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Abstract. This paper investigates a generalized ver-
sion of inquisitive semantics (Groenendijk, 2008b;
Mascarenhas, 2008). A complete axiomatization of the
associated logic is established. The connection with
intuitionistic logic is clarified and heavily exploited.

1 Introduction

Traditionally, logic is concerned with argumentation.
As a consequence, formal semantics usually focusses
on the descriptive use of language, and the meaning
of a sentence is identified with its informative content.
Stalnaker (1978) gave this informative notion a dy-
namic and conversational twist by taking the meaning
of a sentence to be its potential to change the common
ground, where the common ground is viewed as the
conversational participants’ shared information. Tech-
nically, the common ground is taken to be a set of pos-
sible worlds, and a sentence provides information by
eliminating some of these possible worlds.

Of course, this picture is limited in several ways. First,
it only applies to sentences that are used exclusively
to provide information. Even in a typical informa-
tive dialogue, utterances may serve different purposes
as well. Second, the given picture does not take into
account that updating the common ground is a coop-
erative process. One speech participant cannot simply
change the common ground all by herself. All she can
do is propose a certain change. Other speech partic-
ipants may react to such a proposal in several ways.
These reactions play a crucial role in the dynamics of
conversation.

In order to overcome these limitations, inquisitive
semantics (Groenendijk, 2008b; Mascarenhas, 2008)
starts with an altogether different picture. It views
propositions as proposals to change the common
ground. These proposals do not always specify just
one way of changing the common ground. They may
suggest alternative ways of doing so, among which the
responder is then invited to choose. Formally, a propo-

sition consists of one or more possibilities. Each pos-
sibility is a set of possible worlds and embodies a pos-
sible way to change the common ground. If a proposi-
tion consists of two or more possibilities, it is inquisi-
tive: it invites the other participants to respond in a
way that will lead to a cooperative choice between the
proposed alternatives. Inquisitive propositions raise
an issue. They give direction to a dialogue. Thus, in-
quisitive semantics directly reflects that the primary
use of language is communication: the exchange of in-
formation in a cooperative dynamic process of raising
and resolving issues.

Groenendijk (2008b) and Mascarenhas (2008) defined
an inquisitive semantics for the language of proposi-
tional logic, focussing on the philosophical and lin-
guistic motivation for the framework, and delineating
some of its basic logical properties. The associated
logic was axiomatized by Mascarenhas (2009), while a
sound and complete sequent calculus was established
independently by Sano (2008). Linguistic applications
of the framework are discussed by Balogh (2009); Cia-
rdelli et al. (2009); Groenendijk and Roelofsen (2009).

In this paper, we consider a generalized version of
the semantics proposed by Groenendijk (2008b) and
Mascarenhas (2008). This generalized semantics was
first discussed by Groenendijk (2008a). Initially, it
was thought to give essentially the same results as the
original semantics. Upon closer examination, how-
ever, Mascarenhas, Groenendijk, and Ciardelli ob-
served that the two systems are different, and Ciardelli
(2008) argued that these differences speak in favor of
the generalized semantics.

The main aim of the present paper is to establish a
sound and complete axiomatization of the logic that
the generalized semantics gives rise to. In order to do
so, we explore the connection between inquisitive se-
mantics and Kripkean semantics for intuitionistic logic
(Kripke, 1965). An axiomatization of inquisitive logic
is obtained from an axiomatization of intuitionistic
logic by adding two well-known axiom schemes: the
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Kreisel-Putnam axiom scheme (Kreisel and Putnam,
1957) and the law of double negation, ¬¬p → p, re-
stricted to atomic proposition letters.

The paper is organized as follows. Section 2 presents
the generalized version of inquisitive semantics and es-
tablishes some basic properties of the system, section 3
explores the connection with intuitionistic semantics,
and section 4 presents a sound and complete axioma-
tization of inquisitive logic. Finally, section 5 suggests
a new intuitive interpretation of inquisitive semantics,
which sheds further light on some of the results ob-
tained in earlier sections. Proofs of our main results
are included in an appendix.

2 Generalized Inquisitive Semantics

Definition 1 (Language). Let P be a finite set of
proposition letters that we will consider fixed through-
out the paper. We denote by LP the set of formulas
built up from letters in P and ⊥ using the binary con-
nectives ∧,∨ and→. We will refer to LP as the propo-
sitional language based on P.

We will also make use of the following abbreviations:
¬ϕ for ϕ→ ⊥, !ϕ for ¬¬ϕ , and ?ϕ for ϕ ∨ ¬ϕ.

Definition 2 (Indices). An index is a function from
P to {0, 1}. We denote by ω the set of all indices.

Definition 3 (States). A state is a set of indices. We
denote by S the set of all states.

Definition 4 (Support).

1. s |= p iff ∀w ∈ s : w(p) = 1

2. s |= ⊥ iff s = ∅

3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

Notice that formulas are evaluated with respect to ar-
bitrary sets of indices here. In the original version of
inquisitive semantics, formulas were evaluated with re-
spect to sets of cardinality at most two. In this sense,
the semantics considered here is a generalized version
of the original semantics.

It follows from the above definition that the empty
state supports any formula ϕ. Moreover, this clearly
does not hold for any other state. Thus, we will refer
to ∅ as the inconsistent state.

Proposition 1 (Persistence).
If s |= ϕ then for every t ⊆ s: t |= ϕ

Proposition 2 (Singleton states behave classically).
For any index w and formula ϕ, {w} |= ϕ if and only
if ϕ is classically true in w.

