
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Concurrency engineering with S-Net

Grelck, C.; Scholz, S.-B.; Shafarenko, A.

Publication date
2009
Document Version
Final published version
Published in
15. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS'09): Maria
Taferl, 12.-14. Oktober 2009

Link to publication

Citation for published version (APA):
Grelck, C., Scholz, S-B., & Shafarenko, A. (2009). Concurrency engineering with S-Net. In J.
Knoop, & A. Prantl (Eds.), 15. Kolloquium Programmiersprachen und Grundlagen der
Programmierung (KPS'09): Maria Taferl, 12.-14. Oktober 2009 (pp. 78-92). Institut für
Computersprachen. http://www.complang.tuwien.ac.at/kps09/pdfs/grelck.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/concurrency-engineering-with-snet(b07010b4-72be-43cb-8087-60b55eb66e29).html
http://www.complang.tuwien.ac.at/kps09/pdfs/grelck.pdf

KPS 2009 Maria Taferl

o

78

Concurrency Engineering with S-Net

Clemens Grelck1,2, Sven-Bodo Scholz2, and Alex Shafarenko2

1 University of Amsterdam, Institute of Informatics
Science Park 107, 1098 XG Amsterdam, Netherlands

c.grelck@uva.nl
2 University of Hertfordshire, School of Computer Science

Hatfield, Herts, AL10 9AB, United Kingdom
{c.grelck,s.scholz,a.shafarenko}@herts.ac.uk

Abstract. We present the design of S-Net, a coordination language
and component technology based on stream processing. S-Net boxes in-
tegrate existing sequential code as stream-processing components into
highly asynchronous concurrent streaming networks. Their construction
is based on algebraic formulae built out of four network combinators.
S-Net achieves a near-complete separation of concerns between appli-
cation code, written in a conventional programming language, and coor-
dination code, written in S-Net itself. Subtyping on the level of boxes
and networks and a tailor-made inheritance mechanism achieve flexible
software reuse.

1 Introduction

The recent advent of multicore technology in processor designs [1] has introduced
parallel computing power to the desktop. Unlike the increase in clock frequency
characteristic of previous generations of processors, application programs do not
automatically benefit from multiple cores, but require explicit parallelisation.
This need brings parallel and distributed programming techniques from the niche
of traditional supercomputing application areas into the main stream of software
engineering. This shift demands new programming concepts, tools and infras-
tructure that are suitable for average application programmers not previously
exposed to the pitfalls of concurrent program execution.

Parallel programming in the conventional style is considered notoriously dif-
ficult because it intertwines two different aspects od program execution: algo-
rithmic behaviour, i.e. what is to be computed, and organisation of concur-
rent execution, i.e. how a computation is performed on multiple execution units
including the necessary problem decomposition, communication and synchro-
nisation. S-Net [2] is a novel declarative coordination language whose design
thoroughly avoids the intertwining of computational and organisational aspects
through active separation of concerns: S-Net completely separates the concern
of writing sequential application building blocks (i.e. application engineering)
from the the concern of composing these building blocks to form a parallel ap-
plication (i.e.concurrency engineering).

KPS 2009 Maria Taferl

o

79

More precisely, S-Net defines the coordination behaviour of networks of
asynchronous, stateless components and their orderly interconnection via typed
streams. We deliberately restrict S-Net to coordination aspects and leave the
specification of the concrete operational behaviour of basic components, named
boxes in S-Net terminology, to conventional languages. An S-Net box is con-
nected to the outside world by two typed streams, a single input stream and
a single output stream. Data on these streams is organised as non-recursive
records, i.e. collections of label-value pairs. The operational behaviour of a box
is characterised by a stream transformer function that maps a single record
from the input stream to a (possibly empty) stream of records on the output
stream. In order to facilitate dynamic reconfiguration of networks, a box has
no internal state and any access to external state (e.g. file system, environment
variables, etc.) is confined to using the streaming network. Boxes execute fully
asynchronously: as soon as a record is available on the input stream, a box may
start computing and producing records on the output stream.

