
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Learning context conditions for BDI plan selection

Singh, D.; Sardina, S.; Padgham, L.; Airiau, S.

Publication date
2010
Document Version
Final published version
Published in
AAMAS 2010

Link to publication

Citation for published version (APA):
Singh, D., Sardina, S., Padgham, L., & Airiau, S. (2010). Learning context conditions for BDI
plan selection. In W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, & S. Sen (Eds.),
AAMAS 2010: the 9th International Conference on Autonomous Agents and Multiagent
Systems, May 10-14, 2010, Toronto, Canada : conference proceedings (Vol. 1, pp. 325-332).
IFAAMAS. https://dl.acm.org/citation.cfm?id=1838206.1838252

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/learning-context-conditions-for-bdi-plan-selection(c885a7e8-baab-4cb4-9970-e291536d46ea).html
https://dl.acm.org/citation.cfm?id=1838206.1838252

Learning Context Conditions for BDI Plan Selection

Dhirendra Singh, Sebastian Sardina,
and Lin Padgham

RMIT University
Melbourne, Australia

{dhirendra.singh,sebastian.sardina,lin.padgham}@rmit.edu.au

Stéphane Airiau
University of Amsterdam

Amsterdam, The Netherlands
s.airiau@uva.nl

ABSTRACT
An important drawback to the popular Belief, Desire, and Inten-
tions (BDI) paradigm is that such systems include no element of
learning from experience. In particular, the so-called context con-
ditions of plans, on which the whole model relies for plan selec-
tion, are restricted to be boolean formulas that are to be specified at
design/implementation time. To address these limitations, we pro-
pose a novel BDI programming framework that, by suitably model-
ing context conditions as decision trees, allows agents to learn the
probability of success for plans based on previous execution expe-
riences. By using a probabilistic plan selection function, the agents
can balance exploration and exploitation of their plans. We develop
and empirically investigate two extreme approaches to learning the
new context conditions and show that both can be advantageous
in certain situations. Finally, we propose a generalization of the
probabilistic plan selection function that yields a middle-ground
between the two extreme approaches, and which we thus argue is
the most flexible and simple approach.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents; I.2.6
[Learning]: Induction

General Terms
Algorithms, Performance

Keywords
BDI, Learning (single and multi-agent)

1. INTRODUCTION
In this paper, we are concerned with one of the key aspects of

the BDI agent-oriented programming paradigm, namely, that of in-
telligent plan selection [7, 12]. Specifically, we explore the details
of how effective plan selection can be learnt based on ongoing ex-
perience.

There are a plethora of agent programming languages and devel-
opment platforms in the BDI tradition, such as PRS [7], JACK [5],
3APL [9] and 2APL [6], Jason [3], and SRI’s SPARK [11], among
others. Generally speaking, these systems enable abstract plans
written by programmers to be combined and used in real-time, in a

Cite as: Learning Context Conditions for BDI Plan Selection, Dhirendra
Singh, Sebastian Sardina, Lin Padgham, and Stéphane Airiau, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp.�
Copyright © 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

way that is both flexible and robust. Concretely, a BDI agent is built
around a plan library, a collection of pre-defined hierarchical plans
indexed by goals and representing the standard operational proce-
dures of the domain (e.g., landing a plane). The so-called context
condition attached to each plan states the conditions under which
the plan is a sensible strategy to address the corresponding goal in
a given situation (e.g., it is not raining). The execution of a BDI
system relies then entirely on context sensitive subgoal expansion,
allowing agents to “act as they go” by making plan choices at each
level of abstraction with respect to the current situation.

The fact that both the actual behaviours (the plans) and the situ-
ations for which they are appropriate (their context conditions) are
fixed at design time has important implications for the whole pro-
gramming approach. First, it is often difficult or impossible for the
programmer to craft the exact conditions under which a plan would
succeed. Second, once deployed, the plan selection mechanism is
fixed and may not adapt to potential variations of different envi-
ronments. Finally, since plan execution often involves interaction
with a partially observable external world, it is desirable to mea-
sure success in terms of probabilities rather than boolean values.

The authors have been exploring the nuances in learning within
the hierarchical structure of a BDI program [1] where it can be
problematic to assume a mistake at a higher level in the hierarchy,
when a poor outcome may have been related to a mistake in se-
lection further down (Section 3). In this paper we show how the
scheme which does not take account of this fact, can at times lead
to a complete inability to learn (Section 5). We outline two ap-
proaches which we have described previously: a conservative ap-
proach which takes account of the structure, considering failures
only when decisions made during the execution are deemed suf-
ficiently “informed.”, and an aggressive approach which ignores
the structure and had initially seemed preferable (Section 4). We
then describe a new approach which instead of being conservative
in which training examples are used, includes a confidence measure
based on how much the agent has explored the space of possible ex-
ecutions of a given plan (Section 6). The more this space has been
“covered” by previous executions, the more the agent “trusts” the
estimation of success provided by the plan’s decision tree. This ap-
proach to selection, when combined with the aggressive approach
to training examples achieves a flexible and simple compromise
between the previous two approaches.

Our approach is fully compatible with the usual methodology
to plan selection using programmed formula based context condi-
tions. In real applications we would in fact expect the learning
to “refine” initially provided selection conditions. For simplicity,
however, context conditions are learnt from scratch in our experi-
mental work.

325

325-332

2. BDI PROGRAMMING
BDI agent-oriented programming is a popular, well-studied, and

practical paradigm for building intelligent agents situated in com-
plex and dynamic environments with (soft) real-time reasoning and
control requirements [2, 7]. A BDI-style agent system consists, ba-
sically, of a belief base (the agent’s knowledge about the world), a
set of recorded pending events or goals, a plan library (the typical
operational procedures of the domain), and an intention base (the
plans that the agent has already committed to and is executing).