Note in particular that we have {w} |= ϕ or {w} |= ¬ϕ
for any formula ϕ.

Definition 5 (Possibilities, propositions, truth-sets).
Let ϕ be a formula.

1. A possibility for ϕ is a maximal state supporting
ϕ, i.e., a state that supports ϕ and is not properly
included in any other state supporting ϕ.

2. The proposition expressed by ϕ, denoted by [ϕ],
is the set of possibilities for ϕ.

3. The truth set of ϕ, denoted by |ϕ|, is the set of
indices where ϕ is classically true.

The proposition expressed by ϕ is conceived of as the
meaning of ϕ in an inquisitive setting, while the truth-
set of ϕ represents the classical meaning of ϕ. Notice
that |ϕ| is a state, while [ϕ] is a set of states.

Propositions are viewed as proposals to change the
common ground of a dialogue. If [ϕ] contains more
than one possibility, it is inquisitive: each possibil-
ity embodies a possible way to change the common
ground, and other dialogue participants are invited to
react in such a way that a choice between these pos-
sibilities is established in a cooperative way. [ϕ] may
also be informative: indices that are not contained in
any possibility in [ϕ] are eliminated from the common
ground, unless other dialogue participants object.

Definition 6 (Inquisitiveness and informativeness).

• ϕ is inquisitive if and only if [ϕ] contains at least
two possibilities;

• ϕ is informative if and only if [ϕ] does not cover
the set of all indices:

⋃
[ϕ] 6= ω.

Definition 7 (Questions and assertions).

• ϕ is a question if and only if it is not informative;

• ϕ is an assertion if and only if it is not inquisitive.

Definition 8 (Contradictions and tautologies).

• ϕ is a contradiction if and only if [ϕ] = {∅}

• ϕ is a tautology if and only if [ϕ] = {ω}

It is easy to see that a formula is a contradiction iff
it is a classical contradiction. This does not hold for
tautologies. Classically, a formula is tautological iff it
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is not informative. In the present system, a formula is
tautological iff it is neither informative nor inquisitive.
Classical tautologies may well be inquisitive. A prime
example of this is the formula p ∨ ¬p.
Definition 9 (Equivalence). Two formulas ϕ and ψ
are equivalent, ϕ ≡ ψ, if and only if [ϕ] = [ψ].

It is easy to see that ϕ ≡ ψ if and only if ϕ and ψ are
supported by the same states.

Proposition 3 (Characterization of questions). For
any formula ϕ, the following are equivalent:

1. ϕ is a question

2. ϕ is a classical tautology

3. ¬ϕ is a contradiction

4. ϕ ≡ ?ϕ

Proposition 4 (Characterization of assertions). For
any formula ϕ, the following are equivalent:

1. ϕ is an assertion

2. for any two states s and t, if s |= ϕ and t |= ϕ,
then s ∪ t |= ϕ

3. |ϕ| |= ϕ

4. ϕ ≡ !ϕ

5. [ϕ] = {|ϕ|}

Note that item 5 states that a formula is an assertion if
and only if its meaning consists uniquely of its classical
meaning. In this sense, assertions behave classically.
The following proposition gives some sufficient syntac-
tic conditions for a formula to be an assertion.

Proposition 5. For any propositional letter p and
formulas ϕ,ψ:

1. p is an assertion;

2. ⊥ is an assertion;

3. if ϕ,ψ are assertions, then ϕ ∧ ψ is an assertion;

4. if ψ is an assertion, then ϕ→ ψ is an assertion.

Using this proposition inductively we obtain the fol-
lowing corollary showing that disjunction is the only
source of non-classical, inquisitive behavior in our lan-
guage: the disjunction-free fragment of the language
behaves classically.

Corollary 1. Any disjunction-free formula is an as-
sertion.

The informative content of a formula ϕ is embodied by⋃
[ϕ] (indices that are not in

⋃
[ϕ] are eliminated from

the common ground if no other dialogue participant
objects). The following proposition guarantees that
inquisitive semantics preserves the classical treatment
of informative content.

Proposition 6. For any formula ϕ:
⋃

[ϕ] = |ϕ|.

Now let us look at some formulas that are inquisitive,
and thus do not behave classically.

Example 1 (Disjunction). To see how the inquisi-
tive treatment of disjunction differs from the classi-
cal treatment, consider figures 1(a) and 1(b) below.
These pictures assume that P = {p, q}; index 11 makes
both p and q true, index 10 makes p true and q false,
etcetera. Figure 1(a) depicts the classical meaning of
p ∨ q: the set of all indices that make either p or q, or
both, true. Figure 1(b) depicts the proposition asso-
ciated with p ∨ q in inquisitive semantics. It consists
of two possibilities. One possibility is made up of all
indices that make p true, and the other of all indices
that make q true. So p ∨ q is inquisitive. It invites
a response which is directed at chosing between two
alternatives. On the other hand, p ∨ q also excludes
one index, namely the one that makes both p and q
false. This illustrates two things: first, that p∨ q is in-
formative, just as in the classical analysis, and second,
that formulas can be both informative and inquisitive
at the same time.

11 10

01 00

(a)

11 10

01 00

(b)

11 10

01 00

(c)

Figure 1: (a) the traditional picture of p ∨ q, (b) the
inquisitive picture of p ∨ q, and (c) polar question ?p.

