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Abstract
Background: The Picornaviridae family contains a number of important pathogenic viruses, among
which the recently reclassified human parechoviruses (HPeVs). These viruses are widespread and
can be grouped in several types. Understanding the evolutionary history of HPeV could answer
questions such as how long the circulating lineages last shared a common ancestor and how the
evolution of this viral species is shaped by its population dynamics. Using both strict and relaxed
clock Bayesian phylogenetics we investigated 1) the substitutions rates of the structural P1 and
capsid VP1 regions and 2) evolutionary timescale of currently circulating HPeV lineages.

Results: Our estimates reveal that human parechoviruses exhibit high substitution rates for both
structural P1 and capsid VP1 regions, respectively 2.21 × 10-3 (0.48 – 4.21 × 10-3) and 2.79 × 10-3

(2.05 – 3.66 × 10-3) substitutions per site per year. These are within the range estimated for other
picornaviruses. By employing a constant population size coalescent prior, the date of the most
recent common ancestor was estimated to be at around 1600 (1427–1733). In addition, by looking
at the frequency of synonymous and non-synonymous substitutions within the VP1 gene we show
that purifying selection constitutes the dominating evolutionary force leading to strong amino acid
conservation.

Conclusion: In conclusion, our estimates provide a timescale for the evolution of HPeVs and
suggest that genetic diversity of current circulating HPeV types has arisen about 400 years ago.

Background
Parechoviruses belong to the Picornaviridae family which
includes other pathogenic viruses such as foot-and-mouth
disease virus (FMDV), hepatitis A virus, enteroviruses and
rhinoviruses [1,2]. The Parechovirus genus includes two
species: human parechoviruses (HPeV) and the zoonotic
Ljungan virus. HPeV are non-enveloped pathogens with a
single-stranded genomic RNA of positive polarity with
around 7.400 nucleotides organized into a single long
open reading frame in between a 5'UTR and 3'UTR. The

open reading frame can be divided into three main
regions: P1 (encoding capsid proteins VP0, VP3, VP1), P2
(nonstructural proteins) and P3 (nonstructural proteins,
including the viral RNA polymerase) [2-4]. In HPeV, out
of the three capsid proteins that constitute the monomeric
units of the viral icosahedric-shaped capsid [3], VP1 pro-
tein plays a crucial role in cell entry via interaction of an
Arg-Gly-Asp (RGD) triplet with integrins on the cell sur-
face [5]. However, some HPeVs (among which the type 3
strains) lack the RGD motif in VP1, and their mode of cell
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recognition and entry is less clear [6]. Typing of HPeV is
based on the VP1 sequence providing a reliable locus to
type all the identified HPeV strains as described for enter-
oviruses by Oberste et al [7]. As a result, the majority of
HPeV available nucleotide data concerns the VP1 gene.

In general, HPeV is transmitted by the oral-fecal route
causing in most cases relatively mild respiratory and gas-
trointestinal symptoms [2,8], though conditions such as
bronchiolitis [9] and severe neonatal infections [10,11]
have also been reported. HPeV1 and HPeV2 were first iso-
lated in 1956 and classified by serotyping as enterovi-
ruses, respectively echovirus types 22 and 23 [3,12].
HPeV3 was first described in 2004 [6] and is associated
with more severe conditions related to CNS symptoms
[10,11,13]. Subsequently, improvements in HPeV-spe-
cific screening tools allowed a successful identification of
HPeV4 and HPeV6 throughout North America, Japan and
Europe [14-18]. Moreover, an HPeV variant originally
classified as HPeV2-Connecticut was reclassified as
HPeV5 [14]. Currently, sequences have become available
for two novel types that were recently isolated in Pakistan
and Brazil [19,20] and in the Netherlands one more novel
type was identified (HPeV14, [21]). Unfortunately
sequences of the HPeV types 9 to 13 are not available for
analysis yet. Of all types, HPeV1 and HPeV3 are the most
prevalent strains [11,22].

