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Activity recognition using semi-Markov
models on real world smart home datasets
T.L.M. van Kasteren ∗, G. Englebienne and B.J.A. Kröse
Intelligent Systems Lab Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands

Abstract. Accurately recognizing human activities from sensor data recorded in a smart home setting is a challenging task. Typ-
ically, probabilistic models such as the hidden Markov model (HMM) or conditional random fields (CRF) are used to map the
observed sensor data onto the hidden activity states. A weakness of these models, however, is that the type of distribution used
to model state durations is fixed. Hidden semi-Markov models (HSMM) and semi-Markov conditional random fields (SMCRF)
model duration explicitly, allowing state durations to be modelled accurately. In this paper we compare the recognition perfor-
mance of these models on multiple fully annotated real world datasets consisting of several weeks of data. In our experiments
the HSMM consistently outperforms the HMM, showing that accurate duration modelling can result in a significant increase in
recognition performance. SMCRFs only slightly outperform CRFs, showing that CRFs are more robust in dealing with viola-
tions of the modelling assumptions. The datasets used in our experiments are made available to the community to allow further
experimentation.

Keywords: Duration modelling, semi-Markov conditional random fields, hidden semi-Markov model, human activity recognition

1. Introduction

Recognizing human activities from smart home sen-
sor data allows many applications, in areas such as in-
telligent environments [2,4] and healthcare [1,20,29].
Activities to recognize can vary from basic activities
of daily living (ADLs) such as bathing and toiletting to
instrumental ADLs such as shaving and brushing teeth
[22,26,28].

Typically probabilistic models such as the hidden
Markov model (HMM) [12,14,28] or conditional ran-
dom fields (CRF) [13,23,26] are used to map the
observed sensor data onto the hidden activity states.
Probabilistic models are advantageous for problems
such as activity recognition, because they allow us to
deal with the noise and uncertainty in a principled
manner. A weakness of HMMs and CRFs, however,
is their modelling of state durations. State durations
are modelled implicitly by means of self-transitions of
states, and this entails a number of important limita-
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tions [10,15]. In real-world problems such as activity
recognition, it may be important to model state du-
ration accurately. For example, shaving and brushing
teeth might both involve the use of the bathroom door
and the faucet. Because it is difficult to put sensors
on the toothbrush or razor it is difficult to distinguish
these activities based on sensor data. However, because
shaving typically takes up more time than brushing
teeth, the duration of the activity is likely to be very
informative for recognition.

Hidden semi-Markov models (HSMM) and semi-
Markov conditional random fields (SMCRF) are both
semi-Markov models in which duration is modelled
explicitly. In this paper we compare the recognition
performance of these models on multiple fully anno-
tated real world datasets consisting of several weeks
of data. We compare both generative and discrimina-
tive semi-Markov models to their conventional coun-
terparts (see Table 1). Generative models such as the
HMM are a classic way of modelling a sequential pro-
cess probabilistically. However, discriminative models
such as CRFs have become increasingly popular in re-
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312 T.L.M. van Kasteren et al. / Activity recognition using semi-Markov models

Table 1

Categorization of hidden Markov model (HMM), hidden semi-
Markov model (HSMM), conditional random field (CRF) and semi-
Markov conditional random field (SMCRF)

Conventional Semi-Markov

Generative HMM HSMM

Discriminative CRF SMCRF

cent years because they have been shown to outper-
form generative models in various domains [6,17].

The main contribution in this paper is a thorough
comparison of the performance of HMMs, CRFs,
HSMMs and SMCRFs on real world activity recog-
nition data. Previous work has separately evaluated
HSMMs [5] and SMCRFs [11,24] on simulated and
laboratory data, but our work is the first to evaluate
these models on real world activity recognition data
and compare their performance in a single paper. By
comparing these models using the same experimental
setup we are able to draw clear conclusions about their
recognition performance and whether they are suitable
for activity recognition or not.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss related work. Section 3
describes the HMM and HSMM together with their
learning and inference algorithms. Section 4 describes
CRFs and SMCRFs together with their learning and
inference algorithms. In Section 5 we highlight the
differences between these models. And in Section 6
we present the experiments and results using our real
world datasets. Finally, in Section 7 we sum up our
conclusions.

2. Related work

Most early work on activity recognition used HMMs
to recognize the activities from sensor data [14,28].
After CRFs had been shown to outperform HMMs in
other areas [6], they were applied to activity recog-
nition as well [25,26]. It become clear that activ-
ity recognition models needed a way to model long
term dependencies. Rabiner had already pointed out
that the modelling of duration was one of the ma-
jor weaknesses of HMMs and suggested the use of
HSMMs [15]. Murphy further generalized the formu-
lation of semi-Markov models by representing them as
dynamic Bayesian networks [10]. In work by Duong
et al. HSMMs were applied to activity recognition [5].
They compared performance of the model using var-

ious duration distributions and suggested the use of
the Coxian distribution for computational efficiency.
The SMCRF was first applied to information extrac-
tion and compared with CRFs. SMCRFs generally out-
performed CRFs, although for some topics the gain
was minimal. Truyen applied a hierarchical version of
SMCRFs to activity recognition using a small dataset
recorded in a laboratory setting [24]. The performance
was compared to hierarchical CRF and a conventional
CRF, the hierarchical SMCRF outperformed both. The
models were also applied to POS tagging in which
the performance gain was very little. Finally, hierar-
chical models have also been proposed to deal with
the long term dependencies. Although no explicit du-
ration modelling is done in these models, the sequence
of substates allows more complex duration modelling
than in conventional models [18].