Example 2 (Polar questions). Figure 1(c) depicts the
proposition expressed by ?p, which—by definition—
abbreviates p ∨ ¬p. As in the classical analysis, [?p]
is not informative. But it is inquisitive: it invites a
choice between two alternatives, p and ¬p. As such,
it reflects the essential function of polar questions in
natural language.

It should be emphasized that inquisitive semantics
does not claim that disjunctive sentences in natural
language are always inquisitive. Inquisitive semantics
primarily introduces a new notion of meaning, which
incorporates both informative and inquisitive content.
Ultimately, such meanings should of course be associ-
ated with expressions in natural language. The present
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system, which associates inquisitive meanings with ex-
pressions in the language of propositional logic, could
be seen as a first step in this direction. A proof of
concept. The treatment of natural language will evi-
dently be much more intricate, and in particular, the
interpretation of disjunction will be affected by sev-
eral additional factors—including intonation (see, for
instance, Groenendijk, 2008b).

We end this section with a definition of entailment and
validity, and the logic InqL that inquisitive semantics
gives rise to.1

Definition 10 (Entailment and validity). A set of for-
mulas Θ entails a formula ϕ in inquisitive semantics,
Θ |= InqL ϕ, if and only if any state that supports all
formulas in Θ also supports ϕ. A formula ϕ is valid
in inquisitive semantics, |= InqL ϕ, if and only if ϕ is
supported by all states.

If no confusion arises, we will simply write |= instead
of |= InqL . We will also write ψ1 , . . . , ψn |= ϕ instead
of {ψ1 , . . . , ψn} |= ϕ. Note that, as expected, ϕ ≡ ψ
iff ϕ |= ψ and ψ |= ϕ.

Definition 11 (Logic). Inquisitive logic, InqL, is the
set of formulas that are valid in inquisitive semantics.

It is easy to see that a formula is valid in inquisitive
semantics if and only if it is both a classical tautology
and an assertion. In particular, InqL coincides with
classical logic as far as assertions are concerned.

Remark. While InqL is closed under the modus po-
nens rule, it is not closed under uniform substitution.
For instance, ¬¬p → p ∈ InqL for all proposition let-
ters, but ¬¬(p ∨ q) → (p ∨ q) 6∈ InqL. We will return
to this feature of the logic in section 5.

3 Inquisitive Logic and Intuitionistic
Kripke Models

This section explores the connection between inquis-
itive semantics and intuitionistic Kripke semantics.2

Both can be conceived of in terms of information. In
inquisitive semantics, a formula is evaluated with re-
spect to a set of indices. An index assigns truth val-
ues to all atomic formulas. Atomic formulas can be
thought of as names for atomic facts that may or may
not obtain in the world. Thus, an index can be seen
as a complete specification of which facts do and do
not obtain in the world. In the common parlance of

1For more basic properties of the system, including
some normal form and expressive completeness results, we
refer to (Ciardelli, 2008).

2The ideas laid out below were partly inspired by (van
Benthem, 2008) and (Groenendijk, 2008a).

intensional logic, an index specifies a possible world.
A state, then, specifies a set of possible worlds. Such
a set of possible worlds can in principle be conceived
of in many different ways. We take an epistemic per-
spective: we think of the possible worlds in a state
s as those that are compatible with the information
available in s. In this sense, states are conceived of
as information states. Now, if s is a set of indices,
conceived of as an information state, then subsets of
s can be seen as possible future information states.
Whether s supports a formula ϕ is partly defined in
terms of these future information states.

In intuitionistic semantics, a formula is evaluated with
respect to a point in a Kripke model, which can be also
thought of as an information state. Each point may
have access to some other points, which can be seen
as future information states. Whether a point u in a
model M satisfies a formula ϕ is again partly defined
in terms of these future information states.

This informal analogy has a precise, formal counter-
part: inquisitive semantics coincides with intuitionistic
semantics on a suitable Kripke model.

Definition 12 (Kripke model for inquisitive seman-
tics). The Kripke model for inquisitive semantics is the
model MI = 〈WI ,⊇, VI 〉 where WI := S−{∅} is the set
of all non-empty states and the valuation VI is defined
as follows: for any letter p, VI (p) = {s ∈WI | s |= p}.

Observe that MI is an intuitionistic Kripke model: ⊇
is reflexive and transitive, and VI is persistent.

Proposition 7 (Inquisitive support coincides with
Kripke satisfaction on MI ). For every formula ϕ and
every non-empty state s we have:

s |= ϕ ⇐⇒ MI , s 
 ϕ

One consequence of this result is that all intuitionistic
validities are also inquisitive validities: IPL ⊆ InqL.
In order to obtain a more precise characterization of
the relation between IPL and InqL we will distinguish
three special properties of MI , and show that InqL is
the logic of the class of Kripke models defined by these
three properties. This result will play a crucial role in
the proof of the completeness theorem for InqL, which
will be presented in section 4.

Now, what are the peculiar properties of MI ? Let
us start by analyzing the properties of the underlying
frame FI := 〈WI ,⊇〉. One striking aspect of FI is that
any point in it can see an endpoint. We will call frames
with this property e-saturated. The mnemonic is
that such frames have enough endpoints.

Notation. If F = (W,R) is a Kripke frame and s
is a point in F , we denote by Es the set of terminal
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successors of s, that is, Es = {t ∈ W | sRt & t is an
endpoint}.
Definition 13 (E-saturation). A frame F = (W,R)
is e-saturated iff for any point s ∈W , Es 6= ∅.