The restriction to a single input stream and a single output stream per box
again again is motivated by separation of concurrency engineering from appli-
cation engineering. If a box had multiple input streams, this would immediately
raise the question as to what extent input data arriving on the various input
streams is synchronised. Do we wait for exactly one data package on each input
stream before we start computing like in Petri nets? Or do we alternatively start
computing when the first data item arrives and see how far we get without the
other data? Or could we even consume varying numbers of data packages from
the various input streams? This immediately intertwines the question of synchro-
nisation, which is a classical concurrency engineering concern, with the concept
of the box, which in fact is and should only be an abstraction of a sequential
compute component.

The same is true for the output stream of a box. Had a box multiple output
streams, this would immediately raise the question of data routing, again a
classical concurrency engineering concern, as the box code would need to decide
to which stream data should be sent. Having a single output stream oinly, in
contrast, clearly seperates the routing aspect from the computing aspect of the
box and, thus, concurrency engineering from application engineering.

The construction of streaming networks based on instances of asynchronous
components is a distinctive feature of S-Net: Thanks to the restriction to a
single-input/single-output stream component interface we can describe entire
networks through algebraic formulae. Network combinators either take one or
two operand components and construct a network that again has a single in-
put stream and a single output stream. As such a network again is a compo-
nent, construction of streaming networks becomes an inductive process. We have
identified a total of four network combinators that prove sufficient to construct
a large number of network prototypes: static serial and parallel composition of
heterogeneous components as well as dynamic serial and parallel replication of
homogeneous components.

KPS 2009 Maria Taferl

o

80

Structural subtyping on records greatly facilitates adaptation of individual
components to varying contexts. More precisely, components only need to be
specific about record fields that are actually needed for the associated compu-
tation or that are (at least potentially) created by that computation. In excess
to these required fields, however, an input record to some component may have
an arbitrary number of further fields. These additional fields bypass the com-
ponent and are added to any outgoing record through an automatic coercion
mechanism, named flow inheritance.

To summarise, the motivation of S-Net is to completely separate algorith-
mic programming from concurrency engineering. Indeed any user-defined box
represents an algorithm encapsulated in the form of a function that performs a
computation on a data item (its argument list) and which computes and passes
back to the environment one or more similar data items. Any communication
or synchronisation actions, any division of work between workers and gather-
ing of the data back in one place is happening in the coordination language.
This makes boxes unit-testable in isolation, and also removes (due to the re-
quirement of statelessness) any placement or mobility constraints from all user-
defined boxes. This is in sharp contrast with SPMD programming styles inherent
in MPI and similar parallel libraries, and to the best of our knowledge, any other
coordination language.

The remainder of the paper is organised as follows. In Section 2 we sketch
out the S-Net type system. Sections 3 and 4 introduce boxes and networks,
respectively. We demonstrate their interaction by a small programming example
in Section 5 and conclude in Section 6.

2 The type system of S-Net

2.1 Record types

The type system of S-Net is based on non-recursive variant records with record
subtyping. Informally, a type in S-Net is a non-empty set of anonymous record
variants separated by vertical bars. Each record variant is a possibly empty set
of named record entries, enclosed in curly brackets. We distinguish two different
kinds of record entries: fields and tags. A field is characterised by its field name
(label); it is associated with an opaque value at runtime. Hence, fields can only
be generated, inspected or manipulated by using an appropriate box language.
A tag is represented by a name enclosed in angular brackets. At runtime tags
are associated with integer values, which are visible to both box language code
and S-Net. The rationale of tags lies in controlling the flow of records through
a network. They should not be misused to hold box language data that can be
represented as integer values.

We illustrate S-Net types by a simple example from 2-dimensional geometry:
For instance, we may represent a rectangle by the S-Net type
{x, y, dx, dy}

KPS 2009 Maria Taferl

o

81

providing fields for the coordinates of a reference point (x and y) and edge
lengths in both dimensions (dx and dy). Likewise, we may represent a circle by
the center point coordinates and its radius:
{x, y, radius}

Using the S-Net support for variant record types we may easily define a type
for geometric bodies in general, encompassing both rectangles and circles:
{x, y, dx, dy} | {x, y, radius}

Often it is convenient to name variants. In S-Net this can be done using tags:
{<rectangle>, x, y, dx, dy} | {<circle>, x, y, radius}

S-Net supports type definitions; we refer the interested reader to [2] for details.

