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We introduce a reweighting scheme for the path ensembles in the transition interface sampling
framework. The reweighting allows for the analysis of free energy landscapes and committor
projections in any collective variable space. We illustrate the reweighting scheme on a two
dimensional potential with a nonlinear reaction coordinate and on a more realistic simulation of the
Trp-cage folding process. We suggest that the reweighted path ensemble can be used to optimize
possible nonlinear reaction coordinates. © 2010 American Institute of Physics.
�doi:10.1063/1.3491817�

I. INTRODUCTION

Rare events in complex high dimensional systems, such
as crystal nucleation, protein folding, and chemical reactions
in solution, remain a challenge for computational studies,
because a naive straightforward sampling of the phase space
by employing molecular simulation hardly ever samples the
important barrier regions. Over the years many approaches
have been developed to address the rare event sampling
problem. Among them are umbrella sampling,1 flooding,2

metadynamics,3 and many others.4 These methods produce a
free energy profile or landscape in terms of an a priori de-
fined reaction coordinate variable. Application of, for in-
stance, the transition state theory based reactive flux
method,5,6 hyperdynamics,7,8 temperature accelerated
dynamics,9 or parallel replica10 can also yield the dynamical
evolution of a system, including the phenomenological rate
constants. However, while for simple systems constructing a
reaction coordinate can be easy, for complex systems a de-
scription of such a coordinate is usually not trivial. A poorly
chosen collective variable might result in a wrong estimate
for the transition state, in a statistically unmeasurable trans-
mission coefficient due to recrossings, and in mechanisms
that are even qualitatively completely wrong.11 A prime ex-
ample of a complex process for which a suitable reaction
coordinate is almost impossible to guess intuitively is protein
folding.

One possible solution to this problem is the application
of the transition path sampling method �TPS�, designed to
harvest a collection of dynamical pathways between a pre-
defined initial and final state.11,12 The major advantage of this
method is that the reaction coordinate for the transition be-
tween the initial and final state is not assumed. Moreover, as
the dynamics used in TPS is the actual underlying physical
dynamics, the method samples the true kinetic mechanism.
The outcome of a TPS simulation is an ensemble of path-

ways that can be analyzed to extract qualitative information
on the mechanism and the reaction coordinate. In addition,
the TPS method yields the rate constant by computing the
reversible work to constrain the path ensemble to the final
state. Transition interface sampling �TIS� is a TPS version
that improves on this rate constant calculation by introducing
a number of interfaces, through which the positive effective
flux can be measured.13 The TIS expressions for the rate
constant form the basis of the forward flux sampling �FFS�,
which was especially developed for nonequilibrium dynam-
ics, but also holds for equilibrium systems.14 TIS can be used
to obtain the rate constant and the free energy profile as a
function of a progress parameter, simultaneously.15 The main
result following from TIS is the crossing probability histo-
grams as a function of the progress parameter, which can be
joined together by the weighted histogram analysis method
�WHAM�.16 Recent work showed that combining TIS with
the replica exchange formalism �RETIS� improves the effi-
ciency of the path sampling significantly.17,18

The above path sampling methods make use of reweight-
ing of histograms as a function of a certain collective vari-
able. In this work we show that the path ensemble itself can
be reweighted using the TIS crossing probabilities. This re-
weighting results in a path ensemble where each path has a
weight that represents the probability of occurring in an un-
biased path ensemble. It is thus a correction for the bias that
the TIS approach introduces for each interface. The path
weight implies that each time slice in the path also has the
same weight. The general idea of combining multiple path
ensembles was independently put forward in a recent paper
by Minh and Chodera.19

As the reweighted path ensemble �RPE� is an approxi-
mation of unbiased trajectories, we can use it not only to
compute the free energy as a function of the reaction coor-
dinate, but as a function of any coordinate. Moreover, be-
cause we know where each path ends, we can project the
committor as a function of any coordinate. In addition, as
will be discussed at length in Ref. 20, this allows for extract-a�Electronic mail: p.g.bolhuis@uva.nl.
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ing information from the RPE for an analysis of nonlinear
reaction coordinates, including parts of the mechanism that
are far away from the transition state region.

The remainder of paper is organized as follows. First, we
introduce the path ensembles and the reweighting scheme in
Sec. II. We illustrate the reweighting method on a simple
two–dimensional �2D� potential. In addition, we apply it to a
more realistic system, the Trp-cage folding transition, which
we studied in atomistic detail in a previous paper.21,22 We
end with concluding remarks.

II. METHODS

A. The path ensembles

A trajectory �or path� is defined as xL��x0 ,x1 , ¯xL�, a
sequence of phase space points x= �rN ,pN�, where r and p
denote the coordinates and momenta of the N-particle sys-
tem. The time step between these sequential points, or time
slices, is �t, resulting in a total time duration of the path
T=L�t. The probability of finding a certain trajectory xL is
proportional to12

��xL� = ��x0�	
i=0

L−1

p�xi → xi+1� , �1�

where ��x� denotes the steady state distribution, e.g., the
canonical distribution, and p�x→y� represents the Markov-
ian probability to go from a state x to y within one time
interval.23 The normalized path probability is

P�xL� = ��xL�/Z . �2�

Z is normalization factor that is akin to a partition function
and is given by

Z �
 DxL��xL� , �3�

where the integration runs over all possible paths of all
lengths.

