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By instantaneously changing a global parameter in an extended quantum system, an
initially equilibrated state will afterwards undergo a complex nonequilibrium uni-
tary evolution whose description is extremely challenging. A nonperturbative
method giving a controlled error in the long time limit remained highly desirable to
understand general features of the quench induced quantum dynamics. In this paper
we show how integrability �via the algebraic Bethe ansatz� gives one numerical
access, in a nearly exact manner, to the dynamics resulting from a global interaction
quench of an ensemble of fermions with pairing interactions �Richardson’s model�.
This possibility is deeply linked to the specific structure of this particular integrable
model which gives simple expressions for the scalar product of eigenstates of two
different Hamiltonians. We show how, despite the fact that a sudden quench can
create excitations at any frequency, a drastic truncation of the Hilbert space can be
carried out therefore allowing access to large systems. The small truncation error
which results does not change with time and consequently the method grants access
to a controlled description of the long time behavior which is a hard to reach limit
with other numerical approaches. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3183720�

I. STATEMENT OF THE PROBLEM

Due to fast dissipation rates, the unitary evolution of out-of-equilibrium quantum systems
remained for a long time a question which remained mostly of academic interest. However, recent
developments in the field of cold atomic systems,1 in which tunability of the Hamiltonian com-
bined to very low dissipation made this problem experimentally accessible and created a strong
interest2–5 in trying to draw a general theoretical understanding of far from equilibrium quantum
dynamics. The interaction quench is a simple way to create a prepared out-of-equilibrium quantum
state of the system. It is realized by supposing that a quantum system is initially in an eigenstate
�the ground state� of Hamiltonian Hg0

. Here g0 is some global tunable parameter of the Hamil-
tonian. At time t=0, the parameter g0 is instantaneously changed to g, and as a consequence the
initial state ��g0

0 � is no longer an eigenstate of Hg. This process puts the system in a far from
equilibrium state, whose subsequent evolution is fully determined by the new Hamiltonian Hg and
the initial conditions.
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c�Electronic mail: j.s.caux@uva.nl.

JOURNAL OF MATHEMATICAL PHYSICS 50, 095212 �2009�

50, 095212-10022-2488/2009/50�9�/095212/14/$25.00 © 2009 American Institute of Physics

Downloaded 26 Oct 2010 to 145.18.109.182. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3183720
http://dx.doi.org/10.1063/1.3183720
http://dx.doi.org/10.1063/1.3183720


The resulting dynamics of the wave function are easily formulated using elementary quantum
mechanics since they simply are given by solving the time dependent Schrödinger equation,

���t�� = e−iHgt��g0

� � . �1.1�

Naturally, the evolution is greatly simplified by projecting the system onto the eigenbasis of
Hg defined by a set of eigenvectors ��g

�� with eigenvalues ��,

���t�� = �
�

e−i��t��g
���g0

� ���g
�� . �1.2�

The resulting time-evolved average of any given operator O can also be written as a sum over
form factors weighted by the projections of the initial ground state onto the eigenbasis of the final
Hamiltonian,

���t��O���t�� = �
�,��

e−i���−����t���g
���g0

� ���g0

� ��g
������g

���O��g
�� . �1.3�

Not only does one need to be able to compute eigenstates and eigenenergies of both Hamil-
tonians, the exact treatment also requires the capacity to compute overlaps between the eigenstates
of two different Hamiltonians. We will show how this apparent hurdle is simply dealt with, when
using the results from the algebraic Bethe ansatz �ABA� within the fermionic pairing model
treated here.

Moreover, as is readily seen, obtaining exact results necessitates a double sum over the full
Hilbert space. Since its dimension generally grows factorially with system size, this is apparently
heavily limiting as far as reachable system sizes is concerned. In the coming sections, we also
show how the quench populates predominantly a small subset of the Hilbert space, therefore
allowing a drastic truncation with minimal loss of information ultimately granting access to sys-
tems much larger than one could naively expect.

Most of the results presented here were previously published in Ref. 6. This paper, however,
supplements this reference with additional details on the truncation scheme and also presents
novel ideas on the relationship between weak and strong coupling eigenstates of this particular
system.

