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David van Dijk*†1, Gokhan Ertaylan*†1, Charles AB Boucher2 and Peter MA Sloot1

Abstract
Background: The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein 
Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to 
systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human 
protein interaction network. This network was analyzed for important proteins and processes that are specific for the 
HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in 
virus-host dynamics.

Results: Our analyses show that human proteins interacting with HIV form a densely connected and central sub-
network within the total human protein interaction network. The evaluation of this sub-network for connectivity and 
centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins 
involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network 
motifs show significant over-representation of positive and negative feedback patterns between virus and host. 
Strikingly, such patterns have never been reported in combined virus-host systems.

Conclusions: HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative 
importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, 
some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with 
central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. 
Finally, the patterns described by network motifs illustrate how virus and host interact with one another.

Background
Recent advances in high throughput genome-wide
screening techniques have increased not only the amount
of generated data, but also its quality. In combination
with the completion of the human genome project, this
has led to early expectations of revolutionizing medicine.
However, as often is the case in life science, the devil is in
the details. We have learned that before we can efficiently
use genome-wide data for developing the next generation
of drugs and treatments we have to revolutionize the way
we use our data [1]. Since we have recognized that we are
not yet equipped with the right tools to interpret this
unprecedented amount of data we have been building
large databases where data is waiting to be processed into

information. Today interpreting this data stands as the
grand challenge for bioinformatics in the post-genomic
era.

Meanwhile, hoping to solve this problem, we have been
broadening our view and have been looking elsewhere for
answers. One of these is the field of network science. This
relatively new field has emerged from graph theory and
physics and has proved to be a powerful method for the
mathematical representation, visualization and analysis
of complex data that involves many interacting compo-
nents. In this area powerful concepts have been devel-
oped, such as network centrality, scalability and network
motifs, that have enabled us to understand a system
through its network topology [2-9]. Subsequently many
fields have benefited from these advances. For example in
epidemiology the mapping of human interactions into
social networks gave insight into how sexually transmit-
ted diseases spread in a population [10-12]. In develop-
mental biology the representation of interactions among
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different genes as gene regulatory networks has been
widely accepted [13-17] and in social sciences the analysis
of human mobility patterns using a human interaction
network helped us shed light on the dynamics of our soci-
ety [18].

However, the field of virology has not yet received the
full attention it deserves from network research, despite
the availability of data and ready to use scientific method-
ology. Only recently Dyer and colleagues have described a
network between human proteins interacting with
viruses and other pathogens based on manually curated
data from literature as well as publicly available databases
[19]. In their work they give an overview of the common
interacting proteins of viruses such as HIV, Incense and
Measles to pathogen groups like Toxoplasma and Plas-
modium. Their findings emphasize that pathogens pref-
erentially interact with two kinds of proteins: hubs (ones
that interact with many other proteins) and bottlenecks
(ones that lie on many shortest paths). They also provide
evidence from Gene Ontology (GO) annotation that dif-
ferent sets of pathogens target the same processes even
though they interact with different proteins. One remark-
able feature of their data is that it is highly biased towards
HIV interactions. Approximately eighty percent of all
interactions are specific to Human Immunodeficiency
Virus (HIV).

Human Immunodeficiency Virus
Human immunodeficiency virus (HIV) is recognized to
be responsible for one of the most destructive pandemics
in recorded history. It causes thousands of deaths and
substantially decreases the life quality of millions of indi-
viduals each year, most of which live in Sub-Saharan
Africa.

Since the first isolation of HIV in 1981, scientists are
investigating every aspect of the virus hoping to find a
vaccine. Genomic research has revealed that HIV has a
compact genome, which consists of nine open reading
frames (leading to nine primary translation products)
that code for fifteen different translational products, rep-
resented by nineteen proteins. Most of the coding regions

of HIV overlap, except for the genes rev and tat that are
split by introns.

Despite the compactness of its genome, HIV has a very
high nucleotide substitution rate, several million times
faster than one of the average eukaryotic genome. Such a
high substitution rate enables a virus population to exist
in a cloud of genotypes called quasispecies and to rapidly
adapt to environmental changes by means of this diver-
sity. Varying conditions such as different humoral and
innate immune system responses within and between
hosts or varying treatment regiments result in selection
pressures therefore shifting the dominant virus genotype
[20]. This led to the understanding that the persistence of
the virus in host relies on the complex web of interactions
it has, rather than the fitness of its structural components.
In other words, HIV's strategy for dealing with environ-
mental stress lies in its ability to change its structural
components while maintaining their function. This is also
the main reason why it is unlikely that a universal vaccine
will be developed using conventional methods like target-
ing anchor proteins. Therefore, before we can expect to
start developing a cure, we need to invest more in the
understanding of the interplay between the virus and the
host.

Describing an interplay between two systems requires
the choice of an appropriate level at which the interac-
tions will be studied. Since many HIV-human interac-
tions have been studied on proteins, the protein
interaction level appears to be the most suitable candi-
date. Recently many of these interactions have been col-
lected in the HIV-1, Human Protein Interaction Database
of the National Institute of Allergy and Infectious Dis-
eases [21]. In this database HIV proteins, interacting
human proteins as well as their interaction type are col-
lected and organized (See Table 1). A general statistical
analysis of this database has been performed recently
[21,22].

In addition to the NCBI database there are three other
independent data-sets available as a result of small inter-
fering RNA (siRNA) screens [23-25]. However, there is
surprisingly little overlap between these four resources.

Table 1: Fourteen most frequent types of interactions between HIV and human proteins.

interaction frequency interaction frequency

interacts with 575 processed by 99

upregulates 486 regulated by 99

Binds 411 phosphorylated by 65

Activates 365 enhances 62

Inhibits 270 cleaves 61

downregulates 262 induces phosphorylation of 53

inhibited by 188 stimulates 53
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A very recent review by Bushman et al. addresses this
issue by comparing the results of these three siRNA
screens [26]. There were 34 genes called in at least two
siRNA screens where as little as three genes were com-
mon in all three screens. Furthermore, of the 34 genes on
two or three lists, only 11 were reported in the NCBI
database. They have explained several reasons that could
contribute to this variation. In addition they have
included the interactions from NCBI database and other
related work to assemble a "host-pathogen" interaction
network. The analysis of this all-combined host-pathogen
network revealed ten clusters that are identified with a
distinct biochemical or cellular function. The clusters
that were identified not only confirm understanding of
some known processes such as immune response and tat
activation/transcriptional elongation but also suggest the
existence of new processes previously overlooked such as
proteasome and mediator complex activity.

