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Abstract
Background: Inverse modelling of gene regulatory networks (GRNs) capable of simulating
continuous spatio-temporal biological processes requires accurate data and a good description of
the system. If quantitative relations between genes cannot be extracted from direct measurements,
an efficient method to estimate the unknown parameters is mandatory. A model that has been
proposed to simulate spatio-temporal gene expression patterns is the connectionist model. This
method describes the quantitative dynamics of a regulatory network in space. The model
parameters are estimated by means of model-fitting algorithms. The gene interactions are identified
without making any prior assumptions concerning the network connectivity. As a result, the
inverse modelling might lead to multiple circuits showing the same quantitative behaviour and it is
not possible to identify one optimal circuit. Consequently, it is important to address the quality of
the circuits in terms of model robustness.

Results: Here we investigate the sensitivity and robustness of circuits obtained from reverse
engineering a model capable of simulating measured gene expression patterns. As a case study we
use the early gap gene segmentation mechanism in Drosophila melanogaster. We consider the
limitations of the connectionist model used to describe GRN Inferred from spatio-temporal gene
expression. We address the problem of circuit discrimination, where the selection criterion within
the optimization technique is based of the least square minimization on the error between data and
simulated results.

Conclusion: Parameter sensitivity analysis allows one to discriminate between circuits having
significant parameter and qualitative differences but exhibiting the same quantitative pattern.
Furthermore, we show that using a stochastic model derived from a deterministic solution, one can
introduce fluctuations within the model to analyze the circuits' robustness. Ultimately, we show
that there is a close relation between circuit sensitivity and robustness to fluctuation, and that
circuit robustness is rather modular than global. The current study shows that reverse engineering
of GRNs should not only focus on estimating parameters by minimizing the difference between
observation and simulation but also on other model properties. Our study suggests that multi-
objective optimization based on robustness and sensitivity analysis has to be considered.
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Background
Gene regulatory networks (GRNs) play a fundamental
role in body plan formation and development [1]. In
most cases the published gene regulatory networks are
based on experimental studies. Furthermore, various stud-
ies reveal that network dynamics depend on qualitative
aspects (network structure) as well as the quantitative
properties [2,3]. An additional option is to study gene reg-
ulatory networks in mathematical models and simulation
studies. Qualitative and quantitative models may provide
insights in the causal relationships between components
of a network as well as the mechanisms behind the net-
work dynamics [2]. Qualitative models mainly focus on
the inference of the wiring diagram and the understand-
ing of the connection between the dynamics of the sys-
tems and the network structure [4,5]. Understanding how
the gene regulation leads to pattern formation requires
the usage of quantitative models that allows inferring the
network structure, but also simulating the spatio-tempo-
ral gene expression dynamics [6]. Many approaches have
been used to model gene regulatory networks (see for a
review [7]). In modelling processes from developmental
biology especially the class of quantitative spatio-tempo-
ral, models of gene regulation is relevant. These type of
models can potentially be linked with three-dimensional
biomechanical models of morphogenesis and provide
new insights into developmental biology.

Although there is a large variety of formalisms used to
describe quantitative model of GRN, the most commonly
used is based on differential equations. This deterministic
modelling framework allows describing spatio-temporal
continuous system, where protein products are continu-
ously produced through the balance of activation or
repression. Models can be used in reverse engineering
studies to infer the network structure and dynamics of the
system. Quantitative spatio-temporal models of gene reg-
ulation are typically characterized by a large set of
unknown parameters. Without a suitable method for
reverse engineering the network and estimating the
unknown parameter values these models have no practi-
cal use. Because of incomplete data, imprecise informa-
tion concerning the interaction mechanisms and the large
set of unknown parameter values; reverse engineering of
the gene regulatory network is by far a straightforward task
[8].

Reverse engineering of GRN capable of simulating spatio-
temporal gene expression mainly consists in revealing the
GRN structure that leads to the observed pattern. Optimi-
zation is therefore important [9,10] and it is used to infer
a gene network whether it is transcriptional or protein
interaction. A system identification approach is used to
select a model structure and by means of parameter esti-
mation, the network topology is estimated from experi-

mental data. The optimization problem consists in
minimizing the difference between simulated expression
profiles and available data in order to estimate the best
circuit that predicts with very good accuracy the spatio-
temporal gene expression. Based on the resulting parame-
ter-set, the network diagram is extracted and one tries to
establish causal-relation of the dynamic mechanism that
governs the pattern formation, using further analysis. The
prediction is clearly linked to the quality and amount of
the data; even with sufficient data, it is not guaranteed that
the inferred network corresponds to the appropriate gene
network that leads to the observed pattern [11,12]. From
a theoretical point of view, this question is a matter of the
structural identifiability of the model [13]. Given a data
set, is it possible to uniquely infer the network? Although
there exist some theoretical methods [12] to investigate
the identifiably before inferring the network, when con-
fronted with a complex mechanism characterized by a
multi-dimensional parameters space, the feasibility is still
analytically complex. In many situations, one is con-
fronted with an overfitting problem that leads to parame-
ter-set with very different quantitative values and even
worse, yielding different network topologies having simi-
lar good realistic patterns.

To draw conclusions, one has to differentiate between cir-
cuits that are more likely to be biologically realistic.

It was shown that for certain experimental data that it is
not possible to confirm whether the inferred model is
really valid [14]. As long as the model is not contradicted
by the given data, it is necessary to extend the validation
test further. Especially when the model does not only pre-
dict a unique network, parameter-set discrimination can
be addressed using diverse models validation approaches.
The quality of the circuits can for example be quantified
by measuring the parameter reliability and sensitivity, the
uniqueness of the predicted network, the model robust-
ness and the predictability of the model. In this paper we
focus on the model robustness against perturbation. In
another paper (Fomekong-Nanfack et al., in press.) we
focus on the other aspects that can be used to quantify the
quality of the circuits: methods for exploring the solution
space, parameter correlation and asymptotical stability
analysis.

By analyzing the robustness of the inferred network, we
can test the quality of the circuits. The term robustness has
various meanings, but in the current study, robustness is
addressed as the ability of a system to maintain its
mechanical and dynamical behaviour under perturbation.
From a biological view, robustness is related to stability,
homeostasis, canalization, redundancy, and plasticity
[15-18], and can also be applied to dynamical process in
development [19]. In simulations of dynamical develop-
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mental processes such as pattern formation, one should
also expect robust behaviour within a certain extent in the
model [20]. In the current paper, model robustness is
addressed in two different perspectives. First, we investi-
gate the quantitative robustness of the model towards
internal fluctuations in expression level. It is known that
presence of noise in gene regulation can lead to pheno-
type variation [21,22]. There are some studies on the
robustness of GRNs under the influence of molecular fluc-
tuation [23,24] and show the importance of noise and
stochastic events [25]. In most cases, deterministic models
are used to infer GRNs from noisy data. It has been shown
in several studies that the robustness to noise mainly
depends on the network structure instead of the parame-
ter setting [26-28]. Therefore, one way to discriminate
between circuits having different gene network but exhib-
iting the same pattern is to analyze their behaviour under
noisy conditions. Model-solutions showing more robust-
ness or stability can be considered for further analysis.
Second through simple parameter perturbation, we inves-
tigate how model-circuits behave distinctly. This analysis
allows us to identify the parameters that have the most
significant influence on the model and to distinguish cir-
cuits that are less sensitive to overall perturbation. The
combination of these two analyses allows one to discrim-
inate between sets of circuits that are more robust,
although they are obtained from the same model descrip-
tion and quantitative data.