There is a strong need for real world datasets in the
activity recognition community. A lot of work is eval-
uated on laboratory datasets [5,14,24] and simulated
data [9,11]. A few large real world datasets are pub-
licly available. A dataset of four weeks of fully anno-
tated data was published at Ubicomp [26], in which a
wireless sensor network was used to observe the inhab-
itants behaviour and annotation was done using a blue-
tooth headset. Tapia et al. recorded two datasets using
a large number of wireless sensor nodes in two sepa-
rate homes [22]. Each dataset contains two weeks of
sensor data and annotation. Annotation was done us-
ing hand written activity logs, which was corrected by
inspection of the sensor data to improve the quality of
the annotation. Finally, a few datasets were recorded in
the PlaceLab, a house fully equipped with sensors and
cameras. A four hour dataset was recorded in which
a researcher was asked to perform a number of activ-
ities at his own pace and sequence. Cameras in the
house were used to record the behaviour and later an-
notate the dataset [21]. Another dataset consists of two
months of data in which a couple was hired to live in
the PlaceLab for the duration of the dataset. Only one
of the two people’s activities were annotated due to
limited funding [8].

This work compares semi-Markov models to their
conventional counterparts and uses real world datasets
to evaluate the model performances. By comparing all
these models in a single paper we can clearly see the
impact of modelling duration accurately. The use of
real world datasets allows us to see how strong these
effects are in a real world setting.
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3. Hidden Markov model and hidden
semi-Markov model

The hidden Markov model (HMM) and hidden
semi-Markov model (HSMM) are both generative
models. This means these models fully specify the de-
pendency relations among the variables by defining a
factorization of the joint probability over these vari-
ables. They differ in the sense that HMMs only model
the observations and transitions between hidden states,
while HSMMs also model the duration of hidden states
explicitly.

In this section we first give the model definitions of
the HMM and HSMM and then briefly describe their
inference and learning algorithms. We assume our ob-
servations are binary, for convenience, and because the
datasets used for evaluation consist only of binary ob-
servations. However, other types of observations can
be used with these models and would only change the
observation distribution.

3.1. Hidden Markov model

The HMM is a generative probabilistic model con-
sisting of a hidden variable y and an observable vari-
able x at each time step (Fig. 1). In our case the hidden
variable is the activity performed, and the observable
variable is the vector of sensor readings. We define
a sequence of observations x1:T = {�x1, �x2, . . . , �xT }
with �xt = (x1

t , x
2
t , . . . , x

N
t )T and xi

t ∈ {0, 1}. The
corresponding sequence of hidden states is represented
as y1:T = {y1, y2, . . . , yT } where for Q possible states
yt ∈ {1 . . . Q}.

Generative models provide an explicit representa-
tion of dependencies by specifying the factorization of
the joint probability of the hidden and observable vari-
ables p(y1:T , x1:T ). In the case of HMMs there are two
dependence assumptions that define this model, repre-
sented with the directed arrows in Fig. 1.

Fig. 1. The graphical representation of a HMM. The shaded nodes
represent observable variables, while the white nodes represent hid-
den ones.

– The hidden variable at time t, namely yt, depends
only on the previous hidden variable yt−1 (first
order Markov assumption [15]).

– The observable variable at time t, namely xt, de-
pends only on the hidden variable yt at that time
slice.

The joint probability therefore factorizes as follows

p(y1:T , x1:T ) =
T∏

t=1

p(�xt | yt)p(yt | yt−1)

where we have used p(y1 | y0) = p(y1) for the sake of
notational simplicity.

The different factors further specify the workings
of the model. The initial state distribution p(y1) is a
conditional probability table with individual values de-
noted as p(y1 = i) ≡ πi. The observation distribution
p(�xt | yt) represents the probability that the state yt

would generate observation vector �xt. Each sensor ob-
servation is modelled as an independent Bernoulli dis-
tribution, where μin is the parameter of the nth sen-
sor for state i. The transition probability distribution
p(yt | yt−1) represents the probability of going from
one state to the next. This is given by a conditional
probability table A where individual transition proba-
bilities are denoted as p(yt = j | yt−1 = i) ≡ aij .
The HMM is therefore fully specified by the parame-
ters A = {aij}, B = {μin} and π = {πi}.

A weakness of conventional HMMs is its lack of
flexibility in modelling state durations. Given an HMM
in a known state, the probability that it stays in that
state for d timeslices is

pi(d) = (aii)d−1(1 − aii)

where pi(d) is the discrete probability density func-
tion (PDF) of duration d in state i and aii is the self-
transition probability of state i [15]. This duration den-
sity function takes the form of a geometric distribution
with a mode fixed at one. Because it follows implic-
itly from the model definition, it is an inherent prop-
erty of the model and we cannot use a different dis-
tribution to model duration. This severely limits our
modelling options. For example, the activity shower-
ing typically takes up several minutes, to shower in one
minute is very unlikely. The geometric distribution,
however, cannot represent distributions where shorter
durations are less probable than longer ones. Modeling
the duration of such an activity using, for example, a
Gaussian distribution would be more appropriate.



314 T.L.M. van Kasteren et al. / Activity recognition using semi-Markov models

Fig. 2. The graphical representation of a HSMM. The shaded nodes
represent observable variables, while the white nodes represent hid-
den ones.

3.2. Hidden semi-Markov model

Hidden semi-Markov models (HSMMs) are HMMs
in which the duration of a state is modelled explic-
itly. We define a sequence of U segments s1:U =
{s1, s2, . . . , sU} where segment sj = (bj , dj , yj)
consists of start position bj , duration dj and hidden
state yj ∈ {1 . . . Q}. This means timeslices bj to
bj + dj (exclusive) have state label yj . Segments have
a positive duration and completely cover the time
span 1 : T without overlap. Therefore, the follow-
ing constraints hold: b1 = 1,

∑U
u=1 du = T and

bj+1 = bj + dj . For example, the sequence y1:8 =
{1, 1, 1, 2, 2, 1, 2, 2} can be represented as segmen-
tation s1:4 = {(1, 3, 1), (4, 2, 2), (6, 1, 1), (7, 2, 2)}.
Note that we do not constrain consecutive segments
to differ in label (i.e. we allow self-transition of seg-
ments). HSMMs have been proposed before where
such a constraint was enforced [15], but in our appli-
cation activities might be repeated shortly after each
other (e.g., getting another drink), so that it makes
more sense to model the data with self-transitions.