Nevertheless there are two important shortcomings
associated with siRNA screening. First, the siRNA
method can not be used to identify genes if their knock-
down is toxic (i.e. resulting in cell death). Hence the
method can be argued to be biased towards the Identifi-
cation of genes that have a phenotype, yet on the periph-
ery of a pathway within the total HIV-1 Human
interactome Second, it does not explain the type of inter-
action that the suggested gene might have with HIV pro-
teins. Therefore we argue that if one aims to identify "core
proteins" involved in important processes for viral sur-
vival and also wants to analyze resulting dynamics, one
has to rely on relatively less-biased and well annotated
data such as the NCBI database. However the quality of
the published manuscripts differ among those present in
the database. In this report, all individual calls reporting
interactions are treated equally for computational analy-
ses.

HIV-1, Human Protein Protein Interaction Network and 
Analysis
In the remaining of this paper we introduce the HIV-1
Human Protein-Protein Interaction Network based on
the database by the National Institute of Allergy and
Infectious Diseases (NIAID) called HIV-1, Human Pro-
tein Interaction Database. In the results section we pres-
ent our findings from network centrality and network
motif analysis. In the discussion section we discuss the
analysis of network topology and patterns that has led to
the Identification of HIV specific proteins and processes
associated with viral survival. In the methods section we
explain how our network was inferred and annotated
with publicly available human protein interaction data
and gene ontology (GO) terms. Subsequently, newly
developed algorithms are described in the methods sec-
tion.

Results
Connectivity Analysis
The National Institute of Allergy and Infectious Diseases'
(NIAID) HIV-1, Human Protein Interaction Database
offers comprehensive data on nineteen HIV proteins (fif-
teen structural and four intermediate proteins) interact-
ing with 1452 human proteins via 3959 interactions. The
most frequent types of these interactions are summarized
in Table 1 with their frequency. We can see that regula-
tory (up-regulates, down-regulates, regulated by) and
activation/inhibition (activates, inhibits, inhibited by) are
among the most common interactions.

We have inferred an HIV-1 Human Protein interaction
network from this data (see additional files 1, 2, 3 and 4).
A visualization of the network can be seen in Figure 1. It
is apparent from this figure that some HIV proteins have
many more interactions than others and some of the
human proteins are interacting with more than one HIV
protein. Furthermore we can state that these interactions
are also different in nature. In order to distinguish
between two different functional levels of interaction we
have divided the total network into two distinct directed
sub-networks by placing all regulatory interactions
(upregulation/downregulation) in one sub-network
(HIV-host regulatory network) and activation-inhibition
related interactions in another (HIV-host activation/inhi-
bition network). In order to study the influence of the
pathogen on the host and vice versa only directed interac-
tions were considered - non-directed interactions, like
"binds" and "interacts with" were left out. The annota-
tions in the database are somewhat ambiguous, i.e. the
regulatory interactions not only point to transcriptional
regulatory processes and activation/inhibition interac-
tions not exclusively are signaling interactions. Therefore,
the concepts that we use for both subnetworks (regula-
tion and activation/inhibition) have a broader meaning
and should not be directly interpreted as transcriptional
regulation and signaling networks. Nonetheless, semanti-
cally a distinction between the two can be made. Also,
regulation and activation/inhibition between proteins
usually act at different time-scales and on different
molecular levels, even though they are not decoupled
processes but are co-occurring in many pathways in the
cell. For this reason distinguishing between these two
functional sub-networks also gives us the opportunity to
study the different levels of involvement of the HIV pro-
teins in these sub-networks. We have therefore con-
ducted a connectivity analysis for each HIV protein in
both networks to address this issue.

Figure 2 shows a bar-plot of all nineteen HIV proteins
and their connectivity in the total, regulatory and activa-
tion/inhibition network (see additional file 5 for a con-
nectivity distribution including "binds" interactions).
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From this we observe a non-uniform distribution of
human interactions with HIV proteins, suggesting dis-
tinct functionalities (see Figure 2-A). It is not surprising
that Tat has many connections given its central role as
transactivator in promoting viral transcription and its
effect on disease progression by interacting with neigh-
boring cells after being released to the intercellular
medium [27]. Gp120 also has many interactions due to its
essential function in facilitating cell entry in different cell
types [28] and Gp120 shedding of the virus [29]. Gp120

shows a similar distribution as Tat and is found in
infected cells as well as in the intercellular space. The
structural proteins P1, P6 and Nucleocapsid as well as
unspliced Pol only have a small number of interactions.
This is most likely due to their specific involvement in
cellular processes and their presence which is confined to
the intracellular space [30]. Proteins like Tat and Gp120
have been studied extensively, possibly because of their
central role in HIV infection and their potential as drug
targets.

Figure 1 HIV-Human protein interaction network. Nineteen HIV proteins that interact with 1452 human proteins through 3959 interactions. Blue 
nodes are human proteins and red nodes are HIV proteins. Visualization is done with the Cytoscape [54] software using the spring layout algorithm.



van Dijk et al. BMC Systems Biology 2010, 4:96
http://www.biomedcentral.com/1752-0509/4/96

Page 5 of 17
This explains their overrepresentation in Figure 2-A. To
correct for this bias we have calculated a relative connec-
tivity distribution of the activation/inhibition and regula-
tory sub-networks using normalization (see section
methods for details). This allows for direct comparison of
connectivities between HIV proteins and between the
two sub-networks (see Figure 2-B).

One interesting aspect to note is that the HIV proteins
that are exposed to the host environment (in the case of
Gp120 and Gp41 by expression on the virus's outer mem-
brane or secretion to the extracellular environment in the
case of Tat and Vpr) have almost exactly the same num-
ber of interactions expected from their overall connectiv-
ity. In other words, they show no sign of specification for
the activation/inhibition or regulatory networks. The
unspliced Gp160 on the other hand, is under-represented
in the regulatory network. Furthermore, HIV Integrase
has very little involvement in activation/inhibition and
virtually no involvement in the regulatory processes. No
significant correlation was observed with the amino-acid
length of each viral protein and its involvement in any of
the networks (Data not shown). We hypothesize that
HIV-1 interacting central human proteins may play a sig-
nificantly more important role than non-central ones in
the life cycle of HIV-1. Therefore, we have conducted a
similar connectivity analysis for the human proteins from
the total network. From the point of view of the human
proteins we once again observe a non-uniform distribu-
tion of interactions. (Data not shown) Table 2 shows the
ten most connected HIV Dependency Factors (HDFs)
with varying degrees. Not surprisingly three kinases
Atmpk1, Prkca and Mapk3 (which take part in a wide
variety of cellular processes) and the immune system
cytokine Ifng are identified as the most connected pro-
teins.

