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Abstract

We study the numerical time integration of Maxwell’s equations from electromagnetism. Fol-
lowing the method of lines approach we start from a general semi-discrete Maxwell system for
which a number of time-integration methods are considered. These methods have in common
an explicit treatment of the curl terms. Central in our investigation is the question how to ef-
ficiently raise the temporal convergence order beyond the standard order of two, in particular
in the presence of an explicitly or implicitly treated damping term which models conduction.
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1 Introduction

The research reported here grew out of our interest in developing efficient numerical methods
for the important Maxwell equations from electromagnetism. Maxwell’s equations model the
production of, and interrelations between, electric and magnetic fields and electric charge and
current. The time-dependent equations appear in different forms, such as

∂tB = −∇× E ,

ε∂tE = ∇× (µ−1)B − σE − J ,
(1.1)

where B is the magnetic induction flux and E the electric field. The electric current density J is a
given source term and ε, µ and σ are (tensor) coefficients representing, respectively, dielectric per-
mittivity, magnetic permeability and conductivity. The equations are posed in a three-dimensional
spatial domain and provided with appropriate boundary conditions. If the equations are posed in
domains without conductors, the damping term −σE is absent. If, in addition, the source J is
taken zero, we have a prime example of a conservative wave equation system.

Numerical approximation methods for time-dependent partial differential equations (PDEs)
like (1.1) are often derived in two stages (method of lines approach). First, the spatial operators
are discretized on an appropriate grid covering the spatial domain, together with the accompanying
boundary conditions. This leads to a time-continuous, semi-discrete problem in the form of an
initial-value problem for a system of ordinary differential equations (ODEs). Second, a numerical
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integration method for this ODE system is chosen, which turns the semi-discrete solution into the
desired fully discrete solution on the chosen space-time grid.

In this paper we focus on the second numerical integration stage. For this purpose the paper
starts from the general space-discretized Maxwell problem

(
Mu 0
0 Mv

)(
u′

v′

)
=

(
0 −K

KT −S

)(
u
v

)
+

(
ju

jv

)
, (1.2)

where u = u(t) and v = v(t) are the unknown vector (grid) functions approximating the values of
the magnetic flux B and electric field E, respectively. The matrices K and KT approximate the
curl operator and the matrix S is associated with the dissipative conduction term. Throughout
S can be assumed symmetric positive semi-definite. Mu and Mv are symmetric positive definite
mass matrices possibly arising from a finite element or compact finite difference approximation.
In case a straightforward finite difference space discretization is employed, they are diagonal or
block-diagonal and thus easily inverted. The functions ju(t) and jv(t) are source terms. Typically,
jv represents the given source current J , but ju and jv may also contain boundary data. We do
allow u and v to have different dimensions which can occur with certain finite-element methods,
see e.g. [23]. Therefore, K need not to be a square matrix. The dimensions of the ODE system
(1.2) are thus supposed to be as follows:

u ∈ Rm , v ∈ Rn , with n ≥ m, and

Mu ∈ Rm×m , Mv ∈ Rn×n , K ∈ Rm×n , S ∈ Rn×n .
(1.3)

We emphasize that the ODE system (1.2) is generic in the sense that spatial discretization of other
formulations of the Maxwell equations also lead to this form. Section 4 contains an example for
this observation.

In three space dimensions, (1.1) forms a system of six PDEs so that the dimensions n and m
of (1.2) can take up very large values, up to 106 say and far beyond. Hence it is of interest to
search for highly efficient methods. As mentioned, in this paper we focus on time-integration. The
methods we consider do have in common an explicit treatment of the curl terms, while our central
question is how to efficiently raise the temporal convergence order beyond the standard order
of two, in particular in the presence of an explicitly or implicitly treated conduction term. The
effectiveness of high-order time integration for finite-element solutions to conduction-free Maxwell
equations has been demonstrated in [22]. The approach of [22] is based on composition methods.
An attempt to extend composition ideas to problems with conductivity has been made in [25].
The proposed method is, however, restricted to scalar constant conductivity and permittivity.

The contents of the paper is as follows. Section 2 presents a stability analysis of the semi-
discrete system (1.2). In particular we derive a two-by-two test model for which the numerical
stability of integration methods can be examined for a wide subclass of (1.2). In Section 3 we
discuss and analyze an existing, second-order integration method, which we consider as a reference
method to which new, higher-order methods can be compared to assess their efficiency. This
method is applied in Section 4 to a 3D Maxwell problem spatially discretized with a finite-element
method. In this section we also sketch the finite-element method in some detail to illustrate
the generic nature of the semi-discrete system (1.2). In Section 5 we discuss various possibilities
for higher-order time integration, including explicit Runge-Kutta and composition methods and
Richardson extrapolation of our second-order reference method. The Maxwell system (1.1) is a
prime example of a damped wave equation system. In Section 6 we will briefly discuss another
example, viz. the coupled sound and heat flow problem. For this problem the question of how to
develop higher-order integration methods is closely related. Like for (1.1), we will illustrate the
good performance of a second-order, symmetric composition method extrapolated to order four.
Section 7 concludes the paper with final remarks.

2



2 Stability analysis

We begin with stability properties of the semi-discrete system (1.2). In particular we will derive
a specific test model by means of which stability of integration methods can be assessed. Let
w ∈ Rn+m denote the solution vector of (1.2) composed by u and v. Then a natural norm for
(1.2) is the inner-product norm

‖w‖2 = ‖u‖2Mu
+ ‖v‖2Mv

, ‖u‖2Mu
= 〈Muu, u〉 , ‖v‖2Mv

= 〈Mvv, v〉 , (2.1)

where 〈· , ·〉 denotes the L2 inner product. As S is symmetric semi-positive definite, for this norm
follows

d

dt
‖w‖2 = −2〈Sv, v〉 ≤ 0 (2.2)

for the homogeneous part of (1.2), showing stability in the L2 sense and (energy) conservation
would S be zero.

For what follows it is convenient to transform (1.2) to an equivalent explicit form. For this
purpose we introduce the Cholesky factorizations LMuLT

Mu
= Mu and LMvLT

Mv
= Mv [9] of the

mass matrices Mu and Mv. The new variables ũ = LT
Mu

u and ṽ = LT
Mv

v then satisfy the equivalent
system (

ũ′

ṽ′

)
=

(
0 −K̃

K̃T −S̃

)(
ũ
ṽ

)
+

(
j̃u

j̃v

)
, (2.3)

where
K̃ = L−1

Mu
KL−T

Mv
, S̃ = L−1

Mv
SL−T

Mv
,

j̃u = L−1
Mu

ju , j̃v = L−1
Mv

jv .
(2.4)

Introduce the inner-product norm

‖w̃‖22 = ‖ũ‖22 + ‖ṽ‖22 , ‖ũ‖22 = 〈ũ, ũ〉 , ‖ṽ‖22 = 〈ṽ, ṽ〉 . (2.5)

The solution w̃T = [ũ, ṽ] of the homogeneous part of (2.3) then satisfies

d

dt
‖w̃‖22 = −2〈S̃ṽ, ṽ〉 ≤ 0 , (2.6)

while the norm is preserved under the transformation, that is, ‖w̃‖2 = ‖w‖ and 〈S̃ṽ, ṽ〉 = 〈Sv, v〉.
All numerical integration methods discussed later on are invariant under the transformation. So
(2.3) can be used for stability analysis. We will not use the transformed system (2.3) for actual
calculations.

2.1 A stability test model

If in (1.1) the conductivity coefficient σ and the permittivity coefficient ε are constant scalars
instead of space-dependent tensors (3 × 3 matrices), then the matrices Mv and S from (1.2) are
identical up to a constant for a large class of finite-element and finite-difference discretizations.
That means that the matrix S̃ introduced in (2.3) becomes the constant diagonal matrix

S̃ = αI, α =
σ

ε
. (2.7)

This situation enables the derivation of a two-by-two system through which time-stepping stability
of numerical methods for the semi-discrete system (1.2) can be examined.