Reverse-Engineering the gap gene network
In the current paper, the case study early development
along the anteroposterior (A-P) of gap gene network of
the Drosophila melanogaster is considered. In the gene reg-
ulatory network responsible for segmentation of the Dro-
sophila melanogaster embryo [29-32] for most, if not all
genes involved, experimental and bioinformatics studies
are available. These studies not only give information
about potential interactions between the different genes,
but also provide spatio-temporal information about the
gene expression patterns in the embryo. The segmentation
genes leading to pattern formation, which occurs during
the first stages of development after fertilization is con-
trolled by a network of genetic interactions, with a cascade
like modularity [33]. At the early stage, the maternal
mRNA, located at the extremes of the egg will define the
anterior-posterior axis of the embryo. Following fertiliza-
tion, the process begins with the diffusion of maternal
morphogen factors: Bicoid (Bcd), Nanos (Nos), Caudal
(Cad) and maternal Hunchback (Hb), and the activation
of the torso receptor on the poles. At cycle 13 (after 13
nuclear divisions), the gradient of these maternal gene
products in the embryo promotes the transcription of the
first zygotic genes during cycle 14: zygotic hb, giant (gt),
Krüppel (Kr), knirps (kni) and tailless (tll); each forming
expression domains in specific regions of the embryo

[34]. This set of genes; the so-called gap genes-are defined
in broad domains along the anterior-posterior axis. Their
transcription factors regulate the expression of another
group of zygotic genes that comprises seven pair-rule
genes, which form a pattern of narrow stripes along the
anterior-posterior axis. Finally, the pair rule genes regulate
the formation of fourteen stripes by segment polarity
genes. For review about the detailed mechanism, see [35-
37].

For modelling the segmentation mechanism of the early
Drosophila melanogaster embryo, two main formalisms
have been proposed: logical formalism (tackling qualita-
tive aspects) proposed by Sánchez and Thieffry [38], and
continuous models proposed by Mjolsness et al. [39] used
to obtain quantitative dynamics of a system. Following
this formalism, Reinitz and co-workers formulated the
problem as an inverse problem [40]. Given a complete
mathematical model and sufficient accurate quantitative
data, the parameters in the model can be estimated by
optimization techniques, i.e., by fitting the model to the
data. Except for box constraints, only little experimental
information is used to constrain the parameter values in
the model. This inverse modelling formulation of the
problem leads to different gene circuits describing differ-
ent aspect of the segmentation gene mechanism [41-44].

Using the gene circuit method proposed by Reinitz et al
[40], Jaeger et al. [42,45] have inferred a network by
means of reverse engineering that can reproduce the
measured spatial and temporal gene expression patterns.
The gap gene model involves seven different genes, bcd,
cad, hb, gt, Kr, kni and tll. The experimental data used to fit
the model were obtained from the FlyEx database, where
an extensive amount of accurate quantified spatio-tempo-
ral expression data for all genes is stored [46,47]. A con-
nectionist description was used to model the gene
regulatory network. The number of parameters in this
framework mounts up to 66 different unknowns for a net-
work of six genes. To estimate these parameters the model
was fitted to detailed spatio-temporal data using parallel
simulated annealing (PLSA) [48-50], which is a technique
that performs a global parameter search. Ten different
gene circuits were obtained using this reverse engineering
approach. Compared to the variance in the experimental
data, all solutions fitted the dataset spatially and tempo-
rally accurately. Furthermore, the model reproduced the
experimentally observed dynamic shift of the expression
profiles and it was shown that diffusion is not the cause of
the shift. Compared with experimental knowledge, for
most interactions in the gene regulatory network the sign,
i.e. activation, repression or no-interaction was reasona-
bly well reproduced. Analysis of the 10 circuits suggested
asymmetric repression between the gap genes, which was
hypothesized to be the cause of the observed domain
Page 3 of 23
(page number not for citation purposes)



BMC Systems Biology 2009, 3:94 http://www.biomedcentral.com/1752-0509/3/94
shift. This result has also been obtained by Perkins et al.
[43] where parameter estimation was performed using a
three-step strategy. Following [42], Fomekong-Nanfack et
al. [51] employed a different optimization technique to
find parameter sets that accurately fitted the experimental
dataset and lead to the similar networks as proposed by
Jaeger et al. [45]. In search for a computational more effi-
cient method, they developed a hybrid optimization algo-
rithm [51]. Typically this approach first performs a global
search based on evolutionary strategy followed by a local
search. With this method, another 91 circuits were
obtained that fitted the experimental dataset accurately.
Recently, Ashyraliyev et al. [52] showed that the circuits
obtained by Fomekong-Nanfack et al. can be further
improved using Levenberg-Maquardt.

The gene circuit method previously used [40,42,43,51]
does not make any assumption about the network struc-
ture. All gene-to-gene interactions are assumed to be plau-
sible and minimizing the difference between observation
and simulation drives the inference. The criterion for
selecting acceptable circuits was based on a low root mean
square error (RMS) and visual inspection of the simulated
gene expression profiles (no major pattern defects notice-
able). In the current case, a large set of circuits can be used
to simulate the A-P patterning of the Drosophila melano-
gater. Using a local sensitivity analysis, determinability of
some parameters were studied in [52], where it was sug-
gested that one could confirm on the nature of some bio-
logical interactions for parameters that were shown to be
identifiable. Using a large set of parameters as base value,
it is possible to examine the robustness of the model. Zak
et al. [23] showed how input perturbations and stochastic
gene expression influence the identifiability of a specific
regulatory network given gene expression profiles and
prior structural knowledge. Using as starting point the
parameters-set obtained in [42,51] as base value, we dis-
cuss how does input perturbation and stochastic simula-
tion allow a model-based robustness analysis of a model
that leads to multiple circuits.

Results
Gap gene circuits

The analysis is based on 101 circuits each characterized by
66 parameters obtained from [42,51] using different opti-
mization techniques. All circuits with a RMS value smaller
than 12 (expression level measured in units of fluores-
cence level) were labeled as good fits and were selected for
further analysis. In Fig. 1, the simulated expression pat-
terns at gastrulation time are shown. The profiles (light
grey) and the average profile (colour solid line) for each
gene are shown together with the real data (dashed line).
All circuits reproduce the gene expression patterns with-
out any major defects (mainly amplitude variation).

Although the profiles are well defined, the circuit-param-
eters show a rather different picture. In Fig. 2, the distribu-
tion of the 66 parameters is shown. The grey line
represents the different 101 values of each circuits and the
blue line their average. From this figure, we see that the
distributions vary from parameter to parameter. None of
the non-regulatory parameters such as the production
rate, the diffusion coefficient or the decay time constant
seems to be very consistent from circuit to circuit. In many
cases, the promoter rate and the diffusion hit the upper
boundary. Many parameters show a strong tendency to
cluster at a specific value or location (specifically those

around zero such as ,  or ). In some cases,

we see a very broad distribution around the mean, espe-
cially for the parameters describing strong repression. In
other cases regulatory parameters show both positive and

negative interactions (Bcdtll, , Bcdkni), representing

different network topologies.