HIV has many interactions with human proteins, and
on many levels. Yet these interactions become meaning-
ful only when we can put them into context. Therefore we

have enriched our HIV-1 human protein interaction net-
work with interactions from human protein interaction
databases BIND, BioGRID and HPRD (see methods).
First we have included interactions between the HDFs
(the local network) and interactions with non-HDF
human proteins (the global network). The resulting net-
work is a human protein interaction network where HIV
interacting human proteins or HDFs are connected to
each other and also to non-HDF human proteins. Figure
3 shows an abstract representation of the structure of this
network. In Figure 4 two degree distributions of the net-
works are shown. In Figure 4-A, we can see the degree
distribution of HDFs considering only interactions with
HIV proteins. In Figure 4-B, we only consider the HDF-
HDF interactions. On both graphs the power-law distri-
bution indicates the scale-free nature of the networks,
caused by a topology where most proteins have few con-
nections, but a small number of proteins are highly con-
nected, thus acting as hubs. Networks with scale-free
properties are thought to be resilient to random pertur-
bations and are therefore robust [5].
Metrics: Centrality
We hypothesize that central genes or proteins in the
human protein interaction network are more likely to be
important players in the life cycle of the virus than non-
central ones. Therefore, after constructing the HIV-1
human protein interaction network we have measured
three types of network centrality: degree, betweenness
and eigenvector centrality on both local and global net-
works.
HDF sub-network is Central
To determine the importance of individual HDFs regard-
ing connectivity in the total human protein interaction
network we define two scores: a hub score and a bottle-
neck score. The degree and the eigenvector centrality of a
protein describe how well it is connected to other pro-
teins (see methods for a detailed description of both mea-
sures). For this reason we have associated the term "hub"

Figure 2 A: Number of HIV-human interactions for each HIV protein, B: Normalized relative number of HIV-human interactions for each HIV 
protein. The y-axis enumerates the n-fold representation of interactions per HIV protein divided by the relative number of interactions of the respec-
tive protein in the total network. An n-fold representation of n > 1 shows an over-representation, whereas n < 1 signifies an under-representation.
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with these measures. Network centrality encompasses
several different notions in connectivity analysis, degree
and eigenvector centrality being two of them. Another
concept that is used to describe the position in a network
is by looking at paths rather than connections. Between-
ness centrality is used to measure the centrality of a node
in the network by counting the number of shortest paths
that go through that node. In other words, how many
shortest paths would increase in length if the node is
removed from the network [31]. See the methods section
for a definition of and earlier work on network ranking
[19,32]. Table 3 shows these centrality metrics measured
for the total human protein interaction network (global)
and the HDF sub-network (local). Comparison of the
HDF network with the total human protein interaction
network using a Kolmogorov-Smirnov test shows that the
measured degrees, eigenvector centralities and between-
ness scores in the local and global network are not from

the same distribution (see  in Table 3). Because the

Kolmogorov-Smirnov test was performed one-sided, we
can conclude that the local network is significantly more
central than the global network with respect to the three
metrics. This indicates a densely connected HDF network
that takes on a central position in the whole human pro-
tein interaction network. Subsequently, this shows that
the human proteins interacting with HIV tend to be
involved in other important processes as well.
Hubs
We define a hub as a protein with high degree and eigen-
vector centrality (see methods section). Table 4 shows the
proteins that were commonly identified as central nodes
by both of these metrics.

Table 4 summarizes the top one percent of the highest
ranked HDFs in the total network. We notice from this
table that both centrality metrics result in very similar
sets of top ranked proteins. The extended table with the
top five percent of proteins identified with different mea-
sures can be found in the additional file 6. We can see that
P53, Brca-1 and Retinoblastoma-1 have been identified as
being highly central by both metrics. This result is not
surprising since all three are well established oncogenes
and have been extensively studied. Therefore their con-
nections with other proteins are expected to be better
documented.
Bottlenecks
We define a protein with high betweenness score as a bot-
tleneck [19].

Table 5 shows the top one percent of proteins that are
called bottlenecks. Once again, highly documented pro-
teins such as tumor protein Tp53, Ubiquitin C (UBC),
Grb2 and Brca-1 are identified as the highest ranked
proteins.
Identification of host factors that are specific to HIV infection
It is not surprising that from our centrality analysis the
proteins that are important for the functioning of a cell
are also crucial for the viral survival. The question that

Pvalue
ks

Table 2: Top ten highest connected HDFs, considering only HIV-HDF connections.

Name Definition Degree

ATMPK1 [GenBank:NP_000537.3] mitogen-activated protein kinase 1 10

IFNG [GenBank:NP_009225.1] interferon, gamma 9

PRKCA [GenBank:NP_000312.2] protein kinase C, alpha 9

MAPK3 [GenBank:NP_068810.2] mitogen-activated protein kinase 3 isoform 1 9

ACTB [GenBank:NP_852664.1] beta actin 8

ACTG1 [GenBank:NP_002458.2] actin, gamma 1 propeptide 8

HLA-A [GenBank:NP_004371.2] major histocompatibility complex, class I, A precursor 8

CD4 [GenBank:NP_002077.1] CD4 antigen precursor 8

IL10 [GenBank:NP_001420.2] interleukin 10 precursor 7

IFNA1 [GenBank:NP_002219.1] interferon, alpha 1 7

Figure 3 HIV proteins interact with HIV dependency factors (HD-
Fs) which in turn interact with human non-HDF proteins. Under-
standing HIV-host interaction requires the understanding of the HDF 
network and its position within the total human protein interaction 
network.

Human
HDF

HIV

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000537.3
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_009225.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000312.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_068810.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_852664.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002458.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_004371.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002077.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001420.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002219.1
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remains is "Are there HIV specific processes that are cru-
cial for viral existence but not as important for the cell?"

In order to understand the relation between local
(related to other HDFs) and global (related to all human
proteins) properties of HDFs, we check whether high
centrality in the HDF network is a predictor for high cen-
trality in the total human protein interaction network.
We plot the local against the global measures of all our
metrics. In Figure 5 these three plots are shown, clearly
signifying strong correlations.

Because of this strong correlation between local and
global properties almost any protein that is identified as
highly essential using a ranking based on local properties
is also important globally. To counteract this effect we fil-
ter out proteins of global importance by re-ranking them
using an adjusted metric (see methods for details).

