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1 Introduction

We consider the problem of predicting a discrete sequence of observations arising from a discrete
partially observable Markov process u. When the state space and transition distribution of the
process are unknown, this is not completely straightforward. One possibility is to explicitly
estimate the process, as was done in the approach followed by Beal et al. [2]. Alternatively, one
can ignore the underlying state structure and approximate the sequence of observations by a
Markov chain. However, it is not known what order of the Markov chain might be suitable. The
naive approach of maintaining a set of models of different order is inefficient, as the highest order
models will usually be particularly sparse. We present a simple Bayesian construction that takes
into account this sparseness, by creating a conditional hierarchy of predictive distributions. The
approach can be seen as a Bayesian analogue to predictive state representations [c.f. 8, 13, 6],
from which it was inspired.

More precisely, at each time step ¢, we observe the outcomes z; of an unknown process .
We denote the complete history of observations! to time t by 2! = z1,...,2; and a partial
history by z!_, 2 2_k,...,x;. When there is no need to specify a time index we shall use x
to identify elements of X*. Finally, we write u(-|-) = P,(-|-) = P(-|, 1) to denote conditional
distributions (as well as densities, when there is no ambiguity) under the process p. We examine
algorithms A : X* — 27, mapping from any sequence of observations x! to an inferred probability
di(z441]|2t) over the subsequent outcomes x;,1 € X, and that make randomised predictions 241
by sampling from ¢;. Our goal is to find A that minimises the average loss over T steps

T
1 .
Ly(A) & TZ@, O 2 T{3 # x}, (1)

t=1
where I{-} is an indicator function, that equals 1 when its argument is true and zero otherwise,
and where xy11 ~ i, and Z111 ~ ¢:. We make the following assumption through out:
Assumption 1. The unknown process p s stationary.

One particular type of process that matches our problem well is a hidden Markov model:

Definition 1 (HMM). A hidden Markov model p is a random process over (S x X)*, the
product space over sequences of states sy € S, observations xy € X, for all t > 0, with the
following properties. Firstly, that the state distribution is Markov:

p(ser1]s’) = p(sir]se), (2)
where we take s* to mean (s1,...,s¢). Secondly, that the observations only depend on the current
state:

plaga’™ s') = plase). (3)

When p is unknown, one possibility is to use a Bayesian approach to estimate the correct
model. Let M be a class of HMMs with common X', S, but unknown state observation distribu-
tion and let the true model be p* € M. We equip the measurable space (M, ), where M is a
suitable Borel set over M, with a series of probability measures =; corresponding to our subjec-
tive belief. Thus, for any M € 9, =,(M) is our subjective belief at time ¢ that u* € M C M.

"'We maintain a general exposition, in that we do not consider a special structure in the space of observations,
i.e. that x; is a tuple (a¢,0¢,7¢) of actions, observations and rewards. Nevertheless, the proposed approach is
adaptable to partially observable Markov decision processes with some additional work.
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Assuming that the density & £ dZ; over M exists for all ¢, we can write the following update:

Er1(n) = &(plzes, z), ) =D &lp, s). (4a)

Inference in such a domain is not trivial, and it becomes harder when S is unknown. Non-
parametric methods such as the infinite hidden Markov model [2] can be used in that case.
However, if we are not interested in the state per se, but only in the observations, we may be
able to predict x equally well in some other way.

Predictive state representations [8] and observable operator processes [5]), do not explicitly
model the state. Rather, they create a model over next observations, conditioned on histories
of observations and past and future actions P(mifﬂact, a'**). We shall employ a similar device,
with a Bayesian approach that considers all possible contexts (in practice up to some maximum
order) all the time. We do not explicitly discuss actions in this paper, however it is not difficult
to adapt the approach to take them into account.?

Them main contribution of the paper is that the difficulty in learning such representations
vanishes, as the process can be implemented as a simple hierarchical prior over conditional
models. This enables us to perform full Bayesian inference for discrete observations.