II. SYSTEM

We treat a model of spin 1/2 fermions in a set of single particle energy levels which can
accommodate up to two electrons �of opposite spin�. Electrons interact through a typical Bardeen-
Cooper-Schrieffer �BCS� uniform s-wave pairing term which retains coupling only between time-
reversed states,

H = �
�

�
�

��

2
c��

† c�� − g�
�,�

c�+
† c�−

† c�−c�+. �2.1�

The model is basically a discrete version of the celebrated BCS Hamiltonian to which it
reduces in the thermodynamic limit.7 An Anderson pseudospin representation8 also exists by
defining S�

− =c�,↓c�,↑, which leads to

HBCS�	� j
,g� = �
j=1

N

� jSj
z − g �

�,�=1

N

S�
+S�

− . �2.2�

Here the N levels are the unblocked levels, i.e., the ones which are not occupied by a single
electron and therefore participate to the dynamics.9 This model, although initially developed by
Richardson9 to describe pairing in nuclei, has also been used more recently to describe the physics
of ultrasmall superconducting metallic grains.10
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Irrespective of the distribution of the energy levels and of their degeneracies, the model is
integrable11 and can be diagonalized fully using the ABA.

A. The eigenstates of the systems

Through the use of the ABA,10,12,13 one can access a very compact representation of the
eigenstates of Hamiltonian �2.2�. For any given set of M complex parameters wj, we shall call
rapidities, the repeated action of the C�wk� operator of the monodromy matrix on a fully down
polarized state, build a “general” state,

�	wj
� = �
k=1

M

C�wk��↓↓↓ ¯ ↓� � �
k=1

M 
�
�=1

N
S�

+

wk − ��
��↓↓↓ ¯ ↓� . �2.3�

All of these M rapidities states have a definite z-projection of the total spin operator which is
simply given by M −N /2. For any value of g, the un-normalized eigenstates of the BCS Hamil-
tonian are all built in this fashion. For a given coupling constant g, the complete set of eigenstates
correspond to the general states constructed out every set of rapidities which are solution to the
Richardson �Bethe� nonlinear algebraic system of equations,

−
1

g
= �

�=1

N
1

wj − ��

− �
k�j

M
2

wj − wk
, j = 1, . . . ,M . �2.4�

The eigenenergy of one of these states is given �up to a constant� by the sum,

E�	wj
� = �
j=1

M

wj . �2.5�

At zero coupling, the full set of fixed magnetization �fixed M� eigenstates of Hamiltonian
H0�	� j
�=� j=1

N � jSj
z is known to be given by the various colinear spin states with M spins aligned in

the +ẑ direction and the remaining ones in the −ẑ direction. Each and every one of these states can
be expressed in the form �2.3� by using a set of M real rapidities wj. By giving the M rapidities the
values of the M energy levels at which a + 1

2 spin is found �	wj
= 	ej
�
�, this leads to

�	wj
� 	 
�
	�i

�


M

Si
+��↓↓↓ ¯ ↓� , �2.6�

which is just the state with M flipped spins at the chosen levels 	�i
�
.

In the opposite regime of infinitely large coupling, the Hamiltonian reduces to

H
�	� j
� = − g �
�,�=1

N

S�
+S�

− = − gStot
+ Stot

− = − g�J2 − �Jz�2 + Jz� , �2.7�

where J is the total angular moment operator of the N spins system and Jz is its z component. The
eigenvectors of the Hamiltonian are therefore known through the procedure of angular momentum
coupling of N spins 1

2 leading to sets of eigenstates of J2 and Jz. As mentioned previously, the
z-projection of the total angular momentum is equal to the number of rapidities M. For a fixed
value of M, one can absorb the M-dependent terms in a global shift of the energies and conse-
quently the eigenspectrum consists of N ! / �N−M� ! �M�! states subdivided into degenerate sub-
bands of total angular momentum j with eigenenergies and degeneracies given by

E�j� = − g�j�j + 1�� , �2.8�
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D�j� =
N ! �2j + 1�


N

2
+ j + 1� ! 
N

2
− j�!

. �2.9�

In the strong coupling limit, the solutions to Richardson’s equations naturally define an alter-
native representation for these eigenstates. It is known that for a state defined by M rapidities, the
various solutions will be defined by a number r of divergent rapidities. These rapidities can be
expressed in the large g limit as wi=Lig, where the Li’s are the zeros of the Laguerre polynomial,14

Lr
−1−�N+2r−2M��Li� = 0 ∀ Li. �2.10�

There is a direct correspondence between the number r of diverging rapidities and the total
spin eigenvalue j. Looking simply at the energies, it was shown14 that

r = j + M −
N

2
. �2.11�

The remaining roots �which remain finite� defining the various eigenstates can then be found
by solving the following set of simplified Richardson’s equations which involve only the nondi-
vergent M −r rapidities:

�
�=1

N
1

wj − ��

− �
k�j

M−r
2

wj − wk
= 0, j = 1, . . . ,M − r . �2.12�

This particular set of equations still requires a numerical approach in order to find every
possible solution.

