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2 Neural spike sorting with
spatio-temporal features

Claude ArcheY  Michiel Hochstenbach  Kees Hoed#
Gjerrit Meinsm&*  Hil Meijer®  Albert Ali Salatf
Chris Stoll¥:>  Tomasz Swit  Joanna Zyprych

Abstract

The paper analyses signals that have been measured by twhésluring
surgery. First background noise is removed from the sigriEi& remaining
signals are a superposition of spike trains which are sulesgly assigned to
different families. For this two techniques are used: ®aBCA and code
vectors. Both techniques confirm that amplitude is themlystishing feature
of spikes. Finally the presence of various types of peribdia spike trains
are examined using correlation and the interval shift histm. The results
allow the development of a visual aid for surgeons.

Keywords: spike sorting, deep brain stimulation, PCA, interspikenwl his-
togram

2.1 Introduction

The problem addressed in this study involves helping a rseugeon get his or her
bearings during deep brain surgery. A stereotactic franusesl to fix a patient’s
head during an operation, and simultaneously to provid@edaoate system for the
surgeon to navigate. The region to be operated is determiynedaging techniques

1Ecole Royale Militaire (MECA), Brussels

2Eindhoven University of Technology

SUniversity of Twente

4CWI, Amsterdam

SUniversity of Amsterdam

6CERGE-EI, Prague

’Agricultural University of Poznan

*corresponding authog,meinsma@utwente.nl

TOther participants: Marta Dworczynska (Wroclaw Universit Technology), Marcel Lourens
(University of Twente), Tomasz Olejniczak (Wroclaw Unisity of Technology)

21



2 Neural spike sorting with spatio-temporal features

prior to the surgery. For some tasks, like taking out a turthar,resolution of the
image is good enough for the operation. For finer tasks, hewyelre structural
anatomy of the brain is less relevant than the functionataang An example
of the latter is deep brain stimulation (DBS), which regsieehigh resolution to
determine the location at which to stimulate.

One method to determine the functional anatomy is to inseet fieedles into
the brain to record neuron action potentials during theesyrgThis can indicate
whether the targeted area is reached or not. However, gksgaery difficult, and
requires a lot of expertise. The medical group we are workiith uses the fol-
lowing approach. Several micro-needles (10 micron thicultiple needles about
2 millimeters apart) are inserted into the operating regidhe neural activity is
recorded for periods of 10 seconds, converted to sound wawekplayed to the
surgeon, who then decides whether the needle is on target.df not, the surgeon
moves the needle some 0.5mm and the procedure is repeated.

Our aim in this project is to determine which methods of asialgnd information
presentation would help the surgeon to classify the recbngeiral activity in real
time. Moreover we would like to incorporate the knowledgehe expert surgeon
into the analysis in a way that helps inexperienced surgemarticularly as expert
knowledge is highly qualitative, depends on intuition hdbbhg many surgeries and
is very difficult to state as a procedural description.

Apart from the difficulty of modeling expert knowledge, tbeare several other
challenges in this problem. When a needle is recording heat&ity, it records a
great deal of background noise too, which needs to be aceddat. Deep brain
recordings have much higher noise levels than corticalrddegs. Depending on
the proximity of neurons in the area, several neural a@witan be recorded with
a single needle, and the fact that closely spaced neuroadlyubave highly corre-
lated activities makes their separation difficult. A singéiron can have relatively
regular interspike intervals, or it can alternate periotisow activity and high-
frequency firing. Furthermore, neurons can go active ortivacuring a single
recording, and the number of neurons contributing to theadighay change. The
recording time is typically short, which makes temporaksléication via statistical
methods difficult, if not impossible. On the other hand, sifisation via the spike
shape is not trivial either.

