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ON THE DEPENDENCE STRUCTURE OF GAUSSIAN QUEUES

Abdelghafour Es-Saghouani1 and Michel Mandjes1,2

1Korteweg-de Vries Institute for Mathematics, Amsterdam,
TV, The Netherlands
2CWI, Amsterdam, The Netherlands; and EURANDOM,
Eindhoven, The Netherlands

� In this article we study Gaussian queues (that is, queues fed by Gaussian processes, such
as fractional Brownian motion (fBm) and the integrated Ornstein–Uhlenbeck (iOU) process),
with a focus on the dependence structure of the workload process. The main question is to what
extent does the workload process inherit the dependence properties of the input process? We first
present a specific notion of dependence that allows (in asymptotic regimes) explicit analysis. For
the special cases of fBm and iOU, we analyze the behavior of this metric under a many sources
scaling. Relying on (the generalized version of) Schilder’s theorem, we are able to characterize
its decay. We observe that the dependence structure of the input process essentially carries over
to the workload process (in the asymptotic regime that we have chosen, in terms of our specific
notion of dependence).

Keywords Gaussian traffic; Sample-path large deviations; Schilder’s theorem.

Mathematics Subject Classification Primary 60K25; Secondary 60F10, 60G15.

1. INTRODUCTION

Traffic measurement studies have provided convincing statistical
evidence that in various networking environments traffic exhibits strong
dependence over a wide range of time-scales. These studies, starting off
in the early 1990s with the famous article by Leland et al.[16] on Ethernet
traffic, showed that the traffic rate process was long-range dependent:
with X (t) the traffic rate at time t , the autocorrelation function c(T ) of
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222 Es-Saghouani and Mandjes

the traffic rate (i.e., the correlation coefficient between X (0) and X (T ))
vanishes extremely slow as a function of the lag T—more precisely: c(T )
decays so slowly that

∑
T∈� c(T ) = ∞.

This explains the interest in the performance evaluation of queues
fed by long-range dependent traffic. Notably, the traffic models that
were predominantly used till the mid-1990s did not allow for any long-
range dependence; they usually corresponded to short-range dependent
traffic processes (such as Poisson processes, Markov-modulated Poisson
processes, or exponential on-off sources). In the late 1990s, Gaussian
traffic models have gained more interest and popularity for modeling
network traffic. One of their attractive features is that they cover a broad
variety of dependence structures, ranging from short-range (e.g., the
integrated Ornstein–Uhlenbeck process, Brownian motion) to long-range
dependent (e.g., fractional Brownian motion with Hurst parameter H > 1

2 ,
see Ref.[16]). In Ref.[15] it is argued that the use of Gaussian traffic models
is justified as long as the aggregation is sufficiently large, both in number
of flows and time. We refer to Refs.[14,21,26] for excellent studies on network
traffic modeling.

The fact that network traffic is long-range dependent is of crucial
importance from the perspective of traffic engineering in communication
networks. Where short-range dependent models usually lead to buffer
overflow probabilities which decay exponentially in the buffer size,
long-range dependent models are considerably less benign: in case of
fractional Brownian motion input with Hurst parameter H , this decay is
“Weibullian”[11,23] (that is, roughly like exp(−�B2−2H ), for some � > 0, and
B denoting the buffer size, which is slower than exponential for H > 1

2),
or even polynomial[25,30] (e.g., for on-off sources with regularly varying
on-times). In other words: modeling traffic by a short-range dependent
process would lead to estimates of the overflow probability that are
considerably too optimistic.

For Gaussian queues (that is, queues fed by Gaussian processes), so
far primary interest lay in the characterization of the buffer overflow
probability. Notably, in two limiting regimes asymptotic results were
obtained: in the large-buffer regime (where the buffer threshold grows
large), and in the many-sources regime (in which the number of
Gaussian inputs grows large, and the buffer and service speed are
scaled accordingly[28]). Without exhaustively mentioning all relevant
contributions, logarithmic asymptotics for the large-buffer case are due to
Refs.[6,11], whereas exact asymptotics can be found in, e.g., Refs.[10,22], and
the many-sources regime logarithmic asymptotics are in Refs.[1,4] and the
exact asymptotics in Ref.[7].

To the best of our knowledge, hardly any attention has been paid to the
characterization of the dependence structure of the workload process of
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On the Dependence Structure of Gaussian Queues 223

Gaussian queues. This is remarkable, as from an engineering standpoint,
knowledge of the dependence structure is clearly quite relevant. Most
importantly, it would give us a handle on the timescale after which
it is justified to approximate transient probabilities by their steady-
state counterpart. Also procedures that “learn” the characteristics of the
input process by observing the workload process[19] would greatly benefit
from insights into the degree of dependence between two subsequent
observations. More precisely, it can be determined from what time-scale
one could safely neglect the dependence between the observations.

Seen from a more mathematical angle, an interesting fundamental
question is: to what extent the dependence structure of the input process
is inherited by the workload process? Or put differently, does long-range
dependent input give rise to a long-range dependent workload process?
Our article shows that indeed for fractional Brownian motion (in the
sequel abbreviated to fBm) and integrated Ornstein–Uhlenbeck (iOU) the
dependence structure of the workload process strongly resembles that of
the input process: both exhibit Weibullian decay for fBm and exponential
decay for iOU.

The first aim would be to analyze, with Qt denoting the workload at
time t , the covariance

�ov(Q0,QT ) = �(Q0QT ) − �Q0 · �QT = �(Q0QT ) − (�Q0)
2, (1)

or the corresponding correlation coefficient. It is not clear what
methodology can be used to analyze these covariances. It is noted, for
instance, that large-deviation types of results are not of any help here,
as covariances are quantities related to expected values, which cannot be
represented as rare-event probabilities (where we also recall that in the
setting of queues with Gaussian input, apart from a few special cases, one
has not even succeeded so far as to compute the mean workload �Q0).

To overcome this problem we have chosen the following solution:

• We choose a measure for dependence that is more tractable than (1).
This new metric measures the difference between log�(Q0 > p,QT > q)
and log(�(Q0 > p)�(QT > q)), for given p, q > 0; informally, the more
independent �Q0 > p� and �QT > q� are, the smaller the distance.
A more specific goal is to characterize for fBm and iOU how our metric
decays to 0 when T grows to infinity.

• We work in the many sources asymptotic regime[28] that was previously
mentioned. As a consequence, we can use an extensive set of
useful techniques, most notably (sample-path) large-deviation results,
particularly (the generalized version of) Schilder’s theorem.
More precisely, the setting we consider is as follows: we let n i.i.d.
Gaussian processes A1(·), � � � ,An(·) feed into a queue in which both the
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224 Es-Saghouani and Mandjes

service speed and the buffer content are scaled by n; we denote the
workload of the resulting queueing system at time t by Qn

t . The results
presented in this article are asymptotic in n.