A path sampling of rare events only should sample paths
that lead over the barrier from an initial stable state A to a
final stable state B. This can be achieved by putting a con-
straint in the path distribution of Eq. �2�, such that only paths
that connect A to B contribute to the distribution. This tran-
sition path ensemble is

PAB�xL� = h�xL���xL�/ZAB, �4�

with again ZAB a normalizing factor defined by
�DxLPAB�xL�=1. The indicator function h�xL� is defined as

h�xL� = �1 if x0 � A ∧ xL � B∧
∀�j
0 � j � L�:x j � �A � B�

0 otherwise,
� �5�

such that sampling this distribution only selects paths that
just leave A and just enter B.

TIS �Ref. 13� introduces n+1 nonintersecting interfaces
between A and B described by a progress parameter ��x�
which is a function of the phase point x. The n+1 interfaces
are defined by the ordered sequence �0 ,�1 , . . . ,�n, where the
first interface �0 equals the boundary of state A, and the last

one �n is identical to the boundary of state B. The TIS path
ensemble that we define here selects paths that start in A, and
either end in B or return to A, provided that they have
crossed a certain interface �i. Defining the region of phase
space beyond interface i by �i

+= �x :��x���i�, the path prob-
ability is

PA�i
�xL� = h̃i

A�xL���xL�/ZA�i
, �6�

where the normalizing factor ZA�i
is again defined by

�DxLPA�i
�xL�=1. The indicator function for paths that begin

in A, end in A or B, and cross �i is

h̃i
A�xL� = �

1 if x0 � A ∧ xL � �A � B�∧
∀�j
0 � j � L�:x j � �A � B�∧
∃�j
0 � j � L�:x j � �i

+

0 otherwise.
� �7�

The TIS path ensemble can be sampled using the regular
shooting algorithm.13 Employing a combination of the rep-
lica exchange formalism with the TIS algorithm �RETIS�
improves the sampling efficiency.17,18 From the TIS path en-
semble of interface i one can extract the crossing probability
P�� 
�i� for each value of � for the interval �i����B from
the histogram

PA��
�i� =
 DxPA�i
�xL�	��max�xL� − �� , �8�

with �max�xL� the maximum value of � reached for each
trajectory xL in the path ensemble A�i and 	�x� is the Heavi-
side step function. For all values ���i the crossing prob-
ability histograms of different interfaces j
 i in Eq. �8� differ
only by a multiplicative factor. Therefore, all interface histo-
grams can be joined together using the weighted histogram
analysis method �WHAM�.16 In the appendix we show that
the total histogram can be expressed as

PA��
�1� = �
i=1

n−1

w̄i
A	��i+1 − ��	�� − �i��

j=1

i

PA��
� j� , �9�

where the weights w̄i
A are obtained by applying WHAM. For

TIS, the weights are given by w̄i
A= ��i=1

n−1ZA /ZA�i
�−1.

The rate constant kAB=�01P��n 
�1� follows from the
product of the crossing probability P��n 
�1� and the flux �01

through interface �1. For the reverse process B→A corre-
sponding expressions can be formulated �see appendices�.
Free energy profiles as a function of � follow from projec-
tions of the forward and reverse path ensembles, while care-
fully avoiding overcounting.15,18

B. The reweighted path ensemble

The unbiased path ensemble �Fig. 1� for A is given by all
paths that leave A and end in A or in B. The corresponding
path probability is

PA�xL� = hA�x0���xL�/ZA, �10�

where the indicator function hA�x�=1 for points x�A and
zero otherwise, and ZA��DxhA�x0���xL�. These paths are
depicted in Fig. 1 as red solid trajectories outside of A. The
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counterpart, the unbiased path ensemble for state B, can be
defined similarly and is given as blue lines outside of B. If
one could sample this ensemble directly then all properties of
the rare event of interest could be directly computed. In par-
ticular, the unbiased path ensemble allows for extracting rate
constants, free energies, and a reaction coordinate. However,
sampling this ensemble is the very problem we would like to
solve in the first place.

Nevertheless, just as the WHAM method can reweight
the crossing probabilities, it can reweight the TIS path en-
sembles using

PA�xL� = �
j=1

n−1

PA�i
�xL�WA�xL� , �11�

where each path is given a certain weight WA�xL�
��i=1

n−1w̄i
Agi

A�xL�. Similar to the theta functions in Eq. �9�, the
function gi

A�xL�=	��max�xL�−�i�	��i+1−�max�xL�� selects the
correct weight w̄i

A for a path that has its the maximum �
between interface i and i+1. To be meaningful, the re-
weighted path ensemble Eq. �11� has to be equivalent to Eq.
�10�. In Appendix A we show that for this condition to hold,
the weights w̄i

A for this path ensemble are identical to those
for the crossing histograms �cf. Eq. �9��. Thus, the weights
obtained by matching the crossing histograms with WHAM
give access to the unbiased path ensemble from state A.

By defining a similar expression for the reverse process
the joint path ensemble for the forward and reverse process is

P�xL� = cA�
j=1

n−1

PA�j
�xL�WA�xL� + cB�

j=1

n−1

PB�j
�xL�WB�xL� .

�12�

The unknown constants cA and cB follow from matching the
AB and BA histograms, as explained in the appendices.

This reweighted path ensemble only takes into account
paths that leave A �or B� and cross an interface, not the paths
that remain in A �or B� and do not cross any interfaces.
However, these paths are easily accessible from the flux
computation, or from the additional first and last interface
ensemble P�1

− �and P�n−1

+ � in the RETIS framework.17,18 The
complete path ensemble is then found by adding P�1

− and
P�n−1

+ to Eq. �12�, where the final and initial parts of the
trajectories in P�1

− between �0 and �1 and likewise in P�n−1

+

between �n and �n−1 are removed to avoid double counting.