The hidden variables are now represented as seg-
ments s1:U while the observable variables are still the
sensor readings x1:T (Fig. 2). The joint probability of
this model factorizes as follows

p(s1:U , x1:T ) = p(y1:U , b1:U , d1:U , x1:T )

= p(y1)p(b1)p(d1 | y1)
b1+d1−1∏

t=b1

p(xt | y1)

U∏

u=2

p(yu | yu−1)p(bu | bu−1, du−1)

p(du | yu)
bu+du−1∏

t=bu

p(xt | yu) (1)

The transition probability distribution p(yu | yu−1)
now represents the probability of going from one seg-
ment to the next. It is still given by a conditional prob-
ability table where individual transition probabilities
are denoted as p(yu = j | yt−u = i) ≡ aij .

The starting point variable bu is a bookkeeping vari-
able to keep track of the starting point of a segment.
The first segment always starts at 1, consecutive start-
ing points are deterministically calculated from the
previous starting point and the previous duration.

p(b1 = m) = δ(m, 1)

p(bu = m | bu−1 = n, du−1 = l)

= δ(m, n + l)

where δ(i, j) is the Kronecker delta function, giving 1
if i = j and 0 otherwise. The duration probability dis-
tribution is defined as p(du = l | yu = i) = pi(l).
Different distributions are possible, but in this work
we use a Gaussian pi(l) = N (μ, σ). The initial state
distribution and observation probabilities are parame-
terised in the same way as for HMMs.

3.3. Inference

The inference problem for HMMs consists of find-
ing the single best state sequence (path) that maxi-
mizes p(y1:T , x1:T ). Although the number of possible
paths grows exponentially with the length of the se-
quence, the best state sequence can be found efficiently
using the Viterbi algorithm. Using dynamic program-
ming, we can discard a number of paths at each
time step, resulting in a computational complexity of
O(TQ2) for the entire sequence, where T is the total
number of timeslices and Q the number of states [15].

In the case of HSMMs we need to adapt and ex-
tend the Viterbi algorithm to deal with segments. This
means the algorithm also needs to iterate over all possi-
ble durations at each timestep. The complete procedure
has a computational complexity of O(TQ2D), where
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D is the maximum duration a segment can have [10].
In Appendix A.1 the details of the Viterbi algorithm
for HSMMs is given.

3.4. Parameter learning

The model parameters are learned by finding the
maximum likelihood parameters. Given some training
data x1:T , y1:T , we want to find those parameters that
maximize p(x1:T , y1:T | θ). This is equivalent to find-
ing the maximum likelihood parameters of each of the
factors that make up the joint probability.

Our training data are fully labelled, with exact start
and end time of each segment, so that we can optimize
the parameters in closed form for both HMMs and
HSMMs. The observation probability p(xn | y = i)
follows a Bernoulli distribution whose maximum like-
lihood parameter estimation is given by

μni =
∑T

t=1 xi
tδ(yt, i)∑T

t=1 δ(yt, i)

where T is the total number of data points and δ(i, j) is
the Kronecker delta function. The transition probabil-
ity p(yt = j | yt−1 = i) is a multinomial distribution
whose parameters can be calculated by

aij =
∑T

t=2 δ(yt, j)δ(yt−1, i)∑T
t=2 δ(yt−1, j)

where T is equal to the number of timeslices in the
case of HMMs and equal to the number of segments in
the case of HSMMs.

4. Conditional random fields and semi-Markov
conditional random fields

Conditional random fields (CRFs) and semi-Markov
conditional random fields (SMCRFs) are discrimina-
tive models. Rather than modelling the full joint prob-
ability p(y1:T , x1:T ), discriminative models model the
conditional probability p(y1:T | x1:T ) directly. Since
the observation sequence x1:T is always given, its dis-
tribution needs not be modelled. We first give the def-
inition of CRFs and SMCRFs and then describe their
inference and learning algorithms.

4.1. Conditional random fields

To be able to define CRFs for arbitrary graphs we
use the clique representation from graph theory. A
clique is defined as a subgraph in which every vertex is
connected to every other vertex in the subgraph. Fur-
thermore, a maximal clique is a clique to which no
other node in the graph can be added without it ceasing
to be a clique. We can partition any given graph into
a collection of maximal cliques [3]. The conditional
probability distribution p(y1:T | x1:T ) is factorized as
a product of clique potentials

p(y1:T | x1:T ) =
1

Z(x1:T )

∏

c∈C

φc(yc, xc),

where C is the set of cliques that make up the entire
graph and c is a single clique. The function φc(yc, xc)
is called the clique potential and is a function of the
observed nodes xc and the hidden nodes yc in clique c.
The clique potentials are non-negative, and the parti-
tion function Z(x1:T ) is a normalization term that en-
sures that the probabilities sum up to one [19]. It is cal-
culated by summing over all possible state sequences

Z(x1:T ) =
∑

y1:T

∏

c∈C

φc(yc, xc).

In general, the computation of Z(x1:T ) is intractable,
because the number of possible distinct state se-
quences grows exponentially with the length of the se-
quence. However, in the case of linear chain CRFs the
normalization term can be efficiently calculated using
the forward-backward algorithm [19].

