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ON CONVERGENCE TO STATIONARITY OF FRACTIONAL
BROWNIAN STORAGE

BY MICHEL MANDJES, ILKKA NORROS AND PETER GLYNN

Korteweg-de Vries Institute for Mathematics and University of Amsterdam,
VTT Information Technology and Stanford University

With M(t) := sups∈[0,t] A(s) − s denoting the running maximum of a
fractional Brownian motion A(·) with negative drift, this paper studies the
rate of convergence of P(M(t) > x) to P(M > x). We define two metrics
that measure the distance between the (complementary) distribution functions
P(M(t) > ·) and P(M > ·). Our main result states that both metrics roughly
decay as exp(−ϑt2−2H ), where ϑ is the decay rate corresponding to the tail
distribution of the busy period in an fBm-driven queue, which was computed
recently [Stochastic Process. Appl. (2006) 116 1269–1293]. The proofs ex-
tensively rely on application of the well-known large deviations theorem for
Gaussian processes. We also show that the identified relation between the de-
cay of the convergence metrics and busy-period asymptotics holds in other
settings as well, most notably when Gärtner–Ellis-type conditions are ful-
filled.

1. Introduction. Let (A(s))s∈R be a centered fractional Brownian motion
(fBm), that is, a stochastic process, such that for all s ∈ R, A(s) obeys a Gaussian
distribution with mean 0 and variance |s|2H , for H ∈ (0,1). fBm has recently
become one of the key models in the applied probability literature, because of a
number of interesting features. For H ∈ (1

2 ,1), correlations decay so slowly that
the process qualifies as long-range dependent; choosing H ∈ (1

2 ,1) leads to pos-
itive correlations, whereas H ∈ (0, 1

2) results in negative correlations. Also, fBm
exhibits selfsimilar behavior, in that A(αs) has the same distribution as αHA(s).

Its use has been advocated in several practical settings; see, for example, [21, 28]
for networking applications; for applications in finance, see, for example, [2].

Motivated by these applications, substantial attention was paid to the analysis
of regulated fBm, or fractional Brownian storage [27]. With the storage process
defined through

Q(t) := sup
s≤t

A(t) − A(s) − (t − s),

distributional properties of the steady-state storage level Q := limt→∞ Q(t) can
be used to describe the performance of a network element. The stationary storage
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level Q being distributed as M := sups>0 A(s) − s, see for instance [22], Sec-
tions 5.1 and 5.2, a considerable amount of work [12, 16, 25, 26] has been devoted
to the characterization of the distribution of M , that is, the supremum attained by
an fBm with negative drift. The results obtained are predominantly asymptotic in
nature; most notably, an explicit function ϕ(·) was identified [16] such that

P(M > x)/ϕ(x) → 1

as x → ∞. Clearly, ϕ(x) can serve as an approximation of P(M > x) for large x;
we lack, however, accurate approximations or bounds for small or moderate values
of x.

As mentioned above, asymptotic results are available that describe P(M > x)

for x large, but considerably less is known about the convergence of the running
supremum

M(t) := sup
s∈[0,t]

A(s) − s

to its limiting distribution M . The primary goal of the present paper is to determine
the speed of this convergence. Knowledge of this speed of convergence is useful in
several contexts. In the first place it provides information on the question whether
at the time scale at hand, that is, t , it is justified to approximate P(M(t) > x) by
P(M > x). Loosely speaking, if the convergence to the limiting distribution is fast
(i.e., a short relaxation time), then such a procedure gives an accurate approxi-
mation, whereas in case of slow convergence transient results need to be used.
Supposing that one wishes to estimate P(M > x) [and hence also P(Q > x)] by
performing a stochastic simulation, the speed of convergence also provides us with
useful insights with respect to the design of this simulation experiment. It, for in-
stance, sheds light on the question of whether it is more efficient (in terms of the
variance of the resulting estimator) to have one long run or multiple shorter runs.
In addition, it yields guidelines as to how long one should simulate A(s) − s in
order to be able to accurately estimate P(M > x), that is, to find an appropriate
simulation horizon t such that P(M(t) > x) approximates P(M > x) sufficiently
well (in terms of some explicitly specified criterion); cf. [11].

In principle, the rate of convergence (as t grows large) of P(M(t) > x) to
P(M > x) could depend on the value of x. Obviously, one could use several dis-
tance measures, each incorporating this dependence on x in a specific way. First
notice that

P(M > x) − P
(
M(t) > x

) = P
(
M > x,M(t) ≤ x

) =: γ (x, t) > 0,

as the event {M(t) > x} implies {M > x}. Two possible distances are the follow-
ing:

• Kolmogorov–Smirnov distance (sup-norm). We define (for random variables X

and Y ) d1(X,Y ) by supx |P(X ≤ x) − P(Y ≤ x)|. It is well known that d1 is a
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distance. The first metric used in our paper is based on the distance d1:

D1(t) := d1(M,M(t)) = sup
x>0

γ (x, t).