�Note that in many applications �0=�1, although this is not
required.� The complete reweighted path ensemble finally
becomes

Pc�xL� = cA�w1
AP�1

− + �
j=1

n−1

PA�j
�xL�WA�xL��

+ cB�wn−1
B P�n−1

+ + �
j=1

n−1

PB�j
�xL�WB�xL�� . �13�

In summary, the idea of the RPE is to obtain the unbi-
ased path ensemble. While paths crossing the barrier are very
rare, they are sampled through TIS and obtain their corrected
weight through applying WHAM. The statistics of the en-
semble is correct and follows that of Eq. �10�.

C. Projection of the free energy and committor
surfaces

The RPE can be used to project the free energy on an
arbitrary m-dimensional collective variable space
q= �q�1� ,q�2� , . . . ,q�m��. The free energy follows from the
probability p�q� to find a configuration in the unbiased
ensemble at a certain point q

F�q� = − kBT ln p�q� + const., �14�

where kB is Boltzmann’s constant. This probability is given
by

p�q� = C
 DxL�
k=0

L

	
i=1

m

��q�i��xk� − q�i��Pc�xL� , �15�

where ��x� is the Dirac delta function and C a normalizing
constant. Besides the free energy we can project the averaged
p̄B committor function on arbitrary surfaces, by using the
indicator function hB�xL�,

p̄B�q� =
�DxL�k=0

L 	i=1
m ��q�i��xk� − q�i��Pc�xL�hB�xL�

�DxL�k=0
L 	i

m��q�i��xk� − q�i��Pc�xL�
,

�16�

where hB�x�=1 if x�B and zero otherwise. This expression
holds because each slice on the path can be seen as a real-
ization of a committor shot. It is important to realize that
p̄B�q� is an averaged committor and not the full committor
pB�r�. The difference is that the full committor gives a dis-
tribution that can be used for a committor test �see, e.g., Ref.
24�, whereas p̄B�q� is only the average. While, in principle,
the RPE contains also the full committor, in practice we do
not have access to pB�r� because there is usually only one
shot for each r, thus only a 0 or a 1. Nevertheless, p̄B can
yield crucial hints for reaction coordinate analysis.25,26 In
principle, one can project any other property of the path en-
semble in this way.

FIG. 1. Cartoon of the unbiased path ensemble in the context of TIS. The
red and blue curves outside the �shaded� stable state regions denote the
unbiased path ensemble for A and B, respectively.
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III. RESULTS AND DISCUSSION

A. The z-potential

1. The potential

In this section we employ a two dimensional model sys-
tem for which the potential is given by

V�x,y� =
x4 + y4

20 480
− 3e−0.01�x + 5�2−0.2�y + 5�2

− 3e−0.01�x − 5�2−0.2�y − 5�2
+

5e−0.2�x + 3�y − 3��2

1 + e−x−3

+
5e−0.2�x + 3�y + 3��2

1 + ex−3 + 3e−0.01�x2+y2�. �17�

This potential is visualized in Fig. 2. It has two stable states,
one at �
7.2,
5.1� labeled A and one at �7.2,5.1� labeled B.
These two minima are separated by a barrier in the shape of
the letter s �or a reversed z�, due to the presence of two high
potential ridges. The potential at the origin is V=4.28kBT
above the minima. The minimum energy pathway is indi-
cated and roughly follows the s-shape.

The system consist of a single particle evolving accord-
ing to Langevin dynamics on this potential. For details on the
algorithm see, e.g., Ref. 12. The friction is set to �=1, the
temperature is set to �=4, where �=1 /kBT is the inverse
temperature. The time step is set to �t=0.05. The A and B
regions itself are defined as ellipsoidal regions around the
minima �xm ,ym� as �x ,y 
 �x−xm�2+ �1 /16��y−ym�2�R2�. The
radius is set to R=0.5.

2. RETIS using linear interfaces

To obtain a proper RPE for the z-potential we performed
TIS simulations. We chose 28 linear interfaces �n=29, not
counting the stable state definitions �0 and �n�, which are
parametrized by y=ax+�, with a=−0.2. This choice for the
slope of the interfaces was determined by trial and error and
allows pathways to find their way over the barrier �using just
a vertical �a=�� or horizontal �a=0� interface will fail to do
so�. The variable � takes the values �
5.5, 
5, 
4.5, 
4.25,

4, 
3.75, 
3, 
1.5, 
1, 
0.5, 0.5, 0.75, 1, 1.5� for the
first 14 interfaces, which are used to sample the AB transi-
tion. The other 14 interfaces are used to sample the BA tran-
sition and are defined by �-values �
1.5, 
1, 
0.75, 
0.5,