2.2 Record subtyping

S-Net supports structural subtyping on record types. Subtyping essentially is
based on the subset relationship between sets of record entries. Informally, a type
is a subtype of another type if it has additional record entries in the variants or
additional variants. For example, the type
{<circle>, x, y, radius, colour}

representing coloured circles is a subtype of the previously defined type
{<circle>, x, y, radius} .

Likewise, we may add another type to represent triangles:
{<rectangle>, x, y, dx, dy}

| {<circle>, x, y, radius}
| {<triangle>, x, y, dx1, dy1, dx2, dy2};

which again is a supertype of
{<rectangle>, x, y, dx, dy}

| {<circle>, x, y, radius}

as well as a supertype of
{<circle>, x, y, radius, colour} .

Our definition of record subtyping coincides with the intuitive understanding
that a subtype is more specific than its supertype(s) while a supertype is more
general than its subtype(s). In the first example, the subtype contains additional
information concerning the geometric body (i.e. its colour) that allows us to
distinguish, for instance, green circles from blue circles. In contrast, the more
general supertype identifies all circles regardless of their colour. In our second
example, the supertype is again more general than its subtype as it encompasses
all three different geometric bodies. Subtype {<circle>,x,y,radius,colour}
is more specific than its supertypes because it rules out triangles and rectangles
from the set of geometric bodies covered. Unlike subtyping in object-oriented
languages our definition of record subtyping is purely structural; {} (i.e. the
empty record) denotes the most common supertype.

KPS 2009 Maria Taferl

o

82

2.3 Type signatures

Type signatures describe the stream-to-stream transformation performed by a
box or a network. Syntactically, a type signature is a non-empty set of type
mappings each relating an input type to an output type. The input type specifies
the records a box or network accepts for processing; the output type characterises
the records that the box or network may produce in response. For example, the
type signature
{a,b} | {c,d} -> {<x>} | {<y>} , {e} -> {z}

describes a network that accepts records that either contain fields a and b or
fields c and d or field e. In response to a record of the latter type the network
produces records containing the field z. In all other cases, it produces records
that either contain tag x or tag y.

2.4 Flow inheritance

Up-coercion of records upon entry to a certain box or network creates a subtle
problem in the stream-processing context of S-Net. In an object-oriented setting
the control flow eventually returns from a method invocation that causes an up-
coercion. While during the execution of the specific method the object is treated
as being one of the respective superclass, it always retains its former state in the
calling context. In a stream-processing network, however, records enter a box or
network through its input stream and leave it through its output stream, which
are both connected to different parts of the whole network. If an up-coercion
results in a loss of record entries, this loss is not temporary but permanent.

The permanent loss of record entries is neither useful nor desirable. For ex-
ample, we may have a box that manipulates the position of a geometric body
regardless of whether it is a rectangle, a circle or a triangle. The associated type
signature of such a box could be as simple as {x,y}->{x,y}. This box would
accept circles, rectangles and triangles focusing on their common data (i.e. the
position) and ignoring their individual specific fields and tags. Obviously, we
must not lose this data as a consequence of the automatic up-coercion of com-
plete geometric bodies to type {x,y}. Hence, we complement this up-coercion
with an automatic down-coercion. More precisely, any field or tag of an incom-
ing record that is not explicitly named in the input type of a box or network
bypasses the box or network and is added to any outgoing record created in
response, unless that record already contains a field or tag with the same label.
We call this coercion mechanism flow inheritance.

As an example, let us assume a record {<circle>,x,y,radius} hits a box
{x,y}->{x,y}. While fields x and y are processed by the box code, tag circle
and field radius bypass the box without inspection. As they are not mentioned
in the output type of the box, they are both added to any outgoing record, which
consequently forms a complete specification of a circle again.