As previously mentioned, we specialize in the important cases of fBm and
iOU input. Our main conclusion is that by using the metric introduced
and considering the many-sources regime, the dependence structure of the
input process essentially carries over to the workload process.

Above we argued that Gaussian models (and in particular fBm) are
good traffic descriptors in the setting of communication networks as long
as there is sufficient aggregation[15]. We stress, however, that this is an
issue that should be handled with care, as it depends very much on
the situation at hand whether this is the case. Reference[21] presents a
systematic assessment of this issue. There the stochastic properties of a
superposition of n sources with heavy-tailed on-times (or bursts), and
alternatively a corresponding M/G/∞ input model, is considered after
rescaling time with T . Conditions are discussed under which the limiting
process indeed looks like fBm, while in other situations �-stable Lévy
motion is more suitable. More specifically, if the situation at hand is
such that the rate at which bursts are generated is large in relation to
the tail of the distribution of the burst duration, fBm is an appropriate
approximation. For a more detailed discussion we refer to as an example
Refs.[12,21].

2. PRELIMINARIES

2.1. Gaussian Processes

Let Ai(·) denote a sequence of i.i.d. centered Gaussian processes
with continuous sample paths and stationary increments, i = 1, � � � ,n; it is
assumed that Ai(0) ≡ 0 for all i . For s < t , we interpret Ai(s, t) := Ai(t) −
Ai(s) as the amount of the traffic generated by the ith Gaussian source in
the time interval (s, t ]; we let the Ai(t) be “two-sided,” that is, defined for
all t ∈ �.

We denote by A(t) the generic Gaussian process corresponding
to a single source, and A(s, t) := A(t) − A(s). A (centered) Gaussian
process is characterized by its variance function v(·) (which is necessarily
continuous); because of the stationarity of the increments of our process,
we have �arA(s, t) = v(t − s) for s < t .

In the sequel, we frequently work with the bivariate random variable
(A(−s, 0),A(T − t ,T )) (for large values of T ). Its distribution is a bivariate
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On the Dependence Structure of Gaussian Queues 225

normal distribution with zero mean vector and covariance matrix �T (s, t)
given by

�T (s, t) :=
(

v(s) �T (s, t)
�T (s, t) v(t)

)
,

with �T (s, t) := �ov(A(−s, 0),A(T − t ,T ))� For s > 0 and 0 < t < T , this
covariance reduces to

�T (s, t) = v(T + s) − v(T ) − v(T − t + s) + v(T − t)
2

;

for other ranges of s and t similar expressions can be given.
Gaussian sources have the intrinsic inconvenience that in principle

negative traffic can be generated: A(s, t) (with t > s) is not necessarily
nonnegative. When using the representation for the workload at time t
(take for ease a queue fed by a single Gaussian source, with service rate
c > 0)

Qt := sup
s≥0

{
A(t − s, t) − cs

}
,

this turns out to not be an issue: the probabilistic properties of the above
functional of the Gaussian process A(·) can be evaluated, irrespective of
whether the input process allows negative increments.

In our study we focus, without loss of generality, on centered Gaussian
processes, but it is straightforward to adapt the results to the case of
noncentered Gaussian processes, as the queueing system in which the
input has mean rate m �= 0 and service rate c (larger than m to ensure
stability) coincides with the system with centered input and service rate
c − m.

In this article we focus on two special Gaussian processes: (standard)
fractional Brownian motion (or fBm; v(t) = t 2H , with H ∈ (0, 1)), and
integrated Ornstein–Uhlenbeck (or iOU; v(t) = t − 1 + e−t).

Lemma 2.1.1. Fix s, t > 0; let t < T .

• fBm. For H > 1
2 , �T (s, t) is positive, and decreases to 0 when T → ∞. For

H < 1
2 , �T (s, t) is negative, and increases to 0 when T → ∞.

• iOU. �T (s, t) is positive, and decreases to 0 when T → ∞.

Proof. First focus on fBm. It is immediate that

�T (s, t) = �
(fBm)
T (s, t) := 1

2
((T + s)2H − T 2H − (T − t + s)2H + (T − t)2H )�
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226 Es-Saghouani and Mandjes

Consider H > 1
2 . It is readily checked that in order to show that �T (s, t) is

positive, we have to prove that

1 − (1 − t)2H < (1 + s)2H − (1 − t + s)2H ,

or, equivalently, that (1 + s)2H − (1 − t + s)2H increases in s > 0 (for all t ∈
(0, 1)). Differentiation with respect to s leads to the claim (1 + s)2H−1 >
(1 + s − t)2H−1, which is indeed true for H > 1

2 . The fact that �T (s, t) is
decreasing in T (with limit 0) is proven in the same way. The case H < 1

2
can be dealt with similarly.

For iOU,

�T (s, t) = �
(iOU)
T (s, t) := 1

2

(
e−T−s − e−T − e−T+t−s + e−T+t

)
= 1

2
(1 − e−s)(e t − 1)e−T ,

which is indeed positive and decreasing in T . �

2.2. Large Deviations Results

In this subsection, we give a brief description of the main results
from the large-deviations theory for Gaussian processes. The proofs of the
theorems presented here can be found in Refs.[8,9]; for more background
see Ref.[17]. We first state Cramér’s theorem, which relates to d -dimensional
random variables, and then Schilder’s theorem, which describes the
sample-path large deviations of Gaussian processes.

Let X ∈ �d be a d -dimensional random vector. We denote the moment
generating function of X by M (�) := �

(
exp(〈�,X 〉)) and its logarithm

by 	(�) := log M (�). Its convex conjugate 	
 is defined by 	
(x) :=
sup�∈�d (〈�, x〉 − 	(�)), with 〈·, ·〉 denoting the usual inner product:
〈a, b〉 := aT b = ∑d

i=1 aibi . We first state (the multivariate version of)
Cramér’s theorem which characterizes the logarithmic rate of the
convergence of the empirical mean of i.i.d. random vectors in �d .

Theorem 2.2.1 (Multivariate Cramér). Let Xi ∈ �d be i.i.d. d-dimensional
random vectors, distributed as a random vector X . Then the following ldp
applies[8,9]:

(a) For any closed set F ⊂ �d ,

lim sup
n→∞

1
n
log�

(
1
n

n∑
i=1

Xi ∈ F
)

≤ − inf
x∈F

	
(x);
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On the Dependence Structure of Gaussian Queues 227

(b) For any open set G ⊂ �d ,

lim inf
n→∞

1
n
log�

(
1
n

n∑
i=1

Xi ∈ G
)

≥ − inf
x∈G

	
(x),

where the large deviations rate function 	
(·) is as previously given.