In Table 6 the top one percent of proteins that are iden-
tified by both corrected degree and corrected eigenvector
centrality metrics are shown. We observe from this table
that highly studied oncogene products are replaced by the

transcription machinery related proteins TBP-associated
factor 1 isoform 1 (Taf1), Activating transcription factor 2
(Taf2), General transcription factor IIB (Gtf2b). This
finding is important because it indicates that transcrip-
tion is a vital process for HIV to synthesize proteins nec-
essary for forming progeny.

Table 7 is the result of normalizing the local between-
ness measure by the global value. Proteasome subunits
have gained significant importance and they constitute
the three highest ranked proteins in terms of between-
ness. Interestingly, in a recent review on the meta-analy-
sis of genome-wide studies [26], proteasome has been
reported to play an important role in HIV functioning.
However, there is conflicting evidence regarding its
action. Proteasome is predominantly reported in degra-
dation of viral products in earlier literature [33,34]
whereas recent genome-wide siRNA studies indicate a
role in the facilitation of HIV infection [24-26]. Our
result confirms the importance of proteasome and identi-
fies it as a bottleneck. Since it is important to understand

Figure 4 Degree distributions of HDFs on a log-log scale. P(k) is the fraction of nodes with degree k. A: Only connections of HDFs to HIV proteins. 
B: Only HDF-HDF connections. Both distributions were fitted with a power law (P(k) = k-γ) with A: γ = 2.3, and B: γ = 2.3, showing the scale-free nature 
of both networks.
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Table 3: Mean values of centrality measures on HDFs and on proteins of the whole human protein interaction network, 
with standard deviations between brackets.

μ (σ) HDF network total human network
(HDF > total)

degree 16 (25) 6 (11) 2.42·10-97

betweenness 63·103 (19·104) 17·103 (79·103) 9.22·10-63

eigenv. centr. 0.049 (0.10) 0.013 (0.04) 3.08·10-87

 is calculated from a one-sided Kolmogorov-Smirnov test with alternative hypothesis: HDF network > total human network regarding 

degree, betweenness and eigenvector centrality. In the HDF network each node has approximately three times more connections (16 in HDF 
vs 6 in the total human network), four times higher betweenness (63·103 in HDF vs 17·103 in human) and a four times higher eigenvector 
centrality score (0,049 in HDF vs 0,013 in human). The significant higher centrality of the HDF sub-network shows that it takes on a central 
position within the total human protein interaction network.

Pvalue
ks

Pvalue
ks
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why proteasome appears as a crucial process specifically
for HIV we have isolated all proteasomal proteins from
the total network and included their first and second level
interacting neighbors. The resulting network consists of
three distinct clusters, where the first cluster clearly only
involves proteasomal proteins. For functional annotation
of the other clusters we have used the DAVID bioinfor-
matics resources online service [35] and performed clus-
tering with GO Biological Process (BP). After annotation,
the second cluster is associated with regulation of meta-
bolic process (80 percent of all proteins), and regulation
of progression through cell cycle (49 percent of all pro-
teins). The members of this cluster are proteins from

highly connected oncogenes Tp53, Tp73, Brca-1 and Rb1.
The third cluster is associated with signal transduction
and cell communication (both 78 percent). These find-
ings suggest that the proteasomal proteins are identified
as bottlenecks because they are connected to important
cellular processes mentioned above, as well as to the rest
of the network. The network visualization of the protea-
somal proteins with their first and second neighbors, the
lists of proteins associated with each cluster and heat
maps of associated GO terms can be found in the addi-
tional files 7, 8, 9, 10 and 11.

One remark is that "some of the virus-host interaction
studies have been done on individual subunits of a com-

Table 4: Set of proteins that are found to be hubs by both the degree and eigenvector centrality metrics.

Name Definition Degree Eigenv. centr.

TP53 [GenBank:NP_000537.3] tumor protein p53 93 1.00

BRCA1 [GenBank:NP_009225.1] breast cancer 1, early onset isoform 1 74 0.98

ESR1 [GenBank:NP_000116.2] estrogen receptor 1 59 0.83

CREB1 [GenBank:NP_004371.2] CREB binding protein isoform a 58 0.81

RB1 [GenBank:NP_000312.2] retinoblastoma 1 58 0.72

RELA [GenBank:NP_068810.2] v-rel reticuloendotheliosis viral oncogene homolog A 57 0.75

SRC [GenBank:NP_005408.1] proto-oncogene tyrosine-protein kinase SRC 57 0.53

TBP [GenBank:NP_005635.1] TATA box binding protein 56 0.61

MYC [GenBank:NP_002458.2] myc proto-oncogene protein 55 0.67

JUN [GenBank:NP_002219.1] jun oncogene 51 0.72

EP300 [GenBank:NP_001420.2] E1A binding protein p300 51 0.69

The top one percent of highest ranked proteins are shown here.

Table 5: Top one percent of proteins that have the highest score from the betweenness centrality metric.

Name Definition Betweenness Score

TP53 [GenBank:NP_000537.3] tumor protein p53 44050

UBC [GenBank:NP_066289.2] ubiquitin C 36458

GRB2 [GenBank:NP_002077.1] growth factor receptor-bound protein 2 isoform 1 22792

BRCA1 [GenBank:NP_009225.1] breast cancer 1, early onset isoform 1 21622

SRC [GenBank:NP_005408.1] proto-oncogene tyrosine-protein kinase 21568

EGFR [GenBank:NP_005219.2 ] epidermal growth factor receptor isoform a 20472

STAT3 [GenBank:NP_644805.1] signal transducer and activator of transcription 3 isoform 1 18503

ESR1 [GenBank:NP_000116.2] estrogen receptor 1 18424

RB1 [GenBank:NP_000312.2] retinoblastoma 1 16777

PIK3R1 [GenBank:NP_852664.1] phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 isoform 1 16048

POLR2A [GenBank:NP_000928.1] DNA directed RNA polymerase II polypeptide A 15896

MYC [GenBank:NP_002458.2] myc proto-oncogene protein 15608

SP1 [GenBank:NP_612482.2] Sp1 transcription factor 14620

RELA [GenBank:NP_068810.2] v-rel reticuloendotheliosis viral oncogene homolog A 14114

SHC1 [GenBank:NP_003020.2] Src homology 2 domain containing transforming protein 1 isoform p52Shc 14011

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000537.3
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_009225.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000116.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_004371.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000312.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_068810.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005408.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005635.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002458.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002219.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001420.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000537.3
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_066289.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002077.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_009225.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005408.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005219.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_644805.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000116.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000312.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_852664.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_000928.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002458.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_612482.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_068810.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_003020.2
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plex, but at other times a complex is implicated in a virus-
host interaction and all subunits of that complex are
linked to a virus protein even though only a few subunits
might be involved in the interaction. This might lead to
spurious over-represented motifs." On the other hand, if
those data describing interaction of complexes rather
than individual subunits is discarded this might lead to an
under-representation of complexes which would in real-
ity be present in the motif analysis. We have chosen to
include these in favor of over-representation of motifs
since the HIV-1 human protein interaction data is already
sparse.