The paper is organised as follows. We discuss related work in Sec 1.1. Section 2 discusses the
models used in this paper to predict observations. We first examine a simple Bayesian Markov
chain model of order k in Sec. 2.1, which we later extend with a prior over orders k in Sec. 2.2.
Finally, Bayesian predictive state representations are introduced in Sec. 2.3. Experimental
comparisons and results are presented in Sec. 3 and we conclude with Sec. 4.

1.1 Related work

The suggested approach is inspired by predictive state representations (PSR) [8], and the closely
related observable operator processes (OOP) [5] and variable length Markov chains [4, 3]. Such
representations use a set of contexts {M;} on observations (called tests in the reinforcement
learning literature), over which a probability p; is maintained at any given moment ¢. Jointly,
the set of tests and the probability of each test given the history, then assign a probability
Pi(zpi1]at) = 3, Mi(wi41)pe(M;]at) to the next observation.® Many approaches for learning
the set of core tests, which is the set of tests necessary to predict future outcomes, as well as the
required probability model p; have been proposed in the past [13, 12, 6].

To our knowledge, so far there have not been any Bayesian approaches for learning such
representations. This is an important issue, as non-Bayesian approaches appear difficult to
adapt to the online learning case. Using a fully Bayesian framework, there is no set of “core”
tests, in contrast to the previous approaches. Rather, we have a different amount of certainty
in the predictions of each different test. Furthermore, the usefulness of each context changes
as more data is acquired, something which is not taken into account at all in previous related
approaches.

A closely related approach are context tree weightings [15]. Thsese are related to variable
order Markov models, and they employ a Dirichlet prior at each context. However, in those
models the representation is not updated.

Conceptually, our model is very similar to CTW, especially in its use of recursive computation
to simplify inference and prediction. The main difference is that in the CTW model, the weight
of each model class w(M) are defined in a non-Bayesian way. Thus, they only depend upon

2 As our approach does not employ Monte Carlo sampling to perform estimation, we need no special assumptions
on the sampling distribution.

3 Again note that we have simplified matters somewhat by only considering the next observation and no actions.
However, we feel that this difference is tangential to the topic of this paper.
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the size of the model and not on the number of data the model has seen. The main advantage
of the Bayesian approach is that the weights of larger contexts become higher once more data
becomes available.

Other related work includes the infinite hidden Markov model[2] and the infinite Markov
model [10]. However, these models employ sampling, while the presented approach is closed
form. Another well-known closed-form approach is Polya trees [7, 9], which define a tree of
partition on [0, 1], but can be trivially extended to X*. The main difference between Polya trees
and the method proposed herein is our approach takes into account the quality of the predictions
at each context.

The main contribution of this paper is a construction that allows us to compactly represent
and update belief over all possible contexts. This belief can then be considered as a Bayesian
predictive representation of state. In the sequel, we shall develop the model and demonstrate its
predictive ability.

2 Predictive Bayesian models

One may usually predict the observations well by using a Markov chain of sufficiently high order
k. Bayesian inference for a Markov chain of known order with discrete observations is simple
and is summarily described in Sec. 2.1. Unfortunately, not only is the required order not known,
but the best-approximating order depends on the amount of available data. For this reason, we
consider a simple hierarchical prior over model classes of different order in Sec. 2.2. The problem
with this approach, (ignoring switching time considerations such as those analysed in [14]) is
that, since k£ order models have a predictive distribution condition on k observations, different
contexts (partial histories) will have been observed different amounts of times. Thus, for some
contexts it might be better to switch to a lower order model. We may also need to switch to a
lower order model if for a specific previous observation z;_g, the next observation x;41 no longer
depends on z;_; for K’ > k.

The main insight of this paper is that this can be achieved very easily with a Bayesian
formulation of predictive state representations. Inference in such models is much simpler than
inference in hidden Markov models and computationally efficient. The method is fully described
in Sec. 2.3. However, we begin by introducing Bayesian inference over the set of Markov chains

of a specific order and extend this to a collection of sets of various orders, before introducing
the full model.