Remark 2.2.1. Consider the case that X has a multivariate normal
distribution with mean vector 0 and d × d -nonsingular covariance matrix
�. Then using 	(�) = 1

2�
T�� we obtain

�
 = �−1x and 	
(x) = 1
2
xT�−1x , (2)

where �
 is the optimizer in the definition of 	
.

Before stating the generalized Schilder’s theorem, we first sketch the
framework of the Schilder’s sample path large deviations principle as
established in Ref.[3], (see also Ref.[9]). We use the same set-up and notation
as in Refs.[17,18]. We consider n i.i.d. centered Gaussian processes Ai(·) and
define the path space � as

� :=
{
� : � → �, continuous, �(0) = 0, lim

|t |→∞
�(t)
1 + |t | = 0

}

which becomes a Banach space by equipping it with the norm

‖�‖� := sup
t∈�

|�(t)|
1 + |t | �

In Addie et al.[1] it is shown that A(·) can be realized in � under
Assumption 2.2.1; it is clear that both fBm and iOU satisfy this
requirement.

Assumption 2.2.1. The variance function v(·) of the process A(·) is
continuous and it satisfies

lim
t→∞

v(t)
t �

= 0 (3)

for some � ∈ (0, 2).

Next we introduce the reproducing kernel Hilbert space R ⊂ �, with
the property that its elements are roughly as smooth as the covariance
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228 Es-Saghouani and Mandjes

function �(s, ·), see Adler[2] for more details. We start from a subspace
R 
 ⊂�, defined by

R 
 :=
{
� ∈ �, �(·) =

n∑
i=1

ai�(si , ·), ai , si ∈ �, n ∈ �
}
,

with �(s, t) := �ov(A(0, s),A(0, t)). The inner product on this space R 
 is
defined as follows, for �a ,�b ∈ R 
:

〈�a ,�b〉R :=
〈 n∑

i=1

ai�(si , ·),
n∑

j=1

bj�(sj , ·)
〉
R

=
n∑

i=1

n∑
j=1

aibj�(si , sj)� (4)

Now we can introduce the norm ‖�‖R := √〈�,�〉R . The closure of R 


under this norm is defined as the space R . Now we can define the rate
function of the sample-path large-deviations principle (ldp):

I (�) :=


1
2
‖�‖2

R if � ∈ R ;

∞ otherwise�
(5)

For a sequence of n i.i.d. centered Gaussian processes, the following
sample-path ldp holds[3,9].

Theorem 2.2.2 (Generalized Schilder). The following sample-path ldp
applies:

(a) For any closed set F ⊂ �,

lim sup
n→∞

1
n
log�

(
1
n

n∑
i=1

Ai(·) ∈ F
)

≤ − inf
�∈F

I (�);

(b) For any open set G ⊂ �,

lim inf
n→∞

1
n
log�

(
1
n

n∑
i=1

Ai(·) ∈ G
)

≥ − inf
�∈G

I (�)�

3. MAIN RESULTS

As mentioned in the introduction of this article, our main interest lies
in the investigation of the dependence structure of the workload process.
Since only for the case of Brownian motion input the workload distribution
has been found explicitly, we resort to an asymptotic framework, viz. the
so-called many-sources regime. In this regime, the number of Gaussian
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On the Dependence Structure of Gaussian Queues 229

inputs, say n, grows large, and the service rate is scaled accordingly. In this
framework, the stationary workload process is given by

Qn
t := sup

s≤t

n∑
i=1

Ai(s, t) − nc(t − s) = sup
s≥0

n∑
i=1

Ai(t − s, t) − ncs� (6)

As we wish to investigate the dependence structure of the workload
process, we could try to characterize the autocorrelation


n(T ) := �Qn
0 Q

n
T − (�Qn

0 )(�Qn
T )√

�ar(Qn
0 )

√
�ar(Qn

T )
= �Qn

0 Q
n
T − (�Qn

0 )(�Qn
0 )

�ar(Qn
0 )

�

It is evident that 
n(T ) ↓ 0 as T ↑ ∞, but the question is how fast it
vanishes.

Unfortunately, this notion of dependence is hard to handle—not even
an explicit expression for �Qn

0 is known for non-Brownian Gaussian input
processes. We therefore introduce an alternative notion of dependence.
The following metric describes the degree of dependence between the
events �Qn

0 > np� and �Qn
T > nq� for positive p, q .

Definition 3.1. For given positive numbers p, q define

�n(T ) := �
(
Qn

0 > np,Qn
T > nq

)
�

(
Qn

0 > np
)
�

(
Qn

T > nq
) � (7)

Furthermore, let �(T ) be the limit of log �n(T )/n as n → ∞.

It is evident that various other dependence measures could be thought
of. Our measure is reminiscent of quantities used when defining mixing
conditions, see, e.g., Ref.[5]. For instance, with �t

s defining the �-field �(Qu :
s ≤ u ≤ t), and

�(�,�) := sup
A∈�,B∈�

|�(A ∩ B) − �(A)�(B)|,

we say that Qt is strongly mixing if �(T ) := sups �(�
s
−∞,�∞

s+T ) → 0 as
T → ∞. The relation between the decay of �(T ) and mixing conditions
is not a priori clear; also due to the fact that a supremum over A ∈ �s

−∞
and B ∈ �∞

s+T needs to be computed, it is typically hard to characterize the
decay of �(T ) and related quantities.

Before stating the main theorems of this section, we first give
the logarithmic asymptotics of the marginal probabilities involved in
Definition 3.1. They are given by

lim
n→∞

1
n
log�

(
Qn

0 > np
) = − inf

s>0

(p + cs)2

2v(s)
(8)
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lim
n→∞

1
n
log�

(
Qn

T > nq
) = − inf

t>0

(q + ct)2

2v(t)
, (9)

using that the queue is in stationarity at both epochs; see, for instance
Ref.[1]. In Ref.[7], the following lemma was proven; it entails that the infima
over s and t are attained and are unique under a specific assumption on
the variance function.