0.5, 1, 1.5, 3, 3.75, 4, 4.25, 4.5, 5, 5.5�. All 28 interfaces are
depicted in Fig. 2. While we could perform regular TIS, we
improve the sampling by applying the replica exchange ver-
sion of TIS. Following the scheme proposed by van Erp,17

we include two additional interfaces at 
5.5 and 5.5 in order
to sample the stable states, to calculate the fluxes �01 and
�n,n−1, as well as to achieve much better sampling. In total
there are 30 replicas. An AB path created by shooting ran-
dom trajectories from the origin acted as the initial path for
all interfaces. The settings of the dynamics were as above:
the time step �t=0.05, the friction �=1, and the inverse
temperature �=4. We performed 10 000 shooting moves for
each interface. In addition, we attempted an equal amount of
swaps between neighboring interfaces and an equal amount
of time reversals. These latter two types of moves are very
cheap, as they do not require integration of the equations of
motion. Reversal of paths within an interface is only possible
for AA or BB pathways. Attempts to swap interfaces between
the two sets of interfaces �for the AB transition and BA tran-
sition� were only successful if both paths were connecting
the two stable states. During such a swap the paths are time-
reversed, i.e., an AB trajectory becomes a BA trajectory and
vice versa. The acceptance ratio for the shooting moves
ranged between 50% and 80%, due to biasing of the shooting
points toward the interface location.18 The swapping accep-
tance ratio ranged between 0.1 and 0.8. The reversal ratio
was close to unity, except for the replicas belonging to the
middle interfaces, as these sampled more AB and BA paths.
The wide range of swapping acceptance ratios indicates that
the position of the interfaces could be further optimized. The
average path length varies from a few hundred time steps for
the interfaces close to the stable states to almost 10 000 time
steps for the middle replicas. Paths are saved for further
analysis every 100th shooting move.

Figure 3 shows the fraction of path types occurring in
each replica. Only in the middle six replicas there is a sub-
stantial fraction of paths connecting both states.

From the path ensembles we construct the crossing
probability histograms, which we can join with WHAM �see

FIG. 2. The z-potential as a function of x and y. The stable states are
indicated by ellipses. The location of the 28 linear interfaces is described by
y=−0.2x+�. The values for � are given in the main text. The minimum
energy pathway is depicted as well. 0 5 10 15 20 25 30

interface

0

0.2

0.4

0.6

0.8

1

fr
ac

ti
o
n

FIG. 3. The fraction of AA, AB, BA, and BB paths for each interface. The
color code is black=AA, red=AB, green=BA, and blue=BB. As there are no
AA and AB paths for interfaces beyond 14, a gap appears in the plot around
interface 15.
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Fig. 4�. The final values of the crossing histograms
ln PA��n 
�1�=−17.03 and ln PB��1 
�n�=−17.04 are equal,
as expected for this symmetric potential. The flux through
the first and last interface is �01=1 /50.7 and �n,n−1

=1 /51.0, respectively. The corresponding �dimensionless�
rate constants are kAB=7.9�10−10 and kBA=7.8�10−10.

3. RETIS using string interfaces

Due to the shape of the z-potential it is rather difficult to
obtain a good sampling using linear interfaces and the ap-
plied RETIS might thus not be optimal. �Note that this is
already much less the case compared to employing, e.g., um-
brella sampling due to the nonlocal nature of the shooting
move.� As an alternative to imposing linear interfaces the
progress parameter � can also be parametrized by a string
description.27 The string consists of M beads �referred to as
images� connecting the minima of the stable states. The
original string method optimizes the string to follow the
minimum energy path. One of the ingredients of the method
is the redistribution of the images along the string such that
they are equidistant in the collective variable space27 �see
Fig. 5�. During the TIS simulation each configuration along
the trajectories is assigned to the nearest images on the string
by a Voronoi construction. Linear interpolation yields a con-
tinuous value of � along the string. Alternatively, one can
make use of splines, or of other geometrical projection pro-
cedures. To remove the influence of different choices of units
for the collective variables, one can optimize the string in-
cluding an additional scaling factor, or one can follow the
approach lined out in Ref. 28. Note that a choice of dynami-
cally coupled collective variables might render these projec-

tion methods problematic as in that case the isocommittor
surfaces are no longer orthogonal to the string.29,30

We used a string with 20 images, obtained from a non-
linear reaction coordinate analysis.20 Here, the � value for
each configuration along the TIS trajectories was determined
by a geometrical projection method as described in Appendix
B. This projection returns a continuous �=� value between 0
and 1. As the projection method requires subsequent images
to be equidistant also in the collective variable space, we
apply the reparametrization scheme of Ref. 27.

The interfaces were again divided in two sets: 14
interfaces for the AB transition were placed at
�= �0.1,0.125, 0.15, 0.175, 0.2, 0.25,0.3,0.325,0.35,0.375,
0.40,0.425,0.45,0.5�, while the 14 interfaces for the
BA transition were positioned at �= �0.5,0.55,0.575,
0.6, 0.625, 0.65, 0.7, 0.75, 0.775,0.8,0.825,0.85,0.875,0.9�.
These values were chosen such that the exchange between
interfaces is roughly equal for most TIS ensembles. In addi-
tion, we again included an additional first and last interface
at �=0.1 and �=0.9 in order to enhance the sampling and
simultaneously compute the fluxes �01 and �n,n−1.17 Note
that we need only one common interface between the for-
ward and backward transition at �=0.5 due to the smaller
hysteresis. The acceptance ratios were comparable to those
obtained in the TIS simulations utilizing the linear interfaces.
Paths were saved for further analysis each 100th shooting
move.

Using the same analysis as above, we computed the
crossing histograms and applied WHAM. Figure 6 shows the
joint crossing probability for both the AB and BA transitions.
The final values of the crossing histograms ln PA��n 
�1�
=−14.53 and ln PB��1 
�n�=−14.52 are equal within the error
bar. The flux through the first and last interface is �01

=1 /292.3 and �n,n−1=1 /286.3, respectively. The correspond-
ing rate constants are kAB=1.67�10−9 and kBA=1.72�10−9.
Note that the rate constants are slightly larger than for the
linear interfaces, possibly caused by an improved sampling.