One must realize that within a given degenerate subset, both sets of eigenstates �Bethe ansatz
and total spin eigenbasis� are chosen differently. This is of course not an issue in the g=
 case, but
the Bethe ansatz representation compares advantageously to the total spin eigenbasis when trying
to expand in powers of 1 /g. Whereas in the former, one can directly expand the Richardson
equations in powers of 1 /g in order to describe the system,14 in the latter representation we would
need to apply perturbation theory on a set of highly degenerate levels which would therefore
involve diagonalization of large matrices.

B. Numerical solution

Except in the previously discussed extreme cases of zero or infinite coupling, no analytical
solution is known to the Richardson equations, and one therefore needs to resort to numerical
techniques in order to study this particular system. Many efforts have been made to construct
efficient algorithms for solving Richardson’s equations15,16 but it still remains a difficult task to
achieve stable and fast computation of the various solutions. As is always the case when dealing
with nonlinear systems of algebraic equations, the convergence of any algorithm toward a given
solution highly depends on the capacity one has to generate an appropriate initial approximation of
it.

In the absence of any known general features of the solutions in the intermediate coupling
regime, it makes it quite natural to use a scanning procedure starting from the known solutions at
g=0 and increasing the coupling in small steps in order to reach solutions at a given value of g.
This guarantees an adequate trial solution from which an iterative procedure can be carried out
successfully.

The solutions are such that rapidities are either real or form a complex conjugate pair �CCP�
with another one. At the critical values of g at which two real rapidities collapse into a CCP �or
vice versa�, Richardson’s equations expressed in the form �2.4� have cancelling divergent terms
which require appropriate modifications in order to be dealt with numerically. These forming and
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splitting apart of CCPs happen exclusively when two rapidities, say w1 and w2 are equal to one
another while at the same time being equal to one of the energy levels �c� 	�1 ,�2¯�N
. This
allows a rewriting of the equations using the two real variables,

�+ = 2�c − w1 − w2,

�− = �w1 − w2�2. �2.13�

Contrarily to w1 and w2, these variables maintain a finite derivative with respect to g while
going from real to complex. One can additionally transform the Richardson equations for w1 and
w2 in the following two equations:

4�+ + ���+�2 − �−�G1 = 0, �2.14�

���+�2 − �−��−G2 − 4�+ = 0, �2.15�

where

G1 = −
2

g
− �

��c

N � 1

w1 − ��

+
1

w2 − ��
� + 2 �

k�1,2

M � 1

w1 − wk
+

1

w2 − wk
� , �2.16�

G2 = − �
��c

N � 1

�w1 − ����w2 − ���� + 2 �
k�1,2

M � 1

�w1 − wk��w2 − wk�
� . �2.17�

Rapidities which form a CCP at a given g can split apart into two real rapidities at a larger
coupling and can also reform a CCP with a different rapidity. This means that one might need to
redefine a new set of variables �and equations�, at every step in g. This is simply achieved by
“pairing” any two real rapidities wi ,wj which have the same closest single particle energy level �c

and using for them the variables �2.13�. For these rapidities we also use the modified version of the
Richardson equations written above. This always results in a system of M equations depending on
M variables, but it can be modified at every step in g in order to adapt to the local structure of the
solutions.

Independently of the pairing used at a given point, the Jacobian is always obtainable analyti-
cally in terms of these variables and it therefore allows a straightforward use of Newton’s algo-
rithm for nonlinear algebraic equations. Despite the lack of guaranteed stability �unavoidable in a
general set of algebraic equations�, one can still manage to compute rapidly any solution in this
way, provided we adjust the steps in g in such a way that at every g we correctly evaluate the
rapidities which need to be paired. In a case where numerous pairings-unpairings happen on a
small g interval, one simply needs to reduce the steps in g in order to make sure every rapidity
crosses only one critical point per step. Since the scanning process gives access to a local evalu-
ation of the derivatives of rapidities, we can always get a good evaluation of the desired �g for the
coming step.

Figure 1 shows the real part of rapidities for a few solutions of the Richardson equations
�examples showing also the imaginary part can be seen in other papers,17 for example�. These
examples show how one can conjecture, for a given g=0 solution, the number of diverging
rapidities that this state will have when deformed from 0 to infinite coupling.