The basic reactive goal-oriented behavior of BDI systems in-
volves the system responding to events—the inputs to the system—
by committing to handle one pending event-goal, selecting a plan
from the library, and placing its program into the intention base. A
plan in the plan library is a rule of the form e : ψ ← δ: program δ is
a reasonable strategy to resolve event-goal e whenever the context
condition ψ is believed true. Among other operations, program δ
typically includes the execution of primitive actions (act) in the en-
vironment and the “posting" of new subgoal events (!e) that ought
to be resolved by selecting (other) suitable plans. A plan may be
selected for addressing an event if it is relevant and applicable, that
is, if it is a plan designed for the event in question and its context
condition is believed true, respectively. In contrast with traditional
planning, execution happens at each step. The assumption is that
the use of plans’ context-preconditions to make choices as late as
possible, together with the built-in goal-failure mechanisms, en-
sures that a successful execution will eventually be obtained while
the system is sufficiently responsive to changes in the environment.

For the purposes of this paper, we shall mostly focus on the plan
library. It is not hard to see that, by grouping together plans re-
sponding to the same event type, the plan library can be seen as
a set of goal-plan tree templates: a goal (or event) node has chil-
dren representing the alternative relevant plans for achieving it; and
a plan node, in turn, has children nodes representing the subgoals
(including primitive actions) of the plan. These structures, can be
seen as AND/OR trees: for a plan to succeed all the subgoals and
actions of the plan must be successful (AND); for a subgoal to suc-
ceed one of the plans to achieve it must succeed (OR).

Consider, for instance, the goal-plan tree structure depicted in
Figure 1. A link from a goal to a plan means that this plan is rele-
vant (i.e., potentially suitable) for achieving the goal (e.g., P1 . . . P4
are the relevant plans for event-goal G); whereas a link from a plan
to a goal means that the plan needs to achieve that goal as part of
its (sequential) execution (e.g., plan PA needs to achieve goal GA1

first and then GA2). For compactness, an edge with a label ×n
states that there are n edges of such type. Leaf plans directly in-
teract with the environment and so, in a given world state, they can
either succeed or fail when executed; this is marked accordingly
in the figure for some particular world (of course such plans may
behave differently in other states). In some world, given successful
completion of GA first, the agent may achieve goal GB by select-
ing and executing PB , followed by selecting and executing 2 leaf
working plans to resolve goals GB1 and GB2. If the agent succeeds
with goals GB1 and GB2, then it succeeds for plan PB , achieving
thus goal GB and the top-level goal G itself. There is no possible
successful execution, though, if the agent decides to carry on any
of the three plans labelled P ′

B2 for achieving low-level goal GB2.
Clearly, the problem of plan-selection is at the core of the BDI

approach: which plan should the agent commit to in order to achieve
a certain goal? This problem amounts, at least partly, to what has
been referred to as means-end analysis in the agent foundational
literature [12, 4], i.e., the decision of how goals are achieved. To
tackle the plan-selection task, state-of-the-art BDI systems lever-
age domain expertise by means of the context conditions of plans.

However, crafting fully correct context conditions at design-time
can be a demanding and error-prone task. Also, fixed context con-
ditions do not allow agents to adapt to changing environments.
Below, we shall provide an extended BDI framework that allows
agents to learn/adapt plans’ context conditions, and discuss and em-
pirically evaluate different approaches for such learning task.

3. A BDI LEARNING FRAMEWORK
The problem that we are interested in is as follows: given past

execution data and the current world state, determine which plan
to execute next in order to address an event.

To address this “learnable” plan-selection task, we start by mod-
eling the context condition of plans with decision trees, rather than
with logical formulas.1 Decision trees [10] provide a natural clas-
sification mechanism for our purposes, as they can deal well with
noise (generally due to partially observable and predictable envi-
ronments), and they are able to support disjunctive hypotheses.
They are also readily convertible to rules, which are the standard
representation for context conditions in BDI systems.

We associate each plan in the agent’s library with a decision tree
that classifies world states into an expectation of whether the plan
will succeed or fail. Then for each relevant plan, its decision tree
(induced based on previous executions) gives the agent information
regarding how likely it is to succeed/fail in a particular world state.

Given this new context for BDI programming, there are two is-
sues that ought to be addressed. First, one has to decide when and
what kind of execution data the agent should collect in order to be
able to “learn” (useful) decision trees for plans. Roughly speak-
ing, data is collected regarding whether a plan is considered to have
succeeded or failed in the world for which it was selected. Whereas
successful executions are always recorded, the recording of failure
runs of a plan may be subject to some analysis; this is the topic of
the following section.

The second issue to be addressed is how to use the plans’ deci-
sion trees for plan selection. More concretely: given a goal to be
resolved and a set of relevant plans with their corresponding con-
text decision trees, what plan should the agent commit for execu-
tion? Typical BDI platforms offer various mechanisms for plan se-
lection, including plan precedence and meta-level reasoning. How-
ever, these mechanisms are pre-programmed and do not take into
account the experience of the agent. In our framework for context
learning, we must consider the standard dilemma of exploitation vs
exploration. To that end, we use an approach in which plans are
selected with a probability proportional to their relative expected
success (in the world state of interest). Later, in Section 6, we dis-
cuss how to further enhance such plan selection by considering how
much each candidate plan has been explored relative to its “com-
plexity.”

For the purpose of our analysis, we have used algorithm J48, a
version of c4.5 [10], from the well-known weka learning package
[17]. Currently we recreate decision trees from scratch after each
new outcome is recorded. Of course, for a real-world implementa-
tion, one should appeal to algorithms for incremental induction of
the decision tree, such as those described in [14, 16].