Network Motifs
Complex networks in general and biological networks
specifically have been found to consist of small recurring
patterns, so-called network motifs [2,4,36]. These build-
ing blocks have been used to study the structure and
dynamic behavior of networks.

The motif analysis was carried out on the regulatory
and activation/inhibition subnetworks (inferred from the

HIV-1 Human protein interaction network) by compar-
ing the subnetworks with one thousand randomized net-
works, which were created by randomly rewiring the
original networks (see Figure 6 and section Methods for
details on the rewiring algorithm). This resulted in a
number of significant motifs. In Figure 7 a selection (see
additional file 12 for the complete table) of motifs are
listed that were found to be significant (Zscore > 2, Pvalue <
0.02). Next we describe the types of motifs found.
Self-regulation, feedback
A feedback pattern was found for both two and three
node motifs, consisting of one human protein and one or
two HIV proteins. The three node feedback loop motif
(see Figure 8), identified as indirect self-regulation, is a
pattern where an HIV protein regulates or signals a
human protein that in turn regulates/signals another HIV
protein. As the two HIV proteins are part of the same
organic structure (the HIV pathogen) we observe a pro-
cess of self-regulation or activation/inhibition (feedback)
depending on the nature of the interactions. The two
node feedback loop (self-regulation motif, see Figure 8)
consists of one HIV protein that regulates/signals a
human protein that in turn regulates/signals the HIV pro-
tein. The specific type of interactions between the pro-
teins is what determines the nature of the feedback, e.g.
two up-regulations result in a positive feedback, as well as
two down-regulations. On the other hand a negative
feedback will be the result of one up- and one down-regu-
lation. The three node feedback pattern was observed in
seven different regulatory motifs and in one activation/
inhibition motif, additionally a two node feedback motif
was found in the regulatory network as well as in the acti-
vation/inhibition network (see additional file 12).
Co-regulation
Co-regulation, or co-activation/inhibition is what we
describe as two HIV proteins regulating/activation/inhi-
bition one human protein (see Figure 8). The two interac-
tions can be of the same type (e.g. both up-regulation, or
inhibition), where they can show a potential redundancy
in the system. Of the co-regulation motif we found six

Table 6: Set of proteins that are identified as central using 
both adjusted centrality metrics (degree and eigenvector 
centrality).

Name Definition

TAF1 [GenBank:NP004597.2] TBP-associated factor 1 isoform 1

ATF2 [GenBank:NP001871.2] activating transcription factor 2

GTF2B [GenBank:NP001505.1] general transcription factor IIB

CCND1 [GenBank:NP444284.1] cyclin D1

STAT1 [GenBank:NP009330.1] signal transducer and activator of 
transcription 1 isoform alpha

TBP [GenBank:NP003185.1] TATA box binding protein

CDKN1A [GenBank:NP000380.1] cyclin-dependent kinase 
inhibitor 1A

CEBPB [GenBank:NP005185.2] CCAAT/enhancer binding protein 
beta

The top one percent of highest ranked proteins are shown here.

Figure 5 A: Local degree versus global degree, with an R2 of 0.869. B: Local versus global betweenness, with an R2 of 0.771. C: Local versus global 
eigenvector centrality, with an R2 of 0.942.
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types of regulatory and two types of activation/inhibition
motifs to be significantly over-represented.
Clique
Inclusion of interactions between HDFs (collected from
human protein interaction databases, see methods sec-
tion) gives the ability to study the relationship between
HDFs that have a common interacting HIV protein. The
network motif that is associated with this pattern is what
we identify as a "clique" (see Figure 8). Traditionally the
term clique has been used to denote a group of fully inter-
connected nodes [37], but has also been used to describe
network motifs of the fully connected three node sub-
graph [2]. In this work we study such a clique that con-
sists of two human proteins and one HIV protein. As the
interactions between HIV and human nodes have direc-
tionality a number of different clique patterns arise, simi-
lar to the ones without HDF-HDF interactions.

A feed-forward type [2-4,36] (or self-regulatory) motif
occurs when two connected HDFs are also (indirectly)
interacting via an HIV protein. Co-regulation (or activa-
tion/inhibition) is also observed in the clique. Two inter-
acting human proteins both also regulate/signal the same
HIV protein. Again when the two interactions are of the
same type this might indicate a redundancy (see Discus-
sion). Nine different clique patterns were observed in the
regulatory network and five in the activation/inhibition
network. We have also conducted a Gene Ontology anal-

ysis for each motif that was identified (see additional file
12).

Discussion
In this study we have analyzed a pathogen-host protein
interaction network in an effort to relate network topol-
ogy to biological functioning. Topologically central pro-
teins have shown to be crucial for HIV functioning and
network motifs appear to be the result of the complex
virus-host interplay. In this section we discuss these
results from the network centrality metrics and the net-
work motif analysis.

Network Centrality
HIV Human Protein Interaction Network Meta-Analysis
First we have conducted a meta-analysis of the HIV-
human protein interaction network to examine the distri-
bution of interactions among HIV proteins as well as
HDFs. Network analysis identified key components in the
life cycle of HIV.

The normalized relative connectivity analysis revealed
involvement of viral proteins in distinct sub-functions
(activation/inhibition and regulatory).

Integrase is a viral enzyme that enables the viral
genome to be integrated into the DNA of the host cell. In
addition to this it is present at the time of the initial infec-
tion of a cell in only small amounts [38]. One can specu-
late that any dual function of activation/inhibition or
regulatory nature would end up in reduced efficiency and
probably early detection by the human immune machin-
ery before completing the job. This might be the reason
why it is involved in neither the activation/inhibition net-
work, nor the regulatory network.

HIV proteins which are exposed to the extracellular
environment (Gp120, Gp41, Tat and Vpr) have approxi-
mately an equal number of interactions inferred from
their global connectivity in the total network. This is

Table 7: Top ten bottlenecks after normalization.