D1(t) measures the maximum distance between the distribution functions of M

and M(t).
• Integral distance (L1-norm). It is a well-known fact that d2(X,Y ) := ∫

x |P(X ≤
x) − P(Y ≤ x)|dx is a distance, too. The second metric considered in our paper
is based on the distance d2:

D2(t) := d2(M,M(t)) =
∫
x>0

γ (x, t) dx.

D2(t) measures the total distance between the distribution functions. Note
that D2(t) can be interpreted as EM − EM(t).

The goal of the paper is to identify the asymptotics of the Di(t) for t large, i = 1,2.
Our main result is that the decay rates of both distance measures coincide, and are
equal to asymptotics of the busy-period distribution in an fBm-driven queue, which
were recently identified in [23].

The structure of this paper is as follows. In Section 2 we recapitulate a series
of results on the large deviations of fBm, most notably (the generalized version
of) Schilder’s theorem. We also recall the main results on busy-period asymptot-
ics [23], which enable us to state the main results of our paper. Section 3 presents
a number of auxiliary results that are used in Section 4 (in order to determine
the asymptotics of the Kolmogorov–Smirnov distance) and Section 5 (in order to
determine the asymptotics of the integral distance). In Section 6 we consider the
situation of short-range dependent input (or, more precisely, the situation in which
so-called Gärtner–Ellis-type conditions are met), to show that also in this regime
the asymptotics of the Di (t) are equal to those of the busy-period distribution. Sec-
tion 7 concludes; it includes a procedure for determining the simulation horizon.

2. Preliminaries and main results. In this section we recall a number of use-
ful results from the literature. Emphasis is on busy-period asymptotics recently
identified in [23]. We then state our main results.

2.1. Generalized Schilder. Informally, the generalized version of Schilder’s
theorem provides us with a “rate functional” I(·) such that

pn[S ] := P

(
A(·)√

n
∈ S

)
≈ exp

(
−n inf

f∈S
I(f )

)
.

In other words: in this large-deviations setting, the probability of interest decays
exponentially in n. The “≈” in the above statement should be interpreted as fol-
lows: under mild conditions on the set S (more concretely, if S is an I-continuity
set), the decay rate of pn[S ] is given by

lim
n→∞

1

n
logpn[S ] = − inf

f ∈S
I(f ).
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Apart from the Brownian case H = 1
2 , the “rate functional” I(·) cannot be given

explicitly. It is defined through

I(f ) :=
{

1
2‖f ‖2, if f ∈ R;
∞, otherwise,

where R is the reproducing kernel Hilbert space related to the process A(·)—
see for details [1, 9]. Here ‖f ‖ := √〈f,f 〉, where 〈f,g〉 is a suitably defined
inner product between f,g ∈ R. It is noted that I(f ) can be interpreted as a
measure for the “likelihood” of a path f ; the path f ≡ 0 is the sole path that
gives I(f ) = 0, while for other paths f the rate I(f ) is strictly positive. The path
f � := arg inff ∈S I(f ) is usually called the most likely path in large deviations
literature, and it has the interpretation that, conditional on the fBm being in the
set S , with overwhelming probability it will be close to f �; cf. [10].

Later in this paper we repeatedly use the following property. Suppose f ∈ R,
and g is defined by g(r) = αf (βr), for α,β > 0. Then

‖g‖ = αβH‖f ‖.(1)

For the purposes of the present paper, more background on “generalized Schilder”
is not required; see for a complete account [1, 9, 23].

2.2. Busy-period asymptotics. In [23], and its predecessor [29], the focus was
on computing the asymptotics, for large values of t , of P(K > t), where

K := inf{t ≥ 0 :Q(t) = 0} − sup{t ≤ 0 :Q(t) = 0}
is the ongoing busy period at time 0. In [29] it was shown that P(K > t) decays
roughly in a Weibullian way, that is, as exp(−ϑt2−2H ) for some positive con-
stant ϑ . More precisely, it obeys the following logarithmic asymptotics:

lim
t→∞

1

t2−2H
log P(K > t) = −ϑ where ϑ := inf

f ∈B
I(f ).(2)

Here B is the set of paths that remain above the diagonal on the interval [0,1]:
B := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r}.

Note that the set B can be regarded as the set of feasible paths that correspond
to an intersection of events (reflected by the ∀-quantor). Where unions are usually
easy to deal with, finding the minimizing path in an intersection is typically hard
(although often rather precise bounds can be found; see for instance [24]). In [23]
we succeeded in determining the right-hand side of (2), as well as the correspond-
ing minimizing path f � ∈ B.

In this particular setting, the most likely paths turn out to have a remarkable
shape. For H > 1

2 , the most likely path is at the diagonal in some interval [0, s�],
and also at time 1, but strictly above the diagonal in between. For H < 1

2 , the
corresponding path departs immediately after time 0 from the diagonal, but returns
to it strictly before time 1 and continues along it until time 1—see Figure 1. The
corresponding decay rate ϑ is given in [23], Theorem 24.
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FIG. 1. Most likely path in B; left picture H > 1
2 ; right picture H < 1

2 .