Understanding the mechanisms underlining pathogenic-
ity and persistence of pathogens in human populations is
an important aspect of disease epidemiology and control.
Fixation of mutations into nucleotide substitutions, a key
principle behind phylogenetic signatures, is shaped by
major evolutionary forces such as selection (molecular
adaptation deriving from an increasing fitness of a corre-
sponding phenotypic trait) and genetic drift (stochastic
gene sampling process at reproduction) [23,24]. A useful
tool to detect and measure selection in viral gene
sequences is the ratio between synonymous (dS) and non-
synonymous (dN) substitutions. Whereas a ratio above
1.0 is an indicator of positive selection operating at the
amino acid sequence level [25], significantly lower values
are generally referred to as purifying selection and refer to
preservation of the phenotypic trait.

RNA viruses yield the highest mutation rates of all groups
of pathogens which is approximately six orders of magni-
tude higher than in most DNA organisms [23,26]. In the
context of viral population genetics, substitution or evolu-
tionary rates can be defined as the number of fixed muta-
tional changes that accumulate in the population per
nucleotide site per unit of time [27]. This rate is driven by
the short-generation times of viruses and their error-prone
RNA polymerase proteins lacking proofreading activity.
Combined with their small genomes, these characteristics
make RNA virus ideal models for evolutionary research

[23,28,29]. In addition, recombination events may also
play a role in RNA virus evolution [23]. While lacking a
fossil record, evolutionary histories of RNA viruses can be
calibrated because they represent 'measurably evolving
populations', in which genetic diversity accumulates over
a timescale of human observation [30]. Their evolution-
ary history and population dynamics can be reconstructed
by means of genealogy-based coalescent approaches using
nucleotide sequences sampled over an epidemiological
time frame in order to estimate timed viral ancestry as well
as the rates of genetic change [27,29]. The most advanced
methods operating on time-stamped sequence data use
Bayesian Metropolis-Hastings Markov Chain Monte-
Carlo (MCMC) algorithms that accommodate for the
uncertainty of phylogenies rooted in time. Here, we esti-
mated the substitution rates for the P1 and VP1 regions of
HPeV with such a Bayesian approach, which provides a
statistical framework for evolutionary analysis [31].

The identification of several novel types within the last
few years may be conceived as a relatively recent introduc-
tion of HPeV into the human population, but this is not
necessarily the case. By reconstructing the evolutionary
history of HPeV we shed light on this issue. We investi-
gated when current HPeV diversity emerged by determin-
ing the time of divergence from the most recent common
ancestor (TMRCA).

Methods
Sequence collection
Dataset 1 comprised 29 nucleotide sequences from the P1
structural region (2291 nt) from different HPeV isolates
(12 sequences of HPeV1, 1 sequence of HPeV2, 4
sequences of HPeV3, 5 sequences of HPeV4, 2 sequences
of HPeV5, 3 sequences of HPeV6, 1 sequence for HPeV7
and 1 sequence for HPeV8). Dataset 2 comprised 199
nucleotide sequences of the VP1 capsid region (647 nt)
(117 sequences of HPeV1, 2 sequences of HPeV2, 40
sequences of HPeV3, 18 sequence of HPeV4, 9 sequence
of HPeV5, 10 sequences of HPeV6, 1 sequence of HPeV7,
1 sequence of HPeV8 and 1 sequence of HPeV14). To
date, sequences of HPeV9–13 have not been made availa-
ble [32]. The accession numbers of the sequences from
both data sets are available in Additional file 1. Sampling
date (year) for dataset 1 (1956–2007) and for dataset 2
(1975–2007) was either collected directly from Genbank
record or following direct contact with the relevant
authors. Multiple alignments of the P1 and VP1 regions of
HPeV were conducted in ClustalW [33] and sequences
were edited manually with Se-Al v2.0 [34].