A second striking feature of FI is the following: if s
is a point in FI and E∗ is a nonempty set of termi-
nal successors of s, then there is always a “mediating
point” t which is a successor of s and has precisely E∗
as its set of terminal successors. We will call frames
with this property i-saturated; the mnemonic is that
i-saturated frames have enough intermediate points.
Definition 14 (I-saturation). A Kripke frame F =
(W,R) is i-saturated in case for any s ∈W and any
nonempty E∗ ⊆ Es there is a successor t of s with
E∗ = Et .

One way of interpreting i-saturation is as follows.
An endpoint in a Kripke model always satisfies either
p or ¬p, for all atomic formulas. Thus, an endpoint
specifies a possible world, and we may think of Es as
the set of possible worlds that are compatible with the
information available in s.

In an i-saturated frame, the worlds that are consid-
ered possible at a certain point are always taken to be
independent from one another: each of them can be
excluded independently from the others. Any possi-
ble world is taken to differ from all the others in some
“observable way”: there is always some piece of infor-
mation that has the effect of ruling out that possible
world while keeping all the others.

In frames that are not i-saturated, possible worlds
may be entangled, in the sense that the exclu-
sion of some of them forces the exclusion of others.

u

v

u

w

u

z

Figure 2: Tripod.

This is illustrated by the tripod
frame in figure 2. The worlds
considered possible at u are v,
w, and z. But none of these
worlds can be excluded inde-
pendently. For instance, any
piece of information that ex-
cludes z must also exclude ei-
ther v or w.
Definition 15 (Saturated frames). We say that a
Kripke frame F = (W,R) is saturated in case it is
both e-saturated and i-saturated.

Now let us turn to a special feature of the valuation
function VI of the model MI . Consider a point s in
a Kripke model where neither p nor ¬p is satisfied.
We could say that p is undecided at this point. Now,
in intuitionistic models, p can only be undecided at
some point s if there is a successor of s that satisfies
p. But there does not have to be a successor of s
that satisfies ¬p. For instance, in the tripod frame in

figure 2, p could be satisfied in all the endpoints, but
still be undecided at u.

In MI , this situation never occurs. If p is undecided
at s, there is always a successor of s that satisfies ¬p.
We say that models with this property ground unde-
cidedness about atomic formulas.

Definition 16 (Grounded models). We say that a
Kripke model M = (W,R, V ) is grounded in case for
any s ∈ W such that M, s 6
 p, there is a successor t
of s with M, t 
 ¬p.

It should be emphasized that grounded models do not
necessarily ground undecidedness about complex for-
mulas. For instance, p∨ q may well be undecided even
though ¬(p ∨ q) is not satisfied at any future point.

Definition 17 (Saturated models). We say that a
Kripke model M = (W,R, V ) is saturated in case it
is grounded and its underlying frame (W,R) is satu-
rated.

Saturated models are models that resemble MI in cer-
tain ways. Obviously MI itself is a saturated model.
The following result states that MI is the “most gen-
eral” saturated model, in the sense that any situation
arising in a saturated model is already present in MI .
A proof of this proposition is included in appendix A.1.

Proposition 8. For any saturated intuitionistic
Kripke model M = (W,R, V ), there is a p-morphism
η from M to MI .

In order to compare inquisitive entailment and validity
with intuitionistic entailment and validity w.r.t. satu-
rated models, we need the following definitions.

Definition 18 (Entailment and validity). A set of
formulas Θ SAT-entails a formula ϕ, Θ |= SAT ϕ, if
and only if every point in every saturated intuitionis-
tic Kripke model that satisfies all formulas in Θ also
satsifies ϕ. A formula ϕ is SAT-valid, |=SAT ϕ, if and
only if ϕ is satisfied by every point in every saturated
intuitionistic Kripke model.

Definition 19 (Logic). The logic of saturated intu-
itionistic Kripke models, SAT, is the set of all formulas
that are SAT-valid.

We are now ready to state our first main theorem. A
proof of this theorem is included in appendix A.2.

Theorem 1 (Correspondence theorem). For any set
of formulas Θ and any formula ϕ:

Θ |=InqL ϕ ⇐⇒ Θ |=SAT ϕ

Corollary. InqL = SAT.
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4 Axiomatization of Inquisitive Logic

In this section we establish our second main result: a
sound and complete axiomatization of InqL. The ax-
iomatization is obtained from an axiomatization for
intuitionistic logic by adding two well-known axiom
schemes. First, the law of double negation, ¬¬p→ p,
for all proposition letters p. This axiom scheme char-
acterizes the class of grounded intuitionistic Kripke
models. Therefore, we will refer to it as G. The second
ingredient of our axiomatization is the Kreisel-Putnam
axiom scheme (Kreisel and Putnam, 1957), to which
we will refer as KP.

Definition 20 (The system GKP). The system gkp
is obtained by adding the following axiom schemes to
any sound and complete Hilbert-style system for in-
tuitionistic logic that has modus ponens as its only
inference rule.

G ¬¬p→ p (for any atomic formula p ∈ P )

KP (¬ϕ→ ψ ∨ χ)→ (¬ϕ→ ψ) ∨ (¬ϕ→ χ)

(for all formulas ϕ,ψ, χ ∈ LP)

We write Θ `gkp ϕ if and only if ϕ can be derived from
Θ in the system gkp.