2.1 Bayesian inference for a single Markov chain

We restrict ourselves to the set M}, C M of Markov chains (MC) of order k with observation set
X. Each Markov chain u € M}, corresponds to a probability distribution conditioned on the k
previous states. More specifically, we use a Dirichlet distribution for each x € X*, with density

R A CA0)) LU0
= = sy L ®)

with 7, £ P(zip1 | z=2z), v € RI¥, |lul; = 1, u > 0. We will denote by ¥(¢;) the matrix
of state transition counts at time t, with ¥(&p) being the matrix defining our prior Dirichlet
distribution.

Thus, for any belief £, we have Dirichlet parameters {1/%(¢) : i € X,x € X¥}. These values
are initialised to ¥({p) and are updated via simple counting:

V¥ (Er1) = (&) + T{m =i Axf ), =x}. (6)
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We now need to move from the distribution of a single context vector x to the set of transi-
tion distributions for the whole chain. In order to do this easily, we shall make the following
simplifying assumption.
Assumption 2. For any x,x’ € X* p(7x, 7)) = p(7x)p(7x ).

Now we shall denote the matrix of transition probabilities for MC p as T and let 724, =
p(zep1=1 | 2t_,=x). Then

&) =&(TH) =& (rx = TEVs € S,a € A) (72)
— H H E(m = TH), (from Ass. 2) (7b)
seSacA
(ft)
Tsi (7C)
sgsgnzes Pi(& ))1;[,5( )

Thus W is a sufficient statistic for expressing the density over M. To fully specify the model,
we need to set the prior Dirichlet parameters. For this model and throughout the paper, these
are always initialised to 1.

We can now employ &, the posterior over the parameters of My at time ¢, to predict the
next data point:

Eu(wralat, My) 2 / (e |26 (1) dp (8)
My,

It is common and straightforward to add another prior over model order, allowing us to switch
to more complex models when more data is available. This is described in the next section.

2.2 A hierarchical prior over Markov chain orders

Let a collection of sets of models W = { My}, equipped with a prior distribution ¢y over M € W.
Each model set M}, contains all Markov chains of order & for a fixed observation set X and thus
admits a conjugate prior such as the Dirichlet prior outlined in the previous section. The belief
over model sets can be updated as follows:

& (@i |xt, My) e (M)
Y oarew Se(weplat, M) gy (M)

The posteriors over the models in each set M}, are updated according to (7), so & (w41 |xt, My),
given by (8), is the predictive distribution of the k-th order model, conditioned on the history,
and resulting from the posterior 1; obtained after seeing ¢ observations. The only remaining
question is how to set the prior ¢g. In this paper, we simply use the Akaike information
criterion [1] and set it to ¢o(My) oc exp(—|X|¥+1). This is not ideal, since explicit switch time
distributions have better performance [14], but it is good enough for our purposes.

We can now use the posterior over M}, to form a distribution over next observations:

Sr(wa]at) &Y @ lat, My). (10)
Myew

Gri1(My) 2 go(My|2™th) = 9)

The main problem with this setting is that it will take a long time for ¢;(My11) to become
greater than ¢,(M}) because the number of possible contexts for order k+1 is larger by a factor
of |X|. Furthermore, for ¢ such that ¢;(Myy1) > ¢¢(My), there will exist some histories x! for
which My, will be making much poorer predictions than M} because of the possibility that
P, (zg1lzt ;1) ~ Py(xi41]zt ;). Thus, intuitively, we could do better by switching to larger
order models for some contexts only. This can be achieved if we allow our belief over model
order to depend on the history.
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2.3 Bayesian predictive state representations

We can test the hypothesis that higher order models are only better for some context vectors, by
using a conditional prior over model orders. In order to do this, we now consider model classes
M; that are only active for specific subsets of histories.