2.1.1 The data and problem details

The basic object of study are voltage tragés L) with L the level of insertion and
t the time. Possible levels ate € {0, 50, 100, ..., 500 m and the time ranges
over precisely 10 secondse [0, 10]. Available for analysis are sampled

Xk := X(KTs, L)
at a sampling frequency of
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Figure 2.1: Tracex(t, L) for levels L = 50,100 ...,500um and timet e
[0, 10]s.
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2 Neural spike sorting with spatio-temporal features

This means that frequencies up to 10kHz can in principle ptucad by the discrete
measurements,. Note that from now on the levél is suppressed in our notation
Xk. We will analyze voltage traces only for a given fixed levebwerline artifacts
and similar disturbances are assumed to have been remamrackfr Figure 2.1
shows a typical set of traces for various levkls Its behavior changes per level
but also within each level the signal characteristics magnge over time. We
assume that signals are stationary within 1 second. At neesid in Figure 2.1
peaks are clearly visible, which suggests that significeymas power is attributed
to these peaks. A quick scan however shows that the powerodte tpeaks is
negligible and also in the frequency domain the power dubdgeaks turns out to
be not clearly separated from that of background noisethie: respective spectra
overlap significantly. Inspection of Figure 2.1 suggestt trackground noise can
be removed in the time domain using a threshold. This is @xgtein Section 2.2,
where we follow the approach given in [10].

The basic waveform, and repeated waveform, respectivadywkrasspikeand
spike traincan be depicted as follows:

spike spike train
- . s —
~ 1.4ms € [5,200]ms

Given the sampling frequency of 20kHz this means that a sisglke covers at
least 20 samples. Spikes with a large amplitude stand ouguré2.1. Surgeons
distinguish three types of spike trains:

1. spike trains ofegular firing rate. These originate from neurons that fire at a
rate of 5SHz to 50Hz;

2. spike trains ofegular-HF firing rate. These originate from neurons that fire
at a rate of 50Hz to 150Hz;

3. spike trainbursts These originate from neurons with firing rates around
100Hz with the main feature that pockets of activity areriateed with pock-
ets of inactivity. The amplitude of spikes may vary withinua$t.

This is a coarse classification and irregular firing pattam$many other types may
be present as well. For instance a neuron can stop firing foesgione or change its
amplitude. There are many other sources of non-statign®ite source is due to
the movement of the neurons with respect to the needle. &nadhlthe dynamics
of the neuron itself. For example, when a needle advanceanistun the nearby
tissue, so that the neuron stops firing completely or at lemsporarily alters its
firing behavior, before turning back to normal behavior. daging time windows of
near stationarity is crucial and this is why the analysistoaske place for every
window of, about, 1 second.
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2.1 Introduction

The problem is to automate what the surgeon does and to daealitime, with
a delay of at most 5 seconds. In short, we want to:

1. pinpoint the location of spikes (i.e. remove backgrouoida),

2. separate the set of spikes trains into various classeeéponding to different
neurons),

3. determine for each of the classes of spike trains to whi¢heothree types
they belong (if any),

4. visualize the findings.

Problems 2 and 3 combined are known as the probleapiik sorting In the rest
of the paper we describe a set of ideas that could be usefohimg these problems
in real time. A color-coded visualization as exemplified igufe 2.2 is a possible
desired outcome of the project, as it would help the surgeaietide on the nature
of neuronal activity in the measured area.

burst burst

regular HF regular HF

regular

t=0 t=10

Figure 2.2: Visualizing the presence of regular spike &aigreen), regular-HF
spike trains (blue) and spike train bursts (red) as a funaifdime.

2.1.2 Literature survey

Spike sorting has been around since the 1960s. The earlitbodgerelied on tem-
plate matching, and required heavy offline processing [Midre recent methods
combine feature extraction, probabilistic modeling, ahgtering. The accuracy
and efficiency of these methods are much greater than béjiarejost of them are
still too computationally intensive to be used during thegsuy, and they do not
work well with deep brain recordings. An excellent receniew of the problem is
the one by Lewicki [6].