2.3. Main results. We now present the main results of this paper. They entail
that both D1(t) and D2(t) decay as the probability P(K > t) of the busy period
exceeding t .

THEOREM 2.1. (i) For the Kolmogorov–Smirnov distance we have

lim
t→∞

1

t2−2H
log D1(t) = − inf

f ∈B
I(f ) = −ϑ.

(ii) For the integral distance we have

lim
t→∞

1

t2−2H
log D2(t) = − inf

f ∈B
I(f ) = −ϑ.

Part (i) and (ii) of this theorem will be proven in Sections 4 and 5, respectively,
whereas Section 3 develops a number of useful tools.

3. Auxiliary results. In this section we derive a number of results that are
needed to prove Theorem 2.1. The following alternative expression for γ (x, t)

turns out to be useful.

LEMMA 3.1. For any x > 0, t ≥ 0,

γ (x, t) = P
(∀r ∈ [0, t] :A(r) ≤ x + r; ∃s > t :A(s) > x + s

)
= P

(
∀r ∈ [0,1] :

A(r)

t1−H
≤ x

t
+ r; ∃s > 1 :

A(s)

t1−H
>

x

t
+ s

)
.

PROOF. The first equality is a matter of rewriting {M > x,M(t) ≤ x} in terms
of the process A(·). The second equality follows from the self-similarity. �

In the sequel we extensively use the following sequence of probabilities:

pn(δ) := P

(
∀r ∈ [0,1] :

A(r)√
n

≤ δ + r; ∃s > 1 :
A(s)√

n
> δ + s

)
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for δ > 0. We also define their exponential decay rates by

J (δ) := lim
n→∞

1

n
logpn(δ),

again for δ > 0; here J (0) denotes the limit of J (δ) for δ ↓ 0.
Define Aδ as the paths f in the set

Aδ := {f ∈ R | ∀r ∈ [0,1] :f (r) ≤ δ + r; ∃s > 1 :f (s) > δ + s};(3)

also A := A0. The proof of the following result is an immediate consequence of
(the generalized version of) Schilder’s theorem [1, 9].

LEMMA 3.2. For any δ ≥ 0,

J (δ) = − inf
f ∈Aδ

I(f ).(4)

Define

¯A := {f ∈ R | ∀r ∈ [0,1] :f (r) ≤ r;f (1) = 1};
B := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r}.

The following result concerns a translation of J (0) in terms of our previous result
on busy periods, as mentioned in Section 2.2.

PROPOSITION 3.3.

inf
f ∈A

I(f ) = inf
f ∈ ¯A

I(f ) = inf
f ∈B

I(f ).

PROOF. Due to continuity arguments (cf. the proofs in Section 4 of [29]) the
decay rate corresponding to the most likely path in A is the same as that of the
most likely path in

{f ∈ R | ∀r ∈ [0,1] :f (r) ≤ r; ∃s ≥ 1 :f (s) ≥ s}.
Let s� be the smallest s ≥ 1 such that f (s) ≥ s. Define the path f̄ through f̄ (r) :=
f (rs�)/s�. Then f̄ (1) = 1 and, due to (1),

‖f̄ ‖2 = (s�)2H−2‖f ‖2 ≤ ‖f ‖2.

This implies the first equality.
A time shift argument trivially gives that inff ∈ ¯A I(f ) is equal to inff ∈ ¯A− I(f ),

with

Ā− := {f ∈ R | ∀r ∈ [−1,0] :f (r) ≤ r;f (−1) = −1}.
Now reverse time, and we obtain that this infimum is also equal to inff ∈B̄ I(f ),
with

B̄ := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r;f (1) = 1}.
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FIG. 2. Most likely path in A ; left picture H > 1
2 ; right picture H < 1

2 .

The analysis of [23] implies that the infima over B and B̄ coincide, which proves
the stated. �

To obtain a better intuitive understanding of Proposition 3.2, the reader may
compare the most likely busy-period path (i.e., the “cheapest path” in B), as de-
picted in Figure 1, with the most likely path in A = A0, as depicted in Figure 2.

LEMMA 3.4. (i) With, for δ > 0,

Dδ := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r;f (1) = 1 + δ},(5)

inff ∈Dδ
‖f ‖2 increases in δ, for δ ∈ [0,H−1 − 1].

(ii) With, for 0 < ε < 1 and δ > 0,

Dδ,ε := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r − ε;f (1) = 1 + δ − ε},
inff ∈Dδ,ε

‖f ‖2 increases in δ, for δ ∈ [0,H−1 − 1].