We are now ready to state our second main theorem.
A proof of this theorem is included in appendix A.3.

Theorem 2 (Completeness theorem). For any set of
formulas Θ and any formula ϕ:

Θ `gkp ϕ ⇐⇒ Θ |=InqL ϕ

Corollary. gkp axiomatizes InqL.

5 An Intuitive Interpretation of
Inquisitive Support

Inquisitive semantics is motivated by conceptual ideas
about information exchange through conversation.
The link between these ideas and the formal seman-
tics is established at the level of propositions. How-
ever, propositions are defined indirectly, through the
notion of support. In this section we suggest an in-
tuitive interpretation of this basic notion of support,
which allows for a new perspective on the semantics
and the associated logic, and in particular on some of
the observations made in previous sections.

We have already seen that states in inquisitive seman-
tics can be conceived of as information states. Now,
traditionally an information state s is taken to sup-
port a formula ϕ iff ϕ is true in all possible worlds
that are compatible with the information available in

s. In other words, s |= ϕ iff it follows from the infor-
mation available in s that ϕ is true.

In inquisitive semantics, s |= ϕ means something
slightly different. It does not only require that the
information available in s determines that ϕ is true,
but also that it determines how ϕ is realized.

The underlying idea is that a formula can be realized
in different ways. For instance, p ∨ q can be realized
because p is realized or because q is realized. Thus, in
order to know how p ∨ q is realized, one must either
know that p is realized, or that q is realized.

Atomic formulas are a special case. They can only be
realized in one way: the atomic fact that they name
must obtain. This special character of atomic formu-
las explains the fact that inquisitive logic is not—and
should not be—closed under uniform substitution (see
the final remark of section 2).

This intuitive interpretation of inquisitive support also
clarifies the relation between inquisitive logic on the
one hand, and classical and intuitionistic logic on the
other. Inquisitive logic resembles classical logic in that
it is concerned with truth rather than with provabil-
ity : when it comes to atomic formulas, we just have
to go “out there” and check. However, when it comes
to complex formulas, inquisitive logic behaves like in-
tuitionistic logic in requiring a justification (proof) for
ϕ in terms of justifications (proofs) for subformulas of
ϕ.

The different ways in which a formula ϕ may be real-
ized are mirrored by the possibilities for ϕ. A possi-
bility for ϕ is a maximal state in which ϕ is known to
be realized in one particular way. In other words, all
states in which ϕ is known to be realized in the same
way, are included in the same possibility. So every
possible way in which ϕ may be realized corresponds
with a possibility for ϕ, and vice versa.

In the light of this new interpretation, the conversa-
tional effect of an utterance can be rephrased as fol-
lows. An utterance of ϕ provides the information that
ϕ is true and it raises the issue how ϕ is realized.
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A Proofs of Main Theorems

A.1 Proof of proposition 8

Let M = (W,R, V ) be a saturated Kripke model. For
any endpoint e of M , denote by δe the index defined
by: δe(p) = 1 ⇐⇒ e ∈ V (p).

Define the map η : W →WI as follows: for any a ∈W ,
η(a) = {δe | e ∈ Ea}.

In the first place, since M is e-saturated for any
a ∈ W we have Ea 6= ∅ and so η(a) 6= ∅; this insures
that indeed η(a) ∈ WI , so that the map η is well-
defined. It remains to check that η is indeed a p-
morphism. Fix any a ∈W :

• Propositional Letters. Take any propositional
letter p. If M,a 
 p, then by persistence we have
M, e 
 p for any e ∈ Ea ; this implies i(p) = 1
for any index i ∈ η(a) and so η(a) |= p, whence
MI , η(a) 
 p.

Conversely, suppose M,a 6
 p. Then since the
model M is grounded, there must be a succes-
sor b of a with M, b 
 ¬p. Exploiting again the
fact that M is e-saturated we can find e ∈ Eb ,
and by persistence it must be M, e 
 ¬p, whence
δe(p) = 0. But by the transitivity of R we also
have e ∈ Ea , so δe ∈ η(a): thus η(a) 6|= p, whence
MI , η(a) 6
 p.

• Forth Condition. Suppose aRb: then since our
accessibility relation is transitive, Ea ⊇ Eb .

• Back Condition. Suppose η(a) ⊇ t: we must
show that there is some successor b of a such that
η(b) = t.

Now, since t ⊆ η(a), every index i ∈ t is of the
form δei for some terminal successor ei of a.

Now, let E∗ := {ei | i ∈ t}: since E∗ ⊆ Ea and M
is i-saturated, there is a successor b of a with
Eb = E∗. We have: η(b) = {δe | e ∈ E∗} =
{δei
| i ∈ t} = {i | i ∈ t} = t. So we have found a

successor b of a with the required properties. 2

A.2 Proof of theorem 1

Suppose Θ 6|= InqL ϕ. Then there is some state s such
that s |= θ for any θ ∈ Θ but s 6|= ϕ. Now, s must be
non-empty, because the empty state supports every-
thing. So by proposition 7 we have MI , s 
 θ for all
θ ∈ Θ but MI , s 6
 ϕ. Since MI is a saturated model,
this shows that Θ 6|=SAT ϕ.

Conversely, suppose Θ 6|= SAT ϕ. This means that,
for some saturated intuitionistic Kripke model M and
some point a in M we have M,a 
 θ for all θ ∈ Θ,
while M,a 6
 ϕ.