The success of spike sorting methods is determined by siimngaon artificial
data (for which the correct classification is known) or by gamsons to human-
annotated real recordings. Hargsal. studied the performance of a human op-
erator when sorting spikes recorded from a tetrode (4-wiet®de) manually,
and decided that human operators sort the spikes subolytif8pl Single-needle
recordings (as we study in this work) were markedly morediffito classify than
tetrode recordings, where the presence of multiple semBokgdes robustness in
the decisions. Their conclusion was that “automatic sgikeing algorithms have
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2 Neural spike sorting with spatio-temporal features

the potential to significantly lower error rates.” Similabservations were made
in [17], which reports average error rates of 23% false p@sénd 30% false neg-
ative for humans sorting synthetic data. In artificiallyatexl data sets, this type of
error is reduced. Consequently many researchers crediegartiata sets by mod-
ifying a small set of annotated signals, adding noise andrpgsing them to make
the problem more difficult [1, 2, 10, 18], or by resamplingifr¢he distribution that
characterizes the data [17]. Generation of realistic dat@npther issue. In [8],
a cortical network simulation based on GENESIS was used tergée artificial
spike data. The authors note that the spike sorting algostiested on their simu-
lated data failed. More recently, Smith and Mtetwa propaséibphysical model
for the transfer of electrical signals from neural spikesuioelectrode to generate
realistic spike trains for benchmarking purposes [15].

Assuming that the procedure to validate a proposed spikmganethod is ade-
guate, the first phase is usually filtering to remove artfactd noise. The record-
ings are influenced by the ambient signals, interferenaa fiearby electronic de-
vices, vibrations caused by movement and noise from otharons firing in the
vicinity. The amplitude of the signal is a good indicator ofeural spike, and is
frequently used to determine spike occurrences. It is sacgg0 select static or
adaptive thresholds for this purpose. Once a thresholdeésteel, activity below
the threshold is considered to be noise. To eliminate naisthe selected spikes,
a smoothing procedure can be applied. In [3] the signal smgded with a cubic
spline interpolation for a better alignment of the spikepshavith its peak ampli-
tude. (Section 2.2 of our paper describes an efficient atsapproach.) In [13]
spikes are detected by looking at threshold crossings afad émergy measurement
of the bandpass of a filtered signal, which is shown to be naliaglle than the raw
signal.

Once the spikes are extracted, they can be classified bystiegie characteristics,
temporal characteristics, or both. For temporal charesties, the interspike inter-
val distribution and its correlation-based analysis careakdifferent spike firing
patterns [11]. But these methods ignore the spike shapeshape-based character-
ization, the spike shapes are normalized by their maximupliaude, cropped, and
treated like shape vectors. The two approaches that areeintlyy used are clus-
tering to get the mean shapes for spikes, or matching agaps-specified set of
templates. The difficulty in the clustering approach liethia fact that the number
of clusters is usually unknown. One method proposes to witirta large number
of clusters, and to combine clusters that are sufficientge/ until a stopping cri-
terion is reached [3]. This resembles the method proposdtdueiredo and Jain
for determining the complexity of a Gaussian mixture modgbeatically [4]. In
this approach, the number of clusters in the mixture is netiigd prior to model
learning, but determined on the fly. The algorithm is iniedl with n clusters,
and during each step of the algorithm the smallest clustnsbined with another
cluster, and the expectation-maximization (EM) algoriismun until convergence.
Each step ends with one component less than the previoysusi#ponly a single
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2.2 Spike classification

component remains. Then, all the intermediate steps ateaggd by a minimum
description length criterion to select one model as the fm#put of the system.
In [3], instead of generating all possible models, a statistest is employed to
stop the combination procedure.

Both template matching and clustering methods face thenpateroblem that
spikes do not have fixed amplitude and shapes. During thediecgy movements
of the electrode or a change in the membrane potential caseaaechange in the
spike amplitude and shape [6]. Similarly, Quiragial. remark that when the spike
features deviate from normality, most unsupervised ctigiemethods will face
difficulties [10].