Robustness towards fluctuations
Gene transcription, degradation and diffusion inherently
are stochastic processes, which lead to fluctuations in gene
expression levels. If expression levels are high, these fluc-
tuations generally do not affect the time evolution of the
system. In these cases the deterministic model and sto-
chastic model will yield a similar result. However if the
system is non-linear and the fluctuations occur at an early
time in development, where levels are still low, fluctua-
tions may lead to different patterns. From a biological
point of view this may not be favorable because gene pat-
tern defects can lead to aberrations in development, hence
development should be robust towards modest transient
disturbances [53,54]. Here we investigate if the circuits
obtained from the optimization, which are based on a
deterministic model, are robust towards fluctuations.

Analysis of fluctuations in the bicoid gradient [55] sug-
gests that the expression level of bicoid is about five fold
higher than the fluorescence unit. In our analysis we
assume that the expression level of all genes is five fold
higher than the fluorescence unit. We have used the
Gillespie algorithm [56] to introduce fluctuations in the
gene expression levels.

For each circuit we performed 100 stochastic simulations
(see methods) and analyzed the quality of the final
expression pattern at T = 68.1 min. In each run, by com-
paring the deterministic model with the stochastic model
using a RMS cut-off criterion, we counted how many of
domains cad, hb-anterior (hba), hb-posterior (hbp), Kr, gt-
anterior (gta), gt-posterior (gtp), kni and tll were consid-
ered to be correct. For each circuit we also calculated an

Wgt
Hb Whb

Kr Wgt
Kni

Wtll
Hb
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overall score by counting the runs where all expression
domains formed correctly [see Tab.1 in Additional file 1,
and Additional files 2, 3 w]. On average the domains Cad
(99%) and Hb-anterior (93%) show the best scores. The
domains of kni (86%), Kr (80%) and gt-posterior (81%)
have an intermediate score. The domains gt-anterior
(66%), hb-posterior (70%) and particularly tll (47%) have
a low score. Most circuits have a very low overall score;
only the top 25% of the circuits have an overall score
higher than 35%. Most of the circuits have a score lower
than 20%.

If all domains except one develop correctly the overall
score is determined by that domain score, however if two
or more independent domains have scores lower than
100%, the overall score will be lower than the individual
domain scores. For example, if all domains would have a
score of 99% and are independent the overall score would
be 0.998 * 100% = 92%. However we also observe interac-
tions between domains, which leads to a higher overall
score than would be expected if they behave independ-
ently. In these cases, if one domain yields a low score for
a particular run, it is likely that another domain also yields
a lower score for the same run. This is typically observed

Simulated expression profiles of the 101 gap gene circuits at the final time pointsFigure 1
Simulated expression profiles of the 101 gap gene circuits at the final time points. The x-axis corresponds to 35-
92% of the A-P position and the y-axis describes the expression level in fluorescence units. The experimentally measured 
expression profiles are plotted with coloured dashed lines. They represent average quantitative gene expression data obtained 
from fluorescent immunohistochemistry stained Drosophila blastoderm embryos [95] followed by successive image-processing 
operations [46,96]. The simulated profiles obtained from different circuits for each gene are shown in light grey and the aver-
age profiles at a specific time point are plotted using coloured solid lines.
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between adjacent domains. Notable examples are Kr with
anterior gt, anterior hb with anterior gt, kni with posterior
gt, and posterior gt with posterior hb and tll.

In Fig. 3 the patterns of eight different circuits are shown.
In these graphs the dashed lines represent the final pro-
files obtained from the deterministic model and the solid
lines the average profiles obtained from the stochastic
simulations calculated from the individual stochastic
runs, which are shown in grey, [see movies in Additional
file 4,5,6,7 where stochastic simulation of some circuits
are shown]. In Fig. 4 the time-evolution of the expression
level of different gene combinations at a particular
nucleus position are shown for the same circuits as in Fig.
3. For comparison, the deterministic model is plotted
using a solid red line and all stochastic runs (100) using
light coloured lines. At the end of these lines a dot is
shown, which represents the final concentration at T =
68.1 min. The end points were used to extract two clusters
(with k-means clustering), which are represented by the
blue and green colour.

In Fig. 3A, B the final pattern formed during the stochastic
simulations are shown for circuit 48 and 11. Circuit 48
has an overall pattern score of 62% and nr 11 has an over-
all score of 34%. In circuit nr 11 all domains except Kr
(44%) and anterior gt (35%) score 100%. Kr and anterior
gt show a strong interaction, if anterior gt disappears then
Kr expands into the anterior gt domain. In circuit 48 this

interaction between Kr and Gt at the anterior of the
embryo is not present. In this circuit especially tll is not
well defined. Fig. 4A-B shows the trajectory of Kr and gt at
nucleus 35, for circuit 48 in almost all runs gt and Kr
develop correctly, however in circuit 11 there are two pos-
sible outcomes of the stochastic run. Here gt and Kr can
develop correctly, however gt may also disappear and
completely repressed by Kr. In this circuit there are two
pathways for the system to evolve, which may lead to two
stable points or a single stable point but two pathways.
Jaeger et al. [45] suggested that non-overlapping gap gene
are mutually exclusive and have mutual repression. This
result was confirmed for gt and Kr by Ashyraliyev et al.
[52]. Circuit 48 and 11 both show this strong mutual
repression but we believe that the bad stochastic score of
anterior gt and Kr might be caused by the weak repression
of gt by Tll.

In Fig. 3C, D the final pattern formed during the stochastic
simulations are shown for circuit 2 and 41. Both circuits
have a very low overall score of 12% and 0% respectively.
In circuit 2, a very low score for hb-p, gt-p and tll mainly
causes this and for circuit 41 all domains except cad are
not well defined. In Fig. 4C, D the trajectories at nucleus
35 of hb and gt are shown. For circuit 2 the pathway is well
defined, in most runs both gt and hb evolve similar to the
deterministic model. However in circuit 41 the pathways
are not well defined at all and show variability. In circuit
2, we see that Hb represses gt while Gt weakly activates hb,

Distribution of the 66 parameters obtained from the 101 gene circuitFigure 2
Distribution of the 66 parameters obtained from the 101 gene circuit. The solid red line represents the average 
value, the solid blue lines represent the standard deviations and the light grey lines are the different individual circuit parame-
ters. Parameters are sorted according to their mean value. Most parameters show a strong tendency to cluster around a par-
ticular value, defining the type of interactions. However, some of them have a very broad distribution around their mean and in 
a few cases, they show all different types of interactions i.e. activation, repression or no interaction.
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Stochastic simulation of eight different circuitsFigure 3
Stochastic simulation of eight different circuits. In these graphs the dashed lines represent the final profiles obtained 
from the deterministic model and the solid lines the average profiles obtained from the stochastic simulations calculated from 
the 100 individual stochastic runs, which are shown in grey.
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Phase portrait of stochastic simulation at a particular nuclear positionFigure 4
Phase portrait of stochastic simulation at a particular nuclear position. The time-evolution of the expression level of 
different gene combinations at a particular nuclear position is shown for the same circuits as in Fig.1. For comparison, the 
deterministic model is plotted using a solid red line and all stochastic runs (100) with light coloured lines. At the end of these 
lines a dot is plotted, which represents the final concentrations at T = 68.1 min. These end points were used to extract two 
clusters (with k-means clustering), which are represented by blue and green colours. The left panels show circuits with final 
points and pathways very close to deterministic model and the right panels show less well defined circuits.
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and inversely for circuit 41. It is suggested that overlap-
ping gap genes do not activate each other [45,52]. The
poor robustness of these 2 circuits is therefore a conse-
quence of the wrong connectivity of these 2 interactions.