More specifically, let M; denote a conjugate model class predicting the next observation
xy1. Letting our belief over model parameters at time ¢ be & as usual, we define the predictive
distribution of M; at time ¢t as:

Mi(zp1) £ / p(@es1)&(p) dp. (11)
Furthermore, let Cj, = {M; : i = 2F, ... 2¥*1 — 1} be a collection of k-order Markov models.
Different models in the collection predlct z441 given different context history vectors z}_,. More
precisely, we associate a vector x; € X* with each model class M; € C’k, such that U2 H Ly, =

X* and x; Nx; = 0 for all i # j. Let us write 2! = x, for x € Xk if z!_, =x, and denote the
set of active models M; for a given history z! by ///(a:t) ={M; : 2' = x;}. Now, note that we
can use the collection C}, to define a distribution over next observations for all ¢ > k:

Cr(mrla’) = Y T{M; e (")} M(zi11) (12)
M;eCy,

The set C} is analogous to the “uniform” set M} used by the hierarchical model. All that
remains is to define an appropriate distribution over models in .#(x!). In order to do this
efficiently, we take advantage of the following construction.

Let Ck & U?:o C; be the set of all models of order at most k, and denote the event that

the order of M is at most k by By 2 I1{M € C¥ A (M ¢ Cjy VK’ > k)}. Then we can write a
recursion relating the prediction given that the model is at most order k, with the prediction
given that the model is at most order k — 1, for the particular context x':

P(w¢41|2', By) = P(M € Cila', By) P(w11]2", M € Cy)
+[1 = P(M € Cylat, By)| P(x441|7", Bp_1). (13)

The above recursion allows us to efficiently store our belief over models using different con-
texts. Let us now see how to update this belief and make predictions. For compactness, let
¢¢(-]-) = P(-|-, 2%, ¢9) denote any conditional distribution under our belief at time ¢. In addition,
with a slight abuse of notation, let M} denote the event that M € Cj. Then, we can write the
following update for our belief:

Ge(ze41]at, M) pe(My|By,)

Mi|By) = . 14
P OIIB) = S e o, Mo (M B) i
_ ¢t($t+1|xta Mk)qst(Mk‘Bk) (14b)
Ge(wppr|wt, My) gy (M| By) + ¢¢(ze41|2t, Be—1)[1 — ¢¢(My|By)]
Note that for any ¢:
¢(My—1|Bg) = [1 — ¢(Mg|By)|(My—1|Br—1), (15)

which also allows us to write the following expression for the predictive distribution:
¢(xry1|2’, By) = d(aria]a’, My)d(My|2', By) + ¢z |2, Be1)[1 — ¢(Myla!, B)l.  (16)

Let us now put everything together.
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2.3.1 Implementation

Each collection Cj contains models of order k. Let M,ﬁ € (' such that qb(M,i,xt) > 0, i.e.
M} £ Oy N .#(2'). By construction, there is only one such model in Cy. We then use pg =
¢v(M}|By) to denote the probability that the correct model is M}, given that the correct
model’s order is at most k, under belief ¢y at time t’. Then note that By is trivially true at
time ¢ and thus ¢(M{) = ¢(M{|B)¢(Br) + ¢(M{|=Br)p(=Bt) = ¢(M{|Bt). So (M) = p} and
¢(Mi-1) = pj_1(1 — p}) and

=pi [] (01—

j=k+1
In order to make predictions we must calculate (16), thus we must calculate

ap £ ¢(zeq1 |2, Bi)

for all k. Note that
aj, = ppMy(ze1) + (1 — p)ag_;.

Finally, we can calculate the posterior for each conditional model via

1 _ pkMk(th)
Py
O‘k

This quantity only needs to be calculated for the models in . (x!). With an efficient sparse
matrix implementation, it is possible to store the coefficients p} with little overhead.

3 Experiments

In order to test the efficacy of the proposed approach, we compared the Bayesian predictive state
representation (BVMM) model, described in Sec. 2.3, with the Bayesian hierarchical model over
Markov chains (BHMC) described in Sec. 2.2.