KPS 2009 Maria Taferl

o

83

3 Box abstractions

3.1 User-defined boxes

From the perspective of S-Net boxes are the atomic building blocks of streaming
networks. Boxes are declared in S-Net code using the key word box followed by
a box name as unique identifier and a box signature enclosed in round brackets.
The box signature very much resembles a type signature with two exceptions:
we use round brackets instead of curly brackets, and we have exactly one type
mapping that has a single-variant input type. For example,
box foo ((a,b,<t>) -> (a,b) | (<t>));

declares a box named foo, which accepts records containing (at least) fields a
and b plus a tag t and in response produces records that either contain fields a
and b or tag t. Boxes are implemented using a box language rather than S-Net.
It is entirely up to the box implementation to decide how many output records
a box actually emits and of which of the output variants they are. This may
well depend on the values of the input record entries and, hence, can only be
determined at runtime.

snet_handle_t *foo(snet_handle_t *handle,
int *a, mytype_t *b, int t)

{
/* some computation on a, b and t */

snetout(handle, 1, a, b);
/* some computation */

snetout(handle, 2, t);
return(handle);

}

Fig. 1. Example box function implementation in C

Box signatures use round brackets instead of curly brackets to express the fact
that in box signatures sequence does matter. (Remember that type signatures are
true sets of mappings between true sets of record entries.) Sequence is essential to
support a mapping to function parameters of some box language implementation
rather than using inefficient means such as string matching of field and tag
names. For example, we may want to associate the above box declaration foo
with a C language implementation in the form of the C function foo shown in
Fig. 1.

The entries of the input record type are effectively mapped to the function pa-
rameters in their order of appearance in the box signature. We implement record
fields as opaque pointers to some data structure and tags as integer values. In
addition to the box-specific parameters the box function implementation always
receives an opaque S-Net handle, which provides access to S-Net internal data.

Since boxes in S-Net generally produce a variable number of output records
in response to a single input record, we cannot exploit the function’s return

KPS 2009 Maria Taferl

o

84

value to determine the output record. Instead, we provide a special function
snetout that allows us to produce output records during the execution of the
box function, as demonstrated in Fig. 1. The first argument to snetout is the
internal handle that establishes the necessary link to the execution environment.
The second argument to snetout is a number that determines the output type
variant used. So, the first call to snetout in the above example refers to the first
output type variant. Consequently, the following arguments are two pointers.
The second call to snetout refers to the second output type variant and, hence,
a single integer value follows. Eventually, the box function returns the handle to
signal completion to the S-Net context.

This is just a raw sketch of the box language interfacing. Concrete interface
implementations may look differently to accommodate characteristics of certain
box languages, and even the same box language may actually feature several
interface implementations with varying properties.

3.2 Filter boxes

The filter box in S-Net is devoted to housekeeping operations. Effectively, any
operation that does not require knowledge of field values can be expressed by
this versatile built-in box in a simpler way than using an atomic box and a
fully-fledged box language implementation. Among these operations are

– elimination of fields and tags from records,
– copying fields and tags,
– adding tags,
– splitting records,
– simple computations on tag values.

Syntactically, a filter box is enclosed in square brackets and consists of a type
(pattern) to the left of an arrow symbol and a semicolon-separated sequence of
filter actions to the right of the arrow symbol, for example:
[{a,b,<t>} -> {a} ; {c=b,<u=42>} ; {b,<t=t+1>}]

This filter box accepts records that contain fields a and b as well as tag t. In
general, the type-like notation to the left of the arrow symbol acts as a pattern
on records; any incoming record’s type must be a subtype of the pattern type.

As a response to each incoming record, the filter box produces three records
on its output stream. The specifications of these three records are separated
by semicolons to the right of the arrow symbol. Outgoing records are defined
in terms of the identifiers used in the pattern. In the example, the first output
record only contains the field a adopted from the incoming record (plus all flow-
inherited record entries). The second output record contains field b from the
input record, which is renamed to c. In addition there is a tag u set to the
integer value 42. The last of the three records produced contains the field b
and the tag t from the input record, where the value associated with tag t is
incremented by one. S-Net supports a simple expression language on tag values
that essentially consists of arithmetic, relational and logical operators as well as
a conditional expression.

KPS 2009 Maria Taferl

o

85

3.3 Synchrocells

The synchrocell is the only “stateful” box in S-Net. It also provides the only
means in S-Net to combine two existing records into a single one, whereas the
opposite direction, the splitting of a single record, can easily be achieved by both
user-defined boxes and built-in filter boxes. Syntactically, a synchrocell consists
of an at least two-element comma-separated list of type patterns enclosed in [|
and |] brackets, for example
[| {a,b,<t>}, {c,d,<u>} |]

The principle idea behind the synchrocell is that it keeps incoming records which
match one of the patterns until all patterns have been matched. Only then
the records are merged into a single one that is released to the output stream.
Matching here means that the type of the record is a subtype of the type pattern.
The pattern also acts as an input type specification: a synchrocell only accepts
records that match at least one of the patterns.