In [16], several spike characteristics were contrasteeé¢onghich features lead to
a better classification. The parameters of the waveformaimplitude, spike width,
peak-to-zero-crossing time, peak-to-peak time) wereddorbe insufficient for ef-
fective discrimination. The authors also contrasted ogtiittering techniques [12],
template matching (with root-mean squares error crit¢riand principal compo-
nents analysis (PCA)-based techniques. Their results shakeven though it is
possible to obtain good results with the costly templatechiagy method, PCA-
based approaches were much more robust against higherexgé® The overlap
of waveforms was found to be greatly impairing the accurdactemplate-based
methods. A possible solution to this problem was propos¢tidh where PCA and
clustering techniques are combined to test incrementdilgtiaer a single source or
multiple sources contribute to the signal. Recently, Raglal. contrasted wavelet
and PCA-based methods, and argued that wavelet-based dsethald perform
better than PCA, yet they need to be carefully tuned for thippse [9].

For real-time applications, even the PCA-based methodsbeapo computa-
tionally intensive. In [19] a front-end hardware architeetis described for spike
sorting, but the system is tested on a ‘clean’ sample for WRICA achieves 100%
accuracy. Still, the proposed algorithm can achieve goedlt® with much less
computation steps.

2.2 Spike classification

In this section we formulate ways to separate dominant spikem background
noise and subsequently try to split the many spikes intsekhat correspond to
individual neurons, or at least to neurons with similar firmehavior.

2.2.1 Detection, double spike removal and time shifting

Consider a noisy trace, such as in Figure 2.1. If the valug of the signal is above
a certain threshold, it is assumed to belong to a spike. Tperdd0O] describes
how to choose the threshold using the standard deviatjaf the noise. Under the
assumption of being normally distributed (and the backgdmpise indeed appears
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2 Neural spike sorting with spatio-temporal features

to be so) the standard deviation equals

1
= ——— mediar(|X1], ..., [Xn]).
on = 56745 x| IXNT)
The usual formula using an average of squares is not usedugedthen the ex-
tremes due to the spikes would affegt too much. The threshold is given by a
constantx timesop,

Vihr = athr on,

with ainy = 4 or 5, or a number in between, the choice of which appears to be
somewhat subjective as different values were found in thealiure.

Each spike will lead to a small interval of values above theghold. To have a
simple criterion, we takenaxima in the signals whose value is above the threshold
which define a set of pointg j (p for ‘peak’). This is our initial set of ‘raw’ spike
time<. We crop a temporal window that contains the spike, staflidgms before
the peak and ending after 1.2 ms, resulting in a 1.6 ms da@ominThese form our
‘raw’ set of spike traces. An example of such a raw set is diggd in Figure 2.3.

In this example 674 spikes where found in 10 seconds of data.

spike book, comp_trace for double spike removal and taper
0.6 T T T T T

Voltage

0
time (ms)

Figure 2.3: 'Raw’ spikes, cropped and aligned by their pestkBme zero. Also
displayed are the functionsy, used for identifying double spikes (thick
solid line), and the taper function (thick dashed line), ethive use
to select only the part of interest for each spike. (Everytfospike
plotted.)

The transformation from the no-activity state (signal withoise level) to the
peaked activity is very fast, comprising about 0.15 ms, Wheeans that with our

8The coding was done in MLAB, and the experiments were conducted on a set of traces that
were available from patient measurements
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2.2 Spike classification

sampling rate, three samples can be acquired for the spikestiepeaks. After the
peak some of the spikes continue for up to about 25 sampl25S (is), although
for the shape analysis the first 20 samples seem to be sufficien

There are several potential problems at this stage:

e Double detectionA single spike could be mistaken for two individual spikes
due to noise, say within two or three sample points. A possshiategy to
deal with this is to consider the largest of two close peaksetthe real peak,
and to ignore the other. For the limited set of sample tracaswe worked
with, this problem did not occur.

e Overlapping spikeslt is possible that a second spike occurs shortly after or
before a spike. It can be seen in the figure that this happens idata. These
are outliers for the purpose of spike shape analysis, agéesieuron cannot
fire again in such a small period, and we should therefore vertieem.