Lemma 3.1. Suppose that the standard deviation function �(t) := √
v(t) of the

generic input process A(·) is such that �(t) ∈ 	2([0,∞)) is strictly increasing and
strictly concave. Then the right-hand-sides of (8) and (9) have unique minimizers.
Concavity of �(t) is equivalent to requiring that

2v(t)v ′′(t) − (v ′(t))2 ≤ 0� (10)

We denote the minimizers by s
 and t 
. It is readily checked that they solve{
2cv(s) = (p + cs)v ′(s);

2cv(t) = (q + ct)v ′(t)�
(11)

Now we give the main results of this article. Theorem 3.1 states
that for fBm input �(T ) decays to zero and its decay rate is T 2H−2 as
T → ∞, which indicates that the workload process has essentially the same
dependence structure as the input process. As will be discussed in more
detail in Section 5, this means that the workload process is (in our metric)
long-range dependent if the Hurst parameter H is greater than 1

2 . For
fBm, �(t) = tH is concave, so Lemma 3.1 applies, and (11) has a unique
solution; in fact, s
 and t 
 can be explicitly calculated, and are given
through

s
 := p
c

H
1 − H

; t 
 := q
c

H
1 − H

� (12)

Theorem 3.1 (fBm Input). If the input process is fBm we have the following
logarithmic asymptotics for �n(T ):

�(T ) = lim
n→∞

1
n
log �n(T ) = (p + cs
)(q + ct 
)

v(s
)v(t 
)
· 1
2
s
t 
(2H )(2H − 1)T 2H−2

+ o(T 2H−2)

= (2H − 1)c2

H
s
2−2H t 
2−2HT 2H−2 + o(T 2H−2)� (13)
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On the Dependence Structure of Gaussian Queues 231

It is interesting to compare this result to the dependence structure of the
input process. We could look at a counterpart of �(T ), for instance,

�(T ) := lim
n→∞

1
n
log

(
�

( ∑n
i=1 Ai(0, 1) > np,

∑n
i=1 Ai(T ,T + 1) > nq

)
�

( ∑n
i=1 Ai(0, 1) > np)�(

∑n
i=1 Ai(T ,T + 1) > nq

))
,

and consider its decay for T large. Denoting �
(fBm)
T (1, 1) by �

(fBm)
T (see

Lemma 2.1.1), we have that �
(fBm)
T ∼ 1

2T
2H−2 → 0 as T → ∞. Then

straightforward computations show that the bivariate version of Cramér’s
theorem implies that

�(T ) = −1
2
(p, q)

(
v(1) �

(fBm)
T

�
(fBm)
T v(1)

)−1 (
p
q

)
+ p2

2v(1)
+ q2

2v(1)
∼ pq�(fBm)

T ,

for T large, i.e., also decaying as T 2H−2! The above arguments provide
support for the claim that in this metric, the workload process has
essentially the same dependence structure as the input process.

Remark 3.1. For H = 1
2 , we can explicitly calculate �(T ) for any T ,

relying on the formulas for the transient behavior of reflected Brownian
motion, see, e.g., Ref.[13] (p. 49). It turns out that for all T > c−1 · (√p +√q)2 it holds that �(T ) = 0; observe that the existence of such a threshold
value could be anticipated due to the independent increments. Also note
that this result is in line with Theorem 3.1.

Now consider the case of iOU input. In this case, s
 and t 
 cannot be
explicitly calculated. They are uniquely determined though, as can be seen
as follows. Criterion (10) reduces to

�(t) := 2te−t + e−2t − 1 ≤ 0,

which is true because �(0) = 0 and �′(t) = e−t(2 − 2t − 2e−t) ≤ 0.
Theorem 3.2 states that for iOU input, the speed of convergence of

�(T ) to 0 as T → ∞ is e−T .

Theorem 3.2 (iOU Input). If the input process is iOU, we have the following
logarithmic asymptotics for �n(T ):

�(T ) = lim
n→∞

1
n
log �n(T ) = (p + cs
)(q + ct 
)

v(s
)v(t 
)
· 1
2
(1 − e−s
)(e t


 − 1)e−T

+ o(e−T )

= 2c2e−(T−t
) + o(e−T )� (14)
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In this case, it can be verified that

�
(iOU)
T := �

(iOU)
T (1, 1) ∼ 1

2
e−T ·

(
e − 2 + 1

e

)
�

As we have �(T ) ∼ pq�(iOU)
T , it again holds that the dependence structure

of the workload process essentially coincides with that of the input process
(i.e., both �(T ) and �(T ) are roughly proportional to e−T ).

4. PROOFS

In this section, we give the proofs of the results that we stated in the
previous section. In the first subsection we derive a number of generic
results, while we specialize in fBm and iOU in the last part of the section.

4.1. General Results

The results of this subsection hold for any type of Gaussian sources
(i.e., we do not restrict ourselves to fBm and iOU), the only exception
being Proposition 4.1.2. We first define two sets of paths in � that play a
crucial role in our analysis:


T := �f ∈ � : ∃s > 0, ∃t > 0 : −f (−s) > p + cs,

f (T ) − f (T − t) > q + ct�; (15)


T (s, t) := �f ∈ � : −f (−s) > p + cs, f (T ) − f (T − t) > q + ct�� (16)

Observe that 
T is the union (over all s, t > 0) of the 
T (s, t).
Interestingly, the set of paths 
T directly relates to the “joint overflow
event” �Qn

0 > np,Qn
T > nq�, as follows from the next lemma.

Lemma 4.1.1. For any p, q > 0,

�
(
Qn

0 > np,Qn
T > nq

) = �
(
1
n

n∑
i=1

Ai(·) ∈ 
T

)
�

Proof. This follows by applying (6):

�
(
Qn

0 > np,Qn
T > nq

)
= �

(
sup
s>0

{ n∑
i=1

Ai(−s, 0) − ncs
}
>np, sup

t>0

{ n∑
i=1

Ai(T − t ,T )−nct
}
>nq

)

= �
(
∃s > 0 :

n∑
i=1

Ai(−s, 0)−ncs >np, ∃t > 0 :
n∑

i=1

Ai(T − t ,T )−nct >nq
)
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= �
(

∃s > 0 :
n∑

i=1

Ai(−s, 0)
n

> p + cs, ∃t > 0 :
n∑

i=1

Ai(T − t ,T )

n
> q + ct

)

= �
(
1
n

n∑
i=1

Ai(·) ∈ 
T

)
,

which proves the claimed. �

In the sequel we frequently use the following bivariate normal large-
deviations rate function:

	

T (p + cs, q + ct) := 1

2
(p + cs, q + ct)(�T (s, t))−1

(
p + cs
q + ct

)
�

By explicitly calculating the matrix inverse, we obtain that 	

T (p + cs,

q + ct) can be written in the following alternative form:

1
2

v(s)v(t)
v(s)v(t) − �T (s, t)2

(
(p + cs)2

v(s)
+ (q + ct)2

v(t)
− 2

(p + cs)(q + ct)�T (s, t)
v(s)v(t)

)
�

(17)

The next lemma determines the decay rate of the most likely path in

T (s, t), for fixed values of s and t . It turns out that there are three
different regimes.

Lemma 4.1.2. For any p, q > 0,

inf
f ∈
T (s,t)

I (f ) = 	



T (p + cs, q + ct),

where 	



T (p + cs, q + ct) equals

(p + cs)2

2v(s)
if

�T (s, t)
v(s)

(p + cs) > q + ct ; (18)

(q + ct)2

2v(t)
if

�T (s, t)
v(t)

(q + ct) > p + cs; (19)

	

T (p + cs, q + ct) otherwise.