The weka J48 algorithm for inducing decision trees aims to bal-
ance compactness of representation with accuracy. Consequently,
it maintains in each decision tree information about the number of
instances (or world states in our case) from the training data cor-
rectly and incorrectly classified by each decision tree leaf node.
Subsequently, whenever a plan’s decision tree is used to classify a

1The logical formulae of the classical BDI framework can of course
be combined with decision trees.

326

new instance (world state), weka returns not only the classification
(i.e. success or failure), but also a classification probability (i.e. to
what degree it believes that the classification is correct). We then
use this probability as an estimate of the plan’s chances of success
for the world in question.

Finally, we should point out a number of assumptions that were
made in order to focus on the core issues we are concerned with.
First, we assume that actions in the environment may fail with some
probability (if an action is not possible in a world state this prob-
ability is 1.0). This is a simple way to capture non-deterministic
failures caused either by imperfect execution or external changes in
the environment. A success on the other hand is always attributed
only to the agent’s actions. Second, we consider the execution of a
single intention; learning in the context of multiple, possibly inter-
acting, intentions poses other extra challenges that would compli-
cate our study substantially (see [15]). Lastly, we assume no auto-
mated failure handling, whereby the BDI system retries a goal with
alternative options if the selected plan happens to fail. Integrating
failure handling would complicate our implementation framework
and the understanding of the basic mechanisms. For instance, if an
alternative plan were to succeed after the initial failure then care
must be taken in propagating this outcome to the parent as the suc-
cess may have been caused precisely because the first choice failed
in a way that enabled the second one to succeed.

4. CONTEXT LEARNING: 2 APPROACHES
With the classical BDI programming framework extended with

decision trees and a probabilistic plan selection scheme, we are now
ready to develop mechanisms for learning context decision trees
based on online experiences, in order to improve plan selection over
time. To that end, in this section, we explore two approaches for
learning the context condition of plans.

Recall that our objective is to learn which plans are best for
achieving a particular goal in the various world states that may en-
sue. Given that, in this work, we have no measure of cost for plans,2

a good plan for a given world state is simply one which (usually)
succeeds in such state. In order to learn the context decision tree
for a plan, the agent keeps track of previous experiences it has had
when running the plan in question. More precisely, if a plan P is
tried in world state w with certain outcome o ∈ {succ, fail}, the
agent may record the tuple 〈w, o〉 as part of the training set for plan
P . Interestingly, while it is always meaningful to record successful
executions, some failures may not be worth recording. Based on
this observation, we shall develop and compare two different algo-
rithms that differ on how past experiences are taken into account
by the agent. Before then, though, let us explain better this issue by
means of an example.

Consider the example in Figure 1. Suppose that in some exe-
cution, plan Pi, for some i ∈ {1, . . . , 4}, is selected in order to
resolve top-goal G in some world state w1. The plan involves,
in turn, the successful resolution of sequential goals GA and GB .
Suppose further that subgoal GA has been resolved successfully,
yielding new state w2, and that plan PB has been chosen next to
try and achieve the second subgoal GB . Suppose next that the first
subgoal of plan PB , namely GB1 has been successfully resolved,
yielding new state w3, but that the non-working plan P ′

B2 for sub-
goal GB2 is selected in w3 and execution thus fails. As there is no
failure recovery, this failure will be propagated upwards in the hier-
archy, causing goals GB2 as well as GB and top-level goal G itself
to fail. First of all, the failure (in world state w3) must be recorded

2This could also be a useful addition, but is not part of standard
BDI programming languages.

G

P1 Pi

GA

PA

GA1

√ ×

×3
GA2

√ ×

×3

×

×3
GB

×

×3

PB

GB1

√ ×

×3
GB2

PB2

√
P ′

B2

×

×3

P4
.

Figure 1: Goal-plan hierarchy T3. There are 24 worlds whose
solutions are distributed evenly in each of the 4 top level plans.
Successful execution traces are of length 4. Within each sub-
tree Pi, BUL is expected to perform better for a given world,
but it suffers in the number of worlds. Overall, ACL and BUL
perform equally well in this structure.

in the decision tree of the plan where the failure originated, namely,
plan P ′

B2. Such bottom-level plans have no subgoals, so they inter-
act with the external world directly, and over time we can expect to
learn such interactions. On the other hand it is unclear, as we will
show below, whether failure should also be recorded in the decision
trees for plans higher up in the hierarchy (i.e. plans PB and Pi).

In order to discuss further which data should be recorded where,
we define the notion of an active execution trace, as a sequence of
the form G0[P0 : w0] · G1[P1 : w1] · . . . · Gn[Pn : wn], which
represents the sequence of currently active goals, along with the
plans which have been selected to achieve each of them, and the
world state in which the selection was made—plan Pi has been
selected in world state wi in order to achieve the i-th active subgoal
Gi. In our example, the trace at the moment of failure is as follows:

λ = G[Pi : w1] · GB [PB : w2] · GB2[P
′
B2 : w3].

So, when the final goal in λ fails, namely GB2, it is clear that the
decision tree of the plan being used to achieve this goal ought to
be updated, and a failure should be recorded for the world state w3

against the decision tree attached to plan P ′
B2. By recording every

outcome for the lowest plans, i.e., plans with no subgoals, the sys-
tem eventually learns how such plans perform in the environment.