In Fig. 3E, F the final pattern formed during the stochastic
simulations are shown for circuit 5 and 24. Circuit 5 has a
very low score of 10% and circuit 24 a score of 40%.
Although circuit 5 has a low overall score both the kni and
posterior gt domain score 100%, circuit 24 has a lower
score for these domains. In Fig. 4E, F the trajectories are
shown for kni and gt at nucleus 69. In circuit 5 the final
points of the stochastic runs are very close to the final
point of the deterministic run. Although the final points
are well defined, the pathway, which is a shift of both
domains, to these points is quite variable. In circuit 24 the
same phenomenon is observed, only here Kni in some
cases completely suppresses gt. Both circuits show gt acti-
vation by Kni (weak), which seems to be a wrong interac-
tion [45,52]. Circuit 5 shows repression of hb by Gt and
weak activation of gt by Hb while circuit 24 shows the
inverse mechanism. Based on the identifiability analysis
obtained by Ashyraliyev et al. [52], it is suggested that Gt
does not repress hb and Hb does not regulate gt. However,
the determinability of these parameters has a very poor
confidence and qualitative conclusion on these interac-
tions is still ambiguous.

In Fig. 3G, H the final pattern formed during the stochas-
tic simulations are shown for circuit 20 and 79. Circuit 20
has an overall score of 50% and circuit 79 has a very low
score of 2%. In circuit 20 all domains except Kr and ante-
rior gt are well defined. In circuit 79 all domains except
cad are not well defined. In Fig. 4G, H the trajectory of hb
and tll at nucleus 92 are shown. In circuit 20 most final
points are very close to the deterministic model, however
in circuit 79 almost all points are far away from the deter-
ministic model. In this circuit tll domain is repressed by
Hb and completely disappears and the hb domain contin-
uous to grow. In some runs in circuit 20 (blue trajectories)
we see the same tendency of continuous tll repression
combined wit hb increase. Circuit 79 shows very inconsist-
ent regulatory mechanism with respect to available litera-
ture [31,32,57,58]. gt and hb show mutual activation, and
Kni activates kr. These interactions seem to be the wrong
regulatory mechanism, leading to stochastic instability
and a very low pattern score.

Correlation between robustness and parameters

In Fig. 5 the correlation between the eight different expres-
sion domains scores and all parameters are shown. The
correlation pattern reveals that circuits with higher pro-
moter rates, diffusion coefficients and higher degradation
rates are more robust towards fluctuations. This suggests
that higher rates tend to increase robustness of the circuits.

Except for  all maternal inputs correlate negatively

with pattern robustness. This suggests that strong mater-
nal inputs tend to reduce the robustness of the circuit. All
negative inputs on cad show a positive correlation, which
suggests that strong Cad input weights tend to reduce
robustness. Furthermore, the inputs of Cad on all genes
except tll show a strong negative correlation, hence strong
weights reduce robustness [In Fig. 1 Additional file 1, the
correlations is shown separately for circuits with promoter
threshold H = -2.5 and H = -3.5].

Robustness towards parameter perturbation
If a parameter in one of the circuits (considered as a model
input) is perturbed by a certain amount the formation of
the gene expression pattern (considered as the model out-
put) will be perturbed as well. The amount by which a
parameter can be increased and decreased before a certain
pattern error (RMS) is reached can be used as a measure
for pattern sensitivity with respect to that parameter. In
order to get a better understanding of the model's sensitiv-
ity, for each circuit and each parameter in that circuit the
sensitivity interval (SI) was calculated (see methods).
From a biological point view pattern formation should be
robust towards small perturbations in the parameters
[59].

In Fig. 6C SI versus parameter value for Dgt,  and

 are plotted. For most circuits the lower value for the

diffusion coefficient reaches the value zero, hence the
lower bound of SI is equal to the parameter value, mean-
ing that without diffusion the pattern still forms correctly.
This phenomenon is also observed for all other diffusion
coefficients. Furthermore, the upper bound of SI does not
scale with the parameter value; hence circuits with very
similar diffusion coefficients can have very different SIs.
Non-scaling behavior is observed for most parameters,

another example is  shown in Fig. 6B. For this

parameter, both the upper and lower bound do not scale
with parameter value, also here we observe that circuits
with very similar parameter values can have very different
SIs; this was observed for most parameters. For some
parameters the SI does however scale with parameter
value. For example all decay time constants show scaling,

but also some weights. Fig. 6A shows the plot of ,

here both the upper and lower bound of the SI decreases
with smaller absolute parameter values. Hence the circuits
become more sensitive towards perturbations when the
parameter is smaller in magnitude [see Additional file 8
where all parameters SIs are shown].
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Correlation between the score of the eight different expression domains obtained from stochastic simulations and all parame-tersFigure 5
Correlation between the score of the eight different expression domains obtained from stochastic simulations 
and all parameters. Bright green represents a strong positive correlation and bright red a strong negative correlation. 
Squares in white borders are the most significant correlations.
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In Fig. 7 the correlation matrix, calculated on the basis of
the SIs is shown. The correlation pattern shows blocks on
the diagonal, where circuit parameters that regulate one
particular gene tend to cluster together. For example, in
the case of cad, if in a particular circuit a parameter that
regulates cad has a large SI, it is likely that the other param-
eters that regulate cad also have a larger SI. This suggests
that sensitivity appears to behave in a modular fashion,
where the genes represent modules. One exception is Kr
and gt, which both are found in the same cluster, suggest-
ing these two genes have a strong correlation. This corre-
lation is caused by their strong mutual repression [52],
forcing them to act in similar way to perturbation.

Circuit sensitivity

To investigate which parameters and which circuits are
more sensitive than others we have calculated the average
sensitivity on a logarithmic scale for each parameter and
each circuit (see methods). Then the SI of each parameter
value in each circuit was plotted using an intensity plot,
where the colour corresponds to:-log SI. The parameters
and circuits were ordered in Fig. 8 according to their aver-
age sensitivity, showing the parameters with smallest SI
and most sensitive circuit at the top right corner. From Fig.
8 it can be seen that the difference between the smallest
and largest SIs are 4 log units. The circuits are less sensitive
with respect to diffusion coefficients, promoter rates,
decay time constants and promoter threshold. Circuits are

most sensitive with respect to  weights followed by

the auto-regulation weights . Because the different

parameter types (diffusion, decay, promoter rate, thresh-
olds and weights) are not on the same scale we also calcu-
lated the average relative sensitivities of the circuit
parameters [see Tab. 2 in Additional file 1]. This approach
can however be problematic, if the parameter values are
close to zero, possibly yielding a very high relative sensi-
tivity. Therefore these outliers were removed from the
analysis. Using this measure, the least sensitive parame-
ters are the diffusion coefficients with a relative sensitivity
of about 100-200%. The thresholds are now more compa-
rable with the weights and have a relative sensitivity of

about 1%. Furthermore the  weights are still

amongst the most sensitive parameters with a relative sen-
sitivity of about 0.5-1%. From Fig. 9 we see that the aver-
age sensitivity of the circuits varies from one to another.
Certain parameters in the least sensitive circuits, notably
weights related to tll and cad tend to have lower sensitivi-
ties. By comparing the least sensitive circuits with the
more sensitive circuits using a t-test several parameters
where found that are significantly different in these
groups. These are in fact the parameters that show scaling

between sensitivity and parameter value , ,

, , , ,  and .

