihood corresponding to each string requires a projection
method from the shooting points onto the string. We use a
geometrical procedure that was introduced in Ref. 21, as well
as a Voronoi-like construction inspired by the work on the
string method.20

An optimization of the string in phase space regions far
away from the transition state requires very accurate com-
mittor data in those regions. Such data are not available from
a regular shooting point ensemble because shots that are far
away from the TS region will most likely end in one of the
two states. The committor values for the other state are hence
estimated to be close to zero. As the likelihood maximization
sums over the logarithm of these numbers, these data are
very inaccurate. However, such accurate committor values
are available from the unbiased path ensemble, which can be
estimated by the reweighting scheme introduced in Ref. 21.
The reweighted path ensemble �RPE� gives accurate commit-
tor values along the entire transition �see also Appendix B�.
Using the RPE instead of the shooting point ensemble, we
are able to optimize the string description of the RC over the
whole phase space from the initial to the final region. More-
over, using the same arguments as Peters and Trout,12 we can

find the collective variable space in which the string descrip-
tion provides the best model for the reaction coordinate.

The paper is organized as follows. We introduce the the-
oretical background and the methodology in Sec. II. Next,
we show in Sec. III B that the one-way shooting point en-
semble does not lead to a proper linear RC description for
the z-potential. In Sec. III C we apply our new string method
to the RPE data obtained by replica exchange transition in-
terface sampling �RETIS� of the z-potential. We optimize the
number of string images and show that a 2D reaction coor-
dinate is vastly superior to a one-dimensional �1D� descrip-
tion of the same data. We end with concluding remarks.

II. METHODS

A. Likelihood maximization

The basis of the likelihood maximization method for re-
action coordinates by Peters and Trout is to use the set of
shooting points from aimless shooting and their final desti-
nation �A or B� as instances of a committor computation. By
projection onto a RC defined as a function of some collective
variables, one can compute the likelihood to observe the data
�i.e., the sampled shooting points�. Optimizing this likeli-
hood for different combinations of collective variables then
yields the best model for the reaction coordinate with respect
to the given data.

In the first step, a set of shooting points from a TPS
simulation is collected. A shooting point x is the random
starting point for TPS trajectories during the shooting
move.5,12,13 Here, x= �rN ,pN� denotes a point in a phase
space, with r and p as the coordinates and momenta of the
N-particle system at a certain time. For each shooting point
x, one can define a RC that depends �linearly� on n collective
variables q as

r�x� = 	
i

n

�iqi�x� + �0, �1�

where the �i coefficients are to be optimized. The collective
variables qi are predefined/chosen functions that are candi-
dates for important ingredients in the RC, such as radius of
gyration, root mean square deviation, distances, angles, etc.
The committor can then be modeled as a simple tanh func-
tion

pB�r�x�� = 1
2 �1 + tanh�r�x��� . �2�

For diffusive dynamics, the likelihood for the shooting point
data is11,12

L = 

xi→B

pB�r�xi�� 

xi→A

pA�r�xi�� , �3�

where the committor pA for state A is simply pA�r�=1
− pB�r�. The first product runs over trial shooting points that
lead to B and the second over shooting points that lead to A.
It is more convenient to express the likelihood as a logarithm

174110-3 Nonlinear reaction coordinate analysis J. Chem. Phys. 133, 174110 �2010�
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ln L = 	
xi→B

ln pB�r�xi�� + 	
xi→A

ln pA�r�xi�� . �4�

When used only with the shooting points close to the TS
region, as resulting from the aimless shooting method, the
best option is to assume linear reaction coordinates.12

The different path sampling shooting algorithms give
rise to different shooting point distributions. In Appendix B
we show how these distributions depend on the different al-
gorithms.

B. Approximating the RC by a string

While the method of Peters and Trout in principle allows
for nonlinear RCs, in practice, linear approximations are of-
ten used because the shooting point ensemble remains close
to the TS region due to the aimless shooting algorithm. When
the process of interest is very complex and consists of mul-
tiple sequential steps, a nonlinear reaction coordinate might
be better to describe the reaction. Also, for TPS methods that
do not employ the aimless shooting algorithm, the shooting
point ensemble will be more diffuse and contain instances of
shots far away from the TS region.

A flexible way of incorporating nonlinearity is to repre-
sent the reaction coordinate by a string of points �just as in
the string method19�. This string consists of M reference
points in the q space