What is more difficult to determine is whether the decision trees
of plans associated with earlier goals in λ should also be updated.
More concretely, should failure cases in world states w2 and w1 be
recorded against plans PB and Pi, respectively? The point is that
it is conceivable that the failure of subgoal GB2 in plan PB , for
instance, could indeed have been avoided, had the alternative plan
PB2, been chosen instead. Therefore, recording a failure against
plan PB would not be justified—it is not true that plan PB is a
“bad” choice in world state w2. Informally, one could argue that it
is more appropiate to wait before recording failures against a plan
until one is reasonably confident that subsequent choices down the
goal-plan tree hierarchy were “well informed.” In our case, if the
agent knows that the plan selection for goal GB2 was as good and
informed as possible, then recording the failure for world w2 in
plan PB would also be justified. Similarly, if the agent considers
that the plan selection for subgoal GB was an informed choice,

327

then recording the failure for world w1 against Pi’s decision tree
would be justified too.

The judgement as to whether plan choices were sufficiently “well
informed,” is however not a trivial one. A failed plan P is consid-
ered to be stable for a particular world state w if the rate of success
of P in w is changing below a certain threshold ε. In such a case,
the agent can start to build confidence about the applicability level
of P . The stability notion extends to goals as follows: a failed goal
is considered stable for world state w if all its relevant plans are
stable for w. When a goal is stable, we regard the plan selection
for such goal as a “well informed” one. Thus, a failure is recorded
in the plan for a given world if the subgoal that failed is stable for
the respective world in which it was resolved. In our example, we
record the failure in plan PB (Pi) if goal GB2 (GB) is deemed sta-
ble in world state w3 (w2), that is, if the selection of option P ′

B2

(PB) was an informed one.
The RecordFailedTrace algorithm below shows how a failed ex-

ecution run λ is recorded. Function StableGoal(G, w, k, ε) returns
true iff goal G is considered stable for world state w, for success
rate change threshold 0 < ε ≤ 1 and minimal number of execu-
tions k ≥ 0. The algorithm starts by recording the failure against
the last plan Pn in the trace. Next, if the choice of executing plan
Pn to achieve goal Gn was deemed an informed one (that is, goal
Gn was stable for wn), then the procedure should be repeated for
the previous goal-plan nodes, if any. If, on the other hand, the last
goal Gn in the trace is not considered stable enough, the procedure
terminates and no more failure data is assimilated. Observe that, in
order to update the decision tree of a certain plan that was chosen
along the execution, it has to be the case that the (failed) decisions
taken during execution must have all been informed ones. Note that
the stability idea only applies to failures since successes are always
recorded.

Algorithm 1 RecordFailedTrace(λ, k, ε)

Require: λ = G0[P0 : w0] · . . . · Gn[Pn : wn]; k ≥ 0; ε > 0
Ensure: Propagates DT updates for plans
1: RecordWorldDT(Pn, wn, fail)
2: if StableGoal(Gn, wn, k, ε) ∧ |λ| > 1 then
3: λ′:= G0[P0 : w0] · . . . · Gn−1[Pn−1 : wn−1]
4: RecordFailedTrace(λ′, k, ε) // recursive call

5: end if

So, in the remainder of the paper, we shall consider two learning
approaches compatible with the framework developed in the previ-
ous section. The first, which we call aggressive concurrent learn-
ing (ACL), corresponds to the more traditional approach where all
data is always assimilated by the learner, that is, we take ε = 1 and
k = 0. In other words, every plan and every goal is always consid-
ered stable and, as a result, a failure in a plan is always recorded.
The assumption is that misleading information, as discussed above,
will eventually disappear as noise. The second one, which we refer
to as bottom-up learning (BUL), is more cautious and records a fail-
ure execution experience when the success rate has stabilised i.e. is
not changing by more than ε. In our work, we have taken ε = 0.3
and k = 3, that is, the context condition of a plan is considered
stable (for a world state) if at least 3 past execution experiences
have been recorded and the change in the rate of success over the
last two experiences is less than 0.3. Note that the lower ε is and
the higher k is, the more conservative the agent is in considering its
decisions “well informed.”

In the following section, we shall explore these two approaches
against different programs with different structures.

G

Pi

GA
i

√ √ ×

×8
GB

i

√ √ ×

×8

×3

P ′
i

G′
i

× × ×

×3

×17

Figure 2: Goal-plan tree structure T1. To succeed, an agent
needs to make three correct choices, including selecting Pi at
the top-level. The solutions to 23 worlds are distributed evenly
in the 3 plans Pi. ACL outperforms BUL in this structure.

5. EXPERIMENTAL RESULTS
In order to explore the difference between BUL and ACL, we set

up testbed programs composed of several goals and plans combined
in a hierarchical manner and yielding goal-plan tree structures of
different shapes.3 In particular, we crafted goal-plan tree structures
representing different cases of BDI programs with one main top-
level goal to be resolved. In addition, for each structure there is
always a way of addressing the main goal, i.e. there is at least one
successful execution of the top-level goal provided the right plan
choices are made. Observe that such successful (plan) choices are
different for different world states. When it comes to describing the
possible (observable) world states, we have used a set of logical (bi-
nary) propositions, representing the so-called fluents or features of
the environment that are observable to the agent (e.g., fluent propo-
sition DoorLocked states whether the door is believed open or not).
Finally, we assume the agent is acting in a non-deterministic envi-
ronment in which actions that are expected to succeed may still fail
with some probability. In our experiments we assign a 0.1 proba-
bility of unaccounted failure to all actions.4

The experiments consisted in posting the top-level goal repeti-
tively under random world states, running the corresponding BDI
learning agent, and finally recording whether the execution termi-
nated successfully or not. We calculate the average rate of success
of the goal by first averaging the results at each time step over 5
runs of the same experiment, and then smoothing using a moving
average of the previous 100 time steps to get the trends reported
in the figures. We ran the tests with both a BUL-based agent and
a ACL-based agent, ensuring the same sampling of random world
states for each.