The standard deviation of the circuit parameters can be
quite large compared to the average parameter value
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Distribution of sensitivity interval versus parameter value. (A) Plot of  sensitivity interval. Here both the upper 

and lower sensitivity interval scale with absolute parameter values. Hence the parameter becomes more sensitive when it is 

smaller in magnitude. (B)  sensitivity shows non-scaling behaviour, which is also observed for most other parameters. Fur-

thermore, circuits with very similar parameter values can have very different sensitivities; this was also observed for most 
parameters. (C) Diffusion sensitivity illustrated by Dgt. For most circuits the lower value for the diffusion coefficient reaches 
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correctly.
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shown in Fig. 2. And furthermore, average parameter
value and standard deviation strongly correlate (r = 0.81).
In Fig. 9 the average -log SIs versus standard deviation is
plotted. Amongst similar parameter types (weights and
non-weights) no correlation is observed between SI and
standard deviation. This suggests that if a parameter is
very variable across the circuits, i.e. it is not well-defined
[60], it is not necessary less sensitive. A notable example is

 and , which both have a similar standard

deviation but differ in sensitivity by 2 log units. Further-
more, we also observe that the standard deviation on aver-
age is much higher than the sensitivity interval.

Model sensitivity vs. pattern robustness
In Fig. 10 we have plotted the average sensitivity versus
the overall score of the circuit. In this figure the circuits
with promoter threshold Hhb,Kr,gt,kni = -2.5 are shown in

blue and the circuits with Hhb,Kr,gt,kni = -3.5 in red. The cir-
cuits with an average sensitivity higher than 2.05 are sig-
nificantly less robust towards fluctuations than the
circuits with an average sensitivity lower than 2.05. The
circuits with H = -3.5 are more sensitive than the circuits
with H = -2.5. Furthermore the robust circuits have a bet-
ter overall pattern score on average; however lower sensi-
tivity does not necessarily yield a good pattern score. This
suggests that the average sensitivity is not the only deter-
minant for robustness towards fluctuations. In Fig. 2 of
Additional file 1, the correlations between parameter SIs
and stochastic simulation of individual gene domain
robustness is shown separately for circuits with promoter
threshold H = -2.5 and H = -3.5.

Discussion
The 101 gap gene circuits were previously obtained with
inverse modelling [42,51] of a seven gene (bcd, cad, hb, Kr,
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Parameter sensitivity intervals correlationFigure 7
Parameter sensitivity intervals correlation. The correlation pattern is calculated on the basis of sensitivity intervals. The 
correlation matrix shows blocks on the diagonal, where circuit parameters regulating one particular gene tend to cluster 
together.
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gt, kni and tll) connectionist model using detailed spatio-
temporal gene expression data [61]. All circuits were
selected only on the basis of a low RMS value (RMS ≤ 12),
and in all cases the circuits were able to reproduce the
dynamics and the patterns accurately. However, the
parameter values of the circuits appeared not to be well
defined, for some parameters multiple clusters were
found, which represented multiple circuit topologies. Fur-
thermore many parameters showed a single cluster with a
high degree of scattering around the mean as shown in
Fig. 2. Before any further tests, this result insinuates that
for some parameters such as the non-regulatory parame-
ters (showing major scattering), the notion of a global
optimal parameter set makes no biological sense as sug-
gest by Von Dassow et al. [27]. Also, the scatterings of
most of the regulatory parameters are almost in a precise
region of the search space, describing a precise qualitative
behavior that can be linked to a potential interaction
(repression, no-interaction or activation). The model
always performs well and leads to very good pattern sug-
gesting that the model is robust to the network topology

as well as variation in individual parameters. Robustness
to network topology is a behavior already observed by
Von Dassow et al. [27] in the case of the segment polarity
of Drosophila melanogaster.

To further analyze the properties of the model and to clas-
sify the quality of the circuits we conducted a perturbation
analysis. We analyzed the robustness of 101 Drosophila
melanogaster gap gene circuits using two different
approaches, first the robustness of pattern formation
towards intrinsic fluctuations in gene expression levels
was investigated using a stochastic model and secondly
the sensitivity of the circuits with respect to the parameters
in the model was investigated using a simple parameter
perturbation technique.

Robustness towards fluctuations
Robustness of the regulatory network is expected to be a
fundamental property of the network, pattern formation
should therefore not be compromised by small intrinsic
fluctuations in gene expression levels. Therefore, the pat-

Relation between parameter sensitivity intervals and circuit sensitivityFigure 8
Relation between parameter sensitivity intervals and circuit sensitivity. Intensity plot of the sensitivity of all parame-
ters and all circuits sorted according to the average parameter sensitivity and average circuit sensitivity. The most sensitive 
parameter and most sensitive circuit are shown at the top right.
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terns obtained from stochastic simulations should statis-
tically be similar to the pattern obtained from the
deterministic simulation for robust circuits.

Robustness of domain formation
Introducing fluctuations in the model had a profound
effect on the formation of the expression patterns.
Although some of the circuits showed robust formation
for most domains, none of the circuits were sufficiently
robust when looking at the formation of all the domains.
We observe that fluctuations can lead to an increase or

decrease of domain amplitudes (see Fig. 3). Furthermore
we also observe posterior and anterior boundary shifts,
which leads to domain expansion, domain contraction or
domain shifts. We also observe that domains completely
disappear or that domains appear in other regions, where
they repress other domains. Especially in a significant
number of circuits the anterior domains Gt and Kr did not
form robustly during the simulations. The least robust
was the Tll domain at the posterior end, this domain inter-
acted with Gt and Hb, which all showed defects in many
circuits. We believe that Tll weak robustness is caused by

Relationship between average sensitivity interval and parameter standard deviationFigure 9
Relationship between average sensitivity interval and parameter standard deviation. On the y-axis,-log SIs is given 
and on the x-axis parameter standard deviation. The figure shows that there is no obvious correlation between SI and STD. 
The parameter identifiability is not necessarily linked to SI.
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an incomplete model where gap gene are regulating tll
which is inconsistent with experimental evidence [45,62].
However, we see that although the overall robustness to
fluctuation is poor, the robustness tends to behave in a
modular way, where, for a given circuit, all genes but one
can have very good score. The gene with a bad stochastic
simulation can be linked to a bad or wrong interaction,
feature that cannot be seen from the deterministic simula-
tion. This modular behavior shown in Fig. 11 is strongly
related to the network topology as well as the interaction
weights.

Looking at the evolution of the system in phase space, we
found that the pathways in many cases were not well
defined, which appeared to be linked to the existence of
multiple attractors. The fluctuations allowed the system to
jump from one attractor to another, causing the system to
evolve into a pattern very different compared to the deter-
ministic model. This suggests that by using the reverse
engineering approach many circuits can be found, which
are well defined for the deterministic case but not for the
stochastic case. Multiple attractors can easily occur in a
non-linear model with many parameters, where overfit-
ting may lead to many connections in the circuits. Also the
type of feedback loops may be crucial, e.g. cad has a neg-
ative auto-regulation, which reduces the effect of fluctua-
tions, however all other genes have strong positive auto-
activation [63,64]; in these cases fluctuations are ampli-
fied if there are no negative feedback loops associated
with the increase of the expression level.

The effect of certain parameters on robustness
The connectionist model contains a promoter threshold
for each gene, which determines if gene production is on
or off when there are no other inputs. In the current gap
gene model the production of hb, Kr, gt and kni can only
be turned on by maternal inputs or by auto-activation,
therefore the promoter threshold are set to a fixed nega-
tive value, which was either H -3.5 or H = -2.5. Looking at
the robustness of individual circuits, we find that circuits
with promoter threshold set to H = -2.5 are more robust
towards fluctuations compared to circuits with promoter
threshold set to H = -3.5, and also their parameters are on
average less sensitive. In general we find that weaker
maternal inputs from bicoid and caudal increase the
robustness with respect to fluctuations. Furthermore
higher promoter rates, decay rates and diffusion coeffi-
cients improve the robustness towards fluctuations.