S = �s0,s1, . . . ,sM� , �5�

where s denotes the d-dimensional position in the space of
the current choice of collective variables space q
= �q1 ,q2 , . . .qd�. The string connects the stable states A and B
and represents the reaction coordinate. Now any
6N-dimensional point x has to be assigned a position
��S�q�x��� along the string, where �� �0,1�. We employ
two different projection methods. The first is a geometrical
projection method onto the string, presented in Ref. 21,
which yields a continuous number � for each point x. The �
number then has to be mapped to the RC itself by a function
r= f���, where f��� could, for instance, be a simple �mono-
tonic� polynomial �cubic� spline function that translates be-
tween � and r. Thus the assignment of an RC value to a
phase point x reads

r�x� = f���S�q�x���� . �6�

The second projection method used in this paper is a Voronoi
construction, where each phase point is assigned to the clos-
est two string images, with a piecewise linear interpolation to
obtain a continuous � value. This � value is then translated
into the RC r by a simple piecewise �monotonic� linear in-
terpolation. For simplicity, we can combine the q to � and
the � to r mappings into one, as is schematically shown in
Fig. 1. The string in a two-dimensional plane is assigned a
value of r at each image. The end points of the string are
fixed in x ,y space. In this way, any point in the x ,y plane can
be projected on the closest linear line segment of the string
and thus translated to a value of r. Note that a choice of
dynamically coupled collective variables might render these
projection methods problematic as in that case, the isocom-
mittor surfaces are no longer orthogonal to the string.23,24

The effect of the choice of units can be removed by includ-
ing an additional scaling factor in the optimization or, e.g.,
by following the approach of Ref. 20. Both the string image
positions S and their corresponding r values can be adjusted
in the likelihood optimization. This amounts to M�d+1�
−2d variables to be optimized �the 2d term arises because
the end points are fixed�. In the case of a 2D string �d=2�,
this amounts to 3M −4 variables. For the optimization, a
simulated annealing scheme is used �see Appendix A�.

The idea of the string optimization approach is that we
would get information about the RC not only close to the
transition state where pB=0.5, but also close to the stable
states. As an example, we can look at the z-potential, where
a linear RC approximation clearly cannot describe the entire
pathway.

C. The reweighted path ensemble from RETIS

The proposed string method approach will fail when
only shooting points are used, as was done in Ref. 12, be-
cause shooting points close to the stable states hardly exist.
Even if in the one-way shooting point ensemble there are
shooting points close to a stable state, they are nearly always
of one kind �A or B� �see Sec. III B 2�. Hence, the estimate
for the pB function for extreme values of the reaction coor-
dinate �when pB is either almost 0 or almost 1� is very inac-
curate. One way to improve the statistics of shooting points
close to the initial and final state is to realize that not only the
shooting points themselves can be seen as committor com-
putation, but, in principle, all time slices on the TPS path-
ways can be considered a realization of a committor compu-
tation. This follows from the fact that for stochastic
dynamics, each phase point x has a well-defined committor
value pB�x�. Therefore, one could include all configurations
in the path ensemble in the analysis. To avoid biasing the
committor distributions, this path ensemble should be equal
to the unbiased complete path ensemble, i.e., containing all
possible paths starting from A and all paths starting from B.
A schematic view of this unbiased path ensemble is given in
Fig. 2. The unbiased path ensemble can be used to accurately
estimate the pB values even at extreme values of the RC.

One way of obtaining the unbiased path ensemble is a
very long straightforward MD simulation. Of course, such a

r

x

y

σ=0

σ=1

FIG. 1. An example of how the coordinate space can be mapped onto a
string using a Voronoi projection method plus piecewise linear interpolation.
Each string point has an r value translating the continuous � value into a
reaction coordinate value.
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naive calculation of the unbiased path ensemble is suffering
from the very rare event problem that we are trying to solve.
However, it is possible to compute this complete path en-
semble within the transition interface sampling25 �TIS� meth-
odology by reweighting the interface ensembles using the
weighted histogram analysis method �WHAM�,26 as was
shown in Ref. 21. Here, we briefly review the method. TIS
introduces n+1 nonintersecting interfaces between A and B
described by a progress variable ��x� which is a function of
the phase point x. The n interfaces are defined by an ordered
sequence �0 ,�1 , . .�n, where the first interface �0 is the
boundary of state A and the last one ��n� is identical to the
boundary of state B. The TIS path ensemble consists of tra-
jectories xL��x0 ,x1 , . . . ,xL�, an ordered sequence of phase
space points x. The time-step between these points, or time
slices, is �t, resulting in a total time duration of the path of
T=L�t. The paths start in A and either end in B or return to
A, provided that they have crossed a certain interface �i.
Defining the region of phase space beyond interface i by
�i

+= �x :��x���i�, the TIS path probability is

PA�i
�xL� = h̃i�xL���x0�


i=0

L−1

p�xi → xi+1�/ZA�i
, �7�

where ��x� denotes the steady state distribution, e.g., the
canonical distribution, p�x→y� represents the Markovian
probability to go from a state x to y within one time interval
�t, and the normalizing factor ZA�i

is defined by

�DxPA�i
�xL�=1. The indicator function h̃i�xL�=1 for paths

that begin in A, end in A or B, and cross �i and zero other-
wise. The TIS path ensemble can be sampled using the regu-
lar shooting algorithm. Sampling efficiency can be improved
by employing replica exchange �RETIS�.27,28

The TIS path ensembles can be reweighted using a
WHAM analysis of the crossing histograms.21 By defining
an expression similar to Eq. �7� for the reverse process B
→A, the reweighted path ensemble for both the forward and
reverse process is