Linear-chain CRFs are the discriminative analog
of HMMs in which the maximal cliques are re-
stricted to contain either one observation and the cor-
responding state, or a state and the previous state (see
Fig. 3). The clique potentials are, therefore, of the form

Fig. 3. The graphical representation of a linear-chain CRF. The
shaded nodes represent observable variables, while the white nodes
represent hidden ones.
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φt(yt, yt−1, xt), so that the conditional likelihood of a
CRF can be written as

p(y1:T | x1:T ) =
1

Z(x1:T )

T∏

t=1

φt(yt, yt−1, xt)

The clique potentials are parameterised as

φt(yt, yt−1, xt) = exp
K∑

k=1

λkfk(yt, yt−1, xt),

where K is the number of feature functions used to
parameterise the distribution, λk is a weight parame-
ter and fk(yt, yt−1, xt) a feature function. The expo-
nent enforces the non-negativity of the potential. This
choice results in using a PDF from the exponential
family to model the distribution p(y1:T | x1:T ). We
will see below how the parameters of this PDF are op-
timized by gradient descent.

4.2. Semi-Markov conditional random fields

Similarly to the HSMMs, the semi-Markov Con-
ditional Random Field (SMCRF) models the dura-
tion of states explicitly by considering the probability
of segments rather than individual timeslices. We use
the same notation as with HSMMs in which segment
sj = (bj , dj , yj) consists of start position bj , duration
dj and state yj ∈ {1 . . . Q}. The factorization of the
conditional probability is defined as

p(s1:U | x1:T ) = p(y1:U , b1:U , d1:U | x1:T )

=
1

Z(x1:T )
U∏

u=1

φu(yu, yu−1, xu, du)

resulting in the model depicted in Fig. 4.

Fig. 4. The compact graphical representation of a semi-Markov CRF,
showing segments s and observations �x. The shaded nodes represent
observable variables, while the white nodes represent hidden ones.

The segment duration can be modelled using distri-
butions from the exponential family, by selecting ap-
propriate feature functions. We use feature functions
of the form gi(yu, du) = δ(yu, i) · d2

u, g′i(yu, du) =
δ(yu, i) · du and g′′i (yu, du) = δ(yu, i) · 1 which gives
a contribution proportional to exp(d − μ)2, for appro-
priate values of λi,λ′

i and λ′′
i . Notice that this does not

enforce a Gaussian distribution; the parameter learn-
ing will find the best distribution, which will only be
Gaussian if that is what is present in the data.

4.3. Inference

To perform inference in CRFs the Viterbi algorithm
is used, which for CRFs also has a computational com-
plexity of O(TQ2) [19]. Inference in SMCRFs is done
using Viterbi similar to HSMMs and has a computa-
tional complexity of O(TQ2D) [16]. The details of
the Viterbi algorithm for SMCRFs are given in Ap-
pendix A.2.

4.4. Parameter learning

The parameters θ = {λ1, . . . , λK} of CRFs are
learned by maximizing the conditional log likelihood
l(θ) = log p(y1:T | x1:T , θ) given by

l(θ) =
T∑

t=1

K∑

k=1

λkfk(yt, yt−1, �xt)

− log Z(x1:T ) −
K∑

k=1

λ2
k

2σ2

where the final term is a regularization term penalizing
large values of λ to prevent overfitting. The constant
σ is set beforehand and determines the strength of the
penalization [19].

The function l(θ) is concave, which follows from
the convexity of log Z(x1:T ) [19]. A useful property of
convex functions in parameter learning is that any lo-
cal optimum is also a global optimum. Quasi-Newton
methods such as BFGS have been shown to be suit-
able for CRFs [17,27]. These methods approximate the
Hessian, the matrix of second derivatives, by analyz-
ing successive gradient vectors. Because the size of the
Hessian is quadratic in the number of parameters, stor-
ing the full Hessian is memory-intensive. We therefore
use a limited-memory version of BFGS [7]. The partial
derivative of l(θ) with respect to λi, is given by
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∂l

∂λi
= − λi

σ2
+

T∑

t=1

fi(yt, yt−1, �xt)

−
T∑

t=1

∑

yt,yt−1

p(yt, yt−1 | �xt)fi(yt, yt−1, �xt)

For semi-CRF the same techniques can be used except
states are replaced by segments [16].

5. Model comparison

The models introduced in the previous sections dif-
fer in terms of duration modelling, learning method
and computational complexity for learning and infer-
ence. In this section we highlight these differences and
discuss their consequences.

5.1. Learning in generative models

The difference between generative models (e.g.
HMM, HSMM) and discriminative models (e.g. CRF,
SMCRF) lies primarily in the way the model pa-
rameters are learned. The generative approach of
learning the model parameters θ is by maximizing
the joint probability p(y1:T , x1:T | θ) = p(x1:T |
y1:T , θ)p(y1:T | θ).

In Section 3.1 we have seen that duration in an
HMM is modelled as a geometric distribution. Here,
we illustrate how the use of maximum likelihood pa-
rameters of the geometric PDF can result in classifica-
tion errors. We illustrate this using an artificial exam-
ple in which we try to classify two states that can only
be distinguished based on their duration. The state du-
rations have truncated Gaussian distributions, but we
model them using geometric distributions.

The geometric distribution in an HMM takes the
form pi(d) = (aii)d−1(1−aii), where d is the duration
of a state and aii the self-transition probability of that
state. The maximum likelihood estimation for this dis-
tribution can be found using moment matching on the
first moment (the mean) of the distributions. The mean
of the geometric distribution is calculated as follows:

E [d] =
∞∑

d=1

d(aii)d−1(1 − aii) =
1

1 − aii
.