The derivation starts from a second transformation based on the singular-value decomposi-
tion [9]

K̃ = UΣV T , (2.8)
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where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ is a diagonal m× n matrix with
nonnegative diagonal entries s1, . . . , sm satisfying

s1 ≥ s2 ≥ · · · ≥ sr > sr+1 = · · · = sm = 0 . (2.9)

Here r 6 m is the (row) rank of K̃ and the si are the singular values of the matrix K̃. The singular
values of K̃ are just square roots of the eigenvalues of K̃K̃T .

The transformed variables and source terms

ū(t) = UT ũ(t) , v̄(t) = V T ṽ(t) , j̄u(t) = UT j̃u(t) , j̄v(t) = V T j̃v(t) , (2.10)

satisfy the equivalent ODE system
(

ū′

v̄′

)
=

(
0 −Σ

ΣT −αI

)(
ū
v̄

)
+

(
j̄u

j̄v

)
, (2.11)

where I is the n × n identity matrix. Note that the matrix transformation induced by (2.10)
is a similarity transformation, so that the matrices of systems (2.3) and (2.11) have the same
eigenvalues. Further, ‖w̃‖22 = ‖ū‖22 + ‖v̄‖22 due to the orthogonality of U and V . Thus, if (2.7)
applies, the stability of a time integration method may be studied for the homogeneous part of
(2.11), provided the method is invariant under the transformation (2.10). The invariancy holds
for all numerical methods discussed in the remainder of the paper.

Since the matrix Σ is diagonal, (2.11) decouples into r two-by-two systems
(

û′

v̂′

)
=

(
0 −s
s −α

)(
û
v̂

)
+

(
ĵu

ĵv

)
, (2.12)

with s = sk > 0, k = 1, . . . , r and n + m− 2r two-by-two systems
(

û′

v̂′

)
=

(
0 0
0 −α

)(
û
v̂

)
+

(
ĵu

ĵv

)
. (2.13)

From the viewpoint of time integration, the first elementary two-by-two system (2.12) is canon-
ical for Maxwell equation systems of which the conductivity coefficient σ and the permittivity
coefficient ε are constant scalars. Note that (2.12) is equivalent to the driven oscillator equation

û′′ + s2û + αû′ = d(t) , d(t) = αĵu + ĵ′u − sĵv . (2.14)

For stability analysis we may neglect the source terms, arriving at the two-by-two stability test
model (

û′

v̂′

)
=

(
0 −s
s −α

)(
û
v̂

)
, s ≥ 0 , α ≥ 0 . (2.15)

Stability for this test model is equivalent to stability for (2.11), which in turn is equivalent to
stability for the original semi-discrete Maxwell system (1.2), provided the conductivity coefficient
σ and the permittivity coefficient ε are constant scalars.

The eigenvalues of (2.15) are (−α ± √
α2 − 4s2)/2. Assuming sufficiently small and large

singular values sk in (2.9), the spectra of (2.3) and (2.11) thus are cross-shaped with real eigen-
values between −α and 0 and complex eigenvalues with real part −α/2 and imaginary parts
±

√
4s2

k − α2/2.

3 A second-order reference method

From (2.2) follows that the general semi-discrete system (1.2) is either dissipative or conservative
in the inner product norm introduced in (2.1). Consequently, from the viewpoint of stability,
A-stable implicit Runge-Kutta methods would be ideal since these are unconditionally stable in
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the inner product norm and they mimic the conservation property if, in addition, their algebraic
stability matrix would be zero. This holds for the well-known Gauss methods, see the mono-
graph [5], Sect. 4.2 or [11], Sect. IV.12 for details on this subject. However, implicit Runge-Kutta
methods require the solution of linear systems which somewhat limits their practical use for large-
scale systems like (1.2).

In this paper we set the possibility of using implicit Runge-Kutta methods aside and instead
focus on tuned methods which only treat the damping term implicitly. For that purpose we first
consider an existing method which we consider as a reference method to which new, higher-order
methods should be compared to assess efficiency. The method has second order, is symmetric,
treats the curl terms explicitly and the damping term implicitly. In Section 3.4 we show that the
method is also free of order reduction in the presence of time-dependent boundary conditions.

3.1 The integration formula

Consider the general partitioned system

u′ = f(t, v) ,

v′ = g(t, u, v) ,
(3.1)

and let τ = tn+1 − tn denote an integration step size and un and vn numerical approximations to
u(tn) and v(tn). A well-known method within geometric integration, see e.g. [12, 24], is based on
the composition Ψτ = Φτ/2 ◦ Φ∗τ/2, where Φτ is the (partitioned, symplectic) Euler rule

un+1 = un + τf(tn+1, vn+1) ,

vn+1 = vn + τg(tn+1, un, vn+1) ,
(3.2)

and Φ∗τ its adjoint
un+1 = un + τf(tn, vn) ,

vn+1 = vn + τg(tn, un+1, vn) .
(3.3)

Such a composition Ψτ thus results in the integration method

un+1/2 = un + 1
2τf(tn, vn) ,

vn+1 = vn + 1
2τg(tn, un+1/2, vn) + 1

2τg(tn+1, un+1/2, vn+1) ,

un+1 = un+1/2 + 1
2τf(tn+1, vn+1) ,

(3.4)

which computes in a one-step manner (un+1, vn+1) from (un, vn). It treats f explicitly and g ex-
plicitly and implicitly with respect to its second and third argument, respectively. By construction
it is symmetric and thus of second-order consistency.

This elegant composition idea applies directly to our semi-discrete Maxwell system (1.2) as
this system fits in the partitioned form (3.1). Let us write

f(t, v) = M−1
u (−Kv + ju(t)) ,

g(t, u, v) = M−1
v (KT u− Sv + jv(t)) .

(3.5)

Repeating the above construction then gives

Mu

un+1/2 − un

τ
= − 1

2Kvn + 1
2ju(tn) ,

Mv
vn+1 − vn

τ
= KT un+1/2 − 1

2S(vn + vn+1) + 1
2 (jv(tn) + jv(tn+1)) ,

Mu

un+1 − un+1/2

τ
= − 1

2Kvn+1 + 1
2ju(tn+1) .

(3.6)

We wish to emphasize that other choices for the t-argument are possible, in particular one which is
fully compatible with the autonomous form of (3.1) (this would require two t-arguments associated
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to u and v, respectively, see Section 5.2). As it is, method (3.6) suits our purpose very well. It
is symmetric, has second order, an optimal error expansion (see below), and treats the curl terms
explicitly and the conduction term implicitly. The mass matrices naturally give rise to implicitness
such that we encounter linear system solutions for the symmetric, positive definite matrices 1

τ Mu

and 1
τ Mv + 1

2S. Of practical importance is that the third-stage derivative computation can be
copied to the first stage at the next time step so as to save computational work.

Remark 3.1 Method (3.6) is closely related to the time-staggered method

Mu

un+1/2 − un−1/2

τ
= −Kvn + ju(tn) ,

Mv
vn+1 − vn

τ
= KT un+1/2 − 1

2S(vn + vn+1) + jv(tn+1/2) ,
(3.7)

which steps from (un−1/2, vn) to (un+1/2, vn+1), similar as in the well-known Yee-scheme [30].
Except for the source term treatment, (3.6) is in fact obtained from (3.7) by eliminating un−1/2

through the substitution un = (un−1/2 + un+1/2)/2 and by eliminating un+3/2 at the next time
step through un+1 = (un+3/2 + un+1/2)/2. This time-staggered combination of the leapfrog rule
(for zero S) and implicit trapezoidal rule (for nonzero S) is well known and has for example been
examined in [23]. Both methods (3.6) and (3.7) are also akin to the well-known Störmer-Verlet
scheme from geometric integration, see [12], Sect. I.3.1. 3

3.2 Energy inequalities

Stability of the linear semi-discrete systems (1.2) and (2.3) follows from the inequalities (2.2) and
(2.6), respectively. It is illustrative to derive similar inequalities for method (3.6). Without source
terms, for the transformed variables from (2.3) the method reads

ũn+1/2 = ũn − 1
2τK̃ṽn ,

ṽn+1 = ṽn + τK̃T ũn+1/2 − 1
2τ S̃(ṽn + ṽn+1) ,

ũn+1 = ũn+1/2 − 1
2τK̃ṽn+1 .