One can understand the passage of a given state from its uncoupled form to the resulting large
coupling state by looking at the contiguous blocks of occupied and unoccupied states at g=0. Any
contiguous block of m unoccupied states will refrain up to m rapidities above it from diverging to
infinity. Starting from high energies, one looks at the first block of occupied states and the first
following block of empty states. Supposing they, respectively, contain p1 states and h1 states, if
h1
 p1, the p1 rapidities will remain finite. If h1� p1 then h1 of these rapidities will remain finite
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and the remaining p1−h1 can be added to the following block of occupied states. Supposing the
next blocks of occupied �empty� states contain p2 �h2� states, it would be treated in the same way,
but using

p2� = �p2

p2 + p1 − h1
�

depending on what happened in the previous block. In the three examples presented in Fig. 2, we,
respectively, find for the leftmost case: �p1=1 , h1=2�, �p2=2 , h2=1�, �p3=2 , h3=1�, and �p4

=3 , h4=3� leading to two diverging rapidities �here they form a CCP�, in the middle panel we
have �p1=3 , h1=1�, �p2=2 , h2=1�, �p3=1 , h3=1�, and �p4=2 , h4=2�, giving three diverging
rapidities �two of them forming a CCP� and the last case has �p1=3 , h1=3� and �p2=5 , h2=0�
giving five divergent rapidities �including two CCPs�. Although giving results equivalent to the
algorithm proposed in Ref. 16, this approach can also provide some insight on approximative
values of the finite rapidities in the large g limit. This could give access, in this limit, to initial
guesses close enough to the real solutions to allow direct computation of the various solutions to
Eq. �2.12�.

0 1 2 3 4 5 0 1 2 3 4 5 0 0.5 1 1.5 2

FIG. 1. A few examples of numerical solutions for M =8, N=16 �real part only� showing how to relate the g=0 structure
to the one at g=
. We, respectively, get 2, 3, and 5 divergent rapidities.

FIG. 2. �Color online� First column of the quench matrix �ground-state overlaps� for several quenches. In all plots N
=16, M =8 and the ground state energies �represented by vertical lines� have been shifted for clarity. Top: Decomposition
of the g=0 ground state with states at g=0.05,0.5,0.95. Center: Decomposition of several initial ground state g0

=0 ,0.15,0.3,0.5 in terms of the states at g=1. Bottom: Decomposition of the g0=1 ground state in terms of g
=0.95,0.55,0.15,0 states �from Ref. 6�.
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This procedure seems to work well for any state which is half-filled or less, since in that case
the diverging rapidities all have real parts going toward −
, the Laguerre polynomials �2.10�
involved having all their zeros in the left half plane. At higher filling factors this is no longer true,
but the alternative choice of representing the eigenstates as the repeated application of the operator
B�wi� on the fully up-polarized pseudovacuum, �k=1

M ���=1
N S�

− / �wk−�����↑↑ ↑¯↑�, could probably
allow similar arguments to be used in this case.

III. QUENCH MATRIX

Having shown how one can access individually any eigenstate of the system, we now need to
be able to realize explicit calculations of the projection of the initial state of the system onto the
eigenbasis of the final Hamiltonian. For a general Hamiltonian and even for a general integrable
Hamiltonian, this problem requires full diagonalization, in a given basis, of the initial and final
Hamiltonians. The factorial growth of the Hilbert space dimension �and therefore of the Hamil-
tonian matrix� limits one to very small system sizes.

For ABA integrable systems there exists a formula, due to Slavnov,18 which gives an expres-
sion of the overlap between an eigenstate of the system and a state built identically �Eq. �2.3�� but
for a general set of rapidities. This projection can be written as the determinant of an M �M
square matrix, which in the model discussed here reads explicitly13

�	wj
�	v j
� =
1

�Det G�	wj
�Det G�	v j
�

�a�b
M vb − wa

�a�b
M �wa − wb��a�b

M �va − vb�
Det J , �3.1�

with the matrix elements of J given by

Jab =
vb − wb

vb − wa
��

k=1

N
1

�wa − �k��vb − �k�
− 2�

c�a

1

�wa − wc��va − wc�
� . �3.2�

The M �M Gaudin matrices G, whose presence is needed to normalize both eigenstates, are
themselves obtained through the limit 	wj
→ 	v j
 of Eq. �3.1�, which gives

Gab�	v j
� = ��
k=1

N
1

�va − �k�2 − 2�
c�a

M
1

�va − vc�2 , a = b

2

�va − vb�2 , a � b .� �3.3�

In the precise case treated here, the C�w� operators have no explicit dependency on g �see Eq.
�2.3��. Consequently eigenstates of the Hamiltonian at any value of g are all general states built
like Eq. �2.3�. This allows one to use formula �3.1� directly to compute the relevant overlaps
between two sets of eigenstates ��g

� ��g0

� �. One must understand that a different model might not
share this property, and if a determinant representation exists for these overlaps in a general
integrable model, it remains to be found.