Phylogenetic analysis
Overall evolutionary rates for P1 and VP1 regions were
measured as the number of nucleotide substitution per
site per year (s/s/y). Relevant parameters were summa-
rized as the median of posterior distributions by Bayesian
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coalescent Markov chain Monte Carlo algorithm imple-
ment in the Bayesian Evolutionary Sampling Trees (BEAST)
software package version 1.4.8 [31]. To identify the opti-
mal substitution model we performed a maximum likeli-
hood analysis using the Modelgenerator package [35]. The
model that best fit both sequence datasets was General
Time Reversible (GTR) model with a discretised γ-distri-
bution (GTR+Γ), allowing for nucleotide rates to vary
among sites within the protein coding sequence align-
ments. Codon partitions (1+2)+3 were applied to both
alignments, keeping first and second positions (mostly to
non-synonymous changes) in one partition and the third
position (related to increase redundancy and prone to
synonymous changes) in a separate partition [36]. Rela-
tive rate parameters were estimated in separate for each
partition, in order to accommodate rate variation at the
third codon position.

We employed both strict and relaxed lognormal molecu-
lar clocks, the latter allowing rate variation among
branches [37]. The coefficient of variation (σr) was used as
a quantification of the rate variation among branches (σr
> 0.2 was considered as significant rate variation among
branches) (Table 1). A constant size demographic model
was used as coalescent prior. Each alignment of both data
sets was analyzed using Markov Chain Monte-Carlo
(MCMC) computations run over a sufficient time to
achieve convergence of the chains, which was analyzed by
inspection of the MCMC samples using TRACER 1.4 [38].
The 95% highest posterior density (HPD) interval is the
shortest credible interval that contains 95% of the sam-
ples values. Statistical uncertainties of the substitution
rates and the TMRCA were summarized as the lower 95%,
median, and upper 95% values of the HPD. Out of the
tested models (GTR + Γ, both with strict and relaxed log-
normal molecular clocks), the clock model that per-
formed better was the lognormal molecular clock, which
yielded the highest marginal likelihood. Clock models
were also compared in terms of Bayes Factors (BF, Table
2). The relaxed model clock following a lognormal distri-
bution was also supported by the highest log10 BF as sug-
gested [39].

The fact that a relaxed lognormal molecular clock fits best
to our data was consistent with an estimated coefficient of
variation of 0.29 and 0.41 (respectively, for dataset com-
prising P1 and VP1 regions) that reflected significant rate
heterogeneity, thus rejecting a strict molecular clock. The
resulting trees for each run were summarized using Tree-
Annotator and the maximum clade credibility tree was
visualized with FigTree v1.1.2 [34]. BEAST xml files are
available as additional files 2, 3, 4 and 5.

Detection of adaptative molecular evolution
Overall selective pressures acting on VP1 antigenic region
were estimated by using the CODEML program in the
PAML package [40]. We used site models M7 (with a dis-
crete distribution of 10 categories and accounting for sites
not allowed to be positively selected) and M8 (estimates
dN/dS for an extra class (p11) of sites, accounting for pos-
itively selected sites with dN/dS>1). Models were com-
pared by means of likelihood ratio test and statistical
support was taken from the Bayes-Empirical-Bayes output
(BEB, see additional file 6: Log-likelihood and parameter
estimates for PAML analysis) [40]. To detect adaptative
molecular evolution, we used the complete dataset 2.

Results and discussion
Rate of evolutionary change for P1 and VP1 regions of 
HPeV
We first identified the best-fitting substitution model for
the HPeV sequences using the Modelgenerator package
(GTR + Γ) [35], and tested whether the evolution of the P1
and VP1 genetic regions was better described by a strict or
relaxed lognormal molecular clock. A relaxed lognormal
molecular clock provided a better fit to both datasets
according to Bayes Factor (BF) analyses (P1: log10 BF =
7.03 and VP1: log10BF = 27.8, Table 2). This is in accord-
ance with significant rate variation among the branches of
the inferred phylogeny as measured by a non-zero coeffi-
cient of variation (σr) obtained with the relaxed molecular
clock analysis (P1: σr = 0.29; VP1: σr = 0.41) (see Methods
for details). Using the available P1 and VP1 dated
sequences of HPeV, our analysis inferred a similar rate of
nucleotide substitution for both regions (P1 median: 2.21
× 10-3 s/s/y, 95% HPD [0.48 × 10-3, 4.21 × 10-3]; VP1