Each experiment was performed by generating data from an underlying class of hidden
Markov models M, with |S| states and |X| observations, as well a specified maximum order kpax
of the BVMM and BHMC models. Each experiment consisted of 100 runs of length 7' = 10%.
At the start of the n-th run, we randomly created a hidden Markov model j,, and generated z”
observations.

Each of the models under evaluation calculated a history-dependent probability distribution
¢, fort =0,...,T—1, from which we generated a series of predictions 27, by sampling ;41 ~ ¢;.
We then calculated the instantaneous loss of each model, ¢;. In addition to the BVMM and
BHMC models, we also evaluated an oracle and an HMM oracle.

The HMM oracle selects &1 with probability Gy(x¢1+1) = ZStJrl,St L (Tet1, Str1]5e) Be(se)-
This is done by maintaining a belief 3;(s;) over states? with the initial belief 8y being uniform.
Thus, the predictions of this model are the best we could do if we knew the correct model p,.

The oracle actually observes s; and predicts z;1 with probability pu, (zi41|st) = ZSHI ton (Te41, St1]5t)-
Its performance is that obtainable under perfect state estimation.

Figure 1 presents some experiments with |S| = 4, |X'| = 4 and for kmax € {2,4,8}. The results
on the left column show L;, the average loss to time ¢, averaged over 100 runs. The rightmost
columns show the cumulative regret of each algorithm A compared to the HMM oracle A’

(AN = Zet — 4 (M),

‘Using the standard updates Bi(s:) = Bi—1(st|ze) = pn(we|s)Be—1(s:)/Bi—1(z:) and Bi—1(s:) =
Zst,l tn(Stlse—1)B(st—1).
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Figure 1: The figures depict average loss at t time steps for all models with kna.x = 8, and
cumulative regret with respect to the HMM oracle, for the two estimated models, with the
underlying HMM having an observation set with |X| = 4. The results are averaged over 100

runs.
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where A is either the BVMM or the BHMC model. It can easily be seen that both models
start at the same level of performance, but BHMC reaches a plateau very quickly. This fits the
hypothesis that the conditional prior over models is more suitable for prediction. Overall, we
see that the cumulative regret of BVMM is consistently smaller than that of BHMC. However,
the overall gain, while signifcant, is not very large.

4 Conclusion

We presented a simple extension of the simpler Bayesian hierarchical Markov chain, by allowing
our posterior over model orders to be conditioned on the history. This allows us to switch
between higher and lower order models depending on the recent observations. The fully Bayesian
approach allows us to treat the learning and prediction problem in a unified framework.

Experimentally, it appears as though the BVMM model consistently outperforms the naive
hierarchical approach and suffers only a small amount of regret compared to the HMM oracle.
We conjecture that a more classical PSR learning scheme, such as [13], can perform similarly
to the BVMM approach for a fixed amount of data and with the right choice of core tests.
However we think that the question of selecting the right core tests has not been satisfactorily
addressed. Most methods extend the approach suggested in [8, 12], which relies on having
a known POMDP model, to the case when the POMDP model is unknown. That requires
performing tests of conditional independence, which in our view, not only lacks the elegance
afforded by the fully Bayesian approach, but is also difficult to implement as it requires the
definition of a threshold for accepting conditional independence.

The presented construction is similar to the one used in predictive state representations,
though the two approaches are not directly equivalent. It is, however, easy to obtain a partial
equivalence by replacing the space X with the product space of POMDP observations and actions
O x A. Then each outcome is actually z; = (04, a;). Then, instead of maintaining a distribution
P(z¢41]z"), we maintain |A| distributions, P(os41|a¢t1,x%), which fully characterise the system.

Compared to PSRs, the suggested approach makes use of the fact that the set of useful
tests changes as we acquire more data. This is an extremely important aspect of the problem
of learning to act in a large POMDP. Then, even if we knew the “right” core tests, it would
be improper to use them from the start, since they are initially poorly estimated. Rather,
estimating simpler tests initially and more complex tests as more data is acquired is a much
more efficient use of the data.