A. Weak coupling to strong coupling

For M =8 rapidities and N=16 energy level, the dimension of the Hilbert space is 12 870
which is sufficiently small to allow us to compute the full set of eigenstates. Using Slavnov’s
formula �3.1� we calculate the overlaps ��g

� ��g0

0 � of the g0 ground state with the full eigenbasis at
g. For a few quenches, with equally spaced energy levels, the squared norms of these overlaps are
plotted on Fig. 2 as a function of the energy of the state ��g

��.
In the limit of a small quench from g=0 to g=�g, first order perturbation theory theory can

be used. It gives nonzero overlaps with the g=�g coupled ground state and the set of states which
differed �at g=0� from the ground state by a single particle-hole excitation �one up spin moved to
a different level�. The following order would allow nonzero overlaps with two particle-hole exci-
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tation states and so on. This fact is clearly seen in the smallest quench presented in the top panel
�g=0.05� of Fig. 2 showing a set of decreasingly overlapping subbands, each associated with a
different number of particle hole excitations

When the quench is carried from an initial weak-coupling ground state to a stronger coupling
�the two top panels of Fig. 2�, one finds that a surprisingly small fraction of the final Hilbert space
is importantly populated by the quench. In fact, we see, in the distribution of energies, the large
coupling band structure �see Eq. �2.8�� forming and notice that in each of the bands the projection
on a single state of the initial ground state heavily dominates. We could easily verify that these
states are the finite g deformations of a given set of g=0 configurations pictorially shown on Fig.
3. This set of states is obtained �at g=0� by promoting contiguous blocks of Np�M rapidities
from right below to right above the Fermi level �FL�. According to the procedure outlined in Sec.
II B, they all lead, at g→
, to states whose number of rapidities remaining finite is equal to Np.
In fact, they are the lowest energy states having a given number of particle-hole excitations �at
g=0� equal to the number of finite rapidities �at g→
�.

For any quench from g0=0 to g� �0,1�, this set of M +1 states always account for more than
60% of the total amplitude �����g

� ��0��2 of the wave function expressed in the final eigenbasis.
Figure 4 shows this total contribution when quenching from an uncoupled initial state. Despite the

• • • • • • | ◦ ◦ ◦ ◦ ◦ ◦
• • • • • ◦ | • ◦ ◦ ◦ ◦ ◦
• • • • ◦ ◦ | • • ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ | • • • ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ | • • • • ◦ ◦
• ◦ ◦ ◦ ◦ ◦ | • • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ | • • • • • •

FIG. 3. Pictorial representation of the “single block states” obtained by promoting contiguous blocks of Np�M rapidities
from right below to right above the FL.

FIG. 4. �Color online� Total contribution of these states to the amplitude of the initial state at g0=0, as a function of
interaction �from Ref. 6�.
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presence of a dip in their contribution when quenching to the intermediate coupling regime, they
clearly remain strongly dominant for finite-size systems.

It is then natural, when looking for additional large contributions, to assume that states built
by slightly deforming the preceding set would be dominant. We therefore add to the reduced
eigenbasis the set of states built at g=0 by adding a single particle-hole excitation to the block
states. Figure 5 shows, for one of the block states discussed previously, the g=0 configurations
created by adding this single excitation �either above of below the FL�.

One can then add a set of states built with two particle-hole excitations over the block states.
We include every state obtained with one particle excitation above the FL and one hole excitation
below it. These would be constructed by the tensor product of the possible states above the FL, as
seen in the first set of states in Fig. 5, with the possible states below the FL in the second set.
Naturally, states with two excitations above �or below� the FL are also possible. A fairly small set
of these is actually included, since the study of the quench matrix made for a smaller system
indicates that they should be dominant. The treated cases are built by promoting any two rapidities
�absence of rapidities� above �below� the FL to any contiguous set of two free �occupied� level
above the FL as shown in Fig. 6.