We have seen that circuits are relatively less sensitive with
respect to diffusion coefficients, and with some extent, to
decay time constant. Regarding the diffusion coefficient,
this result confirms observations made elsewhere where it
was suggested that the diffusion is not essential to explain
precise gene expression pattern formation [42,65], but the
diffusion term does account for the boundary nuclei effect
[66]. It was also shown by Nusslein-Volhard et al. [67]
that the effect of diffusion is reduced with the exponential
increase of the number of nuclei. Also, Gregor et al. [68]
showed that diffusion coefficient does not scale with var-
ying embryos length. The rest of the parameters have a
mixed sensitivity behavior and do not fall into a specific
category [see Tab. 2 in Additional file 1]. Some of the
weights are very sensitive and some are not, idem for the
production rate. Although we do not have precise biolog-
ical explanations regarding the difference of the sensitivity
behavior of the parameters, it might be interested to
experimentally investigate if such difference is a property
of the connectionist model or a characteristic of the regu-
latory mechanism. The sensitivity information can then
guide the selection of the optimal mutation targets and
thereby reduce the experimental effort. This validation
could be done for example by measuring mRNA degrada-
tion rate of zygotic Hb in embryos with over expressed
maternal hb, or by measuring the binding affinity in
mutants. Also one could consider inducing genetic muta-
tion to control kinetic parameters that can be measured
[69].

We also find that certain parameters that regulate poste-
rior tll and also some parameters that regulate anterior gt
and Kr affect robustness of the corresponding domains.
Furthermore we find that robustness and parameter sensi-
tivity are linked. Especially for the group with a lower pro-
moter threshold we find that circuits with a lower average

Scatter plot of pattern scores versus average circuit sensitiv-ityFigure 10
Scatter plot of pattern scores versus average circuit 
sensitivity. On the x-axis, average sensitivity of a circuit is 
plotted and on the y-axis the overall pattern score as per-
centage, which was obtained from 100 stochastic simulation 
runs. This figure shows that sensitive circuits are not robust 
towards fluctuations.
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sensitivity are more robust towards fluctuations. These
results show that in the current gap gene model not just
the network topology but to a large extent the precise
value of the parameters determines robustness. We
noticed that inputs of cad to other genes correlate nega-
tively with robustness, these parameters are amongst the
most sensitive in the model, with a - log SI in the order of
4. If we assume that fluctuations are proportional to the
square root of the concentration level (this is a reasonable
assumption for steady production) the relative fluctuation

level is about , where n is the number of

molecules. For n = 100, n = 1000 and n = 10000 the rela-
tive fluctuation level then is 10%, 3.2% and 1%. The most
sensitive parameters in the model have a relative sensitiv-
ity of about 0.5 - 2% [see Tab. 2, Additional file 1]. This
holds assuming that 20% of the circuit RMS is a critical
cut-off.

1 100/ * %n

Robustness of overall patterns and domainformationFigure 11
Robustness of overall patterns and domain formation. Each panel beside the last one shows the distribution of the cir-
cuits' robustness to gene expression fluctuation. Genes that are expressed in more than one domain (such as hb and gt) have 
more than one score. The score determines how precise is the stochastic simulation to the deterministic simulation. For each 
circuit, 100 stochastic simulations were run and score for individual gene and total pattern was calculated. On the x-axis the 
score is given and the y-axis determines the number of circuits with a given score. Cad and anterior Hb (hb-a) show very good 
score while Tll shows a very bad score.

0 20 40 60 80 100
0

20

40

60

80

100
cad

nu
m

be
r 

of
 c

irc
ui

ts

0 20 40 60 80 100
0

20

40

60

80
hb−a

0 20 40 60 80 100
0

5

10

15

20

25

30
hb−p

0 20 40 60 80 100
0

5

10

15

20

25
Kr

nu
m

be
r 

of
 c

irc
ui

ts

0 20 40 60 80 100
0

5

10

15

20
gt−a

0 20 40 60 80 100
0

10

20

30

40
gt−p

0 20 40 60 80 100
0

10

20

30

40

50
kni

score

nu
m

be
r 

of
 c

irc
ui

ts

0 20 40 60 80 100
0

2

4

6

8

10
tll

score
0 20 40 60 80 100

0

5

10

15

20

25
total

score
Page 16 of 23
(page number not for citation purposes)



BMC Systems Biology 2009, 3:94 http://www.biomedcentral.com/1752-0509/3/94
Possible reasons for weak robustness
We conclude that the current connectionist model
describing the gap gene segmentation obtained from
reverse engineering techniques is not robust. Although
some circuits appear more robust than others, most of the
circuits are extremely sensitive towards gene expression
level fluctuations and also pattern formation is very sensi-
tive with respect to perturbation of a large number of
parameters. In most cases the parameters causing this are
linked to: Tll regulation, in some cases are linked to ante-
rior Gt and Kr regulation and finally the promoter thresh-
old (see Fig. 5). There may be a multiple reasons for weak
robustness. First, the incompleteness of the model may be
the cause. In the real system it is known that the terminal
pathway with Tll, huckebein [70] and Torso also regulate
gap genes, the latter two are missing in the current model.
Furthermore, hb regulation is not only zygotic but also
has a maternal component at the anterior end of the
embryo that is also regulated by nanos, nanos and a
maternal description hb mRNA are missing in the model.
Furthermore, only a part of the embryo is considered,
which may lead to boundary effects at the anterior end.
Secondly, the current reverse engineering approach using
a simple RMS optimization may lead to sensitive circuits,
not only some time points are missing in the data also fea-
tures in the data that are not represented in the model may
be over fitted. Finally, the rather phenomenological
approach of the connectionist model may also be a source
of sensitivity because promoter threshold has a profound
effect on robustness.

How to improve the network inference
In modelling processes from developmental biology espe-
cially the class of quantitative spatio-temporal models of
gene regulation is relevant. This type of models can poten-
tially linked with three-dimensional biomechanical mod-
els of morphogenesis and provides new insights into
developmental biology. Especially the quantitative spatio-
temporal models of gene regulation are characterized by a
large number of unknown parameters and an (infinite)
class of potential solutions. So far, very few model-based
analysis method have been proposed to validate or inval-
idate models, especially for nonlinear and spatially dis-
tributed models [6,71,72].

The analysis presented in this paper shows the effect of
missing genes, suggesting that it might be necessary to
include more genes known to be involved in gap gene seg-
mentation. Although data might not be available, one
could consider combining synthetic data with observa-
tion. The hierarchical modular structure of the system
should be considered within the model description [27].
Phenomenological models such as the connectionist
model can generate realistic pattern, but they still fail at
establishing the clear role of genetic perturbation. These

models can be improved by considering using Hill type
functions [27] and/or more detailed rate equations [65]

Another improvement would be to infer the network
using stochastic models that translate the fluctuations in
the system. It is computationally expensive to numerically
solve such systems and it will require efficient optimiza-
tions methods [73].