4. Projection of the reweighted path ensemble

Using the weights obtained from the RETIS sampling
employing the string as an interface progress parameter, we
can construct the RPE from Eq. �13�. Here, the constants cA

and cB are identical due to the symmetry of the potential. The
free energy in the x-y plane follows from Eq. �15� and is
plotted in Fig. 7. The free energy recovers the original
z-potential. Indeed the difference between the projected free
energy and the original potential is constant within around
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FIG. 4. Crossing probabilities for the TIS simulations employing linear interfaces. The left panel is for the forward transition AB, the middle panel for the BA
transition. The probabilities for interface i start at 1 and then decrease monotonically. The histograms overlap each other, allowing for the application of
WHAM. The right panel shows the logarithm of the crossing probabilities PA�� 
�1� �solid� and PB�� 
�n−1� �dashed�.

FIG. 5. A string can be employed as a series of interfaces in a TIS simula-
tion. By a Voronoi construction, each point can be assigned to an image on
the string. The projections are made continuous by linear interpolation or a
geometrical projection method as explained in the appendices.
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0.3kBT, in the important regions of the x-y plane. Naturally,
this does not include the high potential ridges, which are not
sampled in the TIS. The residual difference is possibly
caused by the limited number of paths �2800, resulting in
1 351 929 data points� and the large amount of histogram
bins �2500�.

In addition to the free energy we can project the com-
mittor pB to the x-y plane. This information is usually un-
available, if we do not have the complete unbiased path en-
semble. Using the reweighting scheme of Eq. �16� we plot
the committor in Fig. 7. As expected, the committor is close
to zero in the stable state A. Only when reaching the transi-
tion state region �around �x ,y�= �2,−2�� the committor rises

quickly and reaches unity �around �x ,y�= �−2,2��. From then
on, the committor is almost unity. While these values really
are close to zero and unity, the statistics of the RPE still
allows an accurate estimate of the committors. This accuracy
is useful when trying to optimize the reaction coordinate far
away from the transition states.20

B. Trp-cage

To illustrate the usefulness of the reweighted path en-
semble, we apply it to the TIS simulation results of the Trp-
cage mini protein.22 The Trp-cage is a small protein consist-
ing of 20 residues. In the native folded state it adopts an
�-helix �residues 2–8�, a 3-helix �residues 11–14� and a
polyproline II helix �residues 17–19� �see Fig. 8�. The mini-
protein folds in a two-state manner from an unfolded to a
native state, with a folding rate k��4.1 �s�−1.

In previous work we have applied TPS and TIS to the
folding/unfolding equilibrium of this protein. We found that
there were two possible folding routes. On one route the
polypeptide first forms the main secondary structure, the
�-helix, followed by the appearance of the tertiary contacts.
On the second pathway the tertiary contacts precede the for-
mation of the secondary structure elements. The TPS simu-
lations indicated that the last route was most abundant. For
completeness we show this N-L transition in Fig. 8. During
the sampling we monitored �among others� the following
order parameters: the protein radius of gyration using the
�-carbons only �rg�, the fraction of native contacts �nc�, the
root mean square deviation from the native �-carbons struc-
ture �rmsd�, the root mean square deviation of the �-helical
residues 2–8 from an ideal helix �rmsdhx�, the solvent acces-
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FIG. 6. Crossing probabilities for the TIS simulations using the string interface description. The left panel is for the forward transition AB and the middle
panel is for the BA transition. The probabilities for interface i start at 1 and then decrease monotonically. The histograms overlap each other, allowing for
application of WHAM. The right panel shows the logarithm of the crossing probabilities PA�� 
�1� �solid� and PB�� 
�n−1� �dashed�.

FIG. 7. Top: projected free energy �F=−log ��x ,y� in the x ,y plane recov-
ers the original potential �V, for �=4. Bottom: projected committor func-
tion. The committor is almost zero in the initial state A, rises quickly around
the transition state region, and becomes unity in the final state B.

FIG. 8. Initial and final configurations of the rate-limiting transition along
the U-L-N folding route, one of the two major folding routes for the Trp-
cage. The backbone of the configurations is plotted in white, in cartoon
representation. Hydrophobic side-chains forming the tryptophan pocket are
plotted in licorice: tryptophan side-chain in yellow, proline amino acids in
green, tyrosine in orange, and lysine in white. Water molecules within 3 Å
of the side-chain of Trp-6 are plotted in licorice, with oxygen atoms in red
and hydrogen in white.

174109-6 Rogal et al. J. Chem. Phys. 133, 174109 �2010�

Downloaded 16 Dec 2010 to 145.18.109.182. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



sible surface �sas� of the whole protein, and the number of
water molecules around tryptophan �nwtrp�. We computed
the rate constants for the rate-limiting step on the first route
using TIS, with the rmsdhx as the interface defining variable.
In addition, we performed a likelihood maximization
analysis25 and found that a combination of the rmsdhx and
rmsd described the reaction best. In Refs. 21 and 22 we
reported on the mechanism, the kinetic rate constants, and
the reaction coordinate, but did not discuss the free energy
profile. With the current methodology it is possible to extract
the free energy and the committor surfaces as a function of
arbitrary projections. To do so, the TIS path ensembles are
reweighted using the same WHAM weights as reported in
Ref. 22. The constants cA and cB in Eq. �12� are obtained
from the rate constants reported in Ref. 22. Subsequently, the

paths can be projected on any set of collective variables us-
ing Eq. �15� in order to obtain the free energy. In Fig. 9 we
plot the free energy landscapes as a function of pairs of col-
lective variables. In this way we have access to a six dimen-
sional free energy landscape. Note that while many free en-
ergy landscapes exhibit two minima, some only have a single
one. The projection enables additional insights, such as that
the z-shaped free energy landscape in the nc, rmsdhx plane
indicates that the rmsdhx collective variable changes inde-
pendently of the number of native contacts nc. Also, in the
rg, rmsd plane, a third state seems to be visited at higher
radius of gyration during the transition. Note that these fea-
tures did not stand out from the path ensembles in Refs. 21
and 22. Hence, the RPE projection enables new insight in the
mechanism of the Trp-cage N-L transition.