P�xL� = cA	
j=1

n−1

PA�j
�xL�WA�xL� + cB	

j=1

n−1

PB�j
�xL�WB�xL� ,

�8�

where the function WA�xL�=	i=1
n−1w̄i

A	��max�xL�−�i�	��i+1

−�max�xL�� selects the correct interface weight for each path
xL based on the maximum � along the path. Similarly,
WB�xL�=	i=1

n−1w̄i
B	��min�xL�−�i�	��i+1−�min�xL�� selects the

weights for paths from B based on the minimum � along the
path. The weights w̄i

A and w̄i
B can be obtained from WHAM

analysis26 of the forward and reverse crossing probability
histograms, respectively.21 The unknown constants cA and cB

follow from matching the AB and BA histograms for over-
lapping interfaces �note that for the complete path ensemble,
we would need to include the additional RETIS ensembles
P�1

− and P�n−1

+ . For more information we refer to Ref. 21�.

D. Likelihood maximization using the RPE

We can employ the reweighted path ensemble in the
string algorithm described above. All stored phase points x
of each pathway xL are assigned a weight 
=W�x�. All
weights are normalized such that the lowest weight in the
ensemble is unity. Assuming diffusive dynamics,12 the total
likelihood for the RPE is then

L = 

xi→B

pB�r�xi��
i 

xi→A

pA�r�xi��
i �9�

because each point is occurring exactly 
i times in the en-
semble. The logarithmic likelihood is then

ln L = 	
xi→B


i ln pB�r�xi�� + 	
xi→A


i ln pA�r�xi�� . �10�

This likelihood can be maximized by modifying the posi-
tions of the string images S until convergence. To avoid get-
ting trapped in local maxima, we employ a Monte Carlo
annealing method to optimize the string �see Appendix A�.

E. Optimizing the number of string images

Up to now we have assumed that the number of string
images is fixed. However, we cannot be certain in advance
that we have the optimal number. Increasing the number of
string images might provide a better description of the RC,
but also increases the number of variables. If the number of
variables becomes larger, fitting of the data becomes easier.
The Bayesian information criterion �BIC� can determine the
optimal number of variables.29 According to this criterion,
the following expression should be maximized:

CBIC = ln L − 1
2nv ln Nd, �11�

where Nd is the number of data points �shooting points in our
case�. As we are employing the RPE, this number is Nd

=	i=0
Nf 
i, where Nf is the number of time slices in the path

ensemble. nv is the number of variables in the description of
the model. In our case nv=dM +n�, with d as the dimension
of the collective variable space, M as the number of string
images, and n� as the number of points used in the r���
mapping. For the case of the simultaneous string and RC
mapping �cf. Fig. 1� and fixed string end points nv= �d+1�
��M −2�+2=3M −4.

F. What is the best collective variable space?

Optimizing the likelihood for one set of collective vari-
ables by the string method is not sufficient. The idea of the
LM is to provide a quantitative way to distinguish between
different sets of collective variables. In the method devel-

FIG. 2. Cartoon of the unbiased path ensemble in the context of transition
interface sampling. The red and blue curves denote the path ensemble for A
and B, respectively.
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oped by Peters and Trout,12 this is done by starting with a list
of collective variables and computing the likelihood for each
of these. Then the likelihoods for all linear combinations of
two collective variables are calculated. When the optimal
likelihood ln L increases by an amount of 0.5 ln Nd, this
combination is deemed a significantly better reaction coordi-
nate than the best 1D collective variable. Subsequently, one
can consider all combinations of three collective variables,
etc.

We can apply a similar procedure for our string RC op-
timization using the criterion of Eq. �11�. We first compute
the maximum likelihood for all candidate collective variables
by projecting the data points onto each collective variable.
Optimizing the � to r mapping then provides directly the RC
model that best describes the committor without any string
optimization. Next, we test all combination of two different
collective variables by optimizing strings in these 2D spaces.
When the maximal CBIC is greater than the 1D value, we
regard the string reaction coordinate to be significantly better
than any of the 1D collective variables. Again, the extension
to more dimensions is straightforward, although the number
of combinations to test rises steeply. Note that while the
committor itself is the optimal reaction coordinate and is
indeed a “one-dimensional” variable, our aim is to identify
the smallest set of collective variables that permit to param-
etrize this function accurately.

III. RESULTS AND DISCUSSION

A. The potential

In this work, we employ a two-dimensional model sys-
tem for which the potential is given by

V�x,y� =
x4 + y4

20 480
− 3e−0.01�x + 5�2−0.2�y + 5�2

− 3e−0.01�x − 5�2−0.2�y − 5�2
,

+
5e−0.2�x + 3�y − 3��2

1 + e−x−3 +
5e−0.2�x + 3�y + 3��2

1 + ex−3 ,

+ 3e−0.01�x2+y2�. �12�

This potential is visualized in Fig. 6. It has two stable states:
one at ��7.2, �5.1� and at �7.2, 5.1�. These two minima are
separated by a barrier in the shape of the letter s, due to the
presence of two high potential ridges. At the origin the po-
tential is V=4.28kBT above the minima. The minimum en-
ergy pathway is indicated, and roughly follows the reversed z
shape.