(3.8)

For our derivation we need to eliminate the intermediate value ũn+1/2 to get a scheme containing
numerical solutions at whole time steps only. This is achieved by inserting ũn+1/2 from the first
into the third line and half of it from the first and third line, respectively, into the second. After
reordering we find

ũn+1 = ũn − 1
2τK̃(ṽn + ṽn+1) ,

ṽn+1 = ṽn + 1
2τK̃T (ũn + ũn+1)− 1

4τ2K̃T K̃(ṽn − ṽn+1)− 1
2τ S̃(ṽn + ṽn+1) .

(3.9)

Now applying the inner products introduced in (2.5) yields

‖ũn+1‖2 − ‖ũn‖2 = − 1
2τ〈K̃T (ũn + ũn+1), ṽn + ṽn+1〉 ,

‖ṽn+1‖2 − ‖ṽn‖2 = 1
2τ〈K̃T (ũn + ũn+1), ṽn + ṽn+1〉 −
1
4τ2〈K̃(ṽn − ṽn+1), K̃(ṽn + ṽn+1)〉 −
1
2τ〈S̃(ṽn + ṽn+1), ṽn + ṽn+1〉 ,

(3.10)

from which follows

(‖ũn+1‖2 + ‖ṽn+1‖2)− (‖ũn‖2 + ‖ṽn‖2)
τ

= −2 〈S̃(
ṽn + ṽn+1

2
),

ṽn + ṽn+1

2
〉

− 1
4
τ(‖K̃ṽn‖2 − ‖K̃ṽn+1‖2) . (3.11)
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This result can be seen to be the counterpart of (2.6). Likewise, the counterpart of (2.2) for
the original semi-discrete system is found by the back transformation ũn → un, ṽn → vn of this
expression, giving

(‖un+1‖2Mu
+ ‖vn+1‖2Mv

)− (‖un‖2Mu
+ ‖vn‖2Mv

)
τ

= −2 〈S(
vn + vn+1

2
),

vn + vn+1

2
〉

− 1
4
τ(〈M−1

u Kvn,Kvn〉 − 〈M−1
u Kvn+1, Kvn+1〉) . (3.12)

It follows that with a zero damping term and zero source terms we have (energy) conservation if
and only if 〈M−1

u Kvn,Kvn〉 = 〈M−1
u Kvn+1,Kvn+1〉, cf. (2.2). In general this will not hold. What

is conserved, however, with a zero damping term and zero source terms, is the O(τ2)-perturbed
quantity

‖un‖2Mu
+ ‖vn‖2Mv

− 1
4
τ2〈M−1

u Kvn,Kvn〉 , (3.13)

showing that the conservation behavior of method (3.6) is actually very good. Herewith it is
of course tacitly assumed that step size τ is such that the method integrates in a stable way,
something which cannot be concluded from this result due to the minus sign in front of the third
term.

3.3 Test model stability

Next we will analyze the stability of method (3.6) for the test model (2.15). Let zα = τα ≥ 0 and
zs = τs ≥ 0. Applied to this model, (3.6) yields the recurrence

ûn+1 = ûn − 1
2zs(v̂n + v̂n+1) ,

v̂n+1 = (1− 1
2zα − 1

2z2
s)v̂n + zsûn − 1

2zαv̂n+1 ,
(3.14)

which we write as
(

ûn+1

v̂n+1

)
=

1
1 + 1

2zα

(
1 + 1

2zα − 1
2z2

s −zs + 1
4z3

s

zs 1− 1
2zα − 1

2z2
s

) (
ûn

v̂n

)
. (3.15)

Following common practice we call this recurrence stable if any sequence {(ûn, v̂n), n ≥ 0} is
bounded, which is equivalent to imposing the root condition (all roots on the unit disc and inside
the disc if not simple) on the characteristic equation of the recurrence matrix.

The characteristic equation reads

λ2 +
z2
s − 2

1 + 1
2zα

λ +
1− 1

2zα

1 + 1
2zα

= 0 , (3.16)

from which follows that for zα = 0 the root condition is satisfied if and only if zs < 2, while
for zα > 0 the root condition is satisfied if and only if zs ≤ 2. Hence we have unconditional
stability for the implicitly treated conduction term and, of course, conditional stability for the
explicitly treated wave terms. For zα = 0, zs ≤ 2 the eigenvalues have modulus one in line with
the conservation property.

Corollary 3.2 Let in (1.1) the conductivity σ and permittivity ε be constant scalars and let ψ
denote an eigenvalue of the matrix K̃T K̃. Then method (3.6) applied to the semi-discrete Maxwell
system (1.2) is stable, i.e. for ju = 0, jv = 0 any sequence {(un, vn), n ≥ 0} is bounded, if and
only if

τ ≤ 2√
max ψ

, (3.17)

with strict inequality for zero conduction. Note that the eigenvalues ψ of K̃T K̃ coincide with
those of M−1

v KT M−1
u K due to the similarity transformation

M−1
v KT M−1

u K = (LMv )−T (K̃T K̃)(LMv )T . (3.18)
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Remark 3.3 When applied to test model (2.15) the time-staggered method (3.7) yields exactly
the same stability restrictions. Hence Corollary 3.2 also applies to the time-staggered method.
Noteworthy is that Theorem 1 in [23] is about stability of this method, but assuming a zero
conduction term. That theorem states that the eigenvalues of the amplification matrix of (3.7)
have unit magnitude if and only if (3.17) holds. Hence our stability result is akin to that of [23]
but more general because we did not assume S = 0. 3

3.4 Error analysis and asymptotic expansions

Due to the symmetry the integration method (3.6) has an even global error expansion in τ . This
is attractive for obtaining higher-order results through Richardson extrapolation, something we
will discuss in Section 5. However, if error terms in the expansion would contain powers of K or
KT multiplying derivatives of u or v, upon space-grid refinement order reduction may occur in
the case of time-dependent boundary conditions.1) It is therefore of interest to study and inspect
the global error expansion of (3.6). We will do this for the slightly more general system

u′ = Ev + su(t) ,

v′ = Bu− Sv + sv(t) ,
(3.19)

which covers the original, semi-discrete Maxwell system (1.2) and for which we will prove that
error terms only contain derivatives of u or v so that order reduction cannot occur.

Applied to system (3.19), method (3.6) becomes

un+1/2 = un + 1
2τEvn + 1

2τsu(tn) ,

vn+1 = vn + τBun+1/2 − 1
2τS(vn + vn+1) + 1

2τ(sv(tn) + sv(tn+1)) ,

un+1 = un+1/2 + 1
2τEvn+1 + 1

2τsu(tn+1) .

(3.20)

For this system we first introduce residual local truncation errors denoted by δ1, δ2, δ3 which result
from substituting true solution values. We thus write

u(tn+1/2) = u(tn) + 1
2τEv(tn) + 1

2τsu(tn) + τδ1 ,

v(tn+1) = v(tn) + τBu(tn+1/2)− 1
2τS(v(tn) + v(tn+1)) +

1
2τ(sv(tn) + sv(tn+1)) + τδ2 ,

u(tn+1) = u(tn+1/2) + 1
2τEv(tn+1) + 1

2τsu(tn+1) + τδ3 ,

(3.21)

and Taylor expand, at tn+1/2 for symmetry reasons, obtaining

δ1 =
∑

j=2 ( 1
(j−1)! − 1

j! )
(−1)j

2j τ j−1u(j) , δ2 = δ4 + Bδ5 ,

δ3 =
∑

j=2 ( 1
j! − 1

(j−1)! )
1
2j τ j−1u(j) ,

δ4 =
∑

j=2′
−j

2j(j+1)! τ jv(j+1) , δ5 =
∑

j=2′
1

2jj! τ ju(j) ,

(3.22)

where j = 2′ means even values for j only.
Second, we introduce εu

n = u(tn)− un and εv
n = v(tn)− vn, that is, the global errors at whole

time steps. Likewise we introduce the intermediate global error εu
n+1/2 = u(tn+1/2) − un+1/2.