Proof. Multiplication of (18) and (19) would lead to

�2
T (s, t) > v(s)v(t),

and hence Cauchy–Schwarz implies that the conditions in (18) and (19)
cannot apply simultaneously.
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Then recognize

�T (s, t)
v(s)

(p + cs) = �(A(T − t ,T ) |A(−s, 0) = p + cs);

�T (s, t)
v(t)

(q + ct) = �(A(−s, 0) |A(T − t ,T ) = q + ct)�

The stated now follows immediately from the bivariate version of Cramér’s
theorem; see the solution of Exercise 4.1.9 as given in Ref.[17] (p. 42). �

The proof of the next proposition relies on Lemma A.1, which is stated
and proven in the Appendix.

Proposition 4.1.1. For any p, q > 0,

lim
n→∞

1
n
log�

(
Qn

0 > np,Qn
T > nq

) = − inf
f ∈
T

I (f ) = − inf
s,t>0

	



T (p + cs, q + ct)�

Proof. From “Schilder” and Lemma 4.1.1 we have

− inf
f ∈
T

I (f ) ≤ lim
n→∞

1
n
log�

(
Qn

0 > np,Qn
T > nq

) ≤ − inf
f ∈
T

I (f )�

We first show that the above inequalities are actually equalities, by
establishing that 
T is an I -continuity set, that is,

inf
f ∈
T

I (f ) = inf
f ∈
T

I (f ), (20)

where the 
T denotes the closure of 
T , and is given in Lemma A.1.
This can be done in the same way as in the appendix of Ref.[20].

Choose an arbitrary path f in 
T ∩ R , and approximate it by a path in

T , as follows. We use the sets 
(s),
T (t),
(s), and 
T (t) as defined
in the appendix. Due to Lemma A.1 we have that f ∈ 
(s) ∩ 
T (t) for
some s, t > 0. Let �(·) be a path in R that is strictly increasing and taking
negative values for u ∈ (−∞, 0) and positive values for u ∈ (0,∞) (for
instance, �(u) := sgn(u)

√|u| or arctanu). Define

fn(u) := f (u) + �(u)
n

�

Then fn ∈ 
(s) ∩ 
T (t) as, for any s > 0, it holds that

−fn(−s) = −f (−s) − �(−s)
n

≥ p + cs − �(−s)
n

> p + cs
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and, for any t > 0,

fn(T ) − fn(T − t) = f (T ) − f (T − t) + �(T ) − �(T − t)
n

≥ q + ct + �(T ) − �(T − t)
n

> q + ct �

Moreover, we have, for n → ∞,

‖fn‖2
R =

∥∥∥∥f + 1
n
�

∥∥∥∥
2

R

→ ‖f ‖2
R ,

which proves (20) and therefore also the first equality of the proposition.
The above entails that the decay rate of our interest equals

inf
s,t>0

inf
f ∈(
(s)∩
T (t))

I (f )�

Recall from (15) and (16) that 
T is the union over all s ≥ 0 and t ≥ 0 of
the 
T (s, t), and observe that 
T (s, t) = 
(s) ∩ 
T (t). The second equality
of the proposition now follows directly from Lemma 4.1.2. �

Proposition 4.1.2. Consider fBm or iOU. For any p, q > 0, and T large
enough

inf
s,t>0

	



T (p + cs, q + ct) = inf
s,t>0

	

T (p + cs, q + ct)� (21)

Proof. As, for any s, t > 0 and any T > 0, it holds that 	



T (s, t) ≤ 	

T (s, t),

it suffices to prove that, for T sufficiently large,

inf
s,t>0

	



T (p + cs, q + ct) ≥ inf
s,t>0

	

T (p + cs, q + ct)�

We prove that in a number of steps.

• Step 1. As, evidently,

lim
n→∞

1
n
log�

(
1
n

n∑
i=1

Ai(−s, 0) > p + cs,
1
n

n∑
i=1

Ai(T − t , 0) > q + ct
)

≤ min
{
lim
n→∞

1
n
log�

(
1
n

n∑
i=1

Ai(−s, 0) > p + cs
)
,

lim
n→∞

1
n
log�

(
1
n

n∑
i=1

Ai(T − t , 0) > q + ct
)}

,
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we have that

	T (p + cs, q + ct) ≥ max
{
(p + cs)2

2v(s)
,
(q + ct)2

2v(t)

}
�

• Step 2. Lemma 2.1.1 states that, for any fixed s, t , �T (s, t) → 0 as
T → ∞. It can be checked that this implies that also 	




T (p + cs, q + ct) →
	


∞(p + cs, q + ct) as T → ∞, where

	

∞(p + cs, q + ct) = (p + cs)2

v(s)
+ (q + ct)2

v(t)

(to this end, observe that for any fixed s, t , the conditions in (18) and
(19) are not fulfilled for T sufficiently large). It is clear that, when
taking the infimum of 	


∞(p + cs, q + ct) over s, t > 0, the expression
decouples into the sum of an infimum over s and an infimum over t .
Both individual infima have a unique minimizer, namely, s
 and t 
 as
introduced earlier. In the remainder of the proof, we use the notation
� := 	


∞(p + cs
, q + ct 
). It is clear that the above implies that for T
sufficiently large

inf
s,t>0

	



T (p + cs, q + ct) ≤ 	



T (p + cs
, q + ct 
) ≤ 2�� (22)

• Step 3. Using Step 1, for any t > 0, both as s ↓ 0 and as s → ∞,
uniformly in T ,

	



T (p + cs, q + ct) ≥ (p + cs)2

2v(s)
→ ∞;

likewise, for any s > 0, both as t ↓ 0 and as t → ∞, we have that 	



T (p +
cs, q + ct) → ∞. It implies that we can find �, �̄ ∈ (0,∞), independent of
T , such that for all s, t �∈ [�, �̄] it holds that 	


T (p + cs, q + ct) ≥ 3�.
• Step 4. Using (22) and Step 3, we conclude that we can restrict
ourselves, for T sufficiently large, to s, t ∈ [�, �̄]. Again using that
�T (s, t) → 0 as T → ∞ (by virtue of Lemma 2.1.1), it is seen that for
T large enough, for all s, t ∈ [�, �̄] the conditions in (18) and (19) are
not satisfied, and therefore we have that 	




T (p + cs, q + ct) = 	

T (p + cs,

q + ct). This entails that, for T sufficiently large,

inf
s,t>0

	



T (p + cs, q + ct) = inf
s,t∈[�,�̄]

	