From our set of experiments, we have selected three hierarchi-
cal structures that best illustrate the results that we have obtained,
namely:

(Tree T1; Figure 2) For each world state, the goal has a few plans
that can succeed (plans Pi), but many other options of com-
parable complexity that are bound to fail (plans P ′

i).5 Under
this type of structure, an ACL-based agent will generally per-

3We have implemented the learning agent system in the JACK
BDI platform [5]. The fact that JACK is Java based and provides
powerful meta-level reasoning capabilities allows us to integrate
weka and probabilistic plan-selection mechanisms with little effort.
Nonetheless, all the results are independent of this choice and could
be reproduced in other BDI implementations.
4See Discussion section on how our results generalize to a frame-
work with world state built from non-binary fluents and with more
complex accounts for stochastic actions.
5Here, plan complexity refers to the size of the fully expanded plan,

328

G
P

√ ×

×2

×2 ×

×2

×2 ×

×2

×2

P ′
i

√ ×

×2

×

×3

×2

Figure 3: Goal-plan tree hierarchical structure T2. Successful
execution requires numerous correct choices including 8 cor-
rect action nodes. The solutions to 23 worlds are in the plan
labelled P . BUL outperforms ACL in this structure.

form better than an agent using the learning BUL approach.

(Tree T2; Figure 3) For each world state, the goal has one plan
that can succeed (plan P), and a few others that would fail.
However, the plan containing the solution is of substantially
higher-complexity. In this structure, a BUL-based agent will
outperform an ACL-based one.

(Tree T3; Figure 1) This tree represents a “balanced” structure that
ends up providing different advantages for both BUL and ACL
in different parts of the tree.

Let us next discuss each of the goal-plan structures and how the
performance of BUL-based and ACL-based agents compare.

Under a structure like T1, the agent basically has several options
of comparable complexity to resolve the top-level goal G in a cer-
tain world state. In T1 there are 20 options. However, most such
options (17 in our example, plans P ′

i) inevitably lead to failure.
The benefit of using the ACL approach comes from the fact that
the agent will decrease the probability of selecting each of those
17 failing plans as soon as they fail for the first time. In contrast,
BUL requires multiple failed experiences of each of those “bad”
top-level options before decreasing their probability of selection
because each subgoal of each plan P ′

i must be stable before that
P ′

i is updated. The ACL agent did indeed perform better in our ex-
periments, in that it achieved better success rate earlier as shown
in Figure 4(a). Observe that, eventually, both approaches will yield
optimal performance.6

Let us now analyse the goal-plan tree T2 shown in Figure 3.
Under such a structure, all successful executions are encoded in
a complex plan, in our case plan P . Other options that the agent
may have (e.g., plans P ′

i) are of less complexity, but do not lead

as represented by the number of levels of abstraction and the num-
bers of goals at each level. The key factor is the number of abstrac-
tion levels—abstract plans are not in themselves complex.
6Optimal performance in this case amounts to a success rate of
81%, as the environment fails with probability .1 for every (work-
ing) action and each successful execution involves the performance
of two actions (leaf plans consist of single actions).

to solutions for resolving the goal.7 Because the plan containing
the solution, namely P , is fairly complex, there are many ways
the agent may fail when exploring the decomposition of P . The
agent needs to make several correct choices to obtain a successful
execution. Although we expected BUL to yield better agent perfor-
mance than ACL, the difference was enormous in our experiments.
Figure 4(b) shows that while the BUL approach achieves optimal
performance, which amounts to slightly over 40% rate of success,
in slightly more than 500 iterations, the ACL scheme, requires more
than 3000 execution experiences. The reason is this: since there are
more chances to fail plan P initially, ACL marks this plan as “bad,”
along with the non-working plans P ′

i . On the other hand, BUL does
not treat any plans as “bad” until they are stable, so plan P is ex-
plored with equal likelihood to plans P ′

i . Eventually, the simpler
P ′

i plans become stable first, leaving BUL to explore plan P almost
exclusively. This structure shows exactly the problem discussed in
the previous section, namely, the drawbacks of assuming that a plan
is a bad option just because it happened to fail, without considera-
tion of the confidence in the choices made below it.

Finally, consider the hierarchical structure T3 depicted in Fig-
ure 1. In this case, the top-level goal G has four relevant plans,
which are all “complex,” that is, they all have several levels and
multiple goals and plans. However, given a world state, only one
particular path in this hierarchy will lead to a successful execu-
tion (of course, for different states, different top-level plans may
apply). Among other things, this means that at the top-level the
agent needs to select the right plan given the current world state.
All other plans are bound to eventually fail. We argue that this is
a common feature found in many BDI agent applications, in that
even though the agent has been programmed with several strategies
for resolving a goal, each one is crafted to cover uniquely a partic-
ular subset of states. In other words, these are systems with low
know-how overlap. With respect to the two learning approaches
we are considering, structure T3 provides advantages for both of
them, in different parts of the tree. The ACL scheme is expected to
learn faster the inadequacy of the non-working top-level programs,
whereas the BUL would better explore, and find a solution, within
the working top-level plan. This balance is evident in Figure 4(c)
where both approaches show comparable performance.

Plan Applicability and Optimality
So far, we have assumed that the agent considers all relevant

plans for a goal to be applicable, even though some may have a very
low chance of success. This implies that, in contrast with standard
BDI systems, our extended learning BDI framework will always
select a plan from the relevant options. Because executing a plan is
often not cost-free in real systems, it is likely that an adequate plan
selection mechanism would in fact not execute plans with too low
a probability of success. This in turn implies that the system may
decide to fail a goal without even trying it, if it considers that the
high likelihood of failure does not justify the cost of attempting any
of the relevant plans. This is exactly what standard BDI systems
do. When no applicable plan is found for a certain event-goal, that
event-goal is failed right away.