Now, according to proposition 8 there is a p-morphism
η : M → MI : since satisfaction is invariant under p-
morphisms, we have MI , η(a) 
 θ for all θ ∈ Θ, while
MI , η(a) 6
 ϕ.

Hence, by proposition 7 we have η(a) |= θ for all θ ∈ Θ
but η(a) 6|= ϕ, which shows that Θ 6|=InqL ϕ. The proof
of theorem 1 is thus complete. 2
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A.3 Proof of theorem 2

Let us start with soundness.

Lemma 1 (Soundness). For any set of formulas Θ and
any formula ϕ, if Θ `gkp ϕ then Θ |=InqL ϕ.

Proof. Suppose Θ ` gkp ϕ: this means that there
is a derivation of ϕ from formulas in Θ, axioms of
intuitionistic logic and instances of G and KP which
uses modus ponens as only inference rule.

In order to see that Θ |=InqL ϕ, let s be any state which
supports all formulas in Θ. It follows from theorem 1
that s supports any axiom of intuitionistic logic. More-
over, it is obvious by the semantics of implication that
the set of formulas which are supported by s is closed
under modus ponens. So, lemma 1 will be proved if we
can show that s supports any instance of G and KP.

As for G, consider a substate t ⊆ s. If t 6|= p, then
there must be an index v ∈ t such that v(p) = 0; by
the classical behaviour of singletons this means that
{v} |= ¬p. Since {v} ⊆ t, this implies t 6|= ¬¬p. By
contraposition, this shows that for any substate t ⊆ s,
if t |= ¬¬p then t |= p, which means precisely that
s |= ¬¬p→ p.

Now, consider an instance (¬ψ → χ ∨ ξ) → (¬ψ →
χ) ∨ (¬ψ → ξ) of the scheme KP. Suppose towards
a contradiction that s does not support this formula.
Then there must be a substate t ⊆ s such that t |=
¬ψ → χ ∨ ξ but t 6|= ¬ψ → χ and t 6|= ¬ψ → ξ.

The fact that t 6|= ¬ψ → χ implies that there is a
substate u ⊆ t with u |= ¬ψ but u 6|= χ; similarly,
since t 6|= ¬ψ → ξ there is u′ ⊆ t with u′ |= ¬ψ but
u′ 6|= ξ.

According to proposition 5, ¬ψ is an assertion, so by
proposition 4 we have u∪ u′ |= ¬ψ. But u∪ u′ cannot
support χ, otherwise by persistency we would have
u |= χ, which is not the case; similarly, u ∪ u′ cannot
support ξ, and thus also u ∪ u′ 6|= χ ∨ ξ.

But since u ⊆ t and u′ ⊆ t we have u ∪ u′ ⊆ t: this
shows that t 6|= ϕ → χ ∨ ξ, contrarily to assumption.
This yields the required contradiction and completes
the proof of the lemma. 2

We can now turn to completeness. We will prove com-
pleteness via the construction of a canonical model for
gkp.

Definition 21. Let Θ be a set of formulas.

1. We say that Θ is a gkp−theory if it is closed under
deduction in gkp, that is: for any ϕ, if Θ `gkp ϕ,
then ϕ ∈ Θ.

2. We say that Θ has the disjunction property if
whenever a formula ϕ ∨ ψ is in Θ, at least one
of ϕ,ψ is in Θ.

3. We say that Θ is gkp-consistent, or simply con-
sistent, in case Θ 6`gkp ⊥.

4. We say that Θ is complete in case for any formula
ϕ, exactly one of ϕ,¬ϕ is in Θ.

We have the usual Lindenbaum-type lemma:
Lemma 2. If Θ 6` gkp ϕ, then there is a consistent
gkp−theory Γ with the disjunction property such that
Θ ⊆ Γ and ϕ 6∈ Γ.

Proof. Let (ψn)n∈ω be an enumeration of all formu-
lae. Define:

Γ0 = Θ

Γn+1 =
{

Γn ∪ {ψn} if Γn ∪ {ψn} 6` ϕ
Γn otherwise

Γ =
⋃

n∈ωΓn

Obviously, Θ ⊆ Γ. It is immediate to check that by
induction that for any n, Γn 6` ϕ, whence Γ 6` ϕ and
in particular ϕ 6∈ Γ.

Moreover, Γ is an gkp-theory. For, suppose ψn 6∈
Γ: then ψn 6∈ Γn+1 , which is only possible in case
Γn ∪ {ψn} ` ϕ; but then also Γ ∪ {ψn} ` ϕ: therefore
Γ 6` ψn , since otherwise it would follow Γ ` ϕ, which
is not the case.

Finally, Γ has the disjunction property. For, suppose
ψ,ψ′ are not in Γ. This implies that Γ ∪ {ψ} ` ϕ
and Γ ∪ {ψ′} ` ϕ; but then also Γ ∪ {ψ ∨ ψ′} ` ϕ:
this entails ψ ∨ ψ′ 6∈ Γ, since otherwise we would have
Γ ` ϕ, which is not the case. 2

Definition 22. The canonical model for gkp is the
model Mgkp = (Wgkp,⊆, Vgkp), where:

• Wgkp is the set of all consistent gkp−theories with
the disjunction property;

• for any propositional letter p, Vgkp(p) = {Γ ∈
Wgkp | p ∈ Γ}.