T (p + cs, q + ct) = inf
s,t∈[�,�̄]

	

T (p + cs, q + ct)

≥ inf
s,t>0

	

T (p + cs, q + ct)�

This concludes the proof. �
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On the Dependence Structure of Gaussian Queues 237

In view of the fact that 	

T (p + cs, q + ct) → 	


∞(p + cs, q + ct), we now
also have that a sequence of local optimizers of the right-hand side of (21),
say (s
T , t



T ), converges to (s
, t 
) as T → ∞. Relying on Taylor expansions

around (s
, t 
), the vector (s
T , t


T ) at which the function 	


T (p + cs, q + ct)
is minimum solves the following system:

(p + cs)(2cv(s) − (p + cs)v ′(s))

= 2
(
q + ct
v(t)

)(
(cv(s) − (p + cs)v ′(s))�T (s, t) + (p + cs)v(s)

��T

�s
(s, t)

)
;

(23)

(q + ct)(2cv(t) − (q + ct)v ′(t))

= 2
(
p + cs
v(s)

)(
(cv(t) − (q + ct)v ′(t))�T (s, t) + (q + ct)v(t)

��T

�t
(s, t)

)
(24)

where the partial derivatives of �T (s, t) with respect to s and t are given by

��T

�s
(s, t) = 1

2
(v ′(T + s) − v ′(T − t + s));

��T

�t
(s, t) = 1

2
(v ′(T − t + s) − v ′(T − t))�

In the next two subsections, we study the system (23)–(24), for both fBm
and iOU, by analyzing the behavior of s
T , t



T in detail. This yields the

desired information, needed in order to characterize the decay rate �(T )
for T large.

4.2. Proof for fBm Input

As we have seen in the proof of Lemma 2.1.1, for T → ∞,

�
(fBm)
T (s, t) = st · H (2H − 1) · T 2H−2 + o(T 2H−2)�

For large T , we obtain in the same way

��
(fBm)
T

�s
= t · H (2H − 1) · T 2H−2 + o(T 2H−2);

��
(fBm)
T

�t
= s · H (2H − 1) · T 2H−2 + o(T 2H−2)�
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Inserting these into (23)–(24) we obtain

(2cs − 2H (p + cs)) = 2H (2H − 1)(q + ct)(cs − (2H − 1)(p + cs))st
t 2H (p + cs)

T 2H−2

+ o(T 2H−2); (25)

(2ct − 2H (q + ct)) = 2H (2H − 1)(p + cs)(ct − (2H − 1)(q + ct))st
s2H (q + ct)

T 2H−2

+ o(T 2H−2)� (26)

Note that if we let T → ∞ in the last system, we retrieve (11), which has a
unique solution (12). Observe that in the system of equations (25)–(26),
the right-hand-side of the equations decays to 0 with speed T 2H−2 as T
grows to infinity. This observation, in conjunction with (s
T , t



T ) converging

to (s
, t 
), entails that we can express s
T , t


T as follows:

{
s
T = s
 + f (s
, t 
)T 2H−2 + o(T 2H−2);

t 
T = t 
 + g (s
, t 
)T 2H−2 + o(T 2H−2)�

To determine the values of f (s
, t 
) and g (s
, t 
), we proceed as follows.
Using Taylor expansions we obtain for the left-hand-side of (25), after
tedious calculus,

(p + cs)(2cv(s) − (p + cs)v ′(s))

= 2H (p + cs
)s
2H−2(cs
 − (2H − 1)(p + cs
))f (s
, t 
)T 2H−2 + o(T 2H−2),

and for the right-hand-side

2
(
q + ct
v(t)

)(
(cv(s) − (p + cs)v ′(s))�T (s, t) + (p + cs)v(s)

��T

�s
(s, t)

)

= 2H (2H − 1)(q + ct 
)s
2H t 
1−2H (cs
 − (2H − 1)(p + cs
))T 2H−2

+ o(T 2H−2)�

Doing the same for (26), and inserting (12), we find the following
expressions for f and g at s
, t 
:

f (s
, t 
) = (2H − 1)
q
p
s
2t 
1−2H = (2H − 1)s
t 
2−2H ;

g (s
, t 
) = (2H − 1)
p
q
t 
2s
1−2H = (2H − 1)t 
s
2−2H �
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Inserting these expressions into 	

T (p + cs, q + ct), we can evaluate the

components of (17):

(p + cs)2

s2H
= (p + cs
)2

s
2H

(
1 + 2

(
c

(p + cs
)
− H

s


)
f (s
, t 
)T 2H−2 + o(T 2H−2)

)

= (p + cs
)2

s
2H
+ o(T 2H−2);

(q + ct)2

t 2H
= (q + ct 
)2

t 
2H

(
1 + 2

(
c

(q + ct 
)
− H

t 


)
g (s
, t 
)T 2H−2 + o(T 2H−2)

)

= (q + ct 
)2

t 
2H
+ o(T 2H−2);

2H (2H − 1) · (p + cs)(q + ct)(st)1−2H · T 2H−2 + o(T 2H−2)

= 2H (2H − 1)(p + cs
)(q + ct 
)s
1−2H t 
1−2HT 2H−2 + o(T 2H−2)

= 2
(2H − 1)c2

H
s
2−2H t 
2−2HT 2H−2 + o(T 2H−2)�

We thus obtain the desired result, i.e.,

�(T ) = lim
n→∞

1
n
log �n(T ) = (2H − 1)c2

H
s
2−2H t 
2−2HT 2H−2 + o(T 2H−2)�

4.3. Proof for iOU Input

As in the fBm case, denote by s
, t 
 the minimizing point when there
is independence, i.e., the solution of (11). We follow the same arguments
as in the case of fBm. For fixed (s, t) the covariance �T (s, t) is decreasing
exponentially in T . The solution of system (23)–(24), say s
T , t



T , converges

to s
, t 
, and its convergence speed is of the order e−T for large T . These
observations entail that{

s
T = s
 + k(s
, t 
)e−T + o(e−T );

t 
T = t 
 + �(s
, t 
)e−T + o(e−T )�

To determine k and � at s
, t 
, we proceed as in the above subsection.
We find

k(s
, t 
)

= q + ct 


p + cs

(e t


 − 1)
cv(s
)(1− e−s
)− (p + cs
)(v ′(s
)(1 − e−s
) − v(s
)e−s
)

(cv ′(s
) − (p + cs
)v ′′(s
))v(t 
)

= (q + ct 
)v ′(t 
)
v ′′(t 
)(p + cs
)v(t 
)

· cv(s

)v ′(s
)− (p + cs
)v ′(s
)2 + (p + cs
)v(s
)v ′′(s
)

(cv ′(s
) − (p + cs
)v ′′(s
))
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= 2cv(s
)
v ′′(t 
)(p + cs
)