PROOF. In order to settle claim (i), first observe that the probability

qn(δ) := P

(
∀r ∈ [0,1] :

A(r)√
n

≥ r; ∃s ≥ 1 :
A(s)√

n
≥ δ + s

)
,

decreases in δ, so consequently also

lim
n→∞

1

n
logqn(δ) = −1

2
inf

f ∈D̄δ

‖f ‖2(6)

decreases in δ; the equality is due to (the generalized version of) Schilder’s theo-
rem, and

D̄δ := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r; ∃s ≥ 1 :f (s) ≥ δ + s}.
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Pick an arbitrary path f in this set, and let s� be the smallest s ≥ 1 such that
f (s) ≥ s + δ. Then consider the path f̄ , defined by

f̄ (r) :=
(

1 + δ

s� + δ

)
f (rs�).

Note that f̄ (1) = 1 + δ, and, because f lies in the set D̄δ , for all r ∈ [0,1],
f̄ (r) ≥

(
1 + δ

s� + δ

)
rs�;

it is easily verified that the right-hand side of the previous display is at least r .
We conclude that f̄ is in Dδ as well. Moreover, as before, any path in D̄δ can be
replaced by a path in Dδ with a smaller norm: due to (1),

‖f̄ ‖2 =
(

1 + δ

s� + δ

)2

(s�)2H‖f ‖2 ≤ ‖f ‖2.

Here it is used that for δ ∈ [0,H−1 − 1] and s ≥ 1 it holds that (1 + δ)sH ≤ s + δ.
In other words, for these δ we can replace the set D̄δ in (6) by Dδ . Hence

−1

2
inf

f ∈Dδ

‖f ‖2

decreases in δ as well, which implies claim (i).
The proof of claim (ii) is similar. The probability

qn(δ, ε) := P

(
∀r ∈ [0,1] :

A(r)√
n

≥ r − ε; ∃s ≥ 1 :
A(s)√

n
≥ δ + s − ε

)
,

decreases in δ. Again, for any f in

D̄δ,ε := {f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r − ε; ∃s ≥ 1 :f (s) ≥ δ + s − ε},
and s� as defined before, we can define

f̄ (r) :=
(

1 + δ − ε

s� + δ − ε

)
f (rs�),

which has a smaller norm than f for any δ ∈ [0,H−1 − 1], and which lies in Dδ,ε;
the latter statement follows from f̄ (1) = 1 + δ − ε, in combination with, for r ∈
[0,1],

f̄ (r) ≥
(

1 + δ − ε

s� + δ − ε

)
(rs� − ε) ≥ r − ε,

where the first inequality is due to f ∈ D̄δ,ε , and the second inequality due to the
fact that, obviously, (s� −1)(δr + ε(1− r)) ≥ 0 (realize that 1+ δ − ε > 0 because
ε < 1). We have now established claim (ii). �

We now establish a useful lemma on the behavior of J (δ), that is, the decay rate
of pn(δ), as a function of δ.
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LEMMA 3.5. (i) J (δ) decreases for δ ∈ (0,H−1 − 1].
(ii) J (δ) < J(0) for δ > H−1 − 1.

PROOF. First consider part (i). Due to continuity arguments, and “generalized
Schilder,” the decay rate J (δ) equals the decay rate corresponding to the most
likely path in

{f ∈ R | ∀r ∈ [0,1] :f (r) ≤ r + δ; ∃s ≥ 1 :f (s) ≥ s + δ}.(7)

With arguments identical to those used in the proof of Lemma 3.4, we can show
that for δ ∈ [0,H−1 − 1] we can replace the set (7) by

{f ∈ R | ∀r ∈ [0,1] :f (r) ≤ r + δ;f (1) = 1 + δ}.(8)

Reversing time, we observe that the decay rate corresponding with the most
likely path in (8) equals the one corresponding to the set Dδ , as defined through (5).
Observe that the event corresponding to the latter set becomes increasingly rare
when δ grows; Lemma 3.4(i) now implies claim (i).

Now consider the second claim. Clearly

J (δ) ≤ lim
n→∞

1

n
log P

(
∃s > 1 :

A(s)√
n

> δ + s

)
.

The decay rate in the right-hand side equals (see, e.g., [22], Exercise 6.1.3)

− inf
s≥1

(s + δ)2

2s2H
,

which reduces, for δ > H−1 − 1, to

−1

2

(
δ

1 − H

)2−2H (
1

H

)2H

;(9)

this is a decreasing function, with value −1
2H−2 for δ = H−1 − 1. Conclude that,

for δ > H−1 − 1, J (δ) ≤ −1
2H−2. It is left to prove that J (0) > −1

2H−2. To this
end, we use that in [29] it was shown that

−1
2 · ϕ(H) ≤ J (0) ≤ −1

2 ;

ϕ(H) := 1

H(2H − 1)(2 − 2H)
· 
(3/2 − H)


(H − 1/2)
(2 − 2H)
.