The system consists of a single particle evolving accord-
ing to Langevin dynamics on this potential. For details on the
algorithm see, e.g., Ref. 5. The A and B regions are defined
as ellipsoidal regions around the minima �xm ,ym� as
�x ,y � �x−xm�2+ 1

16�y−ym�2R2�. The radius is set to R=0.5.

B. Committor surface and the linear LM approximation

1. Numerical committor evaluation

An exhaustive numerical evaluation of the committor
surface can be performed for this simple system by shooting

many trajectories from each x ,y point around the transition
state with random Maxwell–Boltzmann distributed velocities
and measuring the fraction of trajectories that end in B be-
fore A. Simulations have been performed for x ,y� �−2,2� on
a 80�80 grid ��x=�y=0.05�. The �inverse� temperature
was set to ���kBT�−1=2.5, where kB denotes Boltzmann’s
constant, the friction to �=2.5, and the time-step to �t=0.1.
For each grid, point trajectories were initiated in blocks of
100 until the error in pB was less then 1% �between 1500 and
2800 trajectories�. The result is shown in Fig. 3. From this
result, it follows that the pB=0.5 surface is approximated by
y=2.2x around the transition state.

2. One-way shooting point ensemble

The aimless shooting algorithm was developed to create
a TPS path ensemble in which the shooting point ensemble
stays within the transition state region. However, the aimless
shooting algorithm12 is less suitable for diffusive dynamics
on a rough energy surface, in which one might prefer to use
the one-way shooting algorithm.30 Moreover, as aimless
shooting will focus the shooting point ensemble close to the
transition state, it cannot give information about the entire
transition �see also Appendix B�. Here, we perform TPS us-
ing the flexible path length, one-way shooting algorithm for
stochastic dynamics.14 This shooting point ensemble is
shown in Fig. 4, together with the minimum energy pathway
�MEP�.

3. Linear likelihood maximization in a restricted
ensemble

We applied the standard linear likelihood maximization12

on the one-way shooting point set. The results are shown in
Fig. 5. In contrast to the aimless shooting algorithm, this
shooting point ensemble has contributions over the entire
potential, including points close to the initial and final states.
However, using the entire set �gray points in Fig. 5� in a
linear approximation to the RC leads to the very poor esti-
mate r=0.03−0.09x+0.44y �the dividing surface pB=0.5,
corresponding to r=0, is shown as a gray line in Fig. 5�
because the tails of the shooting point distribution have a
strong influence on the placement of the optimal dividing
surface. Clearly, this is caused by the nonlinearity of the
mechanism in this potential. Restricting the shooting point
ensemble by, e.g., taking only points within a certain dis-
tance from the r=0 line �shown as a orange ensemble�, im-

FIG. 3. Left: A contour plot of a numerical evaluation of the committor
surface pB�x ,y� around the transition state. The contours are separated by
0.05. The solid line depicts the dividing surface pB=0.5. Right: The dividing
surface plotted on the potential surface around the TS region. Note that the
dividing surface does not pass through the two saddle points.

174110-6 Lechner et al. J. Chem. Phys. 133, 174110 �2010�

Downloaded 16 Dec 2010 to 145.18.109.182. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



proves the RC estimate to r=0.05−0.25x+0.20y �the r=0
line is shown in orange�, but still does not resemble the cor-
rect dividing surface shown in Fig. 3. Only when restricting
the shooting points ensemble even more �blue ensemble�
could we recover the correct RC r=0.06−0.27x+0.11y for
the transition state region �cf. Fig. 3�. From this exercise it
follows that �1� a linear RC approximation does not work
very well for nonlinear mechanisms such as the z-potential;
�2� because of the lack of a well described criterion, the
restriction procedure of the one-way shooting point ensemble
to the transition state area is arbitrary; and �3� while the
correct RC of Fig. 3 describes the dividing surface in the
transition state region, it is not capable of describing the
entire transition. In Sec. III C we will employ the nonlinear
string RC. To obtain the required accuracy for the shooting
ensemble in the tails, we will make use of the RPE.

C. String optimization for the RPE

1. The RPE using linear interfaces

We obtained the data points for the string optimization
from a RETIS simulation in the z-potential using linear in-

terfaces, as described in Ref. 21. In this simulation, the
Langevin friction is set to �=1, the inverse temperature is
�=4, and the time-step is set to �t=0.05. The outcome is a
path ensemble for each interface. We store one pathway ev-
ery 100th shooting moves. For each path only one configu-
ration per ten time-steps is stored. This yields 2800 paths
with in total Nf =1 363 128 data points. All these data points
contribute to the reweighted path ensemble. The total weight
of the RPE, the number to be used in the BIC, is Nd=e22.43.
The weights for each path can be obtained from a WHAM
analysis of the RETIS crossing probability histograms.21 As
the minimum weight of a path in the RPE is 1, we renormal-
ized the lowest WHAM weight to unity. Note that the thus
obtained RPE is only an approximation for the true unbiased
path ensemble.