A synchrocell has storage for exactly one record of each pattern. When a
record arrives at a fresh synchrocell, it is kept in this storage and is associated
with each pattern that it matches. Any record arriving thereafter is only kept
in the synchrocell if it matches a previously unmatched pattern. Otherwise, it is
immediately sent to the output stream. As soon as a record arrives that matches
the last remaining previously unmatched variant, all stored records are released.
The output record is created by merging the fields of all stored records into
the last matching record. If an incoming record matches all patterns of a fresh
synchrocell right away, it is immediately passed to the output stream.

Although we called synchrocells “stateful” above, this is only true as far as
individual records are concerned. Synchrocells nevertheless realise a functional
mapping from input stream to output stream as a whole.

4 Streaming networks

4.1 Network definitions

User-defined and built-in boxes form the atomic building blocks for stream pro-
cessing networks; their hierarchical definition is at the core of S-Net. As a simple
example of a network definition take:
net X {

box foo ((a,b)->(c,d));
box bar ((c)->(e));

}
connect foo..bar;

Following the key word net we have the network name, in this case X, and an
optional block of local definitions enclosed in curly brackets. This block may
contain nested network definitions and box declarations. Hierarchical network
definitions incur nested scopes, but in the absence of relatively free variables the
scoping rules are straightforward.

KPS 2009 Maria Taferl

o

86

A distinctive feature of S-Net is the fact that complex network topologies
are not defined by some form of wire list, but by an expression language. Each
network definition contains such a topology expression following the key word
connect. Atomic expressions are made up of box and network names defined
in the current scope as well as of built-in filter boxes and synchrocells. Com-
plex expressions are inductively defined using a set of network combinators that
represent the four essential construction principles in S-Net: serial and parallel
composition of two (different) networks as well as serial and parallel replication
of one network, as sketched out in Fig. 2. Note that any network composition
again yields a network with exactly one input and one output stream.

net X connect foo..bar

foo bar

bar

net X connect foo|bar

foo

{stop}

net X connect foo*{stop}

foo foo
<T>

net X connect foo!<T>

foo

foo

Fig. 2. Illustration of network combinators and their operational behaviour: serial com-
position (top-left), parallel composition (top-right), serial replication (bottom-left) and
indexed parallel replication (bottom-right)

4.2 Serial composition

The binary serial combinator “..” connects the output stream of the left operand
to the input stream of the right operand. The input stream of the left operand
and the output stream of the right operand become those of the combined net-
work. The serial combinator establishes computational pipelines, where records
are processed through a sequence of computational steps.

In the example of Fig. 2, the two boxes foo and bar are combined into such a
pipeline: all output from foo goes to bar. This example nicely demonstrates the
power of flow inheritance: In fact the output type of box foo is not identical to
the input type of box bar. By means of flow inheritance, any field d originating
from box foo is stripped off the record before it goes into box bar, and any
record emitted by box bar will have this field be added to field e.

KPS 2009 Maria Taferl

o

87

In contrast to box declarations, type signatures of networks are generally
inferred by the compiler. For example the inferred type signature of the network
X in the above example is {a,b}->{d,e}. Type inference is a particularly in-
teresting aspect of S-Net. We refer the interested reader to [3] for a thorough
treatment of the subject.

4.3 Parallel composition

The binary parallel combinator “|” combines its operands in parallel. Any in-
coming record is sent to exactly one operand depending on its own type and
the operand type signatures. The output streams of the operand networks (or
boxes) are merged into a single stream, which becomes the output stream of the
combined network. Fig. 2 illustrates the parallel composition of two networks
foo and bar (i.e. foo|bar).

To be precise, any incoming record is sent to that operand network whose type
signature’s input type is matched best by the record’s type. Let us assume the
type signature of foo is {a}->{b} and that of bar is {a,c}->{b,d}. An incoming
record {a,<t>} would go to box foo because it does not match the input type
of box bar, but thanks to record subtyping does match the input type of box
foo. In contrast, an incoming record {a,b,c} would go to box bar. Although it
actually matches both input types, the input type of box bar scores higher (2
matches) than the input type of box foo (1 match). If a record’s type matches
both operand type signatures equally well, the record is non-deterministically
sent to one of the operand networks.