To illustrate how the use of the geometric distribu-
tion can lead to classification errors, we have plotted
the real distribution of the duration of two states, given

Fig. 5. Plots of (a) Gaussian distribution for means 3 (straight line)
and 7 (dashed line). (b) Geometric distribution with a set of parame-
ters learned using maximum likelihood estimation, typically used in
generative models. The shaded area shows where the incorrect use
of the geometric distribution leads to misclassification. (c) Geomet-
ric distribution with a set of parameters learned using discriminative
models.

by two Gaussians with unit variance and means 3 and
7, in Fig. 5a. The two geometric distributions with cor-
responding means are shown in Fig. 5b. This would be
the distribution learned by the HMM. The shaded area
shows where the use of the geometric distribution re-
sults in misclassification. This illustrates how the mod-
elling of duration with an incorrect PDF can lead to
misclassification in the HMM.

5.2. Learning in discriminative models

In discriminative models we learn the model pa-
rameters by maximizing the conditional distribution
p(y1:T | x1:T , θ). This distribution is also used for in-
ference and directly models how the classes are dis-
tributed given an observation. Because we are directly
optimizing this quantity we obtain the set of param-
eters that discriminates the classes as well as possi-
ble. In terms of the example given in the previous sub-
section this corresponds to minimizing the erroneous
classification area and can therefore yield a solution as
shown in Fig. 5c.
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This example shows an important property of dis-
criminative models, namely their robustness towards
violations of the modelling assumptions. Even though
we model Gaussian distributed data using a geometric
distribution, still a set of parameters is found to cor-
rectly classify the data.

5.3. Computational complexity

An important consequence of using discriminative
models is the increase in computational complexity
during learning. In generative models the parameters
of the distributions used can usually be estimated us-
ing a closed form solution. Discriminative models on
the other hand require numerical methods because no
closed form solution is available. This requirement is
especially costly because during each iteration of the
learning phase we need to perform inference, to calcu-
late the normalization term.

The use of semi-Markov models introduces an ad-
ditional computational complexity. Because the dura-
tions of activities are not known for a novel sequence
of observations, all possible durations need to be con-
sidered at each timestep. This makes the computational
complexity of doing inference in semi-Markov models
a factor D higher than in conventional models, where
D is the maximum duration of one segment. This af-
fects both HSMMs and SMCRFs, but when fully la-
belled data are available, the HSMM does not need
to perform inference during training. Since the infer-
ence step is performed at each iteration during learning
in the SMCRF, finding the model parameters for this
model is very expensive.

In the experiments section we report the amount of
time needed for inference and learning in each of the
models to illustrate these differences.

6. Experiments

The goal of our experiments is to evaluate which
model performs best in activity recognition on a real
world data, and why it performs best. To this end we
evaluate the performance of each of the models on four
real world datasets. In this section we first give a de-
scription of the data and provide details of our experi-
mental setup. Then we present the results and discuss
the outcome.

Previous work on activity recognition shows that
most recognition confusion occurs between activities
taking place in the same room using the same set of

Table 2

Details of the houses in which the datasets were recorded

House 1 House 2

Age 26 57

Gender Male Male

Setting Apartment House

Rooms 3 6

Duration 25 days 19 days

sensors [26]. Installing extra sensors to further dis-
tinguish between activities is not always possible be-
cause it is difficult to install a sensor on, for exam-
ple, a tooth brush or to sense which item is retrieved
from a refrigerator. To clearly show how duration mod-
elling can help recognition performance we used a to-
tal of four datasets in two houses. Two datasets were
extracted from the publicly available Ubicomp dataset
[26] recorded in the home of a 26 year old male (house
1). We extracted a kitchen dataset and a bathroom
dataset, both consisting of four weeks of sensor data
and annotation. The other two datasets were recorded
in the home of a 57 year old male (house 2), also
in the kitchen and bathroom, and both consist of at
least two weeks of sensor data and annotation (Ta-
ble 2). These datasets are available for download from
http://sites.google.com/site/tim0306/.

6.1. Real world datasets

The sensor data are recorded using a wireless sensor
network consisting of a number of nodes which com-
municate with a central gateway. Each node consists
of a small wireless network device (Fig. 6) and a sen-
sor. Sensors we used include: reed switches to measure
the open-closed state of doors and cupboards; mercury
contacts for movement of objects (e.g. drawers); pas-

Fig. 6. Wireless network node to which sensors can be attached.
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sive infrared (PIR) to detect motion in a specific area;
float sensors to measure the toilet being flushed. The
sensors all output binary values, either because they
are binary in nature or because some threshold is ap-
plied to the analog value. An overview of the sensors
for each dataset is given in Table 4.

Annotation for the house 1 datasets was recorded us-
ing a bluetooth headset combined with speech recog-
nition. The inhabitant could record the start and end
point of an activity by pressing a button on the head set
and saying which activity was being performed [26].
In house 2 a handwritten activity diary was used for

Table 3

Confusion Matrix showing the true positives (TP), total of true labels
(TT) and total of inferred labels (TI) for each class

Inferred

True 1 2 3

1 TP1 ε12 ε13 TT1

2 ε21 TP2 ε23 TT2

3 ε31 ε32 TP3 TT3

TI1 TI2 TI3 Total

annotation. A complete list of the annotated activities
per dataset is shown in Table 5. Timeslices for which
no annotation is available are collected in a separate
activity labelled as ‘other activity’. This activity takes
up an average of 95% of the time in each dataset, since
most of the time people are not involved in kitchen or
bathroom activities. Sensors are primarily installed on
doors and cupboards. In the toilet cisterns float sensors
were installed and in the dataset ‘Bathroom2’ a PIR
sensor aimed at the bathtub and shower area was used.
The floor plan, showing the location of the sensors, for
house 1 can be found in Fig. 7 and for house 2 in Fig. 8.

Data obtained from the sensors are discretised in
timeslices of length Δt = 60 seconds. This time slice
length is long enough to provide a discriminative sen-
sor pattern and short enough to provide high resolution
labelling results. We do not use the raw sensor data
as observations, instead we use the change point and
last sensor representations, which have been shown to
give much better results in activity recognition [26].
The change point representation assigns a 1 to times-
lices where the sensor changes state and a 0 otherwise.