We initialized the string by a linear interpolation �a di-
agonal� between the stable states. Keeping the end points
fixed in the stable state minima, we optimize the string by
moving the images perpendicular to the string and accepting
or rejecting the move according to an annealing scheme
based on the likelihood �cf. Appendix A�. The initial likeli-
hood for the diagonal string is around ln L=−4�108; the
maximized one was ln L=−4.30820�105. The string corre-
sponding to this optimal likelihood is plotted in Fig. 6. The
precise values of these logarithmic likelihoods do not have a
direct meaning since they depend on the number of included
data points. To show the quality of the fit, the optimized
ln pA��� and ln pB��� functions are shown together with the
optimized r��� function in Fig. 6. In the same figure, we
show the projected ln pA��� and ln pB��� functions of the
shooting point data. The agreement between the data and the
fit is good.

2. The RPE from RETIS using the optimized string

In the next step we use the optimized string from Fig. 6
itself to perform a RETIS simulation. The description of the
simulation can be found in Ref. 21. Using the same analysis
as above, we computed the crossing histograms and applied
WHAM. Using the resulting reweighted path ensemble we
optimized the string starting from a diagonal interpolation
between A and B. For the Nf =1 351 929 points, the initial
likelihood for the diagonal string is around ln L−5�108;
the maximized one is ln L=−6.502�105. Again, the abso-
lute values of the logarithmic likelihoods do not have direct
meaning. Note that the optimized likelihood is in fact lower
than it is for the linear interfaces. However, the fit to the data
points is much better as is clear from Fig. 7. The final opti-
mized string is also shown in Fig. 7. Note that starting from
the stable state, the string points somewhat toward the high
energy barriers, but then avoids these. While the optimized
string exhibits qualitatively the correct shape of the potential,
it does not exactly follow the MEP. This can be due to the
fact that the optimization tries to prevent that points would
be assigned to the wrong part of the string, leading to strings
that move close to the high barrier region.

FIG. 4. The shooting point ensemble obtained from a TPS simulation, em-
ploying the one-way shooting algorithm plotted onto the z-potential. Green
and red points indicate shots that end in A and B, respectively. The MEP is
plotted as well, for clarity.

FIG. 5. The effect of cutting the ensemble on the RC optimization. The gray
points and line depict the entire shooting point ensemble. The gray line is
the optimal linear dividing surface r=0. Restricting the ensemble to the
yellow points improves the RC somewhat, but only for the blue ensemble is
the correct dividing surface recovered.
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3. Optimizing the number of string images

Subsequently, we optimize the likelihood as a function
of the number of string images M. The number of string
images could become much lower than 20 images, yielding a
string that is not smooth. Because the geometric projection
method requires such a smooth string, we use the Voronoi
construction together with the linear interpolation of the r���
mapping �see Sec. II�. In this case, reparametrization of the
string is not necessary, as the condition of equidistant string
points is not required for the Voronoi construction. As the
optimization turns out to be computationally more expensive
than the projection method, we reduce the data set by a factor
of 10. For this situation, the BIC states that the quantity to
optimize is CBIC=ln L− 3

2 M ln Nd.
Starting with three images on the string, keeping the first

and last images fixed, we compute the optimal likelihoods as
a function of string image number by the MC annealing
scheme �see Appendix A�. New points are added to the string
by linear interpolation. Figure 8 shows the optimized ln L as
a function of string images for the linear interfaces RPE.
Also plotted in the same figure is the penalty 3

2 M ln Nd
lin

+const that needs to be overcome according to the BIC
�straight line� with an arbitrary constant. Here, ln Nd

lin

=22.43. The top panel shows the difference between these
two, expressed by CBIC, shifted such that the maximum is
zero.

Going from M =3 to M =4 increases the logarithmic

likelihood from ln L=−3.5�107 to ln L=−4.3225�104.
The optimized string for M =4 already has the shape of the
letter Z. Adding more string points does improve the loga-
rithmic likelihood, but is not significant enough according to
the BIC. This is clear from the top panel in Fig. 8, where the
maximum is indeed at M =4.

We repeat this exercise for the RPE obtained through the
optimized string �see Fig. 9�. Here, ln Nd

str=21.45. In this
case, CBIC is maximal for M =6. The optimal string is plotted
in Fig. 10. Apparently in this case, adding two points to the
minimum M =4 does improve the likelihood significantly, as
is visible from the CBIC plot in the top panel. Adding a string
point close to the origin is much less useful. When adding
more points, the string does improve, but not enough, ac-
cording to the BIC. Interestingly, the M =6 string in Fig. 10
is already very similar to the optimized 20 image string of
Fig. 7. Starting from the initial state, the RC first roughly
points into the direction of the final state, but has to make a
detour because of the two high barrier ridges. Also, note that
while the RC roughly follows the shape of the potential, it is
not identical to the minimum �free� energy pathway.