Note that ⊆ is reflexive and transitive and that the
valuation Vgkp is persistent, whence Mgkp is an intu-
itionistic Kripke model. As customary in this sort of
proofs, the next step is to prove the truth lemma, stat-
ing that for all points in the canonical model, truth
coincides with membership.
Lemma 3 (Truth Lemma). For all formulas ϕ and
points Γ ∈Wgkp we have Mgkp,Γ 
 ϕ ⇐⇒ ϕ ∈ Γ.
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Proof. By induction on ϕ, using lemma 2 in the
inductive step for implication. 2

Since, according to theorem 1, InqL is the logic of
saturated Kripke models, in order for Mgkp to be of
any use as a countermodel we have to show that it is
in fact saturated. However, in order to do so we first
need some properties of the canonical model.

Lemma 4 (Endpoints of Mgkp).

1. The endpoints of Mgkp are precisely the complete
theories.

2. For any two endpoints ∆,∆′ in Mgkp, if ∆ and
∆′ contain the same propositional letters, then
∆ = ∆′.

3. For any endpoint ∆ there is a formula γ∆ such
that for all endpoints ∆′, ∆′ 
 γ∆ ⇐⇒ ∆′ = ∆.

Proof.

1. Let Γ be a complete theory: it is clear that Γ
is a consistent gkp-theory with the disjunction
property. It remains to see that Γ is an endpoint
of Mgkp. Suppose towards a contradiction that
Γ ( Γ′ for some Γ′ ∈ Wgkp. Take a γ ∈ Γ′ − Γ;
since γ 6∈ Γ, ¬γ ∈ Γ ⊆ Γ′. But then Γ′ contains
both γ and ¬γ and so it is inconsistent, which
contradicts Γ′ ∈Wgkp.

Conversely, let Γ be an endpoint of Mgkp. Con-
sider any formula ϕ; since Γ is consistent, at most
one of ϕ and ¬ϕ can be in Γ.

Moreover, suppose towards a contradiction that
neither ϕ nor ¬ϕ were in Γ; then Γ ∪ {ϕ} would
be consistent and could therefore be extended (by
lemma 2) to a point Γ′ of Mgkp. But then we
would have Γ ( Γ′, so Γ′ would be a successor of
Γ different from Γ, contradicting the fact that Γ
is an endpoint. Thus exactly one of ϕ,¬ϕ is in Γ,
and by the generality of ϕ this means that Γ is a
complete theory.

2. It is easy to check by induction that complete the-
ories behave classically, in the sense that for any
ϕ, whether ϕ is forced at ∆ is determined truth-
functionally in the classical way by which propo-
sitional letters are true at ∆.

By the truth lemma, this means that if ∆ and ∆′

contain the same atoms, then ∆ = ∆′.

3. For any endpoint ∆ ∈ W gkp, we let γ∆ :=∧
p∈P δp

∆ where:

δp
∆ =

{
p if p ∈ ∆
¬p if p 6∈ ∆

Obviously, ∆ 
 γ∆. Conversely, if an endpoint
∆′ satisfies γ∆, then it must satisfy exactly the
same propositional letters as ∆, and thus by the
previous point of this lemma, ∆ = ∆′. 2

We are now ready for the core of the completeness
proof: showing that Mgkp is a saturated Kripke model.

Lemma 5. The model Mgkp is saturated.

Proof. Let us start by showing that Mgkp is
grounded. Consider any Γ ∈ W gkp and reason by
contraposition. Suppose that for no successor Γ′

of Γ we have Γ′ 
 ¬p. Then Γ 
 ¬¬p and so, by
the truth lemma, ¬¬p ∈ Γ. By the presence of the
double negation axiom ¬¬p → p in the system gkp,
this implies that Γ ` gkp p and so, since Γ is an
gkp−theory, that p ∈ Γ, whence - again by the truth
lemma - Γ 
 p. Thus, contrapositively, if Γ 6
 p then
there is a successor Γ′ of Γ with Γ′ 
 ¬p. This shows
that Mgkp is grounded.

Next, consider e-saturation. Take any point
Γ ∈ Wgkp. It is easy to see that Γ can be extended
to a complete theory ∆: in order to do so, perform
the procedure described in the proof of lemma 2 with
Θ = Γ and ϕ = ⊥. Now, Γ ⊆ ∆ and ∆ is an endpoint
by lemma 4: therefore EΓ 6= ∅. This shows that Mgkp

is e-saturated.

Finally, let us come to i-saturation. Consider a
point Γ ∈ W gkp and let E∗ be a non-empty subset of
EΓ where, as usual, EΓ denotes the set of endpoints
of Γ. We must find a consistent gkp-theory Γ′ ⊇ Γ
with the disjunction property such that EΓ ′ = E∗.

Let Γ′ be the deductive closure (in gkp) of the set Γ∪
{¬χ | ¬χ ∈

⋂
E∗}. We will make use of the following

characterization of elements of Γ′.

Lemma 6. A formula ϕ is in Γ′ if and only if there
are γ ∈ Γ and ¬χ ∈

⋂
E∗ such that `gkp γ ∧¬χ→ ϕ.