Table 4

List of sensors used in each of the datasets. PIR is short for ‘passive infrared’, the toilet flush uses a float
sensor, all other sensors use reed switches to measure the open-close state

Bathroom1 Bathroom2 Kitchen1 Kitchen2
Sensors Sensors Sensors Sensors

Bathroom door Bathroom door Microwave Microwave

Toilet door Toilet flush Refrigerator Refrigerator

Bedroom door Bathtub PIR Freezer Freezer

Dresser PIR Cupboard with plates Cupboard with plates

Cupboard with cups Cupboard with cups

Cupboard with pans Cupboard with pans

Cupboard with groceries Cupboard with boxes

Dishwasher Cutlery drawer

Table 5

The activities that were annotated in the different datasets. The ‘Num.’ column shows the number of times
the activity occurs in the dataset. All unannotated timeslices were collected in a single ‘Other’ activity.
The bathroom1 and kitchen1 datasets were recorded in the home of a 26 year old male; the bathroom2 and
kitchen2 datasets were recorded in the home of a 57 year old male. The word ‘dw.’ is short for dishwasher

Bathroom1 Bathroom2 Kitchen1 Kitchen2

Activity Num. Activity Num. Activity Num. Activity Num.

Brush teeth 16 Brush teeth 26 Breakfast 20 Breakfast 18

Showering 23 Showering 10 Dinner 9 Dinner 11

Toileting 114 Bathing 4 Snack 12 Snack 9

Other - Shaving 7 Drink 20 Drink 10

Other - Load dw. 5 Other -

Unload dw. 4

Other -
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While the last sensor representation continues to as-
sign a 1 to the last sensor that changed state until a new
sensor changes state.

We split our data into a test and training set using
a ‘leave one day out’ approach. In this approach, one
full day of sensor readings is used for testing and the
remaining days are used for training. A day of sensor
data starts at 8 am and ends at 12 pm, since hardly
any activities take place outside these hours. We cycle
over all the days and report the average performance
measure.

We evaluate the performance of our models using
precision, recall and F-measure. These measures can
be calculated using the confusion matrix shown in Ta-
ble 3. The diagonal of the matrix contains the true pos-
itives (TP), while the sum of a row gives us the total of
true labels (TT) and the sum of a column gives us the
total of inferred labels (TI). We calculate the precision
and recall for each class separately and then take the
average over all classes.

Precision =
1
N

N∑

i=1

TPi

TIi

Recall =
1
N

N∑

i=1

TPi

TTi

F-Measure =
2 · precision · recall

precision + recall

Fig. 7. Floor plan of house 1, the small rectangular boxes show the
locations of the sensors.

Fig. 8. Floorplan of the first and second floor of house 2, the small
rectangular boxes show the locations of the sensors.
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Table 6

Precision, recall and F-measure for hidden Markov model (HMM), hidden semi-Markov model (HSMM),
conditional random field (CRF) and semi-Markov conditional random field (SMCRF). Experiments were
performed on four different real world datasets: Bathroom1, Kitchen1, Bathroom2 and Kitchen2. Bold value
indicates the highest value in the column

Bathroom1 Kitchen1

Model Precision Recall F-Measure Precision Recall F-Measure

HMM 50.2 66.9 57.3 53.4 66.3 59.2

HSMM 69.5 84.7 76.4 58.6 71.8 64.5

CRF 72.6 73.7 73.1 63.4 70.9 67.0

SMCRF 75.3 74.7 75.0 63.1 70.9 66.8

Bathroom2 Kitchen2

Model Precision Recall F-Measure Precision Recall F-Measure

HMM 48.4 57.3 52.5 45.9 49.0 47.4

HSMM 60.0 68.9 64.1 53.8 61.0 57.1

CRF 53.3 61.7 57.2 55.0 56.7 55.8

SMCRF 60.3 65.2 62.7 53.1 57.1 55.0

Table 7

Computation time for learning and inference on the ‘Bathroom1’ dataset

Model HMM HSMM CRF SMCRF

Learning Time 2.9 seconds 5.5 seconds 63.6 minutes 54.9 hours

Inference Time 21.6 seconds 37.4 seconds 26.7 seconds 35.3 seconds

The maximum duration D used by the semi-Markov
models is determined by taking the maximum duration
in the training set and adding 25% to account for out-
liers.

6.2. Results on real world data

The results of our models on the four real world
datasets are shown in Table 6. They show that HSMMs,
CRFs and SMCRFs outperform HMMs in terms of
precision and recall on all datasets. Furthermore,
HSMMs consistently outperform CRFs and SMCRFs
in terms of recall and in three of the four datasets in
terms of F-measure, but never on precision. Finally,
SMCRFs outperform CRFs on two of the four datasets
in terms of precision and recall.

We performed a one-tail student t-test over all of the
days of the cross validation. At a confidence interval of
95% the HSMM significantly outperforms the HMM
on all the datasets and in all the measures. CRFs and
SMCRFs significantly outperform HMMs in all mea-
sures on the ‘bathroom1’ dataset and in terms of recall
and F-measure on the ‘kitchen2’ dataset.

The confusion matrices for all models on the ‘bath-
room1’ dataset further illustrate the differences be-
tween the models (Tables 8, 9, 10 and 11). We see the

CRF and SMCRF perform much better than the HMM
with respect to the ‘other’ activity, but perform worse
in terms of the remaining activities. In fact they com-
pletely fail to model the ‘brush’ activity. The HSMM
also performs much better than the HMM with respect
to the ‘other’ activity, but also performs better in rec-
ognizing the ‘toilet’ and ‘brush’ activity. Finally, the
SMCRF performs slightly better than the CRF in all
activities.

