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Abstract

Flood and Garber (1983), Smith (1991), and Froot and Obstfeld (1991a,b) examined the return
of the United Kingdom to the gold standard in 1925 as an example of state-contingent process
switching. They calculated the exchange rate via the density function of the �rst-passage time
through the announced parity (Flood and Garber, 1983; Smith, 1991) or via solving a di¤erential
equation under suitable boundary conditions (Froot and Obstfeld, 1991a,b). We alternatively
employ the underlying transition probabilities and con�rm the solution obtained in the literature.
In addition, our approach allows us to critically evaluate intuitive arguments in the literature that
actually relied on transition probabilities without the latter actually having been derived. The
transition probabilities also have obvious appeal for econometric analyses, derivative pricing, and
decision making under the potential of �extinction�.
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1 Introduction

Flood and Garber (1983) modelled the return of the United Kingdom to the gold standard in 1925

as an example of state-contingent process switching. This choice was based on the announcement

by monetary authorities already in 1918 of their wish to �x the pound to the dollar at the pre-war

parity of $4.86 conditional on attaining again the pre-war purchasing power parity. Or, the exchange

rate would be �xed, i.e. absorbed, upon �rst hitting the pre-war parity. Flood and Garber (1983)

approached the determination of the exchange rate via a probabilistic reasoning. More in particular,

they focussed on the probability density function for the �rst-passage time through the announced

parity, but failed to solve the resulting integrals. This �rst-passage time problem was ultimately solved

in Smith (1991). Froot and Obstfeld (1991a,b) alternatively employed a mathematically elegant and

simpler approach in which the problem was rephrased in terms of a di¤erential equation for which the

relevant integration constant was obtained from the no-jump condition upon switching.

This article solves the above problem again via a probabilistic approach, but now by relying on

transition probabilities, i.e. the conditional likelihood that some state can be attained at a certain

future point of time. This method, that Froot and Obstfeld (1991a, p. 241) correctly anticipated as

�likely to be burdensome�, is complementary to the aforementioned approaches as it provides us with

interesting additional information such as the probability of absorption. In addition, it allows us to

support but also correct some intuitive arguments in the literature that were actually phrased in terms

of transition probabilities without the latter actually having been derived. The transition probabili-
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ties also have obvious appeal for econometric exercises based on, for instance, maximum likelihood,

derivative pricing, (cash) management under the potential of �extinction�, and other decision making

problems.

The remainder of this article is structured as follows. In Section 2, we brie�y specify the economic

model and introduce the transition probabilities required for solving it. Section 3 applies our approach

under the assumption of Brownian motion with drift.

2 The economic model and the required transition probabilities

Flood and Garber (1983) started from the so-called asset price equation:

x (t) = k (t) + �
E [dx (t) jI (t) ]

dt
;

where x (t) denotes the (log) spot exchange rate, k (t) is the fundamental and E represents the expec-

tations operator. The time-t information set is given by I (t). The fundamental can be interpreted as

an indicator of the relative supply to demand conditions of the home currency and can be given more

speci�c content via the �exible-price monetary model as in Flood and Garber (1983). Finally, the

parameter � measures the sensitivity of the exchange rate to its own expected future course and in

the monetary model can be seen as the semi-elasticity of money demand with respect to the interest

rate.

Ruling out speculative bubbles, the unique saddle-path solution for any sequence of future funda-
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mentals is given by (see Froot and Obstfeld, 1991a,b):

x (t) =
1

�

+1Z
t

E [k (s) jk (t) ] exp
�
�s� t

�

�
ds; (1)

where E [k (s) jk (t) ] is the conditional expectation for the fundamental at time s given the present

state k (t).

Flood and Garber (1983) showed that the stochastic process of the fundamental switches when

it hits the pre-announced switching value, k. At reaching that point, it will be absorbed, i.e.

will permanently remain at k. Hence, the expectations term in Equation (1) can be rewritten as

E
�
k (s) 6 k jk (t)

�
in order to highlight that k is the absorbing maximum value of the fundamental:

x (t) =
1

�

+1Z
t

E [k (s) 6 jk (t) ] exp
�
�s� t

�

�
ds: (2)

We now proceed toward specifying the conditional expectation in Equation (2). The transition prob-

ability density function, in short the transition density, conditional on absorption not taking place

within the prediction interval (s� t) is denoted by p
�
k(s) < k jk (t)