To understand the impact of applicability in our BDI learning
framework, we modified the probabilistic plan selection so that the
agent does not consider plans whose chances of success are deemed
below a threshold; in our case we set this threshold to 20%. For

7This is an extreme case for illustrative purposes. Of course the
simpler plans P ′

i would, in a real program, lead to a solution in
some world states or it would not make sense to include them. The
same effect would however arise if most world states had solutions
only in a complex plan branch.

329

500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0

Success

Iterations

(a) Structure T1

500 1500 2500
0.0

0.2

0.4

0.6

0.8

1.0

Success

Iterations

(b) Structure T2

1000 2500 4000
0.0

0.2

0.4

0.6

0.8

1.0

Success

Iterations

(c) Structure T3

Figure 4: Agent performance under BUL (circles) and ACL (crosses) schemes. Each point represents results from 5 experiment runs
using an averaging window of 100 samples. The dashed line represents optimal performance (Note that outcomes are always 0 or 1
so more than expected consecutive successes may seems like “above” optimal performance when averaged).

simplicity in this experiment, we removed the non-determinism in
the environment: actions either fail or succeed in each world state.

Using the structure T3 we found that whereas the BUL scheme
maintains its performance (and in fact may slightly improve due to
truly failing leaf plans being ruled out earlier), the ACL approach
may not learn at all and end up eventually failing the top-level goal
always. This is reported in Figure 6 (dotted lines).

The explanation for this undesirable behavior under ACL is as
follows. Initially, the agent tries all top-level plans for the top-level
goal, including the ones containing potential successful executions.
Because of their complexity, the chance of finding a successful ex-
ecution immediately is very low, and most executions fail initially.
With each failure, ACL decreases the feasibility of all plans tried,
including the top-level one. After several failures, all plans for the
top-level goal eventually go below the applicability threshold of the
system (including the “good” plans). When that happens, the sys-
tem has no more applicable plans for the goal and will therefore fail
it always. This behavior does not arise in the original system, be-
cause even if all plans perform very poorly, the agent would always
pick one anyway, the successful path would eventually be found,
and the context decision trees of the plans associated with such a
path would then start “recovering.”

The reason BUL exhibits more robust behaviour here is that false
negative executions (i.e., failing executions of plans that do encode
successful runs) will not be recorded. The BUL approach relies on a
confidence test—stability—that checks whether we are sufficiently
well informed to trust that the current failure is indicative of future
attempts. In the next section, we explore an alternative approach
to confidence that takes account of how sure we are of the decision
tree when we use it, rather than using stability as a confidence mea-
sure for deciding when to record. Whereas stability is a boolean
measure (true or false), the alternative measure gives us a more
fine-grained degree of confidence.

6. INFORMED PLAN SELECTION
Our new approach relies on the idea that confidence in a plan’s

decision tree increases as more of the possible choices below the
plan in the goal-plan structure are explored.

So, with each plan in the goal-plan tree hierarchy, we identify its
set of potential choices as the set of all potential execution paths be-
low the plan in the hierarchy. This can easily be computed offline.

Intuitively, a plan’s decision tree is more informed for a world state
if it is based on a larger number of choices having been explored
in that state. We say that a plan has a higher degree of coverage as
more of its underlying choices are explored and accounted for in
the corresponding decision tree. Technically, given a decision tree
T for a certain plan, we define its coverage for the world state w
as cT (w) ∈ [0, . . . , 1]. Initially, when the plan has not yet been
executed in a world w, its coverage in such state is cT (w) = 0 and
the agent has no basis for confidence in the likelihood of success
estimated by T for w. As the different ways of executing the plan
in the world state w are explored, the value of cT (w) approaches
1. When all choices have been tried, cT (w) = 1 and the agent
may rely fully on the decision tree estimation of success. In this
way, coverage provides a confidence measure for the decision tree
classification.

We then construct a probabilistic plan selection function that in-
cludes the coverage-based confidence measure. Formally, we de-
fine the plan selection weight Ω′(w) as a function of the decision
tree determined success expectation pT (w) and the degree of cov-
erage cT (w):

Ω′
T (w) = 0.5 + [cT (w) ∗ (pT (w) − 0.5)] .

Initially the selection weight of the plan for a previously unseen
world state w takes the default value of 0.5. Over time, as the
various execution paths below the plan are tried in w, its coverage
increases and the selection weight approaches the true value esti-
mated by the plan’s decision tree.

Each time a plan execution result is recorded, the coverage cT (w)
for a world w is calculated and stored. It requires, in principle,
τ × |S| unique executions of a plan for it to reach full coverage,
where τ is the total number of choices below the plan and |S| is the
number of possible worlds. Practically, however, it takes signifi-
cantly less since choices below a plan are effectively an AND/OR
tree, and each time an AND node fails, the subsequent nodes are not
tried and are counted as covered for the world in question. Also, a
plan is generally not executed in every world state, so in practice it
will only need to be assessed in the subset of the world states that
is relevant to it.

We are now ready to revisit the two learning approaches ACL and
BUL from the previous section, but this time using the modified se-
lection weighting based on coverage. We will refer to the new ap-

330

500 1500 2500
0.0

0.2

0.4

0.6

0.8

1.0

Success

Iterations

Figure 5: Performance of ACL+Ω′ (solid crosses) in structure
T2 compared against the earlier results for ACL+Ω and BUL+Ω
(both in dotted grey).

proaches as ACL+Ω′ and BUL+Ω′, respectively. Similarly, ACL+Ω
and BUL+Ω correspond to the approaches using the original selec-
tion weighting that only uses its decision tree success expectation,
that is, ΩT (w) = pT (w).