Table 1: Statistical parameters estimates from BEAST analysis under a strict and relaxed molecular clock

Genetic region Molecular clock Coefficient of variation (σr) Prior
Probabilitya

Marginal
Posteriora

P1 Strict - -183.8 (199.6, 167.4) -23989 (24007, 23971)
Lognormal 0.29 -180 (154, 216) -23968 (24003, 23934)

VP1 Strict - -1407 (1457, 1350) -19148 (19208, 19094)
Lognormal 0.41 -1362 (1433, 1301) -19033 (19103, 18964)

aMean prior and marginal posterior probabilities for both clock models are given with 95% lower and upper bounds of the highest probability 
density intervals in parentheses. The coefficient of variation is a measure of the rate variation among branches (see Methods for details).
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median: 2.79 × 10-3 s/s/y, 95% HPD [2.05 × 10-3, 3.66 ×
10-3]) (Table 2). The higher rate indicated for the VP1
region is possibly related to its antigenic properties, per-
haps reflecting a difference in the level of gene expression
or mirroring the involvement of the VP1 capsid protein in
the viral entry mediated by cellular integrins.

Despite our study focused on the available sequences of
HPeV, more accurate estimates could probably be
obtained with broader and more homogenous sampling
timescale, preferably for all types. Yet, this may be a
daunting task because it is difficult to obtain older sam-
ples and some of the HPeV types e.g. HPeV2, HPeV4,
HPeV5 and HPeV6 appear to be relatively rare (see
e.g[17,18]). Moreover, a common pitfall on estimating
evolutionary rates is its underestimation due to muta-
tional saturation of synonymous sites [41-44]. By using a
gamma distributed substitution model, we assured that
rate variation among sites was allowed. Therefore, the
effect of possible saturation of synonymous sites was alle-
viated by permitting a proportion of these sites to change
at a higher rate [43]. In addition, we used partitioning in
codon positions that allows different codon positions to
have different substitution rates (and different amount of
rate heterogeneity) (see Methods for details) [31,45] thus
further accommodating rate variation among synony-
mous and non-synonymous positions.

The high rates of evolutionary change obtained in this
study are in accordance with the evolutionary rates of
other RNA viruses [32,33]. Consistently, HPeV replication
mechanism relies on an RNA-dependent RNA polymerase
that lacks proofreading capacity. This increases the
number of mutations incorporated in viral genomes over
time and settles the ground for a relatively rapid genetic
diversification [46]. The evolutionary rates of a few mem-
bers of the Picornaviridae family have been studied.
Despite the fact that most of the studies used different
evolutionary frameworks, the rate of evolutionary change
estimated in this study for the capsid region of HPeV VP1
is 1) faster than the rate of Hepatitis A virus [47], 2) resem-

bles the rate estimated for the antigenic region of Echovi-
rus 71 [41,48,49] and finally 3) it is nearly one order of
magnitude lower than the rates of poliovirus (2.09 × 10-2

s/s/y) [48] or FMDV (2.7 × 10-2 s/s/y) [50].

RNA viruses are the most suitable object of study for rates
of change and divergence times. This is due in large part to
the rapid rate at which they evolve allowing genetic diver-
sity to accumulate within a timescale approximately the
same as mutations are fixed in viral populations [29]. Yet,
a deeper understanding of the replication machinery of
HPeV (e.g. generation times, fidelity of RNA polymerase)
may deliver insights on the molecular basis of these high
rates of evolutionary change [44].