�
. It speci�es the probability of

attaining k (s) < k at time s given that the process currently is at the source point k (t). The transi-

tion probability distribution function, in short the transition distribution, conditional on absorption

not occurring in (s� t) is P
�
k(s) < k jk (t)

�
. The transition distribution of absorption is de�ned

as P
�
k(s) = k jk (t)

�
. Together both transition distributions specify P

�
k(s) 6 k jk (t)

�
which is the

cumulative transition density over the entire domain of the fundamental, namely
�
�1; k

�
, and it

obviously equals 1:

P
�
k(s) 6 k jk (t)

�
= P

�
k(s) < k jk (t)

�
+ P

�
k(s) = k jk (t)

�
,
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with

P
�
k(s) < k jk (t)

�
=

kZ
�1

p
�
k(s) < k jk (t)

�
dk (s) , (3)

P
�
k(s) = k jk (t)

�
= 1� P

�
k(s) < k jk (t)

�
: (4)

A similar distinction arises for the conditional expectation E
�
k (s) 6 k jk (t)

�
in Equation (2). It is

the sum of the conditional expectation provided absorption does not come about within the predic-

tion interval, E
�
k (s) < k jk (t)

�
, and the conditional expectation located on the absorbing boundary,

E
�
k (s) = k jk (t)

�
:

E
�
k(s) 6 k jk (t)

�
= E

�
k(s) < k jk (t)

�
+ E

�
k(s) = k jk (t)

�
,

with

E
�
k(s) < k jk (t)

�
=

kZ
�1

k (s) p
�
k(s) < k jk (t)

�
dk (s) , (5)

E
�
k(s) = k jk (t)

�
= k P

�
k(s) = k jk (t)

�
: (6)

3 Conditional expectations and the exchange rate for Brownian mo-
tion with drift

In order to solve the above economic model, Flood and Garber (1983) assumed k to be a Brownian

motion with drift prior to the regime switch:

dk (t) = �dt+ �dz (t) ; (7)
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where � and �2 denote the drift and di¤usion coe¢ cients, respectively and dz (t) is the increment of

a Wiener process.

The transition density p
�
k(s) < k jk (t)

�
can be obtained via the Fokker-Planck or the (Kol-

mogorov) forward equation:1

1

2
�2
@2p

�
k(s) < k jk (t)

�
@k (s)2

� �
@p
�
k(s) < k jk (t)

�
@k (s)

=
@p
�
k(s) < k jk (t)

�
@s

(8)

for �1 < k (s) ; k (t) < k and s > t.

Equation (8) is to solved subject to one boundary condition and one initial condition. Imposing

absorption at k is tantamount to requiring that the boundary k can gather no probability mass since

p
�
k(s) < k jk (t)

�
explicitly conditions on absorption not taking place within the prediction horizon:

lim
k(s)"k

�
p
�
k(s) < k jk (t)

��
= 0.

The relevant initial condition is:

lim
s#t

�
p
�
k(s) < k jk (t)

��
= � (k (s)� k (t)) � (s� t) ,

with � (�) being the Dirac delta function. This condition requires all initial probability mass to be

located at the initial value and point of time, which clearly is the relevant initial condition for Brownian

motion processes.

The above initial-boundary value problem can be solved via, for instance, the method of images.2

1See, for instance, Risken (1989).
2See Sommerfeld (1949) for more detail.
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This yields:

p
�
k(s) < k jk (t)

�
=

1

�
p
2� (s� t)

exp

"
�(k (s)� k (t)� � (s� t))

2

2�2 (s� t)

#
�

(9)

1

�
p
2� (s� t)

exp

"
�
2�
�
k (t)� k

�
�2

#
exp

"
�
�
k (s) + k (t)� 2k � � (s� t)

�2
2�2 (s� t)

#
:

The transition distribution conditional on no absorption taking place, i.e. Equation (3), emerges as:3

P
�
k(s) < k jk (t)

�
= �

�
k � k (t)� � (s� t)

�
p
s� t

�
�exp

"
�
2�
�
k (t)� k

�
�2

#
�

�
k (t)� k � � (s� t)

�
p
s� t

�
; (10)

with � (q) = 1p
2�

qR
�1

exp
�
�1
2w

2
�
dw being the cumulative standard normal distribution function. As

required, increasing k to +1, and thus e¤ectively precluding absorption, yields 1. Under driftless

Brownian motion, the transition distribution of no absorption simpli�es to:

lim
�!0

�
P
�
k(s) < k jk (t)