In the case of M =16, N=32, the inclusion of all the aforementioned states proves sufficient
to obtain more than 97% of the weight of the wave function after the quench, i.e., �����g

� ��0��2


0.97. This figure holds for any final value of g between 0 and 1. One must understand that for
a given value of the final coupling only a part of these states will have an important contribution
to the wave function. As one can readily see in Fig. 2, the weight is shifted to different parts of the
Hilbert space as g changes. For example, when doing a large quench the overlap of the final
ground state with the initial one will become quite small, but for a small quench, it would be the
dominantly populated state. It is therefore possible to get an accurate projection of the uncoupled
ground state onto the coupled eigenbasis by keeping less than a 1000 states �out of the
601 080 390-dimensional Hilbert space for M =16, N=32� for a given quench. However, in order
to be able to treat the spectrum of quenches discussed here, we need to compute only a total of
7675 states. This drastic reduction in the effective Hilbert space is the key element which allows
us to treat relatively larger system sizes with a minimal error.

Since this truncation scheme is carried out in the eigenbasis of the Hamiltonian driving the
time evolution of the system, the error will not change with time. In fact, the time evolution only

• • • ◦ ◦ ◦ | • • • ◦ ◦ ◦ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• • • ◦ ◦ ◦ | • • ◦ • ◦ ◦

• • • ◦ ◦ ◦ | • • ◦ ◦ • ◦

• • • ◦ ◦ ◦ | • • ◦ ◦ ◦ •

• • • ◦ ◦ ◦ | • ◦ • • ◦ ◦

• • • ◦ ◦ ◦ | • ◦ • ◦ • ◦

• • • ◦ ◦ ◦ | • ◦ • ◦ ◦ •

• • • ◦ ◦ ◦ | ◦ • • • ◦ ◦

• • • ◦ ◦ ◦ | ◦ • • ◦ • ◦

• • • ◦ ◦ ◦ | ◦ • • ◦ ◦ •

⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• • ◦ • ◦ ◦ | • • • ◦ ◦ ◦

• ◦ • • ◦ ◦ | • • • ◦ ◦ ◦

◦ • • • ◦ ◦ | • • • ◦ ◦ ◦

• • ◦ ◦ • ◦ | • • • ◦ ◦ ◦

• ◦ • ◦ • ◦ | • • • ◦ ◦ ◦

◦ • • ◦ • ◦ | • • • ◦ ◦ ◦

• • ◦ ◦ ◦ • | • • • ◦ ◦ ◦

• ◦ • ◦ ◦ • | • • • ◦ ◦ ◦

◦ • • ◦ ◦ • | • • • ◦ ◦ ◦

FIG. 5. Pictorial representation of the single excitations for a given block state. One should understand that the same
process is applied to every one of the block states �see Fig. 3�

• • • ◦ ◦ ◦ | • • • ◦ ◦ ◦ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

• • • ◦ ◦ ◦ | • ◦ ◦ • • ◦

• • • ◦ ◦ ◦ | • ◦ ◦ ◦ • •

• • • ◦ ◦ ◦ | ◦ ◦ • • • ◦

• • • ◦ ◦ ◦ | ◦ ◦ • ◦ • •

• • • ◦ ◦ ◦ | ◦ • ◦ • • ◦

• • • ◦ ◦ ◦ | ◦ • ◦ ◦ • •

⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ◦ ◦ • • ◦ | • • • ◦ ◦ ◦

◦ ◦ • • • ◦ | • • • ◦ ◦ ◦

• ◦ ◦ ◦ • • | • • • ◦ ◦ ◦

◦ ◦ • ◦ • • | • • • ◦ ◦ ◦

• ◦ ◦ • ◦ • | • • • ◦ ◦ ◦

◦ ◦ • • ◦ • | • • • ◦ ◦ ◦

FIG. 6. Pictorial representation of the doubly excited states which are kept for a given block state. The same process is
applied to every one of the block states �see Fig. 3�. Moreover, one should remember the inclusion of states featuring one
excitation above and one below the FL �not represented here but discussed in the text�.
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affects the phase of various components of the wave function and not their amplitude. Apart from
the initial condition, the wave function �and by extension expectation value of operators� at any
time does not depend on the previous history. For very large times, it can therefore be calculated
directly and with a precision set by the small truncation error.

B. Strong coupling to weak coupling

Quenching from a strongly coupled initial ground state down to a weakly coupled system
brings a radically different structure. Looking at Fig. 2, we see that although a small quench still
brings a quench matrix naturally strongly peaked at low energies �with a roughly exponential
decay in energy�, when the difference between initial and final g is made larger, the distribution
flattens significantly.