D. What is the best collective variable space?

In our case it is clear that a 2D string in the x ,y plane
will describe the reaction coordinate for the z-potential better
than any description using only x or y. However, to complete

FIG. 6. Top: The optimal string in the z-potential for the RPE using the
linear interfaces. Note that the string is close to the high potential barrier
regions. Bottom, top panel: The logarithm of pB��� �black and red� and
pA��� �green and blue�. The red and blue solid curves denote the model; the
black and green points are the data. Lower panel: The parametrization of
r��� by a monotonic cubic spline.

FIG. 7. Top: The optimal string in the z-potential for the RPE using the
optimized string shown in Fig. 6. Note that the string now avoids the high
potential region. Bottom, top panel: The logarithm of pB��� �black and red�
and pA��� �green and blue�. The red and blue solid curves denote the model;
the black and green points are the data. Bottom, lower panel: the parametri-
zation of r��� by a monotonic cubic spline.
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the analysis, we will also optimize the likelihood for the 1D
cases. This is simply done by projecting all the RPE points to
either the x-axis or the y-axis and maximizing the likelihood
by optimizing the r��� curve with 20 points. For the RPE
based on the optimized string RETIS, the result is for x only
ln L=−1.7�108, giving a CBIC=ln L−10 ln Nd

str−1.7
�108. Here ln Nd

str=23.76 is larger than in Sec. III C because
there are ten times more path points. The maximization for y
yields ln L=−2.5�107 and a CBIC=ln L−10 ln Nd

str−2.5
�107. Based on this, it follows that y as a reaction coordi-
nate is far better than x alone, although it is clearly not ca-
pable of describing the reaction. In the 2D case, the diagonal
y=x results in a value of ln L=−5�108; in contrast, the
optimized string gives ln L=−6.502 00�105 with a CBIC

=ln L−30 ln Nd
str= ln L−712−6.5�105, an improvement

of almost three orders of magnitude in logarithmic likeli-
hood. Hence we can conclude that for the z-potential, the
string description in x ,y space is most appropriate, as ex-

pected. However, in the general case of a complex reaction,
the choice of parameters is not as clear. In that case, the
likelihood maximization provides a quantitative measure to
distinguish between different choices of collective variables.

IV. CONCLUSIONS

We have presented a novel optimization method for ob-
taining a nonlinear RC described by a string. Based on the
LM analysis of Peters and Trout and concepts from the string
method of Vanden-Eijnden and co-workers, the approach
gives the best stringlike description of the RC in a low di-
mensional space of collective variables. Moreover, the analy-
sis yields a description of the reaction of interest, not only
around the TS region but along the entire reaction pathway.
As such, the method can be used to extract the essential
dynamical features from the collection of many pathways.
The presented approach requires the complete unbiased path
ensemble, which can, in principle, be obtained by regular
MD, but much more efficiently by a path sampling method
for the rare events we consider here. We have shown previ-
ously how to use the replica exchange TIS to obtain the
reweighted path ensemble.21 Using the RPE as an estimate
for the unbiased path ensemble, we optimize the string de-
scription of the RC as a function of the number of string
images, as well as a function of the number of collective
variable dimensions. The string-LM method can be applied
iteratively: a first guess of the RC can be used to define the
TIS interfaces. After applying the LM, the optimal string can
then be used as a new set of interfaces to obtain a new RPE
from the RETIS, which can then be reanalyzed. Convergence
of the RC ensures that one has sampled correct pathways
and, moreover, has found the correct description of the reac-
tion.

While our method is strongly related to the string
method in collective variable space,20,31 a major difference is
the way that the information about the committor is com-
puted. Another important difference is that our method pro-
vides a means to determine which collective variables to
choose from a single sampling of the RPE. In the string
method, comparing different collective variable spaces
would require different string optimizations.20

The RC optimization as it is proposed here is based on a
nonlinear fitting to the committor. In the TPT framework, the
definition of the probability current of reactive trajectories is
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FIG. 8. Lower panel: Logarithmic likelihood as a function of the string
image number M based on the linear interfaces RPE and using the Voronoi
projection. Starting with four points, new strings are created by adding one
or more points by interpolation. The penalty term −1.5M ln Nd as a function
of the string image number M is given by the dashed line. Top panel: CBIC

shifted such that the maximum is at zero.
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FIG. 9. Lower panel: Logarithmic likelihood as a function of the string
image number M based on the string RPE and using the Voronoi projection.
Starting with four points, new strings are created by adding one or more
points by interpolation. The penalty term −1.5M ln Nd as a function of the
string image number M is given by the dashed line. Top panel: CBIC shifted
such that the maximum is at zero.

FIG. 10. Optimized string description for M=6 in the z-potential.
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an important concept that contains much information on the
mechanism.6,7 In fact, it is stated in Refs. 6 and 7 that the
probability current is a better way to characterize the mecha-
nism than the committor, as it is not influenced by “dead
ends.” In principle, it should be possible to use this probabil-
ity current to optimize the reaction mechanism using a non-
linear reaction coordinate. However, this would require a dif-
ferent, yet unknown, definition of the likelihood function.