As seen from Figure 4.1 in [29], we need to check ϕ(H) < H−2 for H in the
neighborhood of 1. Observe that both functions have value 1 for H = 1. As ϕ(·) is
concave in this neighborhood, and H−2 convex, we need to verify whether ϕ′(1) >

−2. Calculations yield that, with γEM the Euler–Mascheroni constant 0.5772,

ϕ′(1) = −3 − 2 · 
′(1/2)


(1/2)
− 2γEM ≈ −0.22 > −2.
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This proves claim (ii). �

Lemma 3.5 is already a first indication that Theorem 2.1(i) indeed holds, as seen
as follows. Observe that (provided that the limits exist), using Lemma 3.1, with α

defined as (2 − 2H)−1,

lim
t→∞

1

t2−2H
log D1(t)

= lim
t→∞

1

t2−2H
log sup

x>0
γ (x, t)

= lim
n→∞

1

n
log sup

x>0
P

(
∀r ∈ [0,1] :

A(r)√
n

≤ x

nα
+ r;

∃s > 1 :
A(s)√

n
>

x

nα
+ s

)
(10)

= lim
n→∞

1

n
log sup

x>0
P

(
∀r ∈ [0,1] :

A(r)√
n

≤ x + r;

∃s > 1 :
A(s)√

n
> x + s

)

= lim
n→∞

1

n
log sup

x>0
pn(x).

In other words, if one can interchange the limit and supremum, then

lim
t→∞

1

t2−2H
log D1(t) = sup

x>0
J (x),

which equals J (0) due to Lemma 3.5; applying Lemma 3.2 and Proposition 3.3,
conclude that this would also mean that Theorem 2.1(i) holds. The goal of Sec-
tion 4 is to prove that the limit and supremum can indeed be interchanged.

In light of the fact that, in a large-deviations setting, the decay rate of an integral
is, under rather general conditions, determined by the decay rate of the maximum
of the integrand, it is now also expected that indeed Theorem 2.1(ii) holds. Sec-
tion 5 is devoted to substantiating this claim.

4. Proof for Kolmogorov–Smirnov distance.

PROOF OF THEOREM 2.1(i). As seen above in (10),

lim
t→∞

1

t2−2H
log D1(t) = lim

n→∞
1

n
log sup

x>0
pn(x),

implying that the lower bound is trivial, as for all ε > 0,

lim
t→∞

1

t2−2H
log D1(t) ≥ J (ε).
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Now let ε ↓ 0, and apply Lemma 3.2 and Proposition 3.3. The upper bound is
proven in the following steps:

(i) First observe that, taking for convenience M as a multiple of ε > 0,

sup
x>0

pn(x) ≤
(M/ε∑

k=1

pε
n(k)

)
+ sup

x>M

pn(x)

(11)
with pε

n(k) := supx∈((k−1)ε,kε] pn(x).

(ii) Trivially,

sup
x>M

pn(x) ≤ sup
x>M

P

(
∃s > 1 :

A(s)√
n

> x + s

)
= P

(
∃s > 1 :

A(s)√
n

> M + s

)
.

Also, as seen in (9), for M > H−1 − 1,

lim
n→∞

1

n
log P

(
∃s > 1 :

A(s)√
n

> M + s

)
= −1

2

(
M

1 − H

)2−2H (
1

H

)2H

.

We saw in the proof of Lemma 3.5 that, for M ≥ H−1 − 1, this expression is
majorized by J (0), and hence

lim
n→∞

1

n
log sup

x>M

pn(x) ≤ J (0).(12)

From now on we pick M := H−1 − 1.

(iii) Also,

pε
n(k) ≤ P

(
∀r ∈ [0,1] :

A(r)√
n

≤ kε + r; ∃s > 1 :
A(s)√

n
> (k − 1)ε + s

)
;

because of “generalized Schilder,” we thus obtain

lim
n→∞

1

n
logpε

n(k) ≤ − inf
f ∈Akε,ε

I(f ),

where

Ax,ε := {f ∈ R | ∀r ∈ [0,1] :f (r) ≤ x + r; ∃s > 1 :f (s) > x − ε + s}.
Applying Lemma A.1 in the Appendix to the right-hand side of (11), and us-
ing (12), we obtain

lim
n→∞

1

n
log sup

x>0
pn(x) ≤ max

{
max

x=ε,2ε,...,M

(
− inf

f ∈Ax,ε

I(f )
)
, J (0)

}
.(13)

(iv) We now show that, for x = ε,2ε, . . . ,M ,

− inf
f ∈Ax,ε

I(f ) ≤ − inf
f ∈A0,ε

I(f ).(14)

This is done as in Lemma 3.5(i). First, using the arguments of the proof of
Lemma 3.4, we can restrict ourselves for x ∈ {ε,2ε, . . . ,M} to the paths that attain
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the value 1 + x − ε at time 1, that is, paths in

{f ∈ R | ∀r ∈ [0,1] :f (r) ≤ x + r;f (1) = 1 + x − ε}.
Reversing time yields that this is equivalent to finding the most likely path in

{f ∈ R | ∀r ∈ [0,1] :f (r) ≥ r − ε;f (1) = 1 + x − ε}.
We now observe that the event corresponding to this set is increasingly rare for
growing x, as made precise by Lemma 3.4(ii) (where we have chosen ε < 1).
Hence, for x = ε,2ε, . . . ,M , claim (14) now follows.