To prevent overfitting, one might consider reducing the
number of free parameters by adding more constraints
known from previous experiments. In general the inverse
problem that is only based on minimizing the RMS leads
to over-fitting, allowing for many solutions that all fit the
dataset equally well but may not show correct behavior or
properties beyond the dataset. It is therefore difficult to
know, which solution is most similar to the real system.
The different post-optimization analyses presented in this
paper and in an accompanying manuscript ([74])
revealed some simple but efficient invalidation tests. Ide-
ally, we would like to funnel all circuits into a pipeline of
tests where the circuits are filtered and those passing all
the tests are the robust and stable solutions. It may how-
ever turn out that none of the solutions will pass all the
tests. Therefore we propose not only to minimize the RMS
but also to incorporate other objectives into the optimiza-
tion strategy. By introducing multiple objectives the solu-
tions obtained should possess better properties and also
have better defined parameters. The possible additional
objectives for gene regulatory networks are:

• Sensitivity constraints should lead to networks that
are robust towards parameter or input perturbation.
This could simply be addressed by incorporating a
sensitivity analysis within the optimization procedure.
Using the Levenberg-marquardt method for parameter
estimation, Ashryalyev et al. [52] have investigated
simultaneously while estimating the parameters, their
identifiability. Rodriguez-Fernandez et al. [75] have
presented a hybrid method that can handle the sensi-
tivity analysis while optimization. Using such
method, we suggest attributing to each circuit a sensi-
tivity value that determines the overall sensitivity of its
parameter.

• Noise robustness constraint is another improve-
ment that should lead to circuits robust towards fluc-
tuations (internal or external). This improvement can
be achieved by inferring the network using stochastic
models that include the fluctuations in the system. It
is computationally expensive to numerically solve
such systems and it will require efficient optimizations
methods [73,76]. Furthermore, It is known that pat-
terning is insensitive to external fluctuation such as
maternal gene expression. Consequently, an efficient
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model should also be able to simulate gap-gene
expression given noisy external Bcd expression. An
efficient way to distinguish all the solutions obtained
from the parameter estimation would then be to
change the Bcd dosage during the optimization It was
shown by Manu et al. [77] that Bcd variation is not the
cause of the precise canalization of the gap genes but
its a consequence of the cross regulation between
zygotic gap genes [29]. In an optimization procedure,
good circuits should be able to reproduce the patterns
as well as the shift without showing any major fluctu-
ation of the gap gene expression while varying the Bcd
concentration.

• Reducing network connectivity In our accompany-
ing manuscript [74], we show that the long term
dynamic revealed that in the presence of certain
motifs, the circuits pattern converge to oscillatory
attractors. This behavior is not desirable as we expect
the patterns to converge to a stationary point being the
steady state. Therefore, we would ideally ignore or
penalized the circuits having this behavior. Also, we
have shown that circuits with realistic topologies do
not have these motifs and converge to the desired
attractors. This could be obtained by either running
the circuits beyond the data set to force asymptotic sta-
bility [66], or by adding an entropy function to prior-
itize circuits with the minimal connectivity. It was
shown by Isalan et al. [78] that circuits where reduced
connectivity are more robust to parameter variation in
comparison to circuits with less connected members.

These different additional objectives would be integrated
in a multi-objective optimization framework, which is an
extension of the classic optimization of a single-objective
function (see Handl et al. for interesting review on Multi-
objective optimization [79]). Many multi-objective algo-
rithms exist [80,81] such as method where multi objec-
tives are transformed into one single objective [82-84],
Pareto [85,86] and non-Pareto dominance approaches.
To our knowledge, very few have used Multi-objective
optimization for GRN inference [87,88]. Based on recent
reviews [9,10], stochastic ranking evolutionary strategy
(SRES) is one of the best methods for parameter estima-
tion of biological problems. This method has been used to
obtain some of the circuits analyzed in this article and
obtained elsewhere [51]. The implementation of the SRES
is suitable for multi-penalties where the weighted sum of
penalties is used [9] as a multi-objective constraints. The
strength of the ES is its intrinsic parallel nature [89]. One
alternative would be to use an island based ES where the
number of island is determined by the different objec-
tives. Each island minimizes the multi-objectives, but the
distribution of the weight is different from island to
island. Migration between islands will spread individuals

with a particular strong property in the other islands. The
main objective being the least square difference between
the simulation and the data, it might be more practical to
start with one population where the penalties have equal
weights and later on, switch to islands once the LSE is
acceptable. This would guarantee that in all islands, the
individuals have at least a good RMS.

Conclusion
In this paper, we have provided a robust analysis of a
model used to infer the gap gene regulatory network of
Drosophila melanogaster. The model has been extensively
used elsewhere [42,43,51] to simulate and provide some
explanations concerning the regulatory mechanism that
leads to precise pattern formation. Unfortunately, many
assumptions were based on a limited number of circuits
obtained using simulated annealing and previous
researchers assumed that the model was correct with a cor-
rect topology. In this article, we have shown that the
mathematical model leads to different circuits all capable
of reproducing the quantitative spatio-temporal gene
expression pattern. Consequently, it is difficult to decide
based solely on the architecture which circuit is the correct
one.

Robustness towards fluctuation has revealed that the over-
all gap gene domain tends to be poorly resistant to pertur-
bation and this weak property could be related to some
particular interactions predicted by the circuits. Further-
more, parameter perturbation analysis has shown that the
circuits with lower sensitivity do not necessarily yield to
robustness to fluctuation. The reason for these few excep-
tions is related to the promotor threshold and to local
domain robustness, which can considerably affect the
overall global robustness. Overall, the analysis shows that
the network possesses modular robustness and some local
properties may affect the robustness of a gene expression
locally as show in Fig. 11. This feature is strongly related
to the network topology as well as the interaction weights.

From a biological point of view, this paper has shown that
it is difficult to relate the connectionist model with bio-
logical evidence. The model ability to simulate the gene
expression does not necessarily provide meaningful infor-
mation since alternative networks are predicted. There-
fore, it would be interesting to test some of the different
alternatives, especially when there is not yet any experi-
mental evidence to invalidate. However, it was recently
demonstrated that it is still possible to draw qualitative
conclusions on the regulatory topology of the gap gene
network [52]. The overall analysis has shown that based
on the robustness toward gene expression fluctuations
and parameter perturbations, it is possible to identify
robust circuits as well as the parameters that are identifia-
ble according to their sensitivity intervals. For a computa-
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tional/system biologist, this shows that it is essential to
further analyze a model prediction, when results are
obtained from reverse engineering based on parameter
estimation, since some of its properties may or may not
invalidate the results. We have also provided some pre-
liminary suggestions to efficiently improve the GRN infer-
ence to avoid reverse engineering that leads to circuits
with different topologies, by controlling the optimization
by means of multi-objectives minimization.

Methods
Inference of the Gap Gene model
The gap gene circuits analyzed in this paper were pre-
sented by Jaeger et al. [42] and Fomekong-Nanfack et al.
[51]. In both cases, the inference was performed using the
same quantitative data, the same model description but
different parameter estimation methods.

Quantitative data used are available online in the FlyEx
database http://urchin.spbcas.ru/flyex/ or http://
flyex.ams.sunysb.edu/flyex. The database presents a col-
lection of spatio-temporal gene expression data obtained
from fluorescently stained wild-type embryos for Eve pro-
tein and two other genes. Data were obtained by applying
different image processing strategies [46]. The embryos
are for different time ranging from cycle 7 to cycle 14A. In
the simulation, data obtained at cycle 12 were used as ini-
tial conditions. For the genes Kr, gt, kni, Tll these are very
close to zero and set to 0 in the simulations.