Proof. Suppose ϕ ∈ Γ′: by the deduction theo-
rem for intuitionistic logic, there are γ1 , . . . , γn ∈
Γ, ¬χ1 , . . . ,¬χm ∈

⋃
E∗ such that

`gkp γ1 ∧ · · · ∧ γn ∧ ¬χ1 ∧ · · · ∧ ¬χm → ϕ

But now, since all the γi are in Γ and Γ is closed
under gkp-deduction, the formula γ := γ1 ∧ · · · ∧ γn

is in Γ. Analogously, for each ∆ ∈ E∗, since all the
¬χi are in ∆ and ∆ is closed under gkp-deduction, ∆
also contains the formula ¬χ where χ := χ1 ∨· · ·∨χn ;
so ¬χ ∈

⋂
E∗. Finally, since ¬χ is interderivable with

¬χ1 ∧ · · · ∧ ¬χn in intuitionistic logic (and thus in
gkp) we can conclude `gkp γ∧¬χ→ ϕ. The converse
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implication is trivial. 2

Having established lemma 6, we return to the proof of
lemma 5. We are going to show that Γ′ is a consis-
tent gkp-theory with the disjunction property (hence
a point in Mgkp), that it is a successor of Γ and has pre-
cisely E∗ as its set of terminal successors. Thus Γ′ is
exactly the point whose existence we were required to
show in order to establish that Mgkp is i-saturated.

• Γ′ is a gkp−theory by definition.

• Γ′ is consistent. For, suppose towards a contra-
diction ⊥ ∈ Γ′. Then by lemma 6 there would be
γ ∈ Γ, ¬χ ∈

⋂
E∗ such that `gkp γ ∧ ¬χ → ⊥.

Since E∗ is non-empty, consider a ∆ ∈ E∗: ∆ is a
successor of Γ (because E∗ ⊆ EΓ ), so γ ∈ ∆. But
also ¬χ ∈ ∆, because ¬χ ∈

⋂
E∗ and ∆ ∈ E∗.

Therefore, since ∆ is an gkp−theory, we would
have ⊥ ∈ ∆. But this is absurd, since ∆ is a
point of the canonical model and thus consistent
by definition.

• Γ′ has the disjunction property. Suppose ϕ∨ ψ ∈
Γ′: then there are γ ∈ Γ and ¬χ ∈

⋂
E∗ such that

`gkp γ ∧ ¬χ → ϕ ∨ ψ. Since Γ is a gkp−theory,
(γ ∧ ¬χ → ϕ ∨ ψ) ∈ Γ, and so since γ ∈ Γ, also
¬χ→ ϕ ∨ ψ is in Γ.

But now, since gkp contains all instances of the
Kreisler-Putnam axiom, and since Γ is closed un-
der gkp−deduction, (¬χ → ϕ ∨ ψ) ∈ Γ implies
(¬χ → ϕ) ∨ (¬χ → ψ) ∈ Γ; thus, since Γ has the
disjunction property, at least one of ¬χ→ ϕ and
¬χ→ ψ is in Γ.

Suppose the former is the case: then Γ ∪ {¬χ} `
gkp ϕ, and since ¬χ ∈

⋂
E∗ this implies ϕ ∈ Γ′, by

definition of Γ′. Instead, if it is ¬χ→ ψ ∈ Γ, then
reasoning analogously we come to the conclusion
ψ ∈ Γ′.

In either case, one of ϕ,ψ must be in Γ′, and this
proves that Γ′ has the disjunction property.

• Γ′ is a successor of Γ, because Γ′ ⊇ Γ by definition.

• E∗ ⊆ EΓ ′ . To see this, take any ∆ ∈ E∗; we are
going to show that Γ′ ⊆ ∆.

If ϕ ∈ Γ′, there are γ ∈ Γ and ¬χ ∈
⋂
E∗ such

that `gkp γ ∧ ¬χ → ϕ. Since E∗ ⊆ EΓ , we have
Γ ⊆ ∆ and thus γ ∈ ∆; on the other hand, since
∆ ∈ E∗, also ¬χ ∈ ∆. So, both γ,¬χ are in ∆
which is a gkp-theory, and therefore ϕ ∈ ∆.

This shows Γ′ ⊆ ∆, and thus, since ∆ is an end-
point, that ∆ ∈ EΓ ′ .

• EΓ ′ ⊆ E∗. Proceed by contraposition. Con-
sider any endpoint ∆ 6∈ E∗. Let γ∆ be the
characteristic formula of the endpoint ∆ given by
lemma 4: for any ∆′ ∈ E∗, ∆′ 6= ∆ and thus
Mgkp,∆′ 6
 γ∆; since ∆′ is an endpoint, this
implies Mgkp,∆′ 
 ¬γ∆, whence by the truth
lemma ¬γ∆ ∈ ∆′.

But since this is the case for any ∆′ ∈ E∗ we have
¬γ∆ ∈

⋂
E∗ and therefore ¬γ∆ ∈ Γ′ by definition

of Γ′.

On the other hand, ∆ |= γ∆ and thus, by the
truth lemma, ¬γ∆ 6∈ ∆. We conclude that ¬γ∆

is in Γ′ −∆, and thus Γ′ 6⊆ ∆, which means that
∆ 6∈ EΓ ′ . 2

Proof of theorem 2 (concluded). Suppose Θ 6`
gkp ϕ: then by lemma 2 there is a point Γ ∈ W gkp

with Θ ⊆ Γ and ϕ 6∈ Γ. So the truth lemma implies
Mgkp,Γ 
 θ for all θ ∈ Θ but Mgkp,Γ 6
 ϕ. But
we have seen that Mgkp is a saturated model: thus by
theorem 1, Θ 6|=InqL ϕ. 2
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