Subtracting (3.20) from (3.21) then gives

εu
n+1/2 = εu

n + 1
2τEεv

n + τδ1 ,

εv
n+1 = εv

n + τBεu
n+1/2 − 1

2τS(εv
n + εv

n+1) + τδ2 ,

εu
n+1 = εu

n+1/2 + 1
2τEεv

n+1 + τδ3 .

(3.23)

1) Order reduction typically occurs for one-step methods the local errors of which contain elementary differentials
that not combine into higher solution derivatives. There exist quite a number of papers on order reduction by which
the phenomenon is now well understood. Readers not familiar with order reduction are referred to [11], Sect. II.2.1
(where it is explained for standard Runge-Kutta methods) and references therein.
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Third, we eliminate εu
n+1/2 from the second and third line to get an error recursion which only

involves errors at whole time steps. The elimination should respect the symmetry and thus result
in new residuals, denoted by δu and δv, which have an even expansion in τ starting with τ2. This
is achieved by inserting εu

n+1/2 from the first line into the third, and 1
2εu

n+1/2 from the first and
third line, respectively, into the second. The aimed result reads, after reordering the equations,

εu
n+1 = εu

n + 1
2τE(εv

n + εv
n+1) + τδu ,

εv
n+1 = εv

n + 1
2τB(εu

n + εu
n+1) + 1

4τ2BE(εv
n − εv

n+1)− 1
2τS(εv

n + εv
n+1) + τδv ,

(3.24)

where
δu = δ1 + δ3 , δv = δ2 +

1
2
τB(δ1 − δ3) = δ4 + B(

1
2
τ(δ1 − δ3) + δ5) . (3.25)

Inspection of δu and δv will reveal that they do possess an even expansion in τ , starting with τ2.
Next, using a classical result on global error expansions, see e.g. [10], Sect. II.8, we let τ → 0

to recover the limit ordinary differential equation system for the global error,

d

dt
εu = Eεv + δu(t) ,

d

dt
εv = Bεu − Sεv + δv(t) .

(3.26)

Hereby a zero error at the initial time is assumed. At any fixed time t, we thus do have an even
global error expansion for εu and εv as this holds for δu and δv. However, because B is present
in δv, one more step is needed for cases where B is a finite difference or finite element matrix
containing a negative power of a spatial grid size.

For that purpose we introduce the perturbed error ε̃u = εu + 1
2τ(δ1 − δ3) + δ5. Obviously,

d

dt
ε̃u = Eεv + δ̃u(t) , δ̃u(t) = δu(t) + 1

2τ(δ′1(t)− δ′3(t)) + δ′5(t) ,

d

dt
εv = Bε̃u − Sεv + δ̃v(t) , δ̃v(t) = δ4(t) ,

(3.27)

and it follows that B has been eliminated in the new residuals δ̃u and δ̃v, which only contain
higher solution derivatives and also possess an even τ -expansion starting with τ2. Consequently, for
proper convergence behavior of ε̃u and εv we only need to impose the common smoothness condition
of having modestly sized solution derivatives. This then also holds for εu = ε̃u − 1

2τ(δ1 − δ3)− δ5,
so that grid-dependent order reduction coming from any of the matrices B, E or S cannot take
place, nor for the second-order scheme, neither when extrapolating the second-order scheme to
higher order in a global manner. We will discuss global (and local) Richardson extrapolation in
Section 5.

Remark 3.4 The above result does not tell us anything about how the global error behaves in
time, whether it growths or remains bounded. This temporal behavior is relevant in connection
to long-time integration and global Richardson extrapolation. Consider a linear ODE system
ε′ = Aε + δ(t). Suppose for a certain norm ‖ · ‖ the stability inequality ‖etA‖ ≤ Cetω for all t ≥ 0,
with constants C > 0, ω ∈ R. Then

‖ε(t)‖ ≤ Cetω‖ε(0)‖ +
C

ω
(etω − 1) max

0≤s≤t
‖δ(s)‖ , (3.28)

with convention (etω − 1)/ω = t in case ω = 0. This well-known inequality shows that ‖ε(t)‖ can
be bounded in terms of ‖ε(0)‖ and ‖δ(s)‖, 0 ≤ s ≤ t, see e.g. [14], Sect. I.2.3.

For the Maxwell system (2.3) two cases exist. First, a zero conduction term, in which case
ω = 0, cf. (2.2), and linear global error growth in time is expected. Second, a non-zero conduction
term, in which case ω < 0 and global error built-up will be bounded. For the norm used in (2.3)
the smallest possible negative ω is the negative of the smallest eigenvalue of S. Section 5.5 presents
a numerical illustration of global Richardson extrapolation in a long-time integration setting. 3
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4 A 3D numerical illustration

In this section we briefly sketch a spatial discretization of the 3D Maxwell equations so as to
illustrate the generic form of the semi-discrete system (1.2) which for certain coefficient choices
then is integrated in time by the second-order scheme (3.6). The spatial discretization is based on
vector Nédélec finite elements [18, 19, 17] and is derived for the Maxwell equations with magnetic
and electric fields H and E as primary variables. The formulation

µ∂tH = −∇× E ,

ε∂tE = ∇×H − σE − J ,
(4.1)

based on H and E is slightly different from (1.1) but leads to a space-discretized problem of exactly
the same form. As independent variables we choose (x, y, z) ∈ Ω ⊂ R3, t ∈ [0, T ] and we assume
initial and boundary conditions defined by

E|t=0 = E0(x, y, z), H|t=0 = H0(x, y, z), (4.2a)

(~n× E)|∂Ω = Ebc, (~n×H)|∂Ω = Hbc . (4.2b)

The coefficients µ, ε and σ are taken constant in time and space and ~n denotes the outward unit
normal vector to the boundary ∂Ω. The boundary functions Ebc and Hbc vary in space and time.

Let L2(Ω)3 be the space of square-integrable functions Ω → R3 and introduce

H(curl,Ω) =
{
F ∈ L2(Ω)3 : ∇× F ∈ L2(Ω)3

}
. (4.3)

The spatial discretization is based on the following weak Galerkin formulation: find E(x, y, z, t)
and H(x, y, z, t) in H(curl,Ω) such that for all test functions h, e ∈ H(curl,Ω) and all t ∈ [0, T ]

µ∂t(H, h) = −(E,∇× h)−
∫

∂Ω

(E × h) d~s ,

ε∂t(E, e) = (∇×H, e)− σ(E, e)− (J, e) ,

(4.4)

with (u, v) =
∫
Ω

u · v dω being the standard inner product in (L2(Ω))3. This formulation is
discretized on a tetrahedral unstructured mesh Ωh ⊂ Ω using first-order, first-type Nédélec edge
finite-element functions φj for both fields as in [13], Chapter 6. Thus the fields H, E are searched
for as expansions

H =
∑

j∈Ωh

uj(t)φj(x, y, z), E =
∑

j∈Ωh

vj(t)φj(x, y, z), (4.5)

where the summation is done through all the edges j in the mesh Ωh. This procedure leads to a
discrete weak formulation which reads in matrix form just as the ODE system (1.2) where

Mu = µ(mij) , Mv = ε(mij) , S = σ(mij) , mij = (φj , φi) ,

K = (kij) , kij = (φj ,∇× φi) ,

(ju)i = −∑
j∈∂Ωh

(∫
∂Ω

(φj × φi) d~s
)
vj , (jv)i = −(J, φi) ,

(4.6)

with zero entries (ju)i for internal edges i and entries (ju)i for boundary edges i defined from
the boundary conditions (4.2b). We incorporate the boundary conditions (4.2b) by splitting the
degrees of freedom corresponding to the known boundary values and adding them to the right
hand side functions ju and jv. The number of equations in the resulting system then equals the
doubled number of internal edges in Ωh.