FIG. 9. The free energy profiles of the L-N transition in the Trp-cage system. The contours are separated by 1kBT. The profiles are plotted as a function of
all possible combinations of pairs of the monitored collective variables. They are ordered in a grid, such that both the x axis and the y axis of both rows and
columns of plots are identical. The labels simultaneously refer to the x axis above it and the y axis to the right.
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In Fig. 10 we plot the committor functions in the same
landscapes. From these figures, the transition state region can
be immediately deduced, and interestingly does not always
correspond to the free energy saddle point. Moreover, in sev-
eral projections, e.g., nwtrp, rg, the pB=0.5 surface is clearly
nonlinear. Analysis of the committor surfaces gives unprec-
edented insight in the reaction coordinate �see also Ref. 20�.

IV. CONCLUSION

We have introduced a reweighting procedure for path
sampling that allows to join the path ensembles in a TIS
simulation series into one single large reweighted path en-
semble that has the same properties as the unbiased path
ensemble. The main difference is that the rare pathways that
very seldom occur in an unbiased ensemble now are much

more abundant due to the bias that the path sampling intro-
duces. The reweighting scheme corrects for this bias. The
gain is that we have access to accurate statistics over the
entire path space between the two stable states. In addition,
the reweighting scheme allows for the projection of the path
ensemble on arbitrary collective variables. This is useful if
one wants to study free energy profiles in many different
landscapes besides the imposed TIS progress parameter. The
importance of the reweighting scheme is further emphasized
by the fact that the free energy landscape is generally not
available from path sampling. Also the �averaged� committor
function is available due to the knowledge of the destination
of each path in the ensemble. Moreover, the RPE allows,
unlike free energy biasing schemes, to investigate the order
of events, as registered by collective variables. We note that

FIG. 10. The averaged committor p̄B of the L-N transition in the Trp-cage system. White is p̄B=0 and blue denotes p̄B=1. The grid of plots is organized as
in Fig. 9.
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the RPE is also available in the FFS method,14 because there
the path probabilities are automatically reweighted at each
interface. However, because the backward paths are not
sampled in FFS, it has different convergence properties.

The RPE can also help identifying complex nonlinear
reaction coordinates that span the entire mechanism from
initial state to final state. This will be the subject of another
paper in this volume.20
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APPENDIX A: THE REWEIGHTED PATH ENSEMBLE

In this appendix we show that the RPE expression Eq.
�11� is equivalent to the unbiased paths ensemble Eq. �10� for
paths leaving stable state A. In the TIS framework the path
probability of interface i reads

PA�i
�xL� = h̃i�xL���xL�/ZA�i

, �A1�

with again ZA�i
as the normalizing factor

ZA�i
�
 Dxh̃i�xL���xL� , �A2�

where h̃i�xL� is given in Eq. �7� and �i
+= �x :��x���i�. The

reweighted path ensemble �from A� is defined as the sum of
the path ensembles over the interfaces, where each interface
is weighted properly. To derive how the interfaces are
weighted, we first look at how the crossing probability is
weighted using WHAM.

The crossing histograms are constructed by monitoring
the maximum �-value along a path in the ensemble using a
	-function:

PA��
�i� =
 DxPA�i
�xL�	��max�xL� − �� , �A3�

where �max�xL� is the maximum value of � reached for each
trajectory xL in the path ensemble A�i and 	 is the Heaviside
step function. The total histogram is constructed from the
TIS ensembles for interface i=1¯n−1 �Ref. 31� by apply-
ing the WHAM �multiple histogram method�,16

PA��
�1� = �
i=1

n−1

w̄i
A	��i+1 − ��	�� − �i��

j=1

i

PA��
� j� . �A4�

The weights w̄i
A are given by

w̄i
A =

1

� j=1
i 1/wj

A , �A5�

where wj
A are the optimized WHAM weights for each inter-

face histogram. Note that the �0 and �n interfaces are ex-
cluded from these sums, as they �usually� denote the stable
state definitions themselves. Defining the function

	i��� = 	��i+1 − ��	�� − �i� , �A6�

and combining Eqs. �A1�, �A3�, and �A4� the reweighted
histogram becomes

PA��
�1�

= �
i=1

n−1

w̄i
A	i����

j=1

i 
 DxPA�j
�xL�	��max�xL� − ��

= �
i=1

n−1

w̄i
A	i����

j=1

i 
 Dx
h̃j�xL���xL�

ZA�j

	��max�xL� − ��

=
 Dx��
i=1

n−1

w̄i
A	i����

j=1

i
h̃j�xL�
ZA�j

���xL�	��max�xL� − �� .

�A7�

This reweighted histogram should be clearly the same as the
histogram based on paths only restricted to start in A.