One can understand this tendency by noting that the infinite coupling ground state is charac-
terized by having every rapidity present diverging �see Eq. �2.5��. In this case we have
limv→
 C�v�	�iSi

+. The repeated action of the operator for a set of diverging rapidities therefore
makes the M rapidity ground state a uniform superposition of every g=0 M-flipped spins state,
i.e.,

��g→

0 � 	 
�

i

Si
+�M

�↓↓↓ ¯ ↓� . �3.4�

The g→
 ground state therefore has a uniform projection onto the g=0 eigenbasis. In this
extreme scenario, any truncation of the final Hilbert space is impossible. However, when starting
from a finite albeit large initial coupling, it appears that the nearly monotonic energy behavior
could allow one to reduce the effective dimension of the problem by removing the largest energy
states. The slow decrease in the overlaps in energy would still make the problem of very large to
very weak g quench hard to treat using this technique.

IV. FORM FACTORS

Being in a position to compute the eigenstates, eigenvalues and the quench matrix elements is
sufficient to access the time-evolved wave function of the system. However, to compute the
average value of an observable O, one still needs tractable expressions for the form factors,

��g
��O��g

�� , �4.1�

of the operator we are interested in. In this work we will look at time evolution of the off-diagonal
order parameter defined as

��t� =
1

M
�
��

���t��S�
+S�

−���t�� . �4.2�

In equilibrium and in the thermodynamic limit, this quantity is closely related to the BCS gap,
making it a suitable parameter to quantify the superconducting tendency for finite systems even
out of equilibrium. One could also use in a similar fashion the canonical order parameter
���1

4 − �S�
z �2 �as in Refs. 19 and 20�, but since both quantities showed the same qualitative

behavior we only present the former here.
Although in the infinite coupling case we have �����g

��S�
+S�

−��g
��	��,�, since ���S�

+S�
− 	H
, at

any finite coupling it requires computation, for every couple � ,� of the form factors ��g
��S�

+S�
−��g

��.
Using Slavnov’s formula, the solution to the inverse problem, i.e.,

Si
+ = lim

u→�i

�u − �i�C�u� ,
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Si
− = lim

u→�i

�u − �i�B�u� , �4.3�

and determinant properties, it was shown in Ref. 6 that these form factors for S�
−S�

+ �and conse-
quently S�

−S�
+ too� can be written as a sum of M determinants. This was done by generalizing to the

case 	v
� 	w
 the method of Ref. 17, starting from the double sums given in Ref. 13. For �
�� we have

�	v
�S�
−S�

+�	w
� =

�c
 vc − ��

wc − ��
��k�q

�wk − wq�

�b�a
�va − vb��a�b

�wa − wb�
�q=1

M wq − ��

wq − ��

det J�,�
q , �4.4�

where, defining Aab=Jab�c�b�vc−wb� �Jab being defined by Eq. �3.2��, the matrix elements are
given by

Jab
q = Aab −

�k�b,q�wk − wb�
�k�b+1,q�wk − wb+1�

wb − ��

wb+1 − ��

Aab+1, b � q − 1,

Jaq−1
q = Aaq−1 + 2

�wq − ����wq−1 − ���
wq−1 − wq

�
c

 vc − ��

wc − ��
� � �

k�q−1
�wk − wq−1�

�2va − �� − ���
�va − ���2�va − ���2 ,

Jaq
q = 1/�va − ���2,

Jab
q = Aab, b � q . �4.5�

For �=� it can be easily related to the form factors for S�
z which were already published

elsewhere.13

V. ORDER PARAMETER EVOLUTION

Having a numerically tractable expression for every necessary element, it is straightforward to
compute the time evolution of the off-diagonal order parameter �Eq. �4.2��. The upper left corner
of Fig. 7 compares the time-averaged value i.e.,

FIG. 7. �Color online� Bottom left: Off-diagonal order parameter evolution for N=32, M =16. Right: Fourier transform, the
various plots are shifted on the vertical axis for clarity. Top left: Nonequilibrium finite-size “phase diagram” resulting from
the time-averaged canonical gap obtained from the off-diagonal order parameter, as explained in the text �from Ref. 6�.
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�̄ = lim
T→


�
0

T

dt��t� = �
�

���g
���g0

0 ��2��g
��

1

M
�
�,�

S�
+S�

−��g
�� , �5.1�

of the off-diagonal order parameter with the thermodynamic limit given by the mean-field BCS
theory. The nonequilibrium “phase diagram” for N→
 shows that the final asymptotic value of
the canonical gap �
 defines a universal curve when expressing �
 /�g versus �g0