· (−cv ′(s
) + (p + cs
)v ′′(s
))
(cv ′(s
) − (p + cs
)v ′′(s
))

= − v ′(s
)
v ′′(t 
)

;

�(s
, t 
)

= p + cs


q + ct 

(1 − e−s
)

cv(t 
)(e t

 − 1) − (q + ct 
)(v ′(t 
)(e t


 − 1) − v(t 
)e t


)

(cv ′(t 
) − (q + ct 
)v ′′(t 
))v(s
)

= (p + cs
)v ′(s
)
(q + ct 
)v(s
)

· cv(t

)v ′(t 
)e t


 − (q + ct 
)v ′(t 
)2e t

 + (q + ct 
)v(t 
)e t




(cv ′(t 
) − (q + ct 
)v ′′(t 
))

= 2cv(s
)
v ′′(t 
)(q + ct 
)

· (−cv ′(t 
) + (q + ct 
))
(cv ′(t 
) − (p + ct 
)v ′′(t 
))

= v ′(t 
)
v ′′(t 
)

· q + cv(t 
)
(cv ′(t 
) − (q + ct 
)v ′′(t 
))

�

Now we insert this in the objective function (17), and similarly to the fBm
case we obtain

(p + cs)2

v(s)
= (p + cs
)2

v(s
)
(1 + o(e−T ));

(q + ct)2

v(t)
= (q + ct 
)2

v(t 
)
(1 + o(e−T ));

(p + cs)(q + ct)(1 − e−s)(e t − 1)e−T

v(s)v(t)

= (p + cs
)(q + ct 
)(1 − e−s
)(e t

 − 1)e−T

v(s
)v(t 
)
+ o(e−T )�

Thus we get for iOU input the desired result:

�(T ) = lim
n→∞

1
n
log �n(T )

= (p + cs
)(q + ct 
)
v(s
)v(t 
)

· 1
2
(1 − e−s
)(e t


 − 1)e−T + o(e−T ),

which simplifies to 2c2e−(T−t
).

5. DISCUSSION AND CONCLUDING REMARKS

5.1. Generalizations

Theorems 3.1 and 3.2 suggest that our results can be generalized
considerably, in that it can be expected that their counterparts can be
stated for a substantially broader class of Gaussian processes with stationary
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increments. First observe that expression (17) can alternatively be written as

1
2

(
(p + cs)2

v(s)
+ (q + ct)2

v(t)
− 2

(p + cs)(q + ct)�T (s, t)
v(s)v(t)

)
+ o(�T (s, t))� (27)

Now suppose we wish to evaluate inft(f (t) + �g (t)) − f (t 
), where t 
 is
minimizer of f (·). A Taylor expansion of f ′(t) + �g ′(t) in t 
� = t 
 + �t̄ reads

f ′(t 
) + �t̄ f ′′(t 
) + �g ′(t 
) + O(�2)

= f ′(t 
) + �(t̄ f ′′(t 
) + g ′(t 
)) + O(�2),

so that we obtain t̄ = −g ′(t 
)/f ′′(t 
). Hence, under appropriate regularity
conditions,

inf
t
(f (t) + �g (t)) = f (t 
) − �

g ′(t 
)
f ′′(t 
)

f ′(t 
) + �g (t 
) + O(�2)�

Now using f ′(t 
) = 0 it follows that

inf
t
(f (t) + �g (t)) − f (t 
) = �g (t 
) + O(�2)� (28)

In the same way, a 2-dimensional counterpart of (28) can be stated. Now
suppose that (for large T ) �T (s, t) decouples as �(s, t) · �(T ); here �(T )
does not depend on s and t , and converges to 0 as T → ∞. Applying then
the two-dimensional version of (28) to (27),

�(T ) = lim
n→∞

1
n
log �n(T ) = (p + cs
)(q + ct 
)

v(s
)v(t 
)
�(s
, t 
)�(T ) + o(�(T ))

= 4c2
�(s
, t 
)

v ′(s
)v ′(t 
)
�(T ) + o(�(T ))�

5.2. Long-Range Dependence

Based on Theorems 3.1 and 3.2, one may conjecture that long-range
dependence of the input process carries over to workload process. We now
provide additional heuristic support for this claim.

First consider fBm. Heuristically reasoning, Theorem 3.1 entails that,
for some constant �0,

�n(T ) ≈ exp(n�0T 2H−2),

and hence we have that the correlation coefficient of the indicator
functions 1�Qn

0 > np� and 1�Qn
T > nq� roughly equals (using that
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x(1− x) ≈ x for x small)

�
(
Qn

0 > np,Qn
T > nq

) − �
(
Qn

0 > np
)
�

(
Qn

T > nq
)

√
�

(
Qn

0 > np
)
�

(
Qn

T > nq
)

≈ (en�0T
2H−2 − 1) ·

√
�

(
Qn

0 > np
)
�

(
Qn

0 > nq
)
�

Using e x ≈ 1 + x for x small, we find that for T large, the above display is
of the form �(n)T 2H−2, where the function �(·) does not depend on T .
Observe that the latter expression is nonsummable (over T ) for H > 1

2 .
This intuitive argument suggests that the long-range dependence of the
input process propagates to the queueing process.

Likewise, for iOU we find that the correlation coefficient previously
introduced is roughly proportional to e−T , and hence corresponds to a
short-range dependent process.

Further research on this issue could make use of the concept of
Hurstiness, as introduced in Ref.[29]. Hurstiness is a property of the queue’s
input process (closely related to long-range dependence), and it is shown
that the Hurstiness is preserved by several fundamental operators; for
instance, the Hurstiness of the departure process equals that of the arrival
process. It is not immediately clear, however, whether results as those
presented in the present article, can be found relying on the notion of
Hurstiness. As there is a clear relation between the departure process and
the workload dynamics, one would think so, but a technical issue is that
Hurstiness relates to cumulative processes, such as arrival and departure
processes, whereas our focus is on the dependence between “instantaneous
values” of the workload at time 0 and T . Also, Hurstiness relates to just the
rate of decay, and in view of this it is not likely that it would help to (for
instance) find the constant in front of T 2H−2 in Theorem 3.1.

5.3. Remarks on Asymptotics for iOU

It may be surprising, at first glance, that the asymptotics of �(T ) for
iOU, that is 2c2e−(T−t
), depend on q , but do not depend on p. This can
be understood as follows.