PA��
�1� =
 DxPA�xL�	��max�xL� − ��

=
 Dx
hA�x0�

ZA
��xL�	��max�xL� − �� , �A8�

with

ZA �
 DxhA�x0���xL� . �A9�

Equation �A4� can be only equal to Eq. �A8� if for each path
xL

�
i=1

n−1

w̄i
A	i����

j=1

i
h̃j�xL�
ZA�j

=
hA�x0�

ZA
. �A10�

For each path in the ensemble of the ith interface hA�x0�=1,

and h̃j�xL�=1 for j� i, and thus

�
i=1

n−1

w̄i
A	i����

j=1

i
1

ZA�j

=
1

ZA
. �A11�

This equation can only hold for each � if for each i

w̄i
A = 1/�

j=1

i
ZA

ZA�j

. �A12�

This is indeed the WHAM solution �A5�, with
wj

A=ZA�j
/ZA.4,16

In the same way as the crossing histograms we can re-
weight the paths in the TIS path ensemble. By defining the
function g�xL�

gi
A�xL� = 	��max�xL� − �i�	��i+1 − �max�xL�� , �A13�

we can select only those paths that reach their maximum �
between interface i and i+1. First, we use the function gi�xL�
to select the paths for interface i. Then the total path en-
semble is constructed from the crossing histogram weights
using a similar reweighting scheme as in WHAM:
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PA�xL� = �
i=1

n−1

w̄i�gi
A�xL��

j=1

i

PA�j
�xL�

= �
i=1

n−1

w̄i�gi
A�xL��

j=1

i
h̃j

A�xL�
ZA�j

��xL�

= ��
i=1

n−1

w̄i�gi
A�xL��

j=1

i
h̃j

A�xL�
ZA�j

���xL� , �A14�

where w̄i� is the weighting factor for interface i, with 0� i
�n. The reweighted path ensemble must naturally be the
same as the unconditional path ensemble to leave A,

PA�xL� = hA�x0���xL�/ZA. �A15�

Again, Eq. �A14� can only be equal to Eq. �A15� for all
possible paths when the following holds for each path xL:

�
i=1

n−1

w̄i�gi
A�xL��

j=1

i
h̃j

A�xL�
ZA�j

=
hA�x0�

ZA
. �A16�

For each path in the ensemble of interface i the function

h̃j�xL�=1 for j� i, and thus

�
i=1

n−1

w̄i�gi
A�xL��

j=1

i
1

ZA�j

=
1

ZA
, �A17�

because each path �I� belongs to an interface i, �II� when
belonging to interface i it also belongs to each previous in-
terface, and �III� each path starts in A. It follows that the
above condition �A17� can only be fulfilled if for each inter-
face,

w̄i� = 1/�
j=1

i
ZA

ZA�j

. �A18�

Comparing the above equation with Eq. �A12� leads to the
conclusion that w̄j�= w̄j

A, and hence that the WHAM weights
for the crossing histograms are the same as for the RPE,

wj� = wj
A = ZA�j

/ZA. �A19�

In other words, by identifying the crossing probability
weights using WHAM we obtained the path weights.

Expression �A14� for the reweighted path ensemble
PA�xL� can be simplified by rearranging the order of the
sums.

PA�xL� = �
i=1

n−1

w̄i�gi
A�xL��

j=1

i
h̃j

A�xL�
ZA�j

��xL�

= �
j=1

n−1
h̃j

A�xL�
ZA�j

�
i=1

n−1

w̄i
Agi�xL���xL� . �A20�

This is allowed because the sum over j=1 to i can be ex-

tended to j=1 to n, because h̃j
A�xL�=0 for j� i due to the

selection by gi�xL�. By defining a path weight WA�xL�
��i=1

n−1w̄i
Agi

A�xL� for each path xL in the ensemble, the expres-
sion for the probability for paths leaving A becomes

PA�xL� = �
j=1

n−1
h̃j

A�xL�
ZA�j

WA�xL���xL� , �A21�

=�
j=1

n−1

PA�j
�xL�WA�xL� . �A22�

The latter equality is identical to Eq. �11� in the main text.
The forward and reverse reweighted path ensembles

need to be combined to retrieve the complete RPE. Defining
the indicator function

h̃i
B�xL� = �

1 if x0 � B ∧ xL � �A � B�∧
∀�j
0 � j � L�:x j � �A � B�∧
∃�j
0 � j � L�:x j � �i

−

0 otherwise,
� �A23�

with �i
−= �x :��x���i�, we can write the path probability for

the reverse process B→A in a similar expression as for
PA�xL�,

PB�xL� = �
j=1

n−1

PB�j
�xL�WB�xL� , �A24�

=�
j=1

n−1
h̃j

B�xL�
ZB�j

WB�xL���xL� , �A25�

with the path weight WB�xL���i=1
n−1w̄i

Bgi
B�xL� where w̄i

B

= �� j=1
i ZB /ZB�j

�−1 are the interface WHAM weights for the
reverse process. ZB and ZB�j

are defined in a similar way as
Eqs. �A9� and �A2�, respectively. The path selection function
gi

B�xL� is

gi
B�xL� = 	��min�xL� − �i�	��i−1 − �min�xL�� , �A26�

where �min�xL� is now the minimum value of � reached along
the trajectory xL.