Mathematical model of gap gene considers the 35% to
92% of the A-P axis of an embryo. It is reduced to a one-

dimensional discrete model where nuclei are aligned hor-
izontally. The model focuses on the development
between cycle 13 and cycle 14A8, before gastrulation
(71.1 min). Three rules describe the mechanism during
that phase: interphase, mitosis and division [90]. Inter-
phase and mitosis are continuous stages describing the
dynamic of protein variation of a gene within a nucleus.
The division is a discrete process describing the cleavage of
a nucleus in two. Mitosis, arising before division, differs
from interphase by the absence of protein synthesis. The
resulting model is a system of 180 equations before divi-
sion and 348 equations after, with a total of 66 unknown
parameters written as:

where Ng denotes the number of genes or gene products

involved and Φ is a sigmoid function with range (0,1).

(t) represents the concentration level at time t of gene

a in nucleus i with 1 ≤ i ≤ N and N the number of nuclei

during a cleavage cycle. The concentration, , of the

maternal gene bicoid is taken from experimental observa-
tions and is kept constant in time during the simulation.
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The parameters are: the regulatory weight matrix ,

describing the influence of gene b on gene a, the produc-

tion rate Ra, the activation threshold ha for Φ, the decay

rate λa, the diffusion coefficient Da, and the regulatory

influence bcda.

Parameter estimation was performed by two different
strategies. Jaeger et al. [42] have used a parallel simulated
annealing (PLSA) algorithm as described in [48], origi-
nally proposed by Lam [49]. The expensive computa-
tional time required by PLSA could only lead to 10 gap
gene circuits with good solution's quality and patterns
behavior. Later on, Fomekong-Nanfack et al. [51] pro-
posed 101 gap gene circuits obtained using hybrid meth-
ods composed of a stochastic ranking evolution strategy
[91] followed by direct search [92]. Evolution strategy is a
evolution based algorithm like genetic algorithm [93] and
direct search is a local search strategy suitable to solve a
variety of optimization problems that are not well suited
for standard optimization algorithms, including prob-
lems in which the objective function is discontinuous,
non-differentiable, stochastic, or highly nonlinear. This
number of solution could be obtained because of the rea-
sonably low computational time of their method (8 h on
single processor) compare to PLSA (1 to 5 days on 10 par-
allel CPU), but leading to the same quality of solution. In
both cases, the optimization goal is to estimate the
unknown parameters that minimize a scalar valued cost-
function, by exploring the set of possible values in an
allowed search space. The chosen cost-function is the least
squares of the difference of the simulated and the
observed data:

with θ the parameter vector to which a constraint or pen-
alty function is added. An explicit search-space constraint

is given for parameters Ra, λa and Da. For the parameters

, bcda and ha a collective penalty function is used

([40]) to restrict the function value of Φ to the domain [Λ,

1-Λ] with Λ a small parameter (in this study taken to be
0.001). The root mean square (RMS) described by Reinitz
et al. is used ([40]) as a measure of the quality of a model
solution for a given set of parameters:

where E(θ) is given by Equation (2) and Nd is the number
of data points.

Sensitivity analysis and confidence interval

If a single parameter is slightly decreased or increased, the
RMS of the simulated pattern will increase because the
quality of the fit to the gene expression data reduces. The
amount, or range, by which a parameter can be changed
before the fit becomes significantly bad, is a measure for
the sensitivity of the parameter for a particular solution.
For each parameter within each solution we computed the
lower and upper value of a parameter where the RMS
increases by 20%, which corresponds to a situation where
the gene pattern becomes significantly bad as shown in

Fig. 12. Hence, the lower value θn,i - ΔLn,i is computed from

f(θn,i - ΔLn,i) = 1.2 * RMSn and the upper value θn,i + ΔUn,i

is computed from f(θ n,i + ΔUn,i) = 1.2 * RMSn, where RMS

is the original RMS value of the fit obtained from the opti-
mization and f denotes the cost function, n denotes the
solution number and i the parameter index. We define the

sensitivity interval as [θn,i - ΔLn,i, θn,i + ΔUn,i] and the sensi-

tivity as . The average sensi-

tivity of a solution and a parameter are defined as

 where np is the number of parameters

and respectively  where ns is the

number of circuit. The lower relative sensitivity is defined

as θn,i/ΔL, i * 100% and the upper relative sensitivity is

defined as θn,i/ΔU,i * 100%.

Stochastic behavior of the model
We implemented a nonlinear stochastic deterministic dif-
ferential equation model of the gap gene where the
dynamic is driven by Gillespie stochastic simulation algo-
rithm [56]. The master equation is based on the differen-
tial equation describing the concentration change of a
gene expression in a particular nucleus. Each equation
describes three different reactions: protein production,
protein decay and diffusion. Only one reaction can occur
at a specific time. The Gillespie algorithm simulates the
system by choosing first in a probabilistic manner which
reaction occurs, and then estimates when does the next
reaction will be realized. To speed the process, we have
used a method [94] that only calculates and updates reac-
tions that have changed. The probabilistic nature of the
algorithm imposed us to run 100 simulations for each of
the 101 gap gene circuits. All simulations used the same
initial condition and the number of molecules is 5 times
the deterministic case (based on [55]). For simplicity,
analyses are only made on the final pattern (gastrulation
time) by comparing the deterministic simulation with the
stochastic one.
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Additional file 1
Additional statistics. This file (GapGeneModelRobustnessAddFile1.pdf) 
contains the material, which is not given in the paper due to the space lim-
itation. It mainly gives additional statistical results for the stochastic sim-
ulations and the perturbation analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S1.PDF]

Additional file 2
Stochastic simulation of all circuits. The document 
(GapGeneModelRobustnessAddFile2.pdf) provided gives the simulation 
obtained from the 100 stochastic runs of each circuit obtained determin-
istically. Each page corresponds to a circuit and on each page; individual 
panels correspond to individual run. The panels with a grey background 
represent runs that have a defect in one or more expression domains. The 
runs shown in the panels with a white background are considered to be 
correct.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S2.PDF]

Additional file 3
Robustness of all circuits. In this document 
(GapGeneModelRobustnessAddFile3.pdf), each figure shows the deter-
ministic stochastic simulation of a circuit. In these graphs the dashed lines 
represent the final profiles obtained from the deterministic model and the 
solid lines the average profiles obtained from the stochastic simulations 
calculated from the 100 individual stochastic runs, which are shown in 
grey.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S3.PDF]

Additional file 4
stochastic simulation of circuit number 5 run 52. The movie shows the 
spatio-temporal simulation of circuit number 5 for the 52 stochastic run.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S4.MP4]

Additional file 5
stochastic simulation of circuit number 5 run 83. The movie shows the 
spatio-temporal simulation of circuit number 5 for the 83 stochastic run.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S5.MP4]

Additional file 6
stochastic simulation of circuit number 11 run 64. The movie shows the 
spatio-temporal simulation of circuit number 11 for the 64 stochastic run.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S6.MP4]

Additional file 7
stochastic simulation of circuit number 11 run 98. The movie shows the 
spatio-temporal simulation of circuit number 11 for the 98 stochastic run.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S7.MP4]

Additional file 8
Absolute parameters sensitivity intervals of all parameters. The data 
provided in this document (GapGeneModelRobustnessAddFile8.pdf) rep-
resent the sensitivity interval of all the 66 parameters obtained from the 
101 circuits. Each figure gives the upper and lower bound of the SI.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-94-S8.PDF]
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