First observe that for iOU input (unlike for fBm input) there is a
notion of a traffic rate process X (·), where X (t) = A′(t)� It can be checked
easily that (i) X (t) is normally distributed with mean 0 and variance 1

2 , (ii)
�ov(X (0),X (T )) = 1

2 e
−T , (iii) the conditional distribution of A(T − t ,T )

given X (0) = x is normal with mean and variance, respectively,

�T (t | x) = �(A(T − t ,T ) |X (0) = x) = x(e t − 1)e−T ,

vT (t | x) = �ar(A(T − t ,T ) |X (0) = x) = v(t) − e−2T (e t − 1)2,
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as follows from standard formula for conditional normal distributions
(cf. Section 4.3 in Ref.[18]).

Also, rewrite �n(t) as the ratio of �(Qn
T > nq |Qn

0 >np) and
�(Qn

0 >np). The decay rate of the latter probability is given by (8). Now
focus on the decay rate of the former (i.e., conditional) probability.
Realize that, as the condition Qn

0 > np is binding, the most likely path
(in the “Schilder sense”) must be such that the traffic rate at time 0 is
c (which means that the aggregate input process is generating traffic at
a rate nc); otherwise, the queue grows even beyond np. Also notice that
the most likely path is such that the buffer has been empty between 0
and T . These observations, in conjunction with the Markovian nature of
the rate process of iOU, entail that all the information about the system
at time 0 which has an impact on the system at time T , is contained in
the fact that the rate is (most likely) nc at time 0. To find the decay rate
of �(Qn

T > nq |Qn
0 > np), we therefore have to solve

inf
t>0

(q + ct − �T (t | c))2
2vT (t | c) �

The above formula for the conditional mean and variance entail that this
optimization problem reduces to

inf
t>0

(
(q + ct)2

2v(t)
− (q + ct)c(e t − 1)e−T

v(t)
+ o(e−T )

)
�

Applying Equation (28) once again, inserting (11), and using
that v ′(t) = 1 − e−t = e−t(e t − 1), we indeed obtain that �(T ) equals
2c2e−(T−t
) + o(e−T ), as expected. The above reasoning explains why the
decay rate does not depend on p; as an aside we mention that also �(s
, t 
)
does not depend on p.

5.4. Further Research

In this article we have focused on the metric �(T ) that relates to
the many-sources scaling, and that was intended to express the level of
correlation between the workloads at time 0 and T . Then we studied
the asymptotics of �(T ) for large T . Evidently, many other measures for
correlation can be thought of. One could, for instance, consider similar
measures, but then in the large-buffer regime.

In this respect, we could consider a queue fed by a single Gaussian
input, emptied at a constant rate C > 0. Then an interesting measure
could be, for fixed p, q ,T ,

�̄B := �(Q0 > pB,QTB > qB)
�(Q0 > pB)�(QTB > qB)

= �(Q0 > pB,QTB > qB)
�(Q0 > pB)�(Q0 > qB)

,
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and its asymptotics for large B. The analysis of �̄B is radically different
from that of �n(T ); the reason for this is that in the many-sources regime,
the most likely time-scales to overflow are more or less constant in the
scaling parameter (i.e., n), whereas in the large-buffer, one would expect
that these time-scales are roughly proportional to the scaling parameter
(i.e., B).

In this case we expect, when analyzing �(Q0 > pB,QTB > qB), different
regimes. More precisely: for B large it is not always true that, in the most
likely scenario, both constraints are tightly met; for some values of p, q ,T
this will be the case, while for others just one constraint will be tightly met
(and the other event “comes for free”). In case both constraints are tightly
met, again two cases can be distinguished: a first in which the queue has
not become empty between 0 and TB (which we expect is the case for T
smaller than some critical timescale T 
), and a second in which epochs 0
and TB lie in different busy periods (for T larger than T 
), cf., Ref.[27]

(Section 11.2).

APPENDIX

In this appendix, we prove a lemma that is needed to establish
Proposition 4.1.1. We first determine the closure of the set 
T . We define


(s) := �f ∈ � : −f (−s) > p + cs�;


T (t) := �f ∈ � : f (T ) − f (T − t) > q + ct�;

also


(s) := �f ∈ � : −f (−s) ≥ p + cs�;


T (t) := �f ∈ � : f (T ) − f (T − t) ≥ q + ct��

Notice that evidently


T =
⋃
s,t>0

(
(s) ∩ 
T (t))�

Lemma A.1. For any T , we have that the closure 
T of 
T is given by

⋃
s,t>0

(

(s) ∩ 
T (t)

)
�

Proof. The proof is similar to those in Refs.[20,24]. We prove both
inclusions separately.
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• We show first the inclusion “⊆”. For any f ∈ 
T there exists a sequence
fn ∈ 
T such that ‖fn − f ‖� → 0 as n → ∞. Now since fn ∈ 
T there is
an sn > 0 and a tn > 0 such that fn ∈ 
(sn) ∩ 
T (tn), so that we have

−fn(−sn) > p + csn and fn(T ) − fn(T − tn) > q + ctn �

The sequence sn is bounded, because if not we would have a
subsequence satisfying

0= lim
n→∞

‖f − fn‖� ≥ lim
n→∞

f (−sn)− fn(−sn)
1 + sn

≥ lim
n→∞

(
f (−sn)
1 + sn

+ p + csn
1 + sn

)
= c ,

(use that f ∈ �!), which gives a contradiction (recall that c > 0). Along
the same lines it can be shown that tn is bounded. Hence there are
subsequences snk → s0 and tnk → t0, for finite s0 and t0� We conclude that
for large enough k

−fnk (−s0) ≥ p + cs0 and fnk (T ) − fnk (T − t0) ≥ q + ct0�

We conclude that

f ∈
(

(s0) ∩ ST (t0)

)
⊆

(

(s0) ∩ 
T (t0)

)
�

• For the other inclusion, “⊇”, let

f ∈
⋃
s,t>0

(

(s) ∩ 
T (t)

)
�

Then there exist s0, t0 > 0 such that f ∈ 
(s0) ∩ 
T (t0). Let �(·) be a path
in R that is strictly increasing and taking negative values for u ∈ (−∞, 0)
and positive values for u ∈ (0,∞) (for instance �(u) := sgn(u)

√|u| or
arctanu). Define

fn(u) := f (u) + �(u)
n

�

Then fn ∈ 
(s0) ∩ 
T (t0) as

−fn(−s0) = −f (−s0) − �(−s0)
n

≥ p + cs0 − �(−s0)
n

> p + cs0

and

fn(T ) − fn(T − t0) = f (T ) − f (T − t0) + �(T ) − �(T − t0)
n

≥ q + ct0 + �(T ) − �(T − t0)
n

> q + ct0�
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Moreover, we have, for n → ∞, that ‖fn − f ‖� → 0 (use that � ∈ R ⊂ �),
and hence

f ∈
(

(s0) ∩ ST (t0)

)
⊆

(

(s0) ∩ 
T (t0)

)
⊆ 
T �

This proves the second inclusion. �
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