Table 7 shows the computation times for learning
and inference on the ‘Bathroom1’ dataset. We see
that learning model parameters of generative mod-
els is considerably faster than discriminative models.
Furthermore, inference in semi-Markov models takes
longer than conventional models.

6.3. Discussion

Our results show that the HSMM consistently out-
performs the HMM. This finding shows that accurate
duration modelling is important in real world activity
recognition as it can lead to significantly better perfor-
mance. When the sensor data does not provide enough
information to distinguish between activities, the du-
ration helps in the classification. Note, that the only
difference the HMM and the HSMM is that HSMMs
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Table 8

Confusion Matrices for the HMM for the Bathroom1 dataset. The
values are timeslices summed over all days. The activity ‘Brush’
stands for ‘Brush teeth’

other toilet shower brush total

other 8432 196 12542 2 21172

toilet 23 233 30 10 296

shower 1 13 237 0 251

brush 2 13 6 6 27

total 8458 455 12815 18 21746

Table 9

Confusion Matrices for the CRF for the Bathroom1 dataset. The val-
ues are timeslices summed over all days. The activity ‘Brush’ stands
for ‘Brush teeth’

other toilet shower brush total

other 21128 26 17 1 21172

toilet 58 214 24 0 296

shower 67 11 173 0 251

brush 9 17 1 0 27

total 21262 268 215 1 21746

Table 10

Confusion Matrices for the HSMM for the Bathroom1 dataset. The
values are timeslices summed over all days. The activity ‘Brush’
stands for ‘Brush teeth’

other toilet shower brush total

other 20868 85 214 5 21172

toilet 28 238 17 13 296

shower 10 10 231 0 251

brush 5 13 2 7 27

total 20911 346 464 25 21746

Table 11

Confusion Matrices for the SMCRF for the Bathroom1 dataset. The
values are timeslices summed over all days. The activity ‘Brush’
stands for ‘Brush teeth’

other toilet shower brush total

other 21131 22 19 0 21172

toilet 59 216 21 0 296

shower 59 8 184 0 251

brush 9 17 1 0 27

total 21258 263 225 0 21746

model duration explicitly. The increase in performance
of HSMMs therefore must be due to the its more accu-
rate modelling of duration.

By comparing the confusion matrices of the HMM
and HSMM we see that the gain in performance is
mainly due to a more accurate recognition of the
‘other’ activity. Although, we have only included the

confusion matrices for the ‘Bathroom1’ dataset, the
performance increase in the other datasets is also
caused to a large extend because of the more accu-
rate recognition of the ‘other’ activity. Interestingly
enough, the ‘other’ activity is the most difficult activity
to model in terms of duration. The ‘other’ activity is
not one type of activity, but rather a collection of activ-
ities such as ‘being idle’. Therefore, its duration is not
likely to take the form of a Gaussian distribution. The
reason for the increase in recognition of the ‘other’ ac-
tivity is therefore caused not because of the more ac-
curate duration modelling of the ‘other’ activity, but
rather because of the more accurate duration modelling
of the remaining activities. Because certain durations
are very unlikely for activities such as ‘toiletting’ and
‘showering’, the ‘other activity’ is the only activity left
because it can practically have any duration.

We also saw that the performance difference be-
tween SMCRFs and CRFs was much smaller. This re-
sult tells us that CRFs are able to learn a good discrim-
inative model of durations in this scenario, and the ex-
plicit duration modelling done in SMCRFs does not
result in a significant performance improvement. As
we discussed in Section 5.1, the parameters of a CRF
are learned by optimizing the posterior probability in-
stead of the joint probability. It is therefore not limited
to the maximum likelihood model of the data. If there
exists a set of parameters that better discriminate the
provided training data it will use that set. It has been
shown in previous work that CRFs are more robust in
dealing with violations of the modelling assumptions,
but that this also holds for an inherent property such
as duration modelling is a novel contribution and an
interesting find.

It should be noted that the flexibility of discrim-
inative models such as CRFs in dealing with viola-
tions of the modelling assumptions comes at a price.
First, discriminative models take much longer to train
than their generative counterpart. Second, discrimina-
tive models are more prone to overfitting. This sec-
ond problem can be clearly seen from the confusion
matrices. Both CRFs and SMCRFs completely fail to
model the ‘brush’ activity, because there are very few
examples of that activity in the training data. In gen-
eral the problem of overfitting is more likely to occur
in unbalanced datasets, that is, datasets in which one
or more classes occur much more frequently than the
other classes. During learning in discriminative mod-
els each class gets weighted according to the available
number of datapoints in the training data. Frequent
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classes therefore get a bigger weight than infrequent
classes.

Whether the improved recognition performance of
CRFs is worth the extra computational cost depends on
the application. Modelling the data more accurately us-
ing the HSMM allows both speedy learning and good
performance, and is less prone to overfitting. It does,
however, result in slower inference and is dependent
on correct modelling assumptions for the durations.

We did not look at hierarchical models in this work.
Hierarchical models can model a state using a num-
ber of substates in which the duration of the state is a
convolution of geometric distributions [18]. Although
this allows better duration modelling than conventional
models, it also requires a lot more parameters (propor-
tional to the number of substates). It has been shown
that semi-Markov models can significantly outperform
hierarchical models, despite their better duration mod-
elling [5].

The choice of using the Gaussian distribution for
modelling durations in semi-Markov models was pri-
marily made because it is easily implemented in SM-
CRFs using feature functions. We have experimented
with other duration distributions such as the gamma
and Poisson distributions when using the HSMM and
this resulted in similar performance as using the Gaus-
sian distribution. Previous work has shown that the
Coxian distribution can perform equally well as other
distributions, but can save significant computational
cost [5]. This would be an interesting alternative when
speedy inference is needed.