To remove double spikes, we use two threshold areas aroengetik, one
containing samples [-0.2ms, 0.2ms] around the peak (absatrthles) and
the second from [0.25ms, 0.8ms] after the peak (about 11 Iesnp/alues
above the threshold (depicted with a thick solid line in FegR.3) indicate the
presence of a double spike. Obviously, it remains to be tiyated whether
the parameter settings we use are suitable for other measents, i.e. on
larger collections of recordings. But a visual inspectidirigure 2.3 and a
plot of the rejected spikes can be used to assess reliatiifibye result. In our
data set 24 of the 674 spikes were rejected as double spikes.

We use a taper function to limit the interval around the paaki the subse-
guent smoothing of the signal depends on the choice of thex fapction.
This can be important when interpolation is applied latehmprocess. The
taper function we have used had a width of 0.1 ms to keep tagpéria mini-
mum, and to prevent lossy smoothing. A scaled version ofgpertfunction
is plotted as the thick dashed line in Figure 2.3. The spikes &re thus
excluded from the analysis and the remaining valid spikegpbotted in Fig-
ure 2.4.

e Negative polarity spikesSpikes with negative polarity were ignored.

The next step would be to appiiyne shift correctionso the spike traces, to align
them better. Spikes can have a time shift that is a fractidghee$ampling period, so
interpolation becomes necessary to apply such time shifs Scholarpedia paper,
it is proposed to interpolate the spikes at a finer resolusiod then align them
by their maxima. To keep keep the subsequent computatiomaplexity low we
developed an alternative approach. Each sgike), j = 1, ..., N is time shifted

8www.sc:holarpedia.org/article/Spike;sorting
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2 Neural spike sorting with spatio-temporal features

over atimefj. Now the vectop = (f1, ..., fn) is chosen thanaximizes the total
correlationof the traces, given by

/‘WZ fjt — Bj)
j

Fourier interpolation was used, so that the interpolatioth @ptimization can both
be done in the Fourier domain, using off-the-shelf inteaioh algorithms. Compu-
tation time in MATL AB takes about 0.5 second for 640 spikes on a regular machine,
which indicates that an optimized code will have acceptsdtgporal complexity.

A comparison of Figures 2.3 and 2.4 shows that time shiftesd$ to much
higher similarity between the spikes. In the next sectioa,will show that time
shifting is also beneficial for PCA-analysis. Optimal tintefsng results in much
better clustering behavior, with tighter clusters, andasganally with better sepa-
ration, resulting in more clusters.

To summarize, we have implemented the necessary codesféoltbwing pur-
poses:

?,  with constrainty_ §j = 0.
i

1. Detection of maxima above the threshold.

2. Removing double spikes.

3. Tapering the remaining spikes.

4. Time shift corrections in order to maximize total cortila.

These steps give an adequate pre-processing for the sesetpape analysis, see
Figure 2.4(b), and our method of computation of time shifrections makes the
overall procedure efficient.

2.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a popular toot thased in numerous
scientific, medical, and engineering applications suchaéserreduction in signal
processing and face recognition. Here we will use the PCAdognize and analyze
the different types of spikes.

Let A e R™" pe the wide matrix containing the spike data as columns,

A;j = samplé of spike]j, ie{l,...,m}, je{l,....n}.
Heren is the number of spikes found in the signal (for instantey 650 in the
previous subsection), amd is the number of samples per spike, typicatiy~ 20.

Although it is no real restriction, for convenience we wiisame in the following
thatn > m; in practicen may be much larger tham.
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2.2 Spike classification

Rejected (double) spikes Spike_book after double spike removal, tapering and time shift correction
T T T T T T T T

Voltage
°
2
Voltage

A\ HAY ]

Figure 2.4: (a) Double spikes removed from the set of spikesspikes after re-
moval of double spikes, tapering and time shift correctmre(y fourth
spike plotted in part (b)).