��
= 1� 2�

�
k (t)� k
�
p
s� t

�
:

The transition distribution of absorption within the prediction horizon, see Equation (4), then is:

P
�
k(s) = k jk (t)

�
= 1� �

�
k � k (t)� � (s� t)

�
p
s� t

�
+ exp

"
�
2�
�
k (t)� k

�
�2

#
�

�
k (t)� k � � (s� t)

�
p
s� t

�
:

(11)

Equation (11) directly speci�es the conditional probability that absorption, i.e. the switch in the

stochastic process, manifests itself within the time horizon in question. Unsurprisingly, higher drift

in the fundamental steps up the likelihood of absorption as the derivative to � is strictly positive.

3Analytic expressions for the various integrals in this article can be obtained via software such as Mathematica R.
However, this was not possible for a number of integrals in which case we had to use and extend solution 4.12.(12) in
Erdélyi et al. (1954). All derivations in this article can be obtained from the author upon simple demand.
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Or, monetary authorities can design appropriate policies concerning the drift parameter in order

to in�uence the likelihood of the regime switch. Under driftless Brownian motion, the transition

distribution in Equation (11) collapses into:

lim
�!0

�
P
�
k(s) = k jk (t)

��
= 2�

�
k (t)� k
�
p
s� t

�
:

The latter result shows that the likelihood of the regime switch exceeds 0 even for � = 0, i.e. when

policy refrains from bringing k to k via a positive value for �.4

Plugging Equation (9) into Equation (5) yields the conditional expectation provided that absorp-

tion does not materialize within the prediction interval. The conditional expectation located on the

absorbing state is obtained by inserting Equation (11) into Equation (6). Adding these two expecta-

tions then yields the conditional expectation for k (s) 6 k:

E
�
k (s) 6 k jk (t)

�
= k +

�
k (t)� k + � (s� t)

�
�

�
k � k (t)� � (s� t)

�
p
s� t

�
+ (12)

�
k (t)� k � � (s� t)

�
exp

"
�
2�
�
k (t)� k

�
�2

#
�

�
k (t)� k � � (s� t)

�
p
s� t

�
:

Under driftless Brownian motion, the conditional expectation simpli�es into:

lim
�!0

�
E
�
k (s) 6 k jk (t)

��
= k (t) : (13)

Note that the result in Equation (13) does not depend on k such that k (t) is also the conditional

expectation for the unrestricted driftless process, i.e. when additionally k ! +1.

The �nal, but rather lengthy, step consists in plugging Equation (12) into Equation (2). After

4We will come back to this property later in this article.

8



rearranging and simplifying, the following expression for the exchange rate emerges:

x (t) = k (t) + ��
�
1� exp

�
�1
�
k (t)� k

���
, (14)

with

�1 =
��� +

p
�2�2 + 2��2

��2
> 0,

which is identical to the solution obtained in Froot and Obstfeld (1991a,b) and Smith (1991). Note

that the free-�oat exchange rate xFF is given by:

xFF (t) = k (t) + ��: (15)

Indeed, the exponential term in Equation (14) vanishes for increasing k, i.e. when moving toward

the unrestricted case for both the fundamental and the exchange rate given the one-to-one relation

between the two in Equation (1).

We now can use the above relations to discuss a number of intuitive statements in the literature that

actually referred to transition probabilities. For instance, Froot and Obstfeld (1991a,b) argued that

the conditional expectation of the fundamental is its present state if drift is absent. This is con�rmed

by Equation (13) or in terms of conditional expectations the possibility of a regime switch will generate

no e¤ect when drift is absent. Froot and Obstfeld (1991b, p. 217) and Miller and Sutherland (1994,

p. 807)5 then extended the absence of an e¤ect also to the transition probabilities, still under � = 0,

when arguing that the distribution of possible movements in k is symmetric upward and downward or

5Miller and Sutherland (1994) actually studied a mean-reverting stochastic process for which, however, driftless
Brownian motion emerges as a limiting case.
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equivalently that the expectation of absorption removes the same amount of upward and downward po-

tential for the fundamental. However, such symmetry in transition probabilities is actually not present

even when � = 0. This lack of symmetry can most easily be illustrated via the transition distribu-

tion conditional on the future fundamental not exceeding its current state, P
�
k(s) < k (t) < k jk (t)

�
,

which emerges as the integral of the density in Equation (9) over (�1; k (t)):

P
�
k(s) < k (t) < k jk (t)

�
= �

�
��
p
s� t
�

�
� exp

"
�
2�
�
k (t)� k

�
�2

#
�

"
2
�
k (t)� k

�
� � (s� t)

�
p
s� t

#
:

(16)

Symmetry around k (t), and thus P
�
k(s) < k (t) < k jk (t)

�
= 0:5, requires both � = 0 and k ! +1.