Name Definition Bottleneck Score

PSMD6 [GenBank:NP055629.1] proteasome (prosome, macropain) 26S subunit, non-ATPase, 6 0.44

PSMA2 [GenBank:NP002778.1] proteasome alpha 2 subunit 0.25

PSMD10 [GenBank:NP002805.1] proteasome 26S non-ATPase subunit 10 isoform 1 0.15

DHX9 [GenBank:NP001348.2] DEAH (Asp-Glu-Ala-His) box polypeptide 9 0.08

CD4 [GenBank:NP000607.1] CD4 antigen precursor 0.07

CD82 [GenBank: NP002222.1] CD82 antigen isoform 1 0.07

IKBKE [GenBank:NP054721.1] IKK-related kinase epsilon 0.06

PTPRC [GenBank:NP002829.2] protein tyrosine phosphatase, receptor type, C isoform 1 precursor 0.06

A2M [GenBank:NP000005.2] alpha-2-macroglobulin precursor 0.06

CCR5 [GenBank:NP000570.1] chemokine (C-C motif) receptor 5 0.05

Figure 6 Diagram representing the rewiring method used by the 
randomization algorithm. Two random edges are chosen and either 
the sources or the targets are switched with equal probability.
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP055629.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP002778.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP002805.1
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probably due to the large variety of function related to
these proteins. It is indeed true for Tat and Vpr and possi-
bly for Gp120, that they are hyperactive in terms of their
role in different processes. All three proteins are also
directly exposed to the extracellular factors such as anti-
bodies. Gp41 on the other hand, is originally buried in the

viral envelope and is exposed only after Gp120 binds to a
CD4 receptor. In addition, Gp41 has been associated with
a specific role in viral membrane fusion. So it is puzzling
that Gp41 is sharing this generic connectivity profile. On
the other side of the spectrum, viral enzymes RT, retro-
pepsin and integrase all show interaction profiles that are
highly specific for activation and inhibition interactions.
These enzymes are reaction specific and functional
changes are likely to be too costly for the virus, therefore
might be favorable to keep these proteins uni-functional.

Similar connectivity analysis for human proteins
revealed Mitogen-activated protein kinase 1 (Mapk1),
Interferon gamma (Ifng) and Protein kinase C alpha

Figure 7 Significantly over-represented network motifs in HIV-host protein interaction network. Black nodes are HIV proteins and white nodes 
are human proteins. Interactions can either be activations/up-regulations (+), inhibitions/down-regulations (-), activation/inhibition/regulation (±), or 
both (arrow without sign). Nreal is the number of specific motifs found. Nrand ± SD is the average number and standard deviation of the motif found in 
one thousand randomized networks. Pvalue is the probability that Nreal or more motifs are found in the randomized networks. Zscore is the number of 
standard deviations Nrand differs from Nreal. Network motifs were classified as significant when Pvalue < 0.02 and Zscore > 2.

Motif Nreal Nrand ± SD Pvalue Zscore Description

Regulatory

A1

+ +

15 7 ± 4 0.0134 2.21 positive feedback

A2

−−

8 3 ± 2 0.0183 2.09 positive feedback

A3

+ +

200 163 ± 13 2.5 · 10−3 2.80 positive co-regulation

A4

− −

115 51 ± 10 1.6 · 10−10 6.29 negative co-regulation

A5

±

± 4 1 ± 1 1.7 · 10−05 4.14 feed-back loop

Signaling

B1

+ +

167 78 ± 11 1.1 · 10−16 8.19 co-activation

B2

−

− 22 15 ± 3 0.0139 2.20 positive feed-back loop (activation)

B3

− −

72 36 ± 10 1.7 · 10−4 3.59 co-inhibition clique

B4

+ +

324 131 ± 27 4.5 · 10−13 7.14 activation clique

B5

− −

175 74 ± 17 1.4 · 10−09 5.95 inhibition clique

Figure 8 General types of motifs found in the HIV-human protein 
interaction network. Black nodes represent HIV proteins, white nodes 
represent human proteins.

Motif:

Name: Three-node feedback loop Two-node feedback loop Co-regulation/signaling Clique
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(Prkca) and Mitogen activated protein kinase 3 (Mapk3)
as the most HIV connected nodes in HIV-human protein
interaction network, having degrees 10, 9, 9 and 9 respec-
tively. Mapk1 is identified as the integration point for
multiple pathways and takes part in a wide variety of cel-
lular processes [39]. Ifng is an important cytokine for
innate and adaptive immunity. Prkca and Mapk3 are both
known to be involved in various critical cellular pro-
cesses. It is not unexpected that we find them to be over-
represented in the HIV-1 human protein interaction net-
work.
Centrality Analysis
Meta-analysis of the HIV-human protein interaction net-
work revealed that HDFs interacting with HIV constitute
a non-random sub-network (HDF network) in the human
interactome. We employed three centrality measures
(degree, betweenness and eigenvector centrality) to ana-
lyze the HDF sub-network in detail. We calculated the
average centrality measures for the HDF network as well
as the total human protein interaction network. It is clear
that the HDF network is located topologically central in
the human-protein interaction network and is signifi-
cantly densely connected.

Hub analysis of the HDF network resulted in fifteen
proteins that are found to be central for at least one of the
two centrality metrics (degree and eigenvector centrality)
where six of them were oncogenes.

Bottleneck analysis was conducted based on the
betweenness centrality and resulted in a similar list to the
hub analysis. Further inspection showed that both were
also highly central in the total human protein interaction
network.

We calculated the correlation between local and global
centrality for each of the centrality metrics that resulted
in high correlation for each measure. This means that the
centrality assigned to each protein in the HDF network
was a result of its high connectivity in the total network.
To overcome this problem and identify HIV specific pro-
cesses we have normalized each centrality measure from
the HDF network by its global network counterpart. We
observe from the normalized list that highly studied
oncogenes are replaced by transcription factors, tran-
scription factor sub-units (TBP) and transcription activa-
tors. This finding is important because although
transcription is important for the cell, it is probably "the
vital" processes for HIV to synthesize proteins necessary
for forming progeny. It is important to note that in the
normalized bottlenecks list, three proteasome subunits
constitute the most important bottlenecks specific for the
HDF network. Proteasome subunits were also identified
as one of the important processes by Bushman et al. [26].
It is known that cellular proteasome can act negatively on
HIV infection by destroying viral proteins but it is not
clear what the overall effect is on the infection. Our