We envision that the approach advocated in the current
work can lead to new insights in the reaction coordinates of
very complex processes, including protein folding, and crys-
tal nucleation. In a future study, we aim to apply our method
to the nucleation of crystals.
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APPENDIX A: ANNEALING PROCEDURE

The string can be optimized by a Monte Carlo annealing
method. In this algorithm, the string images are moved ran-
domly in the collective variable space and accepted or re-
jected based on the difference in likelihood. The acceptance
criterion is

Pacc = min�1,exp���ln L�� , �A1�

where �ln L is the difference in logarithmic likelihood
caused by the move of the image and � is an artificial tem-
perature. In the current work, �=1 initially and subsequently
is slowly decreased. We employ two annealing schemes,
based on whether we use the geometrical projection
methods21 or the Voronoi construction. In the first case, we
move the trial image perpendicular to the string. Because the
projection method requires equidistant string images, we ap-
ply the reparametrization scheme of the string method.19

Then, the monotonic spline r��� mapping is optimized, by a
second annealing algorithm, working in the same way. This
part of the optimization is accelerated by precomputing the
pB��� histograms because then the likelihood can be ex-
pressed as a sum over the histogram, rather than over all
points in the ensemble.

For the case of the Voronoi construction, we opt for the
simultaneous optimization, graphically depicted in Fig. 1.
Here we move randomly a string image or a � point. The
advantage is that all the variables are treated on the same
level. The down side is that each move requires a Voronoi
projection of all points in the RPE.

APPENDIX B: PROPERTIES OF THE SHOOTING
POINT ENSEMBLE

The distribution of points used for the likelihood maxi-
mization of the committor function is crucial for the estima-
tion of the RC. In this appendix, we elucidate the properties
of the shooting point distribution �or shooting point en-
semble� of various shooting algorithms in comparison to the

distribution from the RPE and its impact on the likelihood
function. As an illustrative example, we will use a model that
consists of a single particle in a finite one-dimensional exter-
nal potential

v�x� = �
a2 − �a − x�2

a2 . �B1�

Here, x is the position of the particle, a is the position of the
maximum of the quadratic potential, and � sets the energy
scale. For simplicity, the position can only take values within
the interval 0�x�2a. This simple model serves as a general
example for a system with a free energy barrier separating
two stable states. For this system, the committor function can
be evaluated analytically using the backward Kolmogorov
equation31,32 which simplifies in this case to

��v�x�
�x

�pB

�x
=

�2pB

�x2 . �B2�

With the boundary conditions pB=0 for x=0 and pB=1 for
x=2a, the solution is

pB�x� =
1

2
�1 +

erf� x − a

a
����

erf�����
� , �B3�

where �� plays the role of a dimensionless reduced inverse
temperature. With an analytic expression for pB, we can also
calculate the distribution of the trial shooting points Ptrial and
a subset of these, the accepted shooting points Pacc, i.e.,
shooting points that result in trajectories that are accepted. In
a two-way shooting simulation, a shooting point is accepted
with a probability Pacc=2P�x �TP�pApB and rejected with a
probability Prej= P�x �TP��pA

2 + pB
2�. Here, P�x �TP� is the

probability to choose a certain shooting point x from a tran-
sition path TP. The trial shooting points are the sum of ac-
cepted and rejected points: Ptrial= Pacc+ Prej= P�x �TP�, where
we used pA+ pB=1. Applying the relation P�x �TP�P�TP�
= P�TP �x�P�x� �Ref. 10�, we find that

Ptrial
TPS � pBpAe−�v�x�. �B4�

Here, we have used that P�TP� is a constant and P�x� is the
Boltzmann distribution. The accepted shooting points are
distributed according to

Pacc
TPS � 2P�x�TP�pApB = pB

2 pA
2e−�v�x�. �B5�

The approach of aimless shooting is to focus on shooting
points that are actually accepted by biasing the shooting to-
ward the transition state. These shooting points result in tra-
jectories that are accepted or rejected considering the usual
TPS acceptance criterion. The trial shooting points are sim-
ply the sum of rejected and accepted shooting points, where
we find that the distribution of rejected shooting points
Prej

aimless is broader than the distribution of accepted shooting
points Pacc

aimless because the probability of rejecting a shooting
move increases with the distance of the shooting point with
respect to the transition state. However, the distribution of
the trial shooting points as well as Pacc

aimless and Prej
aimless are

peaked at the transition state.
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For one-way shooting, the probability to accept a for-
ward shot is Pacc,for=

1
2 P�x �TP�pB; the probability for a back-

ward shot is Pacc,back= 1
2 P�x �TP�pA. The factor 1/2 comes

from the fact that we choose a forward or a backward shot
with the same probability. Combining the two, we find that
the overall distribution of accepted shooting points is
Pacc

oneway= 1
2 P�x �TP�. Similarly, the distributions of the re-

jected shooting points are Prej,for=
1
2 P�x �TP�pA and Prej,back

= 1
2 P�x �TP�pB. This means for one-way shooting, the trial

shooting points, the accepted shooting points, as well as the
rejected shooting points all share the same distribution
P�x �TP�.