This means evaluating the limit for an unrestricted driftless Brownian motion for which symmetry is

a logical consequence of the symmetric nature of the di¤usion component in the no-drift specialization

of Equation (7). Generally, P
�
k(s) < k (t) < k jk (t)

�
will be (well) below 0:5 as the second term in

Equation (16) is negative. This is due to the fact that k absorbs the fundamental and thus prevents k(s)

from straying below k (t) again after �rst hitting. The absorbing boundary thus removes conditional

likelihood below the present level of the fundamental even when � = 0.

Thus, the symmetry in transition probabilities is lost under absorption but the conditional expec-

tation in the driftless case will still equal its value under the unrestricted and thus symmetric process.

This may at �rst sight be surprising and requires some additional elaboration. The loss of symmetry

in probabilities induces also an asymmetry in conditional expectations even for � = 0. Indeed, if

one splits up the conditional expectation into the contribution of the domain below k (t) and the one
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above k (t), it is immediately clear that the contribution from the domain above k (t) is more than

50%, i.e. more than 1
2k (t) for � = 0 (see Equation 13). Indeed, this is inevitable when coupling the

above asymmetry in transition probabilities with the fact that the fundamental is higher above k (t)

than below that value. Nevertheless, the addition of these two unequal contributions in the driftless

case still gives k (t). This actually is in line with the de�nition of the Brownian motion in Equation

(7) for which the expected change in k, for � = 0, is 0.

We now brie�y discuss the relation between the transition probabilities under absorption and under

the unrestricted case in order to examine the implications for the relation between the regime-switch

and the free-�oat exchange rates. For instance, Smith and Smith (1990, p. 170) argued that the

prospect of absorption removes probability above the actual fundamental due to the truncation of the

upper support of the probability density function which then would negatively impact on the value of

the exchange rate. Miller and Sutherland (1994) added that absorption also removes probability mass

at the lower end of the domain when compared to the unrestricted case and this would have an upward

e¤ect on the exchange rate. We discuss these claims using �P [k (s) < k (t) jk (t) ] that is de�ned as

the transition distribution under the unrestricted process minus its homologue under absorption for

the domain below the present fundamental k (t):

�P [k (s) < k (t) jk (t) ] = exp
"
�
2�
�
k (t)� k

�
�2

#
�

"
2
�
k (t)� k

�
� � (s� t)

�
p
s� t

#
> 0: (17)

Thus, the support below k (t) gathers more conditional probability mass under the unrestricted process

and absorption thus indeed removes probability mass below k (t). This is due to the fact that, as
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mentioned earlier, the absorbing nature of k prevents the fundamental from straying again (deep) into

the lower part of the domain after hitting the switching state. However, Equation (17) also implies

that the region outside (�1; k (t)) will have more, rather than less, probability mass under absorption

than under the unrestricted process. The aforementioned removal of probability due to truncation

of the upper support then must be explicitly expressed with respect to the region above k for which

absorption per de�nition precludes the presence of probability mass.

Announcing absorption thus a¤ects transition probabilities for sure and subsequently can alter

conditional expectations and the exchange rate. Under absence of drift, transition probabilities under

the unrestricted process and the absorption case will di¤er. However, conditional expectations and

the exchange rates are the same as can be seen from Equations (12)-(15) for � = 0. Positive drift

shifts probability mass upward in both regimes but the e¤ect on the conditional expectations and

thus the exchange rate will obviously be more pronounced under the unrestricted process. Indeed, the

region above k then attracts more probability mass and the fundamentals there are obviously higher

than k, which is the maximum value under absorption. The free-�oat exchange rate xFF (t) then will

exceed the regulated exchange rate x (t). Negative drift strongly restricts the likelihood of �nding

fundamentals above k under the unrestricted case and it increases the probability mass under k where

the free �oat anyway gathers more probability.6 This then brings the free-�oat exchange rate below

the exchange rate under absorption or xFF (t) < x (t).

6 It can be shown that also P [k (s) < k jk (t) ] > 0.
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