results show that the importance of protease stems from
the close interaction between vital proteins in regulation
of gene expression and cell communication with protea-
somal proteins. Therefore proteasome seems to connect
the processes governed by these proteins and the rest of
the HDF network. All biochemical reactions in the cell
are dynamic and their equilibrium depends on the con-
centration of the substrates available. Proteasomes have a
unique role in this scenario by being the regulator of the
concentration of particular proteins. A strong line of evi-
dence for HIV's exploitation of proteasomal pathways
comes from the innate restriction host factors that inhibit
viral replication at the cellular level. Human CD317/Teth-
erin and APOBEC proteins (APOBEC3G and
APOBEC3F) have been identified to inhibit HIV replica-
tion and render resistance to HIV infection. There is
growing evidence that HIV proteins Vpu and Vif acceler-
ate proteasomal degradation of CD317/Tetherin [40-43]
and APOBEC3G/F [44,45] respectively, thus suppressing
their expression and overcoming the innate resistance.
Strikingly, the human restriction factor tetherin men-
tioned above is not curated into the NIAID database. Yet,
the importance of proteasomal degradation for HIV
infection has been identified independently in this work.
Given the critical role of HIV's Vif and Vpu in suppress-
ing APOBEC3G/F and CD317 activity, we argue that
pharmacologic compounds designed for restoring the
activity of these intrinsic anti-viral factors in infected
cells in-vivo, could have strong therapeutic benefits, and
therefore deserve serious attention.

As a result, we hypothesize that after infection, apart
from degrading HIV proteins, re-prioritization of protea-
somal pathways is an indirect control mechanism actively
engaged by the virus to manage the concentrations of piv-
otal proteins in the cell. We have shown that regulation of
gene expression and cell communication are major pro-
cesses that are directly linked to proteasome functioning.

Network motifs
Traditionally networks of single systems have been stud-
ied using network motifs (e.g. gene regulatory network of
yeast, see [3]). Discovered patterns, in terms of over-rep-
resented network motifs, hold information on network
structure and dynamics of that system. HIV infection and
it's life-cycle is based on the interplay between two sys-
tems, namely the virus itself and the human host. Conse-
quently, network analysis using motifs results in
understanding of dynamics and structure of interplay as
opposed to the functioning of the two systems indepen-
dently.
General patterns
By interpreting the inferred network motifs (see Figure 7
and 8) we achieve insight into this interplay. Self-regula-
tion or feedback is a pattern that is commonly found in
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gene regulatory systems (see [2-4,36]). Generally these pat-
terns indicate a response mechanism, where a signal such as
a gene regulation (up-regulation, down-regulation) or a
phosphorylation (activation, inhibition) of a protein A
triggers a similar signal to protein B. In the two node case
the source of the signal to A is B, thus potentially result-
ing in a positive or negative feedback loop. In the three node
case (two different HIV proteins) interpretation is less triv-
ial. When we consider all HIV proteins that make up the
virus as a unity, we may consider the motif as a feedback or
self-regulation. Since current available data is lacking infor-
mation on interactions between HIV proteins, we are not
able to interpret it as a loop. Yet interaction between HIV
proteins, especially with the regulatory protein Tat, are
known to be prevalent [27]. Therefore it is plausible to
assume the existence of three node feedback loops.

One limitation of the network motif analysis is the
absence of time (or causality) and spatial information
associated with each event in the database. Therefore,
reconstruction of pathway dynamics by means of net-
work motifs is not possible. One way to overcome this
problem, at least for some motifs, is to include interac-
tions among human proteins that indicate shared com-
partments and time. For instance, co-regulation,
specifically in the case of two of the same interactions,
points to a potential redundancy. This only holds when
we assume that the two similar interactions occur in a
shared spatial and temporal frame, i.e. the interactions
happen in the same cellular compartment and roughly at
the same time. This assumption becomes more plausible
when HDF-HDF interactions are incorporated, serving as
proof for the co-occurrence in time and space, of the two
proteins. Co-regulation that occurs within a clique thus
more strongly points to redundancy. It is these redundan-
cies that are known to contribute to the robustness of
regulatory networks in general [46-48] and give evidence
for a potential cause of the robust nature of HIV infections.

Survival Strategy
Studying HIV-human interaction in terms of network
motifs gives us the opportunity to reconstruct dynamics
on the protein level. It is known that under selection pres-
sure by the immune system the HIV virus undertakes a
number of actions to evade this defense. This interplay
where the host tries to undermine virus reproduction and
where the virus evades immune response is the key con-
cept for understanding virus-host relations.

Network motifs that have been found to be significantly
over-represented, i.e. when their existence can not only
be accounted for by randomness, show patterns that
apparently have been selected for. By investigating these
motifs individually we observe these strategies on the
protein interaction level.

One of such motifs is a two node feedback loop, found
in the HIV-host activation/inhibition network (see motif

B2 in Figure 7). Significant over-representation of this
network motif shows the inhibitory behavior of HIV pro-
teins on human proteins that in turn inhibit the HIV pro-
tein. We therefore refer to these patterns as an "indirect
positive feedback" and in this specific case "self-activa-
tion" as inhibition of an inhibitor results in (relative) acti-
vation. Closer inspection of all occurrences of this
network motif shows that the HIV Tat and Gp120 protein
and the human protein Interferon Gamma (Ifng) have the
highest level of involvement. Gene Ontology analysis of
the observed network motif indicates that the human
proteins involved in the network motif are involved in
immune response (see additional file 12).

Ifng, or type II interferon, is a cytokine critical for
innate and adaptive immunity against viral and intracel-
lular bacterial infections and for tumor control. The
importance of Ifng in the immune system stems in part
from its ability to inhibit viral replication directly, but
most importantly derives from its immunostimulatory
and immunomodulatory effects [49,50].

We want to acknowledge that the results presented in
this paper are based on annotated protein interaction
data from the NIAID database. This data varies strongly
in quality and it can be argued to contain a bias as a result
from translating individual reports into a structured data-
base. Therefore the results presented above should be
interpreted qualitatively authentic rather than quantita-
tively accurate. Nonetheless, the presented work is the
first in the field, according to our knowledge, to incorpo-
rate network centrality analysis and network motifs in a
virus-host protein interaction network. We encourage
experimental testing of the results in this paper to study
their potential role in HIV infection.

Conclusions
We have demonstrated that infection with HIV results in
re-prioritization of cellular processes such as transcrip-
tion and proteasome activity. The primary success of the
virus depends on the synthesis of new virions in a reason-
able amount of time. This has to be accomplished before
the infected cells are detected by patrolling CD8+ T cells
or a humoral response has emerged. Therefore it is highly
plausible that hijacking of the transcriptional machinery
is one of the key processes that has a pronounced role
post-infection.

In addition, proteasomes not only gain significant
importance for the survival of the cell by degrading HIV
proteins early in the infection, but arguably also for HIV,
since they regulate the concentration of the innate antivi-
ral host factors such as APOBEC3G/F and CD317 and
can be targeted by HIV proteins Vpu and Vif.