(v) Hence the right-hand side of (13) is bounded from above by

max
{
− inf

f ∈A0,ε

I(f ), J (0)
}
.(15)

By letting ε ↓ 0,

Jε(0) :=
(
− inf

f ∈A0,ε

I(f )
)

↓
(
− inf

f ∈A0
I(f )

)
= J (0).

Now the stated follows from letting ε ↓ 0 in (15), and application of Lemma 3.2
and Proposition 3.3. �

5. Proof for integral distance.

PROOF OF THEOREM 2.1(ii). We start by establishing the lower bound. Evi-
dently, for ε > 0 arbitrarily chosen, and, as before, α := (2 − 2H)−1,∫

x>0
γ (x, t) dx ≥

∫
x∈[εnα,2εnα]

γ (x, t) dx ≥ εnα
(

inf
x∈[εnα,2εnα]γ (x, t)

)
.

Hence, for ε > 0 arbitrarily small, using n−1 · logn → 0,

lim inf
t→∞

1

t2−2H
log D2(t) ≥ lim inf

t→∞
1

n
log

(
inf

x∈[εnα,2εnα]γ (x,nα)
)

= lim inf
n→∞

1

n
log

(
inf

x∈[ε,2ε]pn(x)
)
.

It is straightforward that

inf
x∈[ε,2ε]pn(x) ≥ P

(
∀r ∈ [0,1] :

A(r)√
n

≤ ε + r; ∃s > 1 :
A(s)√

n
> 2ε + s

)
.

The lower bound now follows from letting ε ↓ 0, together with the usual continuity
arguments and time reversal.

We now turn to the upper bound. Obviously, for any ε > 0,∫
x>0

γ (x,nα) dx ≤ nα+ε
(

sup
x∈(0,nα+ε]

γ (x,nα)
)

+
∞∑

k=�nα+ε�

(
sup

k∈[k,k+1)

γ (x, nα)
)
.
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We consider the decay rates (in n) of both terms. First focus on the first term;
because of, again, n−1 · logn → 0, and Theorem 2.1(i),

lim sup
n→∞

1

n
log

(
nα+ε

(
sup

x∈(0,nα+ε]
γ (x,nα)

))
(16)

≤ lim sup
n→∞

1

n
log

(
sup

x∈(0,∞)

γ (x, nα)
)

= − inf
f ∈B

I(f ).

Also, applying part (i) of Lemma A.2 in the Appendix, there are positive constants
κ,λ such that

lim sup
n→∞

1

n
log

( ∞∑
k=�nα+ε�

(
sup

x∈[k,k+1)

γ (x, nα)
))

≤ lim sup
n→∞

1

n
log

( ∞∑
k=�nα+ε�

(
sup

x∈[k,k+1)

P(M > x)
))

(17)

≤ lim sup
n→∞

1

n
log

( ∞∑
k=�nα+ε�

(
sup

x∈[k,k+1)

κ exp(−λx2−2H )
))

≤ lim sup
n→∞

1

n
log

( ∞∑
k=�nα+ε�

κ exp(−λk2−2H )

)
.

Now part (ii) of Lemma A.2 can be applied: there exist positive constants κ̄, λ̄ such
that (17) is bounded above by

lim sup
n→∞

1

n
log(κ̄ exp(−λ̄(nα+ε)2−2H )) = −∞,

where the last equality follows by recalling that α = (2 − 2H)−1. Combining this
with (16) and using Lemma A.1 completes the upper bound. �

One might think that asymptotic results for D1 are stronger than those for D2,
as they involve the whole distribution rather than just the first moment. However,
the metrics are different and a priori the asymptotics could differ. Consider for in-
stance a situation in which P(Z > x) = x−α (where x > 1, α > 1) and P(Z(t) >

x) = 1(1,t)x
−α (again x > 1, α > 1), where we have that d1(Z,Z(t)) = t−α but

d2(Z,Z(t)) = t−α+1/(α − 1). It is noted however that, despite the fact that the
asymptotics may differ, both notions are strongly related under rather broad cir-
cumstances; see, for instance, the proof of Theorem 2.1(ii), where we could make
use of the result for the asymptotics of D1(t) to establish the corresponding result
for the asymptotics of D2(t).
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6. Analogous results for short-range dependent input. The analysis for
fBm shows that the logarithmic asymptotics of both distances coincide with those
of long busy periods. One may wonder whether such a property is valid under more
general circumstances. One could pursue to extend the class of models for which
this result holds to Gaussian processes with regularly varying variance functions;
cf. [8, 10]. In this section we focus on non-Gaussian processes, namely, short-
range dependence processes that obey Gärtner–Ellis-type conditions; see, for ex-
ample, [17].