The PCA is based on the Singular Value Decomposition (SV¢nethe SVD
and PCA are used as synonyms. However, in PCA the SVD is ajplitne matrix
A obtained fromA by subtracting from each trace (column) the mean of thaetrac

m ~
2 A
k=1

The SVD of a matrix is a decomposition of the form

Aj = Aj —

Sl

A=UxVT

with UTU = |, VVT = | and X a diagnonal matrix with nonnegative, non-
increasing entriesy; > o> > - -- on its diagonal (Thé denotes transpose.) There
are two forms of an SVD: a full and a reduced SVD. In the full S\WOthU andV
are square matrices. For almost all applications the dateaeed in the full SVD
are superfluous and it is much more efficient to use the red8v&2 in whichU
is still square, sizen x m, with ¥ now sizem x m as well, andv has sizen x n.

The columnauq, up, ..., uy of U are theleft singular vectorsor principal com-
ponentsand give information on the patterns that are present in ¢ieation of
spike data. Their corresponding singular valagsso, . . ., oy indicate how strong
the respective patterns are. By construction the patterns, . .., uy are orthog-
onal; they do not represent spikes exaept

We compute the PC’s of the spike collection and show the nesnlts in the
figures below. In Figure 2.5 we plot the first two singular wsagainst each other
for all spikes in a single tracg. This kind of plot is useful to find clusterings
of spike shapes in the trace, i.e. groups of spikes with aimsihapes. In this case
three clusters can be observed. This was exceptional, rtse araces had only
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2 Neural spike sorting with spatio-temporal features

two clusters, one consisting of large spikes, and the oth#reoremaining spikes.
Some had no clear clustering. In Figure 2.6 we plot the me#medfaces (the thick
dashed line), and the first four principal components, tlekést being the first, and
the thinnest the fourth.

Principal component coordinates, pc2 vs. pcl
T T T T

0.15

0.1p

0.051

Figure 2.5: The first two singular values from PCA analystteld against each
other. Three clusters can be observed.

Mean and principal component vectors
0.6

Voltage

time (ms)

Figure 2.6: The mean (dashed black line), and first 4 principaponent vectors,
the first corresponding to the thickest solid line.

Since in Figure 2.7 is much smaller thagay, this figure suggests that there is
one quite dominant spike pattern. Indeed, the distingngsfeature is the size of
the spikes. Of course, this outcome is influenced by the rahwdvhe outliers (the
second spike in a sequence of two consecutive spikes) inréwops subsection.
In signals where many spikes with negative polarity aregmgsve expect a much

32



2.2 Spike classification

largero, corresponding to a pattewp. In Figure 2.7 we plot the largest singular
value against time. This picture shows that the presenaevefal clusters is related

to a change in observed spike shapes that occurs atoundB000ms, and thus

reveals even more structure in the data.

pcl versus time

0.6

0.4

o
N

pcl

I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time (ms)

Figure 2.7: The largest singular value from PCA plotted agfaiime (in milisec-
onds). The clustering can also be observed in this picture.

at

T

Figure 2.8: Coding spike features.

2.2.3 Coding

Another technique to classify spikes is to represent anyngigishing feature by a
number on a scale and combine these numbers to crestdeavector There are
several features that can be defined:

¢ A spike has dopvaluea™. As the amplitude depends on how close the probe
is to the neuron, it should be normed e.g. by considesing a/anax where
amax IS the maximum amplitude occurring during a measurement.
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2 Neural spike sorting with spatio-temporal features

e A spike also has hottomvaluea™ (taken positive). Now the totaimplitude
b =a* —a~ can be considered as a feature, scaleo)/asax(b).

e Thepolarity p depends on the temporal orderaf anda~. It is positive,
p =1, if a; is attained before_, and negativgg = —1 otherwise.

e Thewidth w can be defined as the time difference between the tinveghen
the signal reaches half peak valre/2 and the timer, when it first exceeds
a~ /2 after the occurrence af~ for a spike with positive polarity. For a spike
with negative polarity the width can be defined as the widtmafus the
signal.