4.4 Serial replication

The serial replication combinator “*” replicates the operand network (the left
operand) infinitely many times and connects the replicas by serial composition.
The right operand of the combinator is a type (pattern) that specifies a termi-
nation condition. Any record whose type is a subtype of the termination type
pattern (i.e. matches the pattern) is released to the combined network’s output
stream.

In fact, an incoming record that matches the termination pattern right away
is immediately passed to the output stream without being processed by the
operand network at all. This coincidence with the meaning of star in regular
expressions particularly motivates our choice of the star symbol. Fig. 2 illustrates
the operational behaviour of the star combinator for a network foo*{<stop>}:
Records travel through serially combined replicas of foo until they match a given
type pattern, more precisely the type of the record is a record subtype of the
specified type (pattern). Optionally, the exit pattern may be refined by a boolean
expression on the values of the tags in the type pattern. Actual replication of
the operand network is demand-driven. Hence, networks in S-Net are not static,
but generally evolve dynamically, though in a restricted way.

KPS 2009 Maria Taferl

o

88

4.5 Indexed parallel replication

Last but not least, the parallel replication combinator “!” takes a network or
box as its left operand and a tag as its right operand. Like the star combinator,
it replicates the operand, but connects the replicas using parallel rather than
serial composition. The number of replicas is conceptually infinite. Each replica is
identified by an integer index. Any incoming record goes to the replica identified
by the value associated with the given tag. Hence, all records that have the
same tag value will be routed to the same replica of the operand network. Fig. 2
illustrates the operational behaviour of indexed serial replication for a network
foo!<T>. In analogy to serial replication, instantiation of replicas is demand-
driven.

Note that this construct in combination with serial replication allows dy-
namic, SPMD style connections: a network such as (A!<P>)*<Y> allows the box
A to receive records with a certain value of <P> and create records with either
the same or different value of <P> which will be fed to an appropriate replica of
A. Any output from A that is meant to be released should be tagged with <Y>.
It is quite obvious that dynamic communication could be made as complex as
the programmer requires using more combinators, but crucially the only routing
issue that is dealt with dynamically is which replica of a box a given record
should be directed to, not which box, and since all replicas share the same type
signature, S-Net remains type safe even under dynamic routing.

4.6 Putting it all together

The restriction of every box and every network to a single input stream and a
single output stream allows us to describe complex streaming networks in a very
concise way using algebraic formulae rather than wire lists. Fig. 3 demonstrates
the power of our approach by means of an example network
net XYZ connect ((A..B|C..D)!<i>)*{<stop>} .

The example uses 4 predefined boxes: A, B, C and D. Sequential compositions of
A/B and C/D, respectively, are combined in parallel. The resulting subnetwork is
replicated vertically through indexed parallel replication and, thereafter, hori-
zontally through serial replication. Although Fig. 3 demonstrates the complexity
of this network, its specification takes no more than half a line of code.

To conclude this section, we wish to make a remark on the implementation.
Space limitations do not permit us to touch on any details; however, the cru-
cial point of S-Net implementation is the use of nondeterminism. Solutions for
parallel computing tend to be deterministic since nondeterminism can affect the
values being processed and can lead to incorrect results. However, in the context
of stream processing nondeterminism manifests itself as the lack of order in a
stream sequence. Obviously if the receiver box either does not need to receive
the records in a certain order, or if the required order can be reconstructed at
the output of the top-level network from the stream content, nondeterministic
merges are safe. On the other hand, the use of nondeterministic merges dra-
matically reduces the latency of processing, since the implementation is free to

KPS 2009 Maria Taferl

o

89

C D

C D

C D

C D

A B

A B

<i>

A B

A B

<i>

{<stop>}

net XYZ connect ((A..B | C..D)!<i>)*{<stop>}

Fig. 3. Example of complex network construction with S-Net network combinators

merge streams in the order of arrival rather than queuing off records that have
overtaken ones created earlier. Also in a multistage pipelined processing scheme,
a record can represent work to be done by several algorithms in any order. For
example, by a box A that determines the maximum row elements of a matrix
and divides the rows by them, and by a box B that exchanges the left and
right halves of all rows. A solution such as X..((A..B)|(B..A)) where A and B
present the same input type will be of this kind. The nondeterministic merger of
the parallel combinator will be in a position to use its nondeterminism to choose
the pathway depending on how busy boxes A and B are.