To this end, with A(t), as before, the traffic generated by a process with station-
ary increments in a window of length t (which we can assume to have zero mean,
without loss of generality), consider for x > 0

K(x) := lim
t→∞

1

t
log P

(∀r ∈ [0, t] :A(r) ≤ xt + r; ∃s > t :A(s) ≥ xt + s
)
.

It is trivial to rewrite this decay rate to

lim
t→∞

1

t
log P

(∀r ∈ [0,1] : t−1 · A(rt) ≤ x + r; ∃s > 1 : t−1 · A(st) ≥ x + s
)
.

First define the (asymptotic) cumulant function

(s) := lim
t→∞

1

t
log EesA(t),

which we assume to exist; this essentially means that the input traffic is short-range
dependent. Then one can define the large deviations rate function by its Legendre
transform

I (a) := sup
s

(
sa − (s)

)
.

It is readily verified that, under mild conditions, the decay rate in the previous
display is bounded from above by

lim
t→∞

1

t
log P

(∃s > 1 : t−1 · A(st) ≥ x + s
) = − inf

s≥1
sI

(
x + s

s

)
;(18)

these mild conditions in particular relate to the behavior of the input process be-
tween grid points, as formalized in [12], Hypothesis 2.3.

We now study under which conditions this upper bound is actually tight. First
observe that for any T > 1,

K(x) ≥ lim
t→∞

1

t
log P

(∀r ∈ [0,1] : t−1 · A(rt) ≤ x + r;
∃s ∈ (1, T ] : t−1 · A(st) ≥ x + s

);
below we specify how T should be chosen. Let the infimum in the right-hand side
of (18) be attained in s� ≥ 1. Suppose t−1 · A(·t) satisfies a sample-path large
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deviations principle (sp-LDP) on [0, T ] of the Mogulskii type, with rate function
Ī(·) and supremum-norm, then

K(x) ≥ −Ī(f )

for any feasible path f , that is, all f in Ax , as defined by (3); here Ī(f ) :=∫ T
0 I (f ′(t)) dt. Now verify that the path given by f �(s) = s · (x + s�)/s� for

s ∈ [0, s�], and f (s) = x + s� for s > s�, is indeed feasible; also

Ī(f �) = s�I

(
x + s�

s�

)
,

so that we can conclude that indeed

K(x) = − inf
s≥1

sI

(
x + s

s

)
.

Now that we have an expression for K(x), we wonder whether we can prove the
decay of the Di (t) is similar to that of the tail distribution of the busy period. To
this end, first note that K(x) is a decreasing function of x. It is relatively straight-
forward to check that this fact entails that, for i = 1,2,

lim
t→∞

1

t
log Di(t) = K(0) = −I (1).

This argumentation indicates that the decay rate of Di(t) indeed coincides with
the busy-period asymptotics −I (1), like in the fBm case, as long as an sp-LDP is
available. For a broad class of discrete-time processes satisfying a Gärtner–Ellis
condition (covering discrete-time Markov modulated processes), such an sp-LDP
was proved by Chang [6], whereas for Lévy processes see, for example, [7]. It is
clear that, to make the above argumentation work, it is sufficient that T is chosen
larger than s�.

7. Discussion and concluding remarks.

Decay of the correlation function. In Section 6 we showed for short-range
dependent input that, under specific regularity conditions, Di(t) (i = 1,2) decay
essentially exponentially in t , and this decay roughly coincides with that of the
tail of the busy-period distribution. Let us now consider the asymptotics of the
covariance Cov(Q(0),Q(t)), with, as before,

Q(t) := sup
s≤t

A(t) − A(s) − (t − s),

assuming that the queue is in equilibrium at time 0. In [14] it was shown for short-
range dependent Lévy input (with no negative jumps), that also Cov(Q(0),Q(t))

has the same asymptotic behavior as the tail of the busy-period distribution: for
i = 1,2,

lim
t→∞

1

t
log Cov(Q(0),Q(t)) = lim

t→∞
1

t
log Di (t) = −I (1)

with I (1) as defined in Section 6.
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Our main result states that also in the fBm case, we saw that the busy-period
asymptotics and those of Di(t) (i = 1,2) match. In light of the above findings for
short-range dependent Lévy input, this suggests that also in the fBm case

lim
t→∞

1

t2−2H
log Cov(Q(0),Q(t)) = −ϑ.

Based on the recent results in [13], however, we expect that this is not true. Instead,
we anticipate that the asymptotics of Cov(Q(0),Q(t)) are roughly polynomially,
or, more precisely, decaying as t2H−2, which is equally fast as the asymptotics of
Cov(A(0,1),A(t, t + 1)). A formal proof of this property is still lacking, though.
As we feel that the determination of the correlation asymptotics of reflected fBm
is an important open problem, we state it as a conjecture.

CONJECTURE 7.1. For some constant γ ∈ (0,∞),

lim
t→∞ t2−2H

Cov(Q(0),Q(t)) = γ.