In the future, we would like to address the following issues. Firstly, it would be important
to perform further experiments on larger problems and with higher order models. Secondly,
it is necessary to apply the model to actual POMDP problems, explicitly taking actions into
consideration. Because the approach is fully Bayesian, it would be also theoretically possible to
perform Bayes-optimal exploration [c.f. 11] in this framework. In fact, using a BVMM, inference
is much simpler, since it is no longer required to perform elaborate sampling procedures. Finally,
it would be extremely interesting to examine the performance gain of an explicit switching time
prior [14] and to perform a theoretical analysis of the regret.

References

[1] H. Akaike. An information criterion (AIC). Math Sci, 14(5), 1976.

[2] Matthew J. Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. The infinite hidden
Markov model. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors,
NIPS, pages 577-584. MIT Press, 2001.



REFERENCES 9

3]

[14]

[15]

Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order Markov
models. Journal of Artificial Intelligence Research, pages 385—421, 2004.

Peter Bithlmann and Abraham J. Wyner. Variable length Markov chains. The Annals of
Statistics, 27(2):480-513, 1999.

H. Jaeger. Observable operator processes and conditioned continuation representations.
Neural computation, 12(6):1371-1398, 2000.

M. R. James, T. Wessling, and N. Vlassis. Improving approximate value iteration using
memories and predictive state representations. In Proceedings of the National Conference
on Artificial Intelligence, 2006.

Michael Lavine. Some aspects of polya tree distributions for statistical modelling. The
Annals of Statistics, pages 1222-1235, 1992.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In Advances
in Neural Information Processing Systems 14, 2001.

R. Daniel Mauldin, William D. Sudderth, and S. C. Williams. Polya trees and random
distributions. The Annals of Statistics, 20(3):1203-1221, 1992. ISSN 00905364. URL
http://www. jstor.org/stable/2242009.

D. Mochihashi and E. Sumita. The infinite Markov model. In Advances in Neural Infor-
mation Processing Systems, pages 1017-1024. MIT Press, 2008.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive POMDPs. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, Cambridge, MA, 2008. MIT Press.

Matthew R. Rudary and Satinder Singh. A nonlinear predictive state representation. In
NIPS, 2004.

Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter Stone.
Learning predictive state representations. In Proceedings of the Twentieth International
Conference on Machine Learning, August 2003.

T. van Erven, P. D. Griinwald, and S. de Rooij. Catching up faster by switching sooner : a
prequential solution to the AIC-BIC dilemma. arXiv, 2008. A preliminary version appeared
in NIPS 2007.

F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method:
basic properties. IEEE Transactions on Information Theory, 1984.



10

REFERENCES




Acknowledgements

This work was part of the ICIS project, supported by the Dutch Ministry of Economic Affairs,
grant nr: BSIK03024. Many thanks to the anonymous reviewers, Peter Griinwald and Nikos
Vlassis for comments and discussions.



IAS reports

This report is in the series of IAS technical reports. The series editor is Bas
Terwijn (bterwijn@science.uva.nl). Within this series the following titles
appeared:

[16] C. Dimitrakakis, A. Mitrokotsa Statistical decision making for authentication
and intrusion detection Technical Report TAS-UVA-09-03, Informatics Institute,
University of Amsterdam, The Netherlands, June 2009.

[17] P. Oude, G. Pavlin Dependence discovery in modular Bayesian networks. Tech-
nical Report TAS-UVA-09-02, Informatics Institute, University of Amsterdam,
The Netherlands, 2009.

[18] C. Dimitrakakis Complezity of Stochastic Branch and Bound for Belief Tree
Search in Bayesian RL Technical Report IAS-UVA-09-01, Informatics Institute,
University of Amsterdam, The Netherlands, April 2009.

All TAS technical reports are available for download at the ISLA website, http:
//www.science.uva.nl/research/isla/MetisReports.php.