Next we give a specific example for which scheme (3.6) is used for time integration of the
resulting ODE system. Let Ω be the unit cube [0, 1]3, let the final time T = 10 and choose the
source current J = J(x, y, z, t) such that the Maxwell system (4.1) allows a specific exact solution

E(x, y, z, t) = α(t)Estat(x, y, z), H(x, y, z, t) = β(t)Hstat(x, y, z), (4.7)
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number longest shortest time step
mesh of edges edge hmax edge hmin used

1 105 0.828 0.375 0.2
2 660 0.661 0.142 0.1
3 4632 0.359 0.0709 0.05
4 34608 0.250 0.0063 0.025

Table 4.1: Some mesh parameters and temporal step sizes.

where the scalar functions α, β and the vector functions Estat, Hstat satisfy µβ′(t) = −α(t) and
Hstat = ∇× Estat. The source function J is then defined as

J(x, y, z, t) = −(εα′(t) + σα(t)) Estat(x, y, z) + β(t)∇×Hstat(x, y, z) , (4.8)

and to satisfy (4.7) we choose

Estat(x, y, z) =




sin πy sin πz
sin πx sin πz
sin πx sin πy


 , Hstat(x, y, z) =




sin πx(cos πy − cos πz)
sin πy(cosπz − cos πx)
sin πz(cosπx− cos πy)


 ,

α(t) =
3∑

k=1

cos ωkt , β(t) = − 1
µ

3∑

k=1

sin ωkt

ωk
,

(4.9)

with ω1 = 1, ω2 = 1/2, ω3 = 1/3. Further, we take µ = 1, ε = 1 and either σ = 0 or σ = 6π.
Scheme (3.6) was applied on four unstructured tetrahedral meshes of increasing size, see Table 4

for some mesh information and temporal step sizes. More information on how these meshes were
generated and some mesh pictures can be found in [13]. We measured errors with respect to
the exact PDE solution in the spatial L2 integral norm at the final time T = 10. On the four
unstructured and rather coarse meshes the errors indicate first-order convergence for H and second-
order for E. First-order convergence at least complies with the theoretical convergence estimates
for the implemented finite element method [18, 19, 17]. Recall that the time integration scheme
is of second order.2) Figure 4.1 plots the errors for the two chosen values of σ for the E-field. For
the damping parameter σ = 6π the error appears to be notably smaller.

Finally, the finite element discretization was implemented in a Fortran code which was exported
to Matlab. The mass matrices were dealt with the Matlab sparse direct solver UMFPACK with
a single sparse Cholesky factorization prior to the time stepping. With these relatively coarse 3D
meshes a sparse direct solver is still feasible. Needless to say that when it comes to more realistic
finer 3D meshes an efficient preconditioned iterative solver is required.

5 Outlook to high-order integration

We next present an outlook to high-order integration. Like the second-order method (3.6), all
aimed methods treat the curl terms explicitly. As a result, all are of comparable simplicity regard-
ing implementation. We will focus on order four and will show that when it comes to efficiency
fourth-order integration readily pays off. While the principles underlying the methods allow a
still higher order, the comparative efficiency gain will necessarily decrease with the order increase.
From that perspective order four is a very sensible choice. Needless to say that it is also desirable
that the spatial and temporal orders match. In this section we will illustrate our ideas numerically
with a 1D damped wave equation of type (1.1), which, regarding temporal dynamics, is believed
to be sufficiently representative.

2) In a sense the second order comes for free due to the symmetry and as such is not wasteful with regard to the
first-order spatial convergence for H. Increasing the spatial order is however a logical step which we plan in the
near future. The need for this is also apparent in Section 5 where we discuss fourth-order temporal methods. In
this paper we test these methods still with a 1D equation spatially discretized with a fourth-order compact scheme.
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Figure 4.1: Convergence plots for the E field for σ = 0 (left) and σ = 6π (right). Horizontally the mesh
markers on the dashed lines correspond with the longest edge hmax.

Any integration method which treats the curl terms explicitly does have to obey a stability
restriction τ ∼ h on the temporal step size, where h denotes a measure for the spatial grid size.3)

For method (3.6) applied to test model (2.15), this is reflected by the condition zs = τs ≤ 2 from
Section 3.3, where the singular values s are proportional to h−1. Consequently, such methods will
automatically allow considerably large conduction terms without an additional step size restriction.
In this regard, the unconditional stability for the conduction term of method (3.6) and related
ones can be redundant. However, having mass matrix Mu and Mv, implicit linear solution solves
are necessary anyhow, in which case the unconditional stability for the conduction term comes for
free.

In the following we will comment on non-stiff and stiff conduction cases. An additional mo-
tivation for this is that for related damped wave equations damping can be caused by diffusion,
in which case we have of course genuine stiffness so that unconditional stability for the damping
term makes sense. We return to this point in Section 6. We now discuss four different fourth-
order methods, covering explicit Runge-Kutta methods, composition methods, and Richardson
extrapolation.

5.1 Explicit Runge-Kutta methods

For conservative wave equations (no damping) explicit Runge-Kutta methods generate some spu-
rious damping which might prevent one to use these methods. The conduction term alleviates this
drawback for our system (1.2). Here we consider the classical, four-stage, fourth-order method
(henceforth called RK4) defined by the Butcher array

0
1/2 1/2

1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

(5.1)

RK4 is found in many text books and hence needs no further discussion. Of importance, however,
is that RK4 requires linear system solves for (1.2) because of the mass matrices Mu and Mv.
Otherwise its use is standard and well known.

3) In the finite difference space discretization setting, a method which overcomes this stability restriction is the
ADI-FDTD (Alternating Direction Implicit – Finite Difference Time Domain) method. For practical purposes this
method can be called explicit as it requires only solutions of tridiagonal linear systems. See also Remark 5.2 at the
end of Section 5.3 in connection with Richardson extrapolation.
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Let us consider the stability of RK4 when applied to test model (2.15) similar as we did for
method (3.6) in Section 3.3. Figure 5.1 shows the (numerically determined) stability region

S = {(zα, zs) : zα, zs ≥ 0 with |λ| < 1, λ eigenvalues of amplification operator} (5.2)

associated to test model (2.15) for which the amplification operator of RK4 is given by

4∑

j=0

1
j!

(
0 −zs

zs −zα

)j

. (5.3)

Observe that S is symmetric around the real line and that the picture shows the upper half of S
only (left plot). Along the vertical zs-axis one recovers the imaginary stability interval of length
2
√

2 of RK4 and along the horizontal zα-axis its real stability interval of approximate length 2.78.
The picture shows that S is sufficiently large to deal with large conduction terms, given the step
size restriction zs ≤ 2

√
2. Of course, truly stiff terms would require no restriction on zα > 0, hence

these cannot be dealt with.
For other higher-order explicit Runge-Kutta methods similar stability regions can be found.

In line with Corollary 3.2 we thus can state the following corollary.

Corollary 5.1 Let in (1.1) the conductivity σ and permittivity ε be constant scalars and let ψ
denote an eigenvalue of the matrix M−1

v KT M−1
u K. Then any RK method applied to the semi-

discrete Maxwell system (1.2) is stable, i.e. for ju = 0, jv = 0 any sequence {(un, vn), n ≥ 0} is
bounded, if all (zα, zs) ∈ S where zα = τα, α = σ/ε and zs = τs, s =

√
ψ . For example, RK4

is stable if all (zα, zs) are in the rectangle 0 ≤ zα ≤ 2.78, 0 ≤ zs ≤ 2.6 which can be seen by
inspection of the left plot of Figure 5.1. 3

z
α
 = τ α

z s =
 τ

 s

0 2 4 6
0

1

2

3

z
α
 = τ α

z s =
 τ

 s

0 1 2 3
0

2

4

6

8

10

Figure 5.1: The stability region S for RK4 (left). Subset of S for CO4 (right).