/�g, where �g

is the equilibrium value �ground state expectation value� at coupling g.19 In term of the off-
diagonal order parameter, the gaps are given by �g=g����g

0���,�=1
N S�

+S�
−��g

0� /M −1� /M,17 and we

use �
=g���̄ /M −1� /M. One can clearly see that for �g0
/�g�1, which corresponds to a quench

going from large coupling to weak coupling, the results show stronger deviations from the BCS
mean-field result obtained in the limit N→
. This is to be expected, since for a finite system, at
weak coupling, the superconducting correlations between electron pairs are suppressed when
compared to the infinite system BCS result. In the limit g→0+, the infinite system still shows an
instability which leads to a BCS wave function, but for any finite system size, the small coupling
limit leads to a ground state formed by uncorrelated electron pairs and the mean-field BCS
treatment loses validity. Nevertheless, in the regime of relatively small quenches ��g0

/�g�1�, one
still sees that the impact of quantum fluctuations �which are not present in the BCS mean-field
treatment� on the long time-average gap is strongly suppressed even for the relatively small system
sizes treated here.

The two additional panels in Fig. 7 show the time evolution �and its Fourier transform� of the
off-diagonal order parameter. Those results are given for M =16, N=32 which therefore necessi-
tates the use of the previously described truncated eigenbasis. We focus on quenches from the g
=0 uncorrelated ground state to various finite values of the coupling.

For general quenches, the mean-field treatment is known to lead to integrable classical dy-
namics, for which, in the steady state reached for quenches from small to large coupling, the time
evolution of the BCS gap is given by the Jacobi elliptic function,19,20

��t� = �+dn��+�t − �0�,k�, k = 1 − �−
2/�+

2 , �5.2�

with parameters �+��g and �−→0 for a weakly coupled g→0+ initial state. This gives rise to
nonharmonic persistent oscillations which are periodic in time with a period given by the complete
elliptic integral of the first kind,

T =
2

�+
�

0

�/2 d�

�1 − k2 sin2 �
. �5.3�

The mean-field solution should therefore show a Fourier transform made of equally spaced
peaks which, as one can see, is quite different from the results obtained here. For small values of
the final g, this difference is no surprise since the mean-field treatment assumes a BCS-like wave
function, which, for a finite-size system in sufficiently weak coupling, is not realized. However,
when g�g�= �2 ln N�−1, it was shown17,21 that the equilibrium static correlation functions are
undistinguishable from the BCS correlations. For the largest final g values shown here, this
inequality is respected but the quench dynamics are still qualitatively different from the expected
BCS result.

One can understand this discrepancy by simply looking at the overlaps plotted in Fig. 2. It was
clear from the start that an instantaneous quench can, in principle, create excitations at arbitrarily
large frequencies. What our calculations show is that the excitation is done in a highly nonthermal
way, by creating preferentially excitations in the midrange energy spectrum. On the other hand,
static correlation functions depend mostly on low-energy properties. Since the equispaced low
energy bands which characterize the mean-field BCS regime are already well formed at g�g�

= �2 ln N�−1 �see the energy distribution on Fig. 2�, it is therefore expected that low energy prop-
erties are quite similar to the BCS ones. The quench dynamics, however, by probing higher energy
properties which still differ strongly from the BCS behavior, will retain a visible impact of the
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quantum fluctuations that the mean-field treatment cannot capture. As it was proposed in other
models,4 the experimental accessibility to quantum quenches could provide a powerful spectro-
scopic tool to study quantum fluctuations in the pairing properties of fermions.

VI. DISCUSSION

In this work we have reported a new approach to the study the dynamics of a quantum system
driven out of equilibrium by a global interaction quench. It uses integrability which provides
numerically tractable ways to compute eigenstates, eigenenergies, and form factors of various
operators. We were able to exploit the peculiar property of the Richardson model in order to find
simple expressions giving the overlaps of the eigenstates of the pre- and postquench Hamiltonians.

The obtained results show that the particular structure of these overlaps also allows one to
design a simple but very efficient truncated Hilbert space giving access to nearly exact results in
systems too large to allow the full Hilbert space to be treated.

The generalization to other integrable models such as quantum spin chains22 or atomic Bose
gases23 would be a highly desirable feat. However, in other general integrable models, the current
lack of known tractable expressions for the elements of the quench matrix hinders such progress
for now. Such a representation would allow exact calculation of quench behavior for a large
variety of potential experiments.
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