5 Example: solving Sudoku puzzles

We illustrate the potential of S-Net by a simple search problem: finding solutions
to sudoku puzzles. While sudokus are simple enough to be explored in detail,
they are computationally non-trivial as they require search over an imbalanced
tree of theoretically up to 981 possibilities. In this sense, sudokus act as an
interesting, albeit simple, model of a real-world search problem.

Sudokus are played on a 9 by 9 board of numbers. Starting out from a board
with several given numbers, the overall aim is to fill all empty positions with
numbers so that the following conditions hold: (i) each row contains the numbers
1 to 9 exactly once, (ii) each column contains the numbers 1 to 9 exactly once,
and (iii) each of the nine 3 by 3 sub-boards contains the numbers 1 to 9 exactly
once. Although in general we may have an arbitrary number of solutions or no
solution at all, well constructed sudokus have a unique solution.

Fig. 4 shows the S-Net implementation of a simple Sudoku solver; a tex-
tual specification of the same solver can be found in Fig. 5. The first box
(computeOpts) expects records that only contain an abstract representation of
a Sudoku board, i.e. the search problem to be solved. The box computes all
potential settings for each open position in the Sudoku board (opts).

KPS 2009 Maria Taferl

o

90

box computeOpts

{board} −> {board, opts}

filter

box solve

{board, opts} −> {board}

{<k>} −> {<k>=<k%4>}

{<level>} if <level > 40>

!<k>

filter

box solveOneLevel

{board, opts} −> {board, opts, <k>, <level>}

*

{} −> {<k=1>}

Fig. 4. Solving Sudoku puzzles with S-Net: graphical illustration

The solver itself is embedded within a serial replication: The box solveOneLevel
tries to fix one further position on the board. For each possible number at that
position it outputs a record containing the new board, the new (further) options
and a tag <level>, whose value signals the number of fixed positions. In princi-
ple, the unfolding of the search tree could continue until all solutions are found,
but on many target architectures it is more useful to control the amount of un-
folding. In the example, we achieve this by refining the termination condition of
the serial replication: as soon as 41 of the 81 positions of the board have been
fixed, a record leaves the serial replication and is solved by the subsequent box
solve without further unfolding of the S-Net network.

net sudoku {
box computeOpts ((board)->(board,opts));
box solveOneLevel ((board,opts)->(board,opts,<k>,<level>));
box solve ((board,opts)->(board));
net oneLevel connect [{<k>}->{<k=k%4>}] .. solveOneLevel!<k>;

}
connect computeOpts

.. [{}->{<k=1>}]

.. oneLevel * {<level>} if <level>40>

.. solve;

Fig. 5. Solving Sudoku puzzles with S-Net: textual specification

The additional tag <k> in conjunction with indexed parallel replication cre-
ates another dimension of parallelism: Within each serial unfolding stage four
concurrent instantiations of the solveOneLevel box process boards indepen-
dently. A more thorough presentation of the Sudoku solver including box imple-
mentations in the functional array language SaC [4] can be found in [5].

KPS 2009 Maria Taferl

o

91

6 Conclusions and future work

We have presented the design of S-Net, a declarative language for describing
streaming networks of asynchronous components. Several features distinguish
S-Net from existing stream processing approaches.

– S-Net boxes are fully asynchronous components communicating over buffered
streams.

– S-Net thoroughly separates coordination aspects from computation aspects.
– The restriction to SISO components allows us to describe complex streaming

networks by algebraic formulae rather than error-prone wiring lists.
– We utilise a type system to guarantee basic integrity of streaming networks.
– Data items are routed through networks in a type-directed way making the

concrete network topology a type system issue.
– Record subtyping and flow inheritance make S-Net components adaptive

to their environment.

The overall design of S-Net is geared towards facilitating the composition of
components developed in isolation. The box language interface in particular
allows existing code to be turned into an S-Net stream processing component
with very little effort.