5.2 Composition methods

An attractive feature of the composition technique discussed in Section 3 is that it can be ex-
tended to higher order, something which has been studied extensively within the field of geometric
integration [1, 12, 15, 16, 20, 24]. Let us repeat the construction of (3.4) based on (3.1) - - (3.3),
now using the symmetric composition

Ψτ = Φαsτ ◦ Φ∗βsτ ◦ · · · ◦ Φα1τ ◦ Φ∗β1τ (5.4)
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for a coefficient set αk, βk which is still to be chosen (see e.g. Section II.4 in [12]). Let α0 = 0 and
define the starting step values U0 = un, V0 = vn. First assume the autonomous form of (3.1). The
composition Ψτ then can be economically and compactly written as

Uk = Uk−1 + (βk + αk−1) τf(Vk−1)

Vk = Vk−1 + βkτg(Uk, Vk−1) + αkτg(Uk, Vk)

}
k = 1(1)s ,

vn+1 = Vs ,

un+1 = Us + αsτf(vn+1) .

(5.5)

Because the final f -evaluation can be saved for the next step, s evaluations of f and g are needed
per time step.

To handle non-autonomous functions f(t, v) and g(t, u, v) like those of (3.5) a more cumbersome
notation is needed. First we introduce time levels tv and tu associated to v and u, respectively,
and the corresponding notation f(tv, v) and g(tu, tv, u, v). Further, we introduce new coefficients
α̃k = α1 + · · · + αk and β̃k = β1 + · · · + βk and let α̃0 = 0 and β̃0 = 0. Then (5.5) becomes

Uk = Uk−1 + (βk + αk−1) τf(tvk−1, Vk−1)

Vk = Vk−1 + βkτg(tuk , tvk−1, Uk, Vk−1) + αkτg(tuk , tvk, Uk, Vk)

}
k = 1(1)s ,

vn+1 = Vs ,

un+1 = Us + αsτf(tn+1, vn+1) ,

(5.6)

where tvk = tn + (α̃k + β̃k)τ and tuk = tn + (α̃k−1 + β̃k)τ . Rewriting the Maxwell functions (3.5) as

f(tv, v) = M−1
u (−Kv + ju(tv)) ,

g(tu, tv, u, v) = M−1
v (KT u− Sv + jv(tu, tv)) ,

(5.7)

and inserting these into (5.6), then yields the counterpart of the second-order method (3.6),

Mu
Uk − Uk−1

τ
= (βk + αk−1)(−KVk−1 + ju(tvk−1)) ,

Mv
Vk − Vk−1

τ
= (βk + αk) KT Uk − S (βkVk−1 + αkVk) +

βkjv(tuk , tvk−1) + αkjv(tuk , tvk) ,





k = 1(1)s ,

vn+1 = Vs ,

Mu
un+1 − Us

τ
= αsτ(−Kvn+1 + ju(tn+1)) .

(5.8)

The source function jv(tu, tv) might need a further (problem dependent) splitting into terms
emanating from a physical source and terms possibly emanating from the curl discretization near
the domain boundary. Generally, all time dependent terms should be temporally synchronized
with all corresponding Uk and Vk values. If not, the high-order coefficient set αk, βk developed for
the autonomous case might not give the expected order.

Aiming at order four, we have chosen s = 5 and

β1 = α5 = 14−√19
108 , α1 = β5 = 146+5

√
19

540 ,

β2 = α4 = −23−20
√

19
270 , α2 = β4 = −2+10

√
19

135 , β3 = α3 = 1
5 ,

(5.9)

a coefficient set due to [15] which minimizes error coefficients (borrowed by us from [12], formula
(V.3.6)). We used this set earlier and successfully in [29]. In the remainder of the paper we will
refer to the resulting method as CO4.

The CO4 amplification operator for test model (2.15) is given by

1∏

k=5

1
1 + αkzα

(
1 + αkzα − αk(αk + βk)z2

s (αk + βk)(−zs + αkβkz3
s)

(αk + βk)zs 1− βkzα − βk(αk + βk)z2
s

)
. (5.10)
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Figure 5.1 (right plot) shows part of the associated (numerically determined) stability region (5.2),
which looks quite unusual. Both for zα = 0 and for zs = 0 we see an intermediate hole, implying
that for zα = 0 we have the stability condition zs ≤ 3.0 (and eigenvalues with modulus one in
line with the conservation property), while for zs = 0 we have the restriction zα < −1/α4 ≈ 2.5,
approximately. On the other hand, for zα > −1/α4 and away from the hole, the stability region
extends to infinity. The hole along the real line is due to the negative coefficient α4 which gives a
negative step size. For problems with a dissipative term this necessarily leads to instability and cuts
the region in a left and right part. Similar as for RK4, for non-stiff cases this is not essential, given
the inevitable restriction zs ≤ 3.0. Negative coefficients cannot be avoided for composition (and
splitting) methods with orders beyond two [8, 26, 28]. This property thus restricts such methods
to problems with small (non-stiff) dissipative terms. Note that the fourth-order time-staggered
method proposed in [7] and further analyzed in [29] also has a negative step size.

Finally we note that after a proper adjustment the Corollaries 3.2 and 5.1 also hold for the
current method CO4 (and other methods like those based on Richardson extrapolation discussed
below).

5.3 Richardson extrapolation

The third technique we have examined is classical Richardson extrapolation of the second-order,
symmetric method (3.6), henceforth called CO2. We have applied both global and local extrapo-
lation based on the familiar extrapolation rule for symmetric methods, see e.g. [11], Sect. IV.9,

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−k)2 − 1
, j = 2, 3, . . . , k ≤ j − 1 . (5.11)

Thus, Tj1 stands for a local or global CO2-result computed with a step size τ = τc/nj for integers
n1 < n2 < · · · and constant base, that is coarsest, step size τc. Variable τc is allowed but is not
considered. The aimed method is Tjj for a certain integer j ≥ 2 giving order 2j. As above we
here restrict ourselves to order four, i.e. to j = 2.

5.3.1 Global extrapolation

By global extrapolation we mean passive extrapolation, hence only for output, as opposed to
local extrapolation at every time step. With local extrapolation one introduces essentially a new
integration method with different stability properties. With global extrapolation the stability and
symmetry properties of the base method prevail. Another reason to consider global extrapolation
for CO2 is its well-behaved even global error expansion for the linear system (3.19), in the sense
that the expansion coefficients only contain higher solution derivatives. This implies that order
reduction due to time-dependent boundary conditions cannot occur, something which does not
hold with local extrapolation as we will illustrate numerically.4) Aiming at order four, we have
chosen the most simple extrapolation T22 using n1 = 1, n2 = 2. Henceforth we will refer to this
method as GEX4. Per base step size τc, GEX4 spends only three times more computations than
CO2.

5.3.2 Local extrapolation

As is well known, local interpolation leads to a new integration method which might not share the
good stability properties of the base method, for example loss of unconditional stability can occur,
see also [11], Sect. IV.9. This indeed happens for CO2 with regard to the damping variable zα

for the harmonic sequence nj = j. For this reason we choose the fourth-order local extrapolation

4) The fourth-order methods RK4 and CO4 and the fourth-order local extrapolation method LEX4 introduced
below do suffer from order reduction when applied to semi-discrete PDEs with time-dependent Dirichlet boundary
conditions.
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T22 using n1 = 1, n2 = 3 (odd sequence), for which the unconditional stability for the damping
variable zα is preserved.5)

Let M(zα, zs) denote the amplification operator of CO2 occurring in (3.15). The amplification
operator of T22 then is given by 9

8M3(zα/3, zs/3)− 1
8M(zα, zs). The left plot of Figure 5.2 shows

the associated stability region S (with za restricted to 0 ≤ zα ≤ 30) which extends to infinity along
the zα-axis. The right plot zooms in near the vertical axis, showing that the stability interval for
zs amounts to 0 ≤ zs ≤ 2.85, approximately.