Our first observation is that the BUL+Ω and BUL+Ω′ approaches
show similar performance. This is not surprising, as the stability
test performed by these agents at each plan node inherently results
in close to full coverage. Indeed, for a plan to become “stable,” the
agent needs to (substantially) explore all possible ways of executing
it. The stability check, then, effectively reduces Ω′

T (w) to ΩT (w).
So, for simplicity, we shall not give a further account of the BUL+Ω′

approach in this section.
We now focus on the ACL approach. For the ACL-favouring

structure T1, we find that the performance of ACL+Ω′ matches that
of ACL+Ω reported earlier in Figure 4(a). Similarly, for the bal-
anced structure T3 where previously both ACL and BUL performed
equally well, the performance of ACL+Ω′ was the same as that
reported for ACL+Ω earlier in Figure 4(c). Thus, for the cases
where ACL+Ω was performing reasonably well, the new ACL+Ω′

approach maintains comparable performance.
The benefit of the coverage-based approach is apparent, though,

when one considers the goal-plan structure T2 in which the ACL+Ω
performed poorly (cf. Figure 4(b)). Here, the ACL+Ω′ scheme
showed a dramatic improvement over ACL+Ω. Figure 5 shows
this change with the results for the new approach to plan selec-
tion ACL+Ω′ superimposed over the original results from Figure
4(b). The reason why the new plan selection mechanism improves
the ACL learning scheme is that even though the success estimation
pT (w) for a given plan Pi would still be low initially (remember
that ACL, in contrast with BUL, would record all initial failure out-
comes for Pi), the agent would not be very confident in such esti-
mation until the plan’s coverage increases; therefore the selection
weight Ω′

T (w) will initially bias towards the default weight of 0.5.
In other words, the false negative outcomes collected by the agent
for plan Pi would not be considered so seriously due to low plan
coverage. As full coverage is approached, one would expect the
agent to have discovered the success execution encoded in Pi.

Even more interesting is the impact of the new plan selection
mechanism on agents that work with an applicability threshold,
i.e., agents that may not select plans that are deemed unlikely to
succeed. Here, the original ACL+Ω approach completely fails, as
it collects many negative experiences early on, quickly causing
plans’ success expectation to fall below the selection threshold. For

500 1500 2500
−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Success

Iterations

Figure 6: Performance of ACL+Ω′ (solid crosses) compared
against ACL+Ω and BUL+Ω (both in dotted grey) in structure
T2 using an applicability threshold of 0.2.

ACL+Ω′, even if a plan is deemed with very low expectation of suc-
cess, its selection weight would be biased towards the default value
of 0.5 if it has not been substantially “covered.” Hence, provided
that the applicability threshold is lower than the default plan se-
lection weight, then ACL+Ω′ is indeed able to find the solution(s).
Figure 6 shows the ACL+Ω′ performance in goal-plan structure T2

for an applicability threshold of 20%.
The above results show that the coverage-based confidence weight-

ing can improve the performance of the ACL approach in those
cases where it performed poorly due to false negative experiences,
i.e., failure runs for a plan that includes successful executions. Fur-
thermore, coverage provides a flexible mechanism for tuning agent
behaviour depending on application characteristics. Consider equa-
tion Ω′

T (w) with the coverage term modified to cT (w)1/α, with
parameter α ∈ [0, . . . ,∞). Interestingly, as α ≈ 0, ACL+Ω′ will

behave more like BUL+Ω: cT (w)1/α transitions directly from 0 to
1 when cT (w) reaches 1 (and remains zero otherwise). On other
hand, when α ≈ ∞, ACL+Ω′ will behave more like the ACL+Ω:
cT (w)1/α transitions from 0 to 1 faster and Ω′(w) ≈ pT (w). With
α = 1 we get our initial equation. It follows then that ACL+Ω′ pro-
vides a middle ground between the ACL+Ω and BUL+Ω schemes.

Finally, we note that coverage-based selection weights encour-
age the agent to explore all available options. This further ensures
that all solutions are systematically found, allowing the agent to de-
cide which solution is optimal faster. For some domains this may
be an important feature.

7. DISCUSSION AND CONCLUSION
In this paper, we proposed a technique to enhance the typical

plan selection mechanism in BDI systems by allowing agents to
learn and adapt the context conditions of plans in the agent’s plan
library. As designing adequate context conditions that take full
account of the agent’s environment for its complete life-cycle is
a non-trivial task, a framework that allows for the refinement of
(initial) context conditions of plans based on online experience is
highly desirable. To this end, we extended the typical BDI pro-
gramming framework to use decision trees as (part of) plan’s con-
text conditions and provided a probabilistic plan selection mecha-
nism that caters for both exploration and exploitation of plans. Af-
ter empirically evaluating different learning strategies suitable for
BDI agents against various kinds of plan libraries, we concluded
that an aggressive learning approach combined with a plan selec-
tion scheme that uses a confidence measure based on the notion

331

of plan coverage is the best candidate for the general setting. The
work carried out here is significant for the BDI agent-oriented pro-
gramming community, in that it provides a solid foundation for go-
ing beyond the standard static kind of BDI agents.

The framework presented here made a number of simplifying
assumptions. We did not consider the effects of conflicting inter-
actions between subgoals of a plan. In fact, the way a subgoal
is resolved may affect how the next subgoal can be addressed or
even if it can be resolved at all. Our current approach will not de-
tect and learn such interactions; each subgoal is treated “locally.”
To handle such interactions, the selection of a plan for resolving
a subgoal should also be predicated on the goals higher than the
subgoal, that is, it should take into account the “reasons” for the
subgoal. Similarly, we did not consider the effects of using goal
failure recovery, under which alternative plans for a goal are tried
upon the failure of a plan. Also, we have only dealt with do-
mains described via boolean propositions. To handle continuous
attributes (e.g., discretize temperature), our approach requires that
either these attributes are discretized (e.g., cold, warm, and hot)
or additional discrete attributes be used to test the continuous ones
(e.g. temperature < 25.2).