We have shown that using network motifs one can
identify recurring patterns that have consequences in the
virus-host dynamics. Specifically, we observed patterns
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that show strategies of the virus used to evade the host
immune system. Finally, we conclude that the survival of
HIV within the host requires direct control of the cellular
machinery via the pivotal human proteins and indirect
control via the proteasomes. Network motifs and com-
plex network theory provide a promising framework to
study these dynamics.

Methods
NCBI Database to network
The NCBI HIV-Human Protein Interaction database is
used to construct a protein interaction network. The
obtained network consists of nineteen HIV proteins that
interact with 1452 human proteins through 3959 interac-
tions (See Figure 1.)In this protein interaction network
nodes represent either HIV or human proteins and edges
interactions between them. Because interactions between
HIV and human proteins are annotated (see Figure 8) for
most common interaction types), edges in our network
are directed and have an interaction type. As interactions
are only between HIV and human protein, the resulting
network is bipartite.

HIV protein connectivity
Figure 2 shows the connectivity of the nineteen HIV pro-
teins in the HIV-Human protein interaction networks.
Figure 2-A shows the absolute number of interactions per
HIV proteins for each of the two subnetworks and the
total network. Figure 2-B shows the normalized relative
connectivity. This was achieved by first calculating the
relative connectivity, by dividing the number of interac-
tions for each protein and network by the total number of
interactions in that network. Next the numbers were nor-
malized by dividing the relative connectivity for each pro-
tein and each of the two subnetworks by the relative
connectivity of that protein in the total network. This
normalization permits the comparison of proteins and
subnetworks.

Human Protein interactions
To incorporate interactions between HDFs and between
HDFs and human non-HDF proteins, data on protein
interaction was collected from several databases (BIND,
BioGRID, HPRD) and added to the network [51-53]. As a
result the network consists of nineteen HIV proteins,
1,452 HDFs and 12,557 non-HDF human proteins, and
3,959 HIV-HDF interactions, 4,540 HDF-HDF interac-
tions and 13,189 interactions between HDFs and non-
HDF human proteins.

Network visualization
Cytoscape [54] was used to visualize the HIV-1 human
protein interaction network. The spring embedded layout
algorithm was used for Figure 1.

Network statistics
Network analysis and filtering was performed using
IGraph [55], an R [56] package for complex network anal-
ysis.

The metrics that are used to rank HDFs according to
their importance in the network are based on a number
of network centrality measures (measured per node):

• Degree: number of connected edges, i.e. number of 
protein interactions
• Eigenvector centrality: measure of connectedness to 
other well connected nodes [57,58]
• Betweenness: number of shortest paths that go 
through the node [59,60]

In contrast to the degree, which is a measure of direct
connectedness (number of interacting proteins in our
case), the eigenvector centrality measures direct and indi-
rect connectedness. Because well connected nodes con-
tribute more to the score of their neighbors than low
connected nodes, a protein with a relative high eigenvec-
tor centrality not just indicates high activity in terms of
different interactions, but also points to activity in impor-
tant pathways. The betweenness centrality, on the con-
trary, only measures pathway activity. A protein with high
betweenness is positioned at a central location in the net-
work, as relatively many shortest paths cross it. This does
not necessarily imply well connectedness in terms of
degree; a low connected protein might still have a high
centrality. This way important "cross-roads" in the net-
work can be identified, that would not have been noticed
using standard degree analysis.

Using these three metrics we seek to measure the
importance of human proteins that interact with HIV
proteins (HDFs). In order to distinguish between HDFs
that are important to whole human functioning and
HDFs that are specifically important to the HIV life-cycle,
we normalize our centrality ranking using a distinction
between "local" and "global" metrics.

For instance, we define local degree of an HDF as the
number of edges to other HDFs, and global degree of an
HDF as the number of edges to any other human protein
(including HDFs). So local degree measures connectivity
within the HDF network, whereas global degree mea-
sures connectivity in the whole human protein interac-
tion network. Similarly, we define local and global
measures for eigenvector centrality and betweenness.

To use this as a normalization, first, we filter for pro-
teins in the the top five percent of local degree, eigenvec-
tor centrality and betweenness. This results in 73 proteins
for each metric. Second, to calculate the adjusted central-
ity metrics we divide the local by the global value. This
results in three lists of proteins that are important specif-
ically for HIV regarding these three metrics (see Table 6
and 7).
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Network motif detection
The HIV-Host protein interaction network was analyzed
for network motifs using a motif detection algorithm
implemented in Prolog (see additional files 13, 14, 15 and
16). The prolog programming language presents a useful
alternative for network motif finding as the definition and
detection of network patterns is highly intuitive (prolog is
a declarative language used for logic programming). In
contrast to the motif detection tools MAVisto [61] and
Mfinder [36]), our implementation in Prolog and the
FANMOD [62] motif finding tool are able to find any
annotated network pattern consisting of any number of
nodes and edges. This means that we are able to specify
the type of edges and nodes, thereby distinguishing
between different functional motifs even though they
have the same topology (i.e. distinguishing between regu-
latory and activation/inhibition motifs). Motif detection
was carried out for all possible two and three node pat-
terns. To determine the significance of the observed
motifs, motif detection was repeated on one thousand
randomized networks using a strict randomization algo-
rithm. This to ensure an unchanged connectivity distri-
bution.
Randomization Algorithm
Fully randomized networks would make any found net-
work motif to be significant. For this reason a random-
ized network should be as similar to the original network
as possible, yet randomized. In [2,3,36] this is achieved by
introducing a rewiring algorithm that iteratively switches
the sources or targets of two random edges until the net-
work is sufficiently randomized. This results in a network
where the edges are randomized without changing the
number of nodes or edges and without changing the
degree distribution of the network. In our approach we
used a similar algorithm (see Figure 6) for randomizing
the networks. Because edges can be of different type, we
either switch the sources or targets of two randomly cho-
sen edges with equal probability.
Significance
As described in [3,36] the significance of network motifs
is determined using the Pvalue and Zscore which are calcu-
lated using the number of a specific motif found in the
original network (Nreal) and the average number found
in the randomized networks (Nrand) with standard devi-
ation (SD). A network motif is found to be significant if
the probability of finding the motif Nreal times in the
randomized networks (Pvalue) is smaller than 0.02 and
the number of standard deviations Nreal is removed from
Nrand is at least 2. As a result the network motifs that are
found to be significant can not just be attributed to ran-
domness.

Additional material
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