In terms of future work, further extensions of semi-
Markov models are possible. In this work we have
restricted ourselves to accurately modelling duration.
However, because in semi-Markov models states are
represented as segments instead of time slices, it is
possible to include dependencies that are impossible
to model with HMMs and CRFs. For example, us-
ing higher-order Markov models would in the case of
HMMs and CRFs mean dependency on the previous
timeslices, while in the case of semi-Markov models
it means dependency on the previous segments, which
is most likely much more informative. Another exam-
ple is to use a more complicated observation model.
Because observations are now modelled for each seg-
ment, we could incorporate features that describe that
a sensor should fire at least once for the duration of the
activity.

7. Conclusions

In this work we have provided a thorough compari-
son of the performance of HMMs, CRFs, HSMMs and
SMCRFs on real world activity recognition data. Our
experiments on both novel and publicly available real
world datasets show that modelling duration can lead
to significantly better performance in activity recog-
nition. The novel dataset will be made publicly avail-
able. HSMMs, CRFs and SMCRFs all significantly
outperform HMMs. We have shown that, for CRFs,
this is caused by their ability to deal with violations
of the modelling assumptions, including assumptions
on duration modelling. Furthermore, we have shown
that SMCRFs, despite their greater expressive power,
do not result in significant performance increase. What
model to use will depend on practical considerations,
such as the availability of labelled data, the importance
of training time and the importance of speedy infer-
ence.

Appendix

A. Inference in semi-Markov models

A.1. Viterbi for hidden semi-Markov model

We use our segment notation to represent the state
sequence for HSMMs. We wish to find the sequence
of segments that maximizes p(s1:U , x1:T | θ). Be-
cause the duration of the segments is not known for a
novel sequence of observations, we have to determine
which duration gives the highest probability. There-
fore, at each timestep we iterate over all possible du-
rations, from 1 to a predefined maximum D, and store
the probability in the following variable

τt,d(i) = max
s1,...,sk−1

p(x1:t, s1, . . . , sk = (t − d + 1, d, i) | θ).

This represents the highest probability of a sequence
of segments where the final segment started at t−d+1,
has a duration of d and a label i. Just as in the original
Viterbi algorithm for the HMM it is sufficient to keep
track of the maximum probability of ending up in state
sk−1 to compute the maximum probability of ending
up in sk. The state label of this previous segment is
stored in array ζt(d, i).
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Once τt,d has been calculated for every duration,
we can determine which duration gives the maximum
probability. We define

δt(i) = max
s1,...,sk−1

p(x1:t, s1, . . . , sk = (t − d∗ + 1, d∗, i) | θ)

in which d∗ is the duration with the highest probability
at time t for state i. We keep track of the best dura-
tion and the label of the previous segment that led to
this maximum using the variables υt(i) and ψt(i), re-
spectively. The complete procedure for finding the best
sequence of segments can now be stated as follows:

1. Initialization: The probability of the label of the
first segment is given by the initial state distribu-
tion π.

τd,d(i) = πipi(d)
d∏

t=1

p(�xt | yt = i)

ζd(d, i) = 0

2. Recursion: At each timeslice first iterate over all
possible durations.

τt,d(j) = max
1�i�Q

[δt−d(i)aij ] pj(d)

t∏

m=t−d+1

p(�xm | ym = j)

ζt(d, j) = argmax
1�i�Q

[δt−d(i)aij ]

Then determine which duration gives the highest
probability.

δt(i) = max
1�d�D

τt,d(i)

υt(i) = argmax
1�d�D

τt,d(i)

ψt(i) = ζt(υt(i), i)

3. Termination: Determine which state has the
highest probability in the final timeslice.

P ∗ = max
1�i�Q

[δT (i)]

y∗
T = argmax

1�i�Q
[δT (i)]

t = T

u = 0

4. Sequence backtracking: Backtrack from there,
looking up the duration and previous state that
were stored earlier.

d∗t = υt(y∗
t )

s∗u = (t − d∗t + 1, d∗t , y
∗
t )

t = t − d∗t

u = u − 1

y∗
t = ψt+d(y∗

t+d)

It should be noted that a negative index is used for
the segments because the number of segments is not
known beforehand. This is easily corrected afterwards
by adding |s∗| to all indices.

A.2. Viterbi for semi-Markov conditional random
field

1. Initialization:

τd,d(i) = φd(i, 0, x1:d, d)

ζd(d, i) = 0

2. Recursion: At each timeslice first iterate over all
possible durations.

τt,d(j) = max
1�i�Q

[δt−d(i)φt(j, i, xt−d+1:t, d)]

ζt(d, j) = argmax
1�i�Q

[δt−d(i)φt(j, i, xt−d+1:t, d)]

Then determine which duration gives the highest
probability.

δt(i) = max
1�d�D

τt,d(i)

υt(i) = argmax
1�d�D

τt,d(i)

ψt(i) = ζt(υt(i), i)

3. Termination: Determine which state has the
highest probability in the final timeslice.

P ∗ = max
1�i�Q

[δT (i)]

y∗
T = argmax

1�i�Q
[δT (i)]

t = T

u = 0

4. Sequence backtracking: Backtrack from there,
looking up the duration and previous state that
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were stored earlier.

d∗t = υt(y∗
t )

s∗u = (t − d∗t + 1, d∗t , y
∗
t )

t = t − d∗t

u = u − 1

y∗
t = ψt+d(y∗

t+d)

We can use a slightly modified form of this algorithm
to compute the normalization constant efficiently, by
replacing all the max operations in the above algo-
rithm by summations. The value of Z(x1:T ) is then
calculated by summing over δt(i) in the last timeslice.

Z(x1:T ) =
Q∑

i=1

δT (i)
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