For the complete RPE we need to combine the two en-
sembles

P�xL� = cAPA�xL� + cBPB�xL� . �A27�

Using two independent �forward and reverse� TIS simula-
tions series the unknown constants cA and cB can be com-
puted by matching the boundary and loop histograms as was
done for the free energy.15 We define the functions

p��� =
 Dx�
k=0

L

����xk� − ��P�xL� , �A28�

pA��� =
 Dx�
k=0

L

����xk� − ��PA�xL� , �A29�

pB��� =
 Dx�
k=0

L

����xk� − ��PB�xL� , �A30�

where the last function pB��� should not be confused with
the committor. Then the probability to find the system at a
value of � is
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p��� = cApA��� + cBpB��� . �A31�

In order to obtain the constants cA and cB we can match the
boundary histograms at a certain interface i, as was done for
the free energy in Ref. 15,

p��� � sAB��i�
pA���
pA��i�

+ sBA��i�
pB���
pB��i�

. �A32�

The scaling factor is sAB=mAi��i� /mAB,i��i�, where mAi��i� is
the un-normalized and unmatched pAi histogram for the re-
gion �i to �i+1, and mAB,i��i� is the un-normalized and un-
matched histogram for AB paths only for the same region.
Similarly, sBA=mBi��i� /mBA,i��i�, with mBi��i� as the un-
normalized and unmatched pBi histogram for the region �i−1

to �i, and mBA,i��i� the BA histograms for the same region. In
short, this rescaling matches the AB histograms with the BA
histograms for each region, as they should be exactly the
same by definition �the BA and AB histograms were called
the boundary histograms in Ref. 15�. Having matched the
histograms, constants cA and cB are

cA =
sAB��i�
pA��i�

, cB =
sBA��i�
pB��i�

, �A33�

for each interface i. If the flux and the crossing probabilities
are known, one can also use the resulting rate constants to
compute the constants cA and cB.18

Summarizing, when a complete TIS simulation is done,
one ends up with path ensembles of n interfaces for both the
A→B and B→A directions. After matching the crossing
probabilities one obtains the weights wi and fitting the free
energy gives cA and cB. The expression for the RPE based on
these simulations is then

P�xL� = cA�
j=1

n−1

PA�j
�xL�WA�xL� , �A34�

+ cB�
j=1

n−1

PB�j
�xL�WB�xL� , �A35�

which is identical to Eq. �12�.
As is explained in the main text, the contributions P�1

−

and P�n−1

+ need to be added to obtain the complete path en-
semble Pc�xL�. Using the RETIS approach17,18 all contribu-
tions to the RPE can be sampled simultaneously and effi-
ciently.

APPENDIX B: GEOMETRICAL PROJECTION ONTO
THE STRING

In the space spanned by the collective variables that are
used to define a transition pathway as a string of N equidis-
tant images positioned at �s1 ,s2 , . . . ,sN�, an arbitrary point p
can be projected on that string in a smooth manner by con-
sidering the triplet of closest string images and drawing a
circle through them. This is illustrated in Fig. 11 for a point
p that is closest to image i. Image i−1 is second closest to p
and image i+1 is third closest, defining the circle with mid-
point m. To project p onto the string we take the point where
the radian from m that goes through p meets the string line

piece between si and si−1. To setup a foliation of the space in
the neighborhood of the string and define a continuous
progress coordinate � along the string, we realize that all
points closest to si are found in the pie-shaped space bound
at the left by the radian from m that crosses line piece si

−si−1 in the middle �denoted 
1/2 in Fig. 11� and at the right
by the radian that crosses line piece between si+1−si in the
middle �denoted +1 /2�.

In the local pie-shaped space, a local progress coordinate
� moves from 
1/2 to +1 /2 �in length units of image sepa-
ration� passing 0 at the radian through si. Note that a point p
at �=−1 /2 is equidistant to images i−1 and i, while at �
=0 such a point is equidistant to image i−1 and i+1. For
values in between, there is a point t on the circle between si

and si+1 for which the distance to p is equal to the distance
between p and si−1.


v2�
 = 
t − p
 � 
v2
 = 
p − si−1
 . �B1�

In Fig. 11, point t is denoted with an open circle and the
vector v2� between t and p is indicated with a dashed arrow.
The fraction of the arc length from si to t on the circle with
respect to that from si to si+1 is directly related to the value of
the progress coordinate: specifically, as this fraction goes
from 0 to 1 �i.e., point t moves from si to si+1�, � goes from

1/2 to 0. Rather than computing arc lengths, we approxi-
mate this fraction by considering point t� that is also equi-
distant from p but lies on the straight line piece between si

and si+1 instead of on the curve. The �approximate� fraction f
is then

FIG. 11. Smooth foliation of collective variable space in the neighborhood
of a parametrized string of images based on the circles that connect each
triplet of images.
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f =

t� − si



si+1 − si

. �B2�

Determining ��p� thus requires finding point t� and frac-
tion f . Using Eqs. �B1� and �B2�, we can write


v2
 = 
v2�
 = 
t� − p
 = 
f · �si+1 − si� + si − p
 ,
�B3�


v2
 = 
f · v3 + v1
 ,

where we defined the vectors v1�si−p, v2�p−si−1, and
v3�si+1−si, as indicated in the figure. Equation �B3� is
solved for f using the quadratic formula. The positive root
�divided by 2� gives our measure of � between 
1/2 and 0,
or, in the case that si+1 was the second closest image to p and
si−1 the third closest image, it gives the measure between �
=0 and �=+1 /2. Therefore, depending on whether p lies left
or right from si, f /2 is added or subtracted to the string
image index i and divided by the number of images N to
obtain a smooth progress coordinate between zero and one
along the entire string:

� = N−1�imin �
�v13

2 − v33�v11 − v22� − v13

2�v33 − 1�
� , �B4�

where vij =vi ·v j. Note that this projection of a phase space
point onto a string of equidistant images only requires
knowledge of the three closest images and not of the circle
center m, so that the application of the projection is also

trivial in higher dimensions. In Fig. 12 the foliation is shown
for the s-shaped string in our model potential.
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