These features are illustrated in Figure 2.8. The idea oingod now as follows.
After normalizationa, takes a value in the interval [@]. This value could be taken
as the encoding of the amplitude, but the interval may alsdiladed into some,
say three, equal parts that can be encoded by & (& [0, 3)), 1 (if a € [3, 3)),
and 2 (ifa, € [%, 1]). The amplitude is thus encoded on a 3-point scale: "low”,
"medium” and "high”. In a similar way the width, polarity aranplitude of a spike
can be encoded on either a 2-point or a 3-point scale. Witetfeur features we
have 3x 2 x 2 x 2 = 36 different code vectors

(@, b, p,w) € {0, 1,2} x {0,1} x {-1,1} x {0, 1}.
Some other features were also suggested:

e Similar to total amplitude, theelative height ) = |g—f| can be defined and
may be encoded by a 2-point scale, 6/ > 1 and 1 ifh, < 1.

e The slope at the second halftimg, as there are some neurons which can
show an afterhyperpolarization, i.e. a prolonged negathase.

e Different types of neurons may show spikes that differ in bgeneration
guotientof the two time intervals between start and passage of zepeoe
tively passage of zero and the end. So for "width” there are®ua ways to
define "start” and "end”.

As we have seen in the former subsection it seems doubtfulrthay essentially
different types of spikes occur. This is confirmed by thigmiative classification
method. In fact encoding only amplitude, polarity and ne&atheight, leads to
only 12 different code vectors, froig®, 0, —1) to (2, 1, 1). Figure 2.9 shows four
histogram of two traces, one at ledel= 200 and one at levdl = 50. First, we
see thata, andb within a single trace encode more or less the same feature. A
fast majority of spikes have positive polarity, and manunapiection of spikes with
negative polarity led to the conclusion that there was in &aother cause for an
early negative peak to be present. The few spikes with negatilarity we did find
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2.2 Spike classification
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level L = 50; (bottom four) trace at levél = 200.

Figure 2.9: Histogram for four coding features for two trexg (top four) trace at
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2 Neural spike sorting with spatio-temporal features

—————

400 600 800 1000

Figure 2.10: Data that cause problems when defining featliogs negative polar-
ity; middle: several spikes after each other; bottom: bufsie peaks
are above threshold.

could be due to a dying cell. So polarity does not distingsisikes. Neither does
the width. Moreover, the “half’-times; andz, did not always exist in case several
spikes occurred shortly after each other or during a buestFsgure 2.10.

These computations show that the neurons can be distiregliissing just the
maximuma,.. Only a few code vectors are relevant, i.e. correspond torotg
types of spikes. This is in agreement with the PCA results.

2.3 Regularity extraction

Now we assume that background noise in a trace has been rdrandethat the
remaining spikes ixy are classified (separated) into a collection of a few differe
spikes, each with its own characteristics. In this sectiercantinue with the anal-
ysis of asinglespike train. By definition then any spike in a spike train sisaihe
same features, hence we need only specify the time instae@sich the spikes
occur (e.g. where the maximum of the spikes occur). Wesusge denote such a
spike train time series. That is; = 1 if a spike occurs at discrete time indiex
andsq = 0 if no spike occurs dt. The repeating firing patterns of neurons induce
periodicities in the spike traig; and we should now try to pinpoint what type of
firing pattern is present isc: a regular firing rate, a regular-HF firing rate or a burst,
and possibly a superposition of the above.

2.3.1 Autocorrelation and Fourier Analysis

Classically periodicities are determined by correlatipn= > ; s+ks and the dis-
crete Fourier transform (DFT). A distinct advantage of bodinrelation and DFT
is that computation is very efficient: for a tracerofamples it take®(nlog,(n))

opertions to compute correlations and the DFT. Fourier guivalent autocorrela-
tion analyses are fairly robust with respect to small varet in the periodicity of
the spikes. A more severe problem occurs when the spikeir@superposition
of periodic signals (and noise). Figure 2.11(a) demoresr#tis problem: while
the signals clearly is a superposition of two purely periodic signalsihvperiod
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2.3 Regularity extraction

5 and 8—the autocorrelation analysis does not clearly pimpoe periodicities of
the involved signals, and does not help in separating them.

autocorrelation Interspike interval histogram
10 Q 10
8 8
6 6

0 EBEEEEES SSS eSSy 0
-40 -20 0 20 40 -40 -20 0 20 40

Figure 2.11: Autocorrelation (left) and interspike intarisistogram (right) of spike
trains¢ with spikes at = (0, 5, 8, 10, 15, 16, 20, 24, 32, 40).