Relation with busy-period asymptotics. The relation between the asymptotics
of the metrics considered and those of the tail of the busy period has been observed
before in various contexts before. It is noted that in a number of specific Markovian
settings one has shown that the rate of convergence does not depend on the initial
state, which is a result that is reminiscent of ours; we refer to [4, 5, 30], which
are closely related to generic results by Kingman [19, 20], for the case of birth–
death processes. Regarding the fact that the decay rate of the Di (t) coincides with
that of the tail of the busy-period distribution, we mention a classical result by
Kingman [18], Theorem 7, Lemma 7, in the setting of an M/G/1 queue, and results
for various queueing systems by Blanc and van Doorn [3]. For the special case
of spectrally positive Lévy input the double Laplace transform of γ (x, t) can be
determined in a similar way as in [14], and inversion techniques can be applied
to identify the exact asymptotics [i.e., a function ψx(·) is found such that ψx(t) ·
γ (x, t) → 1 as t → ∞]; elementary calculations show that then also the busy-
period decay rate appears.

On an intuitive level it is clear that there is a relation between the rate of conver-
gence to stationarity and the tail of the busy-period distribution. In case of short-
range dependent input (and in particular when busy periods are independent) the
autocorrelation essentially breaks when the busy period ends. Our result shows that
this heuristic carries over to the setting of long-range dependent input (in which
there is still substantial dependence between consecutive busy periods). We remark
however, that under general conditions (i.e., irrespective of the traffic being long-
range dependent or short-range dependent) upper bounds on the metric D1(t) in
terms of the tail distribution of an ongoing busy period, can be constructed relying
on a coupling argument [15].

Use of convergence estimates in simulation. If one aims at estimating the prob-
ability P(M > x) through simulation, one needs to truncate the infinite-time hori-



CONVERGENCE TO STATIONARITY OF FRACTIONAL BROWNIAN STORAGE 1401

zon to some finite value, say t . This evidently always implies an underestimation.
Obviously, one needs to choose t sufficiently large such that the error made is neg-
ligible. Let Tx be defined as the smallest s such that A(s) − s = x; then it holds
that P(M > x) = P(Tx < ∞). Then one could, for instance, require for small ε > 0
(for instance 5%) that t be chosen large enough that

P(t < Tx < ∞)

P(Tx < ∞)
< ε.

The numerator equals γ (x, t), and can therefore be approximated by exp(−ϑ ×
t2−2H ) (noting that Lemma 3.5 suggests that this is a conservative estimate),
whereas the denominator can be bounded from below by [27] 1 − �(x + t�),
with �(·) denoting the standard normal distribution function, and t� := xH/(1 −
H); 1 − �(x + t�) is approximated by

exp
(
−1

2

(x + t�)2

(t�)2H

)
= exp

(
−1

2

(
x

1 − H

)2−2H (
1

H

)2H )
.

In this way we can compute an estimate for the simulation horizon t :

t ≥
(
− log ε

ϑ
+ 1

2ϑ

(
x

1 − H

)2−2H (
1

H

)2H )1/(2−2H)

.

The horizon grows in x, as expected, and it does so in a linear fashion for x large.
A procedure for the discrete-time counterpart is detailed in [11], see also Propo-
sition 8.1.1 in [22]; it shows the same qualitative behavior as a function of x.
A procedure for numerically computing ϑ can be found in [23].

As mentioned in the Introduction, a second evident application of our estimates
relates to another issue in the design of the above simulation experiment: it pro-
vides insight into the question whether it is more efficient to simulate one long run,
or to simulate multiple shorter runs.

APPENDIX: USEFUL BOUNDS

LEMMA A.1. Let, for i in some finite index set I , a
(i)
n be sequences such that

lim sup
n→∞

1

n
loga(i)

n ≤ ωi.(19)

Then

lim sup
n→∞

1

n
log

(∑
i∈I

a(i)
n

)
≤ ω� := max

i∈I
ωi.

PROOF. Although we believe the proof is rather standard, we present it here.
Choose an arbitrary ε > 0. Then (19) entails that there is an ni such that for all
n > ni we have that a

(i)
n ≤ exp(n(ωi + ε)). Hence, for n > maxi ni ,

a(i)
n ≤ exp

(
n(ω� + ε)

)
.
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Then

lim sup
n→∞

1

n
log

(∑
i∈I

a(i)
n

)
≤ lim sup

n→∞
1

n
log

({#I } × en(ω�+ε)) = ω� + ε.

The stated follows after sending ε ↓ 0. �

LEMMA A.2. (i) There exist positive constants κ and λ such that

P(M > x) ≤ κ exp(−λx2−2H ).

(ii) There exists positive constants κ̄ and λ̄ such that

∞∑
k=K

exp(−k2−2H ) ≤ κ̄ exp(−λ̄K2−2H ).

PROOF. Part (i) follows immediately from Duffield and O’Connell [12], Sec-
tion 3.2; part (ii) is due to Dieker and Mandjes [11], Lemmas 2.1 and 2.2. �
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