We have by now completed a prototype implementation of S-Net. This con-
sists of a compiler for S-Net [6], including type inference [3], and box language
interfaces for C and SaC [4] that allow us to write complete applications [5].
Furthermore, we have implemented a runtime system based on Posix threads
for truly concurrent execution of S-Net programs on general-purpose shared
memory multiprocessor and multicore architectures [7] as well as an MPI-based
distributed memory runtime system for clusters of such machines [8].

Besides several smaller demonstrator applications we are currently working
on a non-trivial plasma physics simulation as well as on a radar-based moving
target identification (MTI) application that uses space-time adaptive processing
(STAP) to demonstrate the suitability of S-Net to coordinate concurrent activ-
ities on a representative scale. In the future we aim at compiling S-Net to novel
many-core processor designs like the MicroGrid architecture [9, 10] and to inves-
tigate into dynamic reconfiguration and self-adaptivity of S-Net networks [11].

References

1. Sutter, H.: The free lunch is over: A fundamental turn towards concurrency in
software. Dr. Dobb’s Journal 30 (2005)

2. Grelck, C., Shafarenko, A. (eds):, Penczek, F., Grelck, C., Cai, H., Julku, J.,
Hölzenspies, P., Scholz, S.B., Shafarenko, A.: S-Net Language Report 1.0. Techni-
cal Report 487, University of Hertfordshire, School of Computer Science, Hatfield,
England, United Kingdom (2009)

3. Cai, H., Eisenbach, S., Grelck, C., Penczek, F., Scholz, S.B., Shafarenko,
A.: S-Net Type System and Operational Semantics. In: Proceedings of the
Æther-Morpheus Workshop From Reconfigurable to Self-Adaptive Computing
(AMWAS’08), Lugano, Switzerland. (2008)

KPS 2009 Maria Taferl

o

92

4. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming 34 (2006)
383–427

5. Grelck, C., Scholz, S.B., Shafarenko, A.: Coordinating Data Parallel SAC Programs
with S-Net. In: Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS’07), Long Beach, California, USA, IEEE Computer
Society Press, Los Alamitos, California, USA (2007)

6. Grelck, C., Penczek, F.: Implementing S-Net: A Typed Stream Processing Lan-
guage, Part I: Compilation, Code Generation and Deployment. Technical report,
University of Hertfordshire, Department of Computer Science, Compiler Technol-
ogy and Computer Architecture Group, Hatfield, England, United Kingdom (2007)

7. Grelck, C., Penczek, F.: Implementation Architecture and Multithreaded Runtime
System of S-Net. In Scholz, S., Chitil, O., eds.: Implementation and Application
of Functional Languages, 20th International Symposium, IFL’08, Hatfield, United
Kingdom. Lecture Notes in Computer Science, Springer-Verlag (2009) to appear.

8. Grelck, C., Julku, J., Penczek, F.: Distributed S-Net. In Morazan, M., ed.: Im-
plementation and Application of Functional Languages, 21st International Sympo-
sium, IFL’09, South Orange, NJ, USA, Seton Hall University (2009)

9. Bernard, T., Bousias, K., de Geus, B., Lankamp, M., Zhang, L., Pimentel, A.,
Knijnenburg, P., Jesshope, C.: A Microthreaded Architecture and its Compiler. In
Arenez, M., Doallo, R., Fraguela, B., Tourino, J., eds.: Proceedings of the 19th In-
ternational Conference on Architecture of Computing Systems (ARCS’06), Frank-
furt/Main, Germany. (2006) 326–342

10. Bousias, K., Jesshope, C., Thiyagalingam, J., Scholz, S.B., Shafarenko, A.: Graph
Walker: Implementing S-Net on the Self-adaptive Virtual Processor. In: Proceed-
ings of the Æther-Morpheus Workshop From Reconfigurable to Self-Adaptive Com-
puting (AMWAS’08), Lugano, Switzerland. (2008)

11. Penczek, F., Scholz, S.B., Grelck, C.: Towards Reconfiguration and Self-Adaptivity
in S-Net. In Scholz, S.B., ed.: Implementation and Application of Functional Lan-
guages, 20th International Symposium, IFL’08, Hatfield, Hertfordshire, UK. Tech-
nical Report 474, University of Hertfordshire, UK (2008) 330–339