Timescale of HPeV evolution
According to our analysis based on 199 HPeV VP1 availa-
ble sequences, these viral species diverged from their most
recent common ancestor (MRCA) at the year 1600 (95%
HPD [1427–1733]) (Figure 1, Table 2). Moreover, and
focusing on the two most recently isolated types (HPeV7
[19], HPeV8 [20]) our findings indicate that HPeV7
diverged from HPeV3 around 150 years ago (1854, 95%
HPD [1747–1936] (Figure 1, F) and HPeV8 seems to have
diverged from the group of HPeV3, HPeV7 and HPeV14 at
around and 315 years ago (1726, 95% HPD [1519–
1855]). HPeV14 (isolate 451564, accession number
FJ373179) is still under completion and thus far only its
VP1 sequence is available for analysis (Benschop et al. per-
sonal communication and [21]). However, divergence of
HPeV14 (from HPeV7 and HPeV3) could be estimated at
around 220 years ago (1788, 95% HPD [1636–1902]).
Taken together, we suggest that the genetic diversity of the
currently circulating HPeV types has arisen around 400
years ago (Figure 1).

The wider 95% Bayesian credible intervals obtained for
the estimates using dataset 1 composed by the total of 29
available P1 sequences to date (Table 2) probably reflect a
less heterochronous sequence data. Yet, an identical
timescale was obtained when performing the MCMC

Table 2: HPeV P1 and VP1 substitution rates and TMRCA estimates under a strict and relaxed lognormal molecular clock

Genetic region Molecular clock Substitution rate
(× 10-3)a

TMRCAb Log10 BFc

P1 gene Strict 2.03 (1.15, 2.91) 1581 (1334 – 1733) -7.03 ± 0.3
Lognormal 2.21 (0.48, 4.21) 1603 (940 – 1883) 0.0

VP1 gene Strict 2.30 (1.74, 2.90) 1553 (1412 – 1673) -27.8 ± 0.2
Lognormal 2.79 (2.05, 3.66) 1600 (1427 – 1733) 0.0

a The median estimates of the substitution rates and bTMRCA for the P1 and VP1 region are shown for each molecular clock with 95% lower and 
upper bounds of the highest probability density intervals in parentheses. c The log10 Bayes factor (BF) difference (± standard error) in estimated 
harmonic median of the marginal likelihoods (with the posterior as distribution probability) compared with the clock model with strongest support. 
For each dataset the highest -log10 Bayes factor corresponds to the best-fit clock model (highlighted in bold).
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approach with the dataset comprising the P1 region
(1603, 95% HPD [940–1883]) (Table 2). Despite holding
new pieces to solve the puzzle of HPeV origins, the evolu-
tionary rates and the timescales for the most recent com-
mon ancestor and type lineage-splitting events, may be
better framed once a larger number of sequences are avail-
able [51]. However, the overlapping of the 95% Bayesian
credible intervals obtained in our analysis for both
genomic regions indicates that our estimates on the
TMCRA of the HPeV lineages are robust (Table 2).

One facet of fast evolving RNA viruses that induce acute
infections (as the case of HPeV) is that they are likely can-
didates for jumps between species boundaries [29]. While

the latter appears to be clearly established for e.g. SARS-
CoV or influenza H5N1, a zoonotic link remains to be
elucidated for HPeV. Because Ljungan virus shares a close
phylogenetic proximity with HPeV virus, it is likely that
both species have had a common ancestor [52]. Moreo-
ver, the reservoir host for Ljungan virus is Myodes glareolus,
a widely distributed rodent commonly named as bank
vole [4]. Despite the connection of Ljungan virus infec-
tion and human disease still remains to be clarified, bank
voles are recognized as the reservoirs of other infectious
agents, e.g. Puumala Hantavirus [53] and have been
linked to a significant number of outbreaks over Europe
[54-56].