One critique of the coverage-based confidence measure used is
that it has a defined end state, namely cT (w) = 1. In a real sys-
tem, however, learning and re-learning will occur indefinitely, as
the agent continually tries to adapt to a changing environment.
This implies that an agent’s confidence in a decision tree’s clas-
sification would also require calibration when the environment has
changed. If the change was deliberate, then our confidence could
be reset and subsequently re-built. Without such an explicit sig-
nal, the agent must rely on other methods for determining when the
environment has changed significantly. An appealing measure for
recognising environmental changes is through the relatedness of its
features. For instance, an observation that the grass is wet may have
a high correlation to the fact that it is raining. If at some point, the
agent were to witness a world where it is not raining but the grass
is indeed wet (for some other new reasons), then this world would
be “atypical,” and as a result, the agent may have reason to reduce
its confidence in a plan’s decision tree classification of this new
world. It turns out that efficient algorithms exist—some already in-
cluded in the weka library—that perform inference in and learning
of Bayesian networks [10], which the agent can appeal to in build-
ing a model of the environment for the purposes just described.

The issue of combining learning and deliberative approaches for
decision making in autonomous systems has not been widely ad-
dressed. In [13], learning is used prior to deployment for acquiring
low level robot soccer skills that are then treated as fixed meth-
ods in the deliberative decision making process once deployed.
Hernández et al. [8] give a preliminary account of how decision
trees may be induced on plan failures in order to find an alternative
logical context conditions in a deterministic paint-world example.
More recently, [18] proposes a method for learning hierarchical
task network (HTN) method preconditions under partial observa-
tions. There, a set of constraints are constructed from observed
decomposition trees that are then solved offline using a constraint
solver. Despite HTN systems being automated planning frame-
works, rather than execution frameworks, these are highly related
to BDI agent systems when it comes to the know-how information
used—learning methods’ preconditions amounts to learning plan’s
context conditions. In constrast, in our work, learning and deliber-
ation are fully integrated in a way that one impacts the other and
the classical exploration/exploitation dilemma applies.

This paper extends our earlier work [1] in several ways. First, our
conservative learning approach based on the notion of plan “stabil-

ity,” is substantially more grounded than in [1], where a plan is
just required to be executed a fixed number of times for failure ex-
ecutions to be recorded. Second, only one goal-plan hierarchical
structure was used for experimentation in [1]; here we considered
different structures identifying various types of plan libraries. More
importantly, we explored the realistic case of agents with plan ap-
plicability thresholds. Contrary to what was implied in [1], our
extended work here suggests that some sort of confidence test is
indeed worthwhile—this was the motivation behind our coverage-
based approach.

Acknowledgments
We thank the anonymous reviewers for their helpful comments. We
also acknowledge the support of Agent Oriented Software and the
Australian Research Council (under grant LP0882234).

8. REFERENCES
[1] S. Airiau, L. Padgham, S. Sardina, and S. Sen. Enhancing adaptation

in BDI agents using learning techniques. International Journal of
Agent Technologies and Systems (IJATS), 1(2):1–18, Jan. 2009.

[2] S. S. Benfield, J. Hendrickson, and D. Galanti. Making a strong
business case for multiagent technology. In Proceedings of AAMAS,
pages 10–15. ACM Press, 2006.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-agent
Systems in AgentSpeak Using Jason. Wiley Series in Agent
Technology. Wiley, 2007.

[4] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4(4):349–355, 1988.

[5] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents: Components for intelligent agents in Java.
AgentLink News, 2:2–5, 1999.

[6] M. Dastani. 2APL: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248, June
2008.

[7] M. P. Georgeff and F. F. Ingrand. Decision making in an embedded
reasoning system. In Proceedings of IJCAI, pages 972–978, Detroit,
USA, 1989.

[8] A. Guerra-Hernández, A. E. Fallah-Seghrouchni, and H. Soldano.
Learning in BDI Multi-agent Systems, volume 3259 of LNCS, pages
218–233. Springer, 2004.

[9] K. Hindriks, F. D. Boer, W. V. D. Hoek, and J. Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent
Systems, 2(4):357–401, 1999.

[10] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[11] D. Morley and K. L. Myers. The SPARK agent framework. In
Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 712–719, 2004.

[12] M. E. Pollack. The uses of plans. Artificial Intelligence Journal,
57(1):43–68, 1992.

[13] M. Riedmiller, A. Merke, D. Meier, A. Hoffman, A. Sinner, O. Thate,
and R. Ehrmann. Karlsruhe brainstormers - a reinforcement learning
approach to robotic soccer. In RoboCup 2000: Robot Soccer World
Cup IV, 2001.

[14] E. Swere, D. Mulvaney, and I. Sillitoe. A fast memory-efficient
incremental decision tree algorithm and its application to mobile
robot navigation. In Proceedings of IROS, 2006.

[15] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding
resource conflicts in intelligent agents. In Proceedings of ECAI,
pages 18–22, 2002.

[16] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree
induction based on efficient tree restructuring. Machine Learning,
29(1):5–44, 1997.

[17] I. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

[18] H. Zhuo, D. Hu, C. Hogg, Q. Yang, and H. Munoz-Avila. Learning
HTN Method Preconditions and Action Models from partial
Observations. In Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

332