Henceforth we will refer to the current local extrapolation method as LEX4. Per base step size
τc, LEX4 spends 4.5 times more computations than CO2, rather than 4, because in one application
of CO2 its third-stage computation cannot be passed on to the next time step. Hence per base step
size LEX4 needs 50% more computations than GEX4. Also note that LEX4 does not preserve the
symmetry of CO2, so that for zα = 0 the moduli of the eigenvalues of the amplification operator
do deviate from one along the stability interval for zs. For conduction-free problems this incurs
spurious damping of higher harmonics. This effect is restricted, however, to only the truly higher
harmonics, since the moduli do stay very close to one on a significant part of the stability interval,
see Figure 5.3.
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Figure 5.2: The stability region S of method LEX4 (left plot). The right plot zooms in near the vertical axis.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Figure 5.3: The eigenvalue moduli of method LEX4 along the stability interval 0 ≤ zs ≤ 2.85.

Remark 5.2 One of the referees brought [6] to our attention where for Maxwell’s equation lo-
cal and global Richardson extrapolation is discussed for the ADI-FDTD (Alternating Direction
Implicit – Finite Difference Time Domain) method. Increasing the order of this method while
maintaining its very good stability has been successfully illustrated. In addition extrapolation is
discussed for wave equations in a method of lines setting for the implicit trapezoidal rule and the

5) For the harmonic sequence standard smoothing as e.g. discussed in [11], Sect. IV.9, will restore unconditional
stability in zα (see also [3] for a different approach). However, due to the additional costs for smoothing we expect
that T22 for n1 = 1, n2 = 2 with smoothing will not lead to a better method than T22 for n1 = 1, n2 = 3 without
smoothing. For higher orders smoothing may be of interest.
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GBS (Gragg-Bulirsch-Stoer) scheme. Regarding extrapolation we focus on method CO2, that is
method (3.6), taking into account damping terms giving dissipative effects and time-dependent
boundary conditions giving order reduction effects. For the ADI-FDTD method such effects are
not discussed in [6] as periodicity is assumed for Maxwell’s equation without damping terms. Also
note that this method is not applicable to the unstructured grid vector finite element discretization
considered in Section 4. 3

5.4 Numerical illustration

Although simple, the 1D damped linear wave equation

Bt = Ex , Et = Bx − αE + αψ(x, t) , 0 ≤ x ≤ 1 , t > 0 , (5.12)

serves our purpose. We let ψ(x, t) = E(x, t) so that (5.12) has the generic solution

B(x, t) =
1
2
(B0(x + t) + B0(x− t)) , E(x, t) =

1
2
(B0(x + t) − B0(x− t)) , (5.13)

where we choose B0 as the pulse profile B0(x) = e−100(x− 1
2 )2 . See Figure 5.4, which shows that

for t ≤ 0.1 we have numerically zero boundary values, while for later times the boundary values
become time dependent. As in [29] we use this to illustrate the order reduction phenomenon.
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Figure 5.4: The exact solution of the 1D test problem (5.12)-(5.13). At the left B, at the right E.

Let h = 1/(N + 1), xi = ih for i = 0, 1, . . . , N + 1, and let ui(t) and vi(t) denote the semi-
discrete approximations to B(xi, t) and E(xi, t), respectively. We then discretize Bt = Ex in space
with the fourth-order compact scheme

1
6
(u′i−1 + 4u′i + u′i+1) =

1
2h

(vi+1 − vi−1) , i = 1 , . . . , N . (5.14)

The boundary values u′0, u
′
N+1 and v0, vn+1 are prescribed from the exact solution.6) The second

equation is semi-discretized similarly. Arranging the unknowns ui, vi in vectors u, v of length N ,
we then arrive at a semi-discrete system which fits in class (1.2) and to which the stability analysis
of Section 2 applies, revealing a maximal singular value s ≈ 1.74/h.

6) Because the solution consists of outgoing waves and is defined for all x, imposing this boundary condition is
a consequence of the finite spatial domain and the specific spatial scheme. It does serve our purpose however on
illustrating the order reduction phenomenon.
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We choose the damping coefficient α = 1 (non-stiff case), so that the following critical step
sizes for stability emanating from the wave terms apply,

τc =





2.0h/1.74 ≈ 1.14h CO2 and GEX4
2
√

2h/1.74 ≈ 1.62h RK4
2.85h/1.74 ≈ 1.63h LEX4
3.0h/1.74 ≈ 1.72h CO4

(5.15)

With a minor adjustment to hit chosen output times within an integer number of steps, step sizes
(5.15) are used in the numerical tests. Figure 5.5 contains convergence results at t = 0.1 (left) and
t = 0.5 (right). The marks correspond with N = 40, 80, . . . , 1280 and since h = 1/(N + 1) and
τ ≈ τc, τ and h decrease simultaneously. Hence we look at PDE convergence rather than ODE
convergence for h fixed. The loglog plots show efficiency. That is, we plot maximum norm errors
for B (PDE solution minus fully discrete solution over all components of u) versus computational
work (number of time steps times number of (f, g)-evaluations per step times number of spatial
grid points). For component E the errors are alike. Recall that for CO2, GEX4, RK4 and CO4
the numbers of (f, g)-evaluations per step amount to, respectively, one, three, four and five, while
for LEX4 it is four and a half.
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Figure 5.5: Loglog convergence (error versus work) plots for problem (5.12) at t = 0.1 (left) and t = 0.5
(right). Non-stiff case α = 1. CO2 O-marks, GEX4 + -marks, LEX4 ¤ -marks, RK4 o-marks, CO4 ∗-marks.

Both plots clearly show the efficiency advantage of higher order integration, distinguishing
between CO2, which shows its second-order convergence7), and the other four methods. At t = 0.1
all four fourth-order methods do converge for τ, h → 0 with their ODE order four. No reduction
occurs because up to t = 0.1 the boundary values are numerically zero. On the other hand,
at t = 0.5 we clearly observe reduction of the PDE order for RK4, LEX4 and CO4, down to
order two, while GEX4 is free from reduction. The latter observation is in accordance with the
error analysis presented in Section 3. The effect of reduction becomes visible on fine grids only,
which is due to the fact that error terms causing reduction generally have relatively small error
coefficients. This holds in particular for CO4. We emphasize that the reduction is so clearly
visible because we decrease τ and h simultaneously. Would we fix h, reduce τ , and compare with
an exact ODE solution, eventually the ODE order four will be found, accompanied however with
comparatively large errors caused by those error terms causing reduction. Finally, among the
fourth-order methods, RK4 is the least efficient method. In the absence of order reduction GEX4
and CO4 are equally efficient, indicating that the spatial error dominates. Overall GEX4 is the
winner in the current test.

7) Because of its temporal order two, the fourth-order spatial discretization is a bit of a waste for CO2 as
fourth-order spatial discretization is more expensive than the most simple second-order one. In this regard CO2 is
not equally treated in this comparison. But also with second-order in space it will be less efficient than its three
fourth-order competitors.
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5.5 Local versus global Richardson extrapolation

It should be emphasized that in the experiment with time-dependent Dirichlet boundary values the
significantly better performance of global compared to local extrapolation is due to order reduction.
Without boundary effects, generally there will not be much difference in performance, at least for
dissipative problems for which global error built-up is bounded, cf. Remark 3.4. However, for non-
dissipative problems and long-time integration one readily observes linear global error built-up to
the extent that leading error terms have become too large to be efficiently annihilated by global
extrapolation. If this occurs, global extrapolation will become lesser and lesser efficient over time,
simply because the extrapolation is then delayed too long.

To illustrate this, we have solved, with and without damping, the inhomogeneous test model
(2.12) for the particular solution û(t) = sin(2πt), v̂(t) = − 2π

s cos(2πt). For α = 0 (no damping)
and s = 1 we have applied method LEX4 and GEX4 over the interval [0, 3.0 · 104]. Figure 5.6
shows the absolute errors in û, measured after every 50-th period of 2π. For simplicity of testing,
equal base step sizes τc = 1/15 were used.
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Figure 5.6: The driven oscillator test. Vertical axis: absolute errors in û. Horizontal axis: t/50.