Bayesian time-scaled phylogeny of HPeV based on VP1 sequence analysisFigure 1
Bayesian time-scaled phylogeny of HPeV based on VP1 sequence analysis. Maximum clade credibility tree obtained 
with BEAST with a constant size coalescent prior showing lineage splitting events (nodes A-F) since the most recent common 
ancestor to the presently circulating HPeV types. The divergence times correspond to the mean posterior estimate of their 
ages (in years). For the TMRCA, the correspondent 95% Bayesian credible intervals are shown (median 1600). Time axis is 
shown in years and ranges from the TMRCA to the present year. Deeper and some subtype nodes with posterior probability 
of higher than 0.8 are pointed out. Each colour corresponds to a specific HPeV, as indicated in the box on the right. The 
dashed grey circle depicts the extent of genetic diversity of the sampled HPeV strains. HPeV-1-"Harris-like" strains (*) clus-
tered separately from the contemporary HPeV-1.
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Purifying selection is dominant in HPeV evolution
In search for the driving force that shapes the evolution of
the HPeVs, we looked at the ratio of non-synonymous-to-
synonymous substitutions (the dN/dS ratio) [24]. For
most codons in the VP1 region the ratio is < 0.1 (Figure 2).
We noticed a few sites that tend to escape from purifying
selection displaying dN/dS values > 0.3 (position Q61,
A119, G203), or even > 1.0 (position N202 of our align-
ment, see additional file 7), however with statistically
poor support (see additional file 6, Log-likelihood and
parameter estimates for PAML analysis).

Also other studies have found an overall low dN/dS ratio
for the HPeVs [1,57]. Our analysis confirms on a codon
level that throughout the structural region strong purify-
ing selection is dominant, leading to the conservation at
the level of the amino acid sequence. Future analysis may
shed lights not only in a unified framework of evolution
for this viral species but also help preventing major bur-
dens associated with HPeV pathogenicity.

Conclusion
The HPeV are highly prevalent human RNA viruses and
thus far no studies have addressed the evolutionary his-
tory of these pathogens. The Bayesian analysis presented
here first indicates that the structural P1 and the capsid
VP1 region of this viral species evolve at a high rate of evo-
lutionary change (~10-3 substitutions per site per year).
Additional genomic and epidemiological data will help to
reveal the relation between such rates and the widespread
of this viral species. We also show that the currently circu-

lating HPeV types have shared a common ancestor around
four centuries ago. Since then, HPeV evolved into differ-
ent lineages that have spread widely. Overall, a strong ten-
dency for phenotypic conservation could be observed,
suggesting that genetic drift plays an important role in the
generation of the diversity within the regions under inves-
tigation. In summary, by delivering insights into the evo-
lutionary mechanisms of HPeV, this study provides the
foundations for a unified understanding of HPeV evolu-
tion.
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Additional material

Additional file 1
Genbank accession numbers of the sequences. The file provides the 
accession number of HPeV P1 (dataset 1) and VP1 (dataset 2) sequences, 
including respective isolate names and sampling dates.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-164-S1.pdf]

Additional file 2
BEAST XML file for the HPeV-P1-relaxed analysis. Input XML file used 
for BEAST relaxed molecular clock analysis of P1 region (dataset 1).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-164-S2.xml]

Additional file 3
BEAST XML file for the HPeV-P1-strict analysis. Input XML file used 
for BEAST strict molecular clock analysis of P1 region (dataset 1).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-164-S3.xml]

Additional file 4
BEAST XML file for the HPeV-VP1-relaxed analysis. Input XML file 
used for BEAST relaxed molecular clock analysis of VP1 region (dataset 
2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-164-S4.xml]

Additional file 5
BEAST XML file for the HPeV-VP1-strict analysis. Input XML file used 
for BEAST strict molecular clock analysis of VP1 region (dataset 2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-164-S5.xml]

The dN/dS ratios per site in VP1 region of HPeVFigure 2
The dN/dS ratios per site in VP1 region of HPeV. Rate 
of nonsynonymous-to-synonymous substitutions per codon 
site across the VP1 region of the HPeV genome. The only 
amino acid likely prone to molecular adaptation (dN/dS > 
1.0) at position 202 does not have sufficient statistical sup-
port (see also additional file 7).
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