These distributions are the basis for the likelihood esti-
mation. However, the accuracy is not simply related to this
relation because the particular form of the likelihood intro-
duces an intrinsic weight for points close to the transition
state. This means that even if the points would be drawn
uniformly over the whole transition, only the ones close to
the transition state would actually contribute to the likeli-
hood. This is best seen by rewriting the likelihood function
for the perfect fit pB

est= pB.

ln L = 	
x→B

ln�pB�x�� + 	
x→A

ln�1 − pB�x��

= N�	
x

P�x�pB�x�ln pB�x� + 	
x

P�x�pA�x�ln pA�x��
= N	

x

P�x��pB�x�ln pB�x� + pA�x�ln pA�x�� . �B6�

In the second line, we have used the fact that we can rewrite
the sum over all x→B as the sum over all x of the probabil-
ity that x ends up in B. This is the probability of generating x
�i.e., P�x�� times the probability that this point will lead to a
trajectory that ends in B �i.e., pB�. The number of points N
can be taken out of the sum. Analogous for points that end in
A in the third line, where we have also used pA=1− pB. The
second term in the sum is an intrinsic weight of the likeli-
hood function and because of its particular form, we will
refer to it in the following as information weight I�x�
= pB�x�ln pB�x�+ pA�x�ln pA�x�. The individual contributions
of each point x to the sum are therefore denoted as C�x�
= P�x�I�x�. We will now study the contribution function for
different distributions P�x� depicted in Fig. 11. The trial
shooting points of aimless shooting are distributed according
to Pacc and the trial shooting points of one-way and two-way
shooting are distributed according to Ptrial. In both cases,
only shooting points close to the transition state contribute to
the likelihood function. The shooting point distributions in a
TIS simulation depend on the particular choice of the
positions of the interfaces and cannot be written as an ana-
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FIG. 11. Analytic result for the contributions to the likelihood function for
a=25 and ��=10. For the trial distribution Ptrial

TPS �squares�, the contribution
Ctrial= I�x�Ptrial

TPS �solid line� is strongly peaked around the transition state at
x=25. This peak is even more pronounced for Pacc

TPS �circles� which leads to
a contribution function Cacc �dashed line�. Note that the ensemble of trial
shooting points from aimless shooting is equivalent to Pacc and that of one-
way shooting is equivalent to Ptrial. The absolute values of C�x� and I�x� are
plotted for comparison on a logarithmic scale.
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FIG. 12. Distribution of the trial shooting points in a TIS simulation with
nine interfaces at positions indicated by the dotted lines. The normalized
overall distribution �black� is the sum of all forward �blue� and backward
�red� trajectories.
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FIG. 13. Distribution of the accepted shooting points from the TIS simula-
tion. The color code is that same as in Fig. 12.
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FIG. 14. Contribution function for data points taken from the reweighted
path ensemble which are distributed according to their Boltzmann factor
�dotted line�. Multiplied with the information weight I�x� �dashed line�, the
contributions to the likelihood becomes a flat line �solid�. For comparison,
the absolute values of I�x� and C�x� are plotted.
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lytic function. Therefore, we employ a Monte Carlo
simulation with interfaces at the positions
x=5,10,15,20,25,30,35,40,45 to estimate these distribu-
tions. Trajectories are generated with a procedure where the
particle is attempted to move at random from xo to xn at each
step with an acceptance probability of acc�o→n�
=min�1,exp�−��v�xn�−v�xo����. The resulting shooting
point ensembles of the accepted and trial shooting points are
shown in Figs. 12 and 13, respectively. Here, the distribution
of the trial shooting points is almost uniform over the whole
transition. Clearly, multiplying a flat distribution with the
information function I�x� leads to a contribution of points
only at the transition state. This means that a likelihood
maximization based on the TIS shooting point ensemble
would not be sufficient to describe the whole transition.

However, the reweighted path ensemble shows a differ-
ent picture. The distribution of points becomes simply the
Boltzmann distribution: P�x��e−��F�x�. This is a function
with two strong peaks at the stable states and a minimum at
the transition state, in contrast to the function I�x� which is
peaked around the transition state and vanishes close to A
and B. These two factors cancel each other to a large degree
and the contributions to the likelihood becomes almost uni-
form over the whole range from state A to state B �see Fig.
14�. Clearly, the product of the Boltzmann factor and the
information weight from the likelihood lead to an almost flat
contribution function. This means the information that goes
into the likelihood estimation is uniform over the whole tran-
sition, only if the full path ensemble is taken into account.

Remarkably, in Eq. �B6�, we have assumed that we
found the perfect estimate for pB; the likelihood, however,
does not vanish but rather becomes a constant times the
number of data points. This can be considered as the upper
limit for the given distribution. In the case of this simple
model, we can explicitly calculate the sum in Eq. �B6� be-
cause the normalization factor Z in the Boltzmann weight is
known when we assume that phase space is restricted to only
points between A and B. Then the upper limit for the
maximum likelihood is max�ln L��=N	xP�x� /ZI�x�

=−0.000 48N, with N as the number of data points. In the
RPE this number is N=Nd�	i=0

Nf 
i, where Nf is the number
of time slices in the path ensemble.
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