The errors reveal a truly different behavior. The (oscillatory) error for the local method LEX4
remains small (the thick line at the bottom), with a more or less constant maximum of about
3.1 · 10−5. On the other hand, the oscillatory error for the global method GEX4 first growths
significantly, with its maximum linearly up to about 2.2 · 10−2, and then decreases again (the
numerical solution becomes in phase with the exact solution). The linear growth for GEX4 is due
to linear growth exhibited by its based method CO2 and is simply copied by the global, passive
extrapolation to higher order. On the other hand, the local method LEX4 annihilates leading
error terms at each time step and introduces artificial damping. In the present test this damping
is minor, but it does help to counteract linear global error growth.

In our second test, which serves to illustrate the behavior with damping, we have chosen α = 1.
In this test both methods give nearly equal errors (not shown here), with maxima almost constant
in time and equal to 6.3 · 10−6, approximately. The damping gives rise to a bounded global error
over time for the base method CO2, resulting in this very similar performance. Would we have
incorporated the difference in costs per step by choosing a smaller step size τ for GEX4, in this
special case the global method would even be a factor (3/2)4 more accurate for equal work. For
another chosen sequence nj introduced in (5.11), we would have a different factor of course.

For a further comparison between global and local extrapolation we have done similar tests
with the symmetric method (3.4) applied to Kepler’s two-body problem which is often used as
a test problem in geometric integration research, see e.g. [12]. For this nonlinear, conservative
(Hamiltonian) problem, the difference in accuracy between global and local extrapolation is truly
more significant than for the driven oscillator problem and is strongly in favor of the local ap-
proach (results are not shown here). For a thorough analysis of combining composition and local
extrapolation to raise the order of geometric integrators we refer the interested reader to [2, 4].
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6 The coupled sound and heat flow problem

The Maxwell equations (1.1) provide a prime example of a damped wave equation system. This
suggests that the integration methods we discussed may be applicable to other damped wave
equations as well. In this section we will illustrate this. As an example we use the coupled sound
and heat flow problem, while focusing on an efficient combination of second-order, symmetric
composition and global and local Richardson extrapolation, similar to what we did for methods
CO2 and GEX4 and LEX4. We focus on extrapolation methods because the coupled sound
and heat flow problem contains the Laplace operator. This gives rise to infinite stiffness, ruling
out explicit Runge-Kutta methods like RK4 and composition methods like CO4. We expect
no significant difference between local and global extrapolation because the problem at hand is
dissipative and is formulated with periodic boundary conditions so that order reduction effects
play no role.

We consider the scaled linearized equations from [21], Sect. 10.4,

et = d∆e− c∇ · u ,

vt = c∇·u ,

ut = c∇v − c(γ − 1)∇e ,

(6.1)

expressing, respectively, conservation of energy, mass and momentum, and wherein v,u and e
represent specific volume, material velocity and specific internal energy; c is the isothermal sound
speed, γ > 1 the ratio of specific heat, and d ≥ 0 the thermal conductivity coefficient. This time-
dependent PDE system is posed in a one-, two-, or three-dimensional space domain and should be
provided with boundary conditions. For convenience of presentation we suppose periodic boundary
conditions.

Of importance is that the damping term d∆e gives rise to infinite stiffness, suggesting an
implicit treatment, as opposed to the remaining wave terms which all can be treated explicitly.
Introduce the notation et = f(u, e), vt = g(u),ut = h(v, e) and the Euler-type scheme

Φτ





en+1 = en + τf(un, en+1) ,

vn+1 = vn + τg(un) ,

un+1 = un + τh(vn+1, en+1) ,

(6.2)

formulated at the PDE level. The composition Ψτ = Φτ/2 ◦ Φ∗τ/2 then defines the symmetric,
second-order, one-step integration method

un+1/2 = un + 1
2τ (c∇vn − c(γ − 1)∇en) ,

vn+1 = vn + τ c∇·un+1/2 ,

en+1 = en + 1
2τ d (∆en + ∆en+1)− τ c∇·un+1/2 ,

un+1 = un+1/2 + 1
2τ (c∇vn+1 − c(γ − 1)∇en+1) ,

(6.3)

which uses effectively 3 stages per step because the fourth stage can be copied to the next time
step. The method is explicit in velocity and volume and implicit-explicit in energy so as to cope
with the infinitely stiff damping term d∆e.

Similar as we discussed before, τ2-extrapolation is applicable due to the symmetry. To illustrate
that this can be very efficient, we have applied (6.3) as base method (the counterpart of CO2),
its fourth-order global extrapolation T22, using n1 = 1, n2 = 2 (the counterpart of GEX4), and its
fourth-order local extrapolation T22, using n1 = 1, n2 = 3 (the counterpart of LEX4). The test
problem from class (6.1) is two-dimensional and is borrowed from [27]. This problem is defined
on the unit square, has periodic boundary conditions and time interval 0 ≤ t ≤ 1. Further, it
has as initial velocities in x and y direction the periodic functions u1 = 2

5π sin2(πx) sin(2πy) and
u2 = − 1

5π sin2(πy) sin(2πx) and has a zero initial field for v and e. The problem coefficients
are given by c = 1, γ = 3 and d is the peaked function d = 1

10 sin10(πx) sin10(πy). With this
setup we encounter, after linearization, real negative eigenvalues and eigenvalues very close to
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the imaginary axis since d is close to zero on part of the domain. Fourth-order central space
discretization was used on a single uniform grid with grid size h = 1/100. The linear systems
of algebraic equations arising from the Laplace operator were solved by LU-decomposition. We
refer to [27] for more details, amongst others for how to carry out Fourier-von Neumann stability
analysis to the space-discretized version of (6.3).

The figure below gives an efficiency-accuracy plot for the step sizes

τc = (1 ,
1
2

, . . . ,
1
16

) τh with τh =

{
2.00 · (5h/7c

√
2γ) ≈ 0.0058 CO2 and GEX4

2.85 · (5h/7c
√

2γ) ≈ 0.0083 LEX4
(6.4)

selected on the basis of the Fourier-von Neumann
stability analysis. Along the vertical axis we plot the
maximum absolute error at t = 1 chosen with respect
to a highly accurate reference ODE solution, and
along the horizontal axis the computational work ex-
pressed as numbers of time steps times stages (three
for the base method (6.3)). The loglog plot with
+ -marks for global and 2 -marks for local extrapo-
lation is self evident, showing a huge efficiency gain
for extrapolation when high accuracy is wanted.
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7 Final remarks

A question of general numerical interest is whether for partial differential equations high-order dis-
cretization methods are more efficient than more commonly used second-order ones. The current
paper was devoted to high-order time-stepping methods for damped Maxwell equations (1.1). We
have shown that if the curl terms can be treated explicitly, a variety of high-order techniques
prove very useful, including explicit Runge-Kutta methods, symmetric composition methods, and
Richardson extrapolation based on the second-order symmetric method (3.6). We have also ana-
lyzed stability of these methods for the full Maxwell system (1.2) in the case of constant conduc-
tivity and permittivity.

While the Runge-Kutta and high-order composition methods are restricted to ’non-stiff’ damp-
ing terms, this restriction does not hold for the extrapolation approach, the success of which to
a great extent is due to the bonus of τ2-extrapolation. The Richardson extrapolation technique
is classic and symmetric methods like (3.6) are well-known, yet successfully combining the two
for solving damped wave equations like (1.1) and related damped wave equations like (6.1) has
got little attention as far as we know. We have applied extrapolation both locally and globally.
The most interesting feature of the global approach, for method (3.6), is that it does not suffer
from order reduction for problems with time-dependent Dirichlet boundary conditions. Of course,
necessary for temporal global extrapolation to work well is, besides a sufficiently smooth global
error expansion, limited error built-up. This is the case for the large class of dissipative problems.
However, when order reduction is no issue, we would in general yet advocate the local approach as
then leading error terms are eliminated instantaneously. Needless to say, to justify a high temporal
order also the spatial discretization order should be high enough.

Finally, interested readers should also consult [6] concerning the successful application of
Richardson extrapolation to the ADI-FDTD method mentioned in Remark 5.2.
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