While autocorrelation and DFT consider a spike train as &tfan s¢ of time
k, it is more efficient for computational purposes to storé&epiains as sequences
t = (t1, tp, .. .) of time instances at which spikes occur. For instance tHeedpain

N ]

0 k=4 k=10 k=15 k—

can be stored more efficiently as the sequéanee (0, 4, 10, 15). The analysis of
time sequenceisis considered next.

2.3.2 Interspike interval histogram

Several mathematical techniques are known for discoveggglarity in time se-

guences, with autocorrelation, discussed in the formesextibn, being one of
them. The method that we will describe in this subsectioreiated to autocor-
relation, but turns out to be appropriate for determinirgtieginning and end point
of periods of regular firing of neurons, even when there ackeis of inactivity be-

tween windows of regular activity. The idea will be introgdcfor strictly regular

sequences. Let us consider a regular time sequencewiithd 5,

t = (0,5, 10, 15, 20, 25, 30).

The regularity with period 5 is discovered simply by lookatghe consecutive time
differences, which indeed are all equal to 5. Now supposeaie is contaminated
with time instances at,86 and 18, so

t = (0,5,8, 10, 15, 16, 18, 20, 25, 30).
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2 Neural spike sorting with spatio-temporal features

The period 5 is now masked. Considering consecutive diffage now gives rise to
new “periods”8-5=3,10-8=2and 16-15=1,18—16=2,20— 18 = 2.
The idea now is that by comparing not only neighboring tinfeedences, but also
other possible time differences, we can recover the donhtiffarence, which is 5

in this case. In fact, addition of the series of neighboriiffgtences will produce,
among others, in our caset32 = 5 and adding up once again produces$ 2 +

2 = 5. Consideringall differences between pairs of time instances will result in a
histogram in which the period 5, as well as multiples of 5 duate. If there aren
time instances, the(})) = sm(m — 1) differences are to be calculated.

The resulting histogram is called theterspike Interval Histogramor IIH for
short [11]. The IIH procedure can be visualized as followsr dll ty € t the
sequence is first shifted by—ty (effectively shifting itskth element to zero) and
the resulting sets of shiftdd-ty are then added up, see Figure 2.12. As we count the
differences to obtain the histogram, it might also be cai&dfference Histogram
but we stick the literature standard of IIH.

|V BV S S —t—1

|V SV SV A —t—t

| B S A —t—t3

| B 1 —t—t

1 I 1 —t—ts

_|_

I....I.II.I.II.‘.II.I.II.]....I

Figure 2.12: Visualization of the construction of the I1H.

To illustrate the procedure differently we superimposeraoan set of times on
our example sequence. Say we have

t =(0,5,8,10, 14, 15, 16, 18, 20, 25, 27, 28, 30). (2.2)
The consecutive differences form the sequence
(t2 - tla t3 - t29 .. ) = (55 39 29 49 19 19 29 29 59 29 19 2)

In this sequence the difference 2 occurs five times whileedsfice 5 occurs only
twice. Adding two consecutive differences leads to the sage

(8,5,6,5,2,3,4,7,7,3,3).
Adding three consecutive differences leads to the sequence

(10,9,7,6,4,5,9,9,8,5).
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2.3 Regularity extraction

R

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

il

Figure 2.13: IIH of the of Eqn. (2.1). By symmetry we need only specify the IIH
for positive lags, as done here.

V]

5

On the basis of these three sequences of differences wepakea that “2” and “5”
show up as likely periods of regular subsequences. ThelHilifbr positive lag, is
shown in Figure 2.13.

The six intervals irt of length 2 are [810],[14, 16],[16, 18], [18, 20], [25, 27]
and [28 30], whereas the six intervals of length 5 areq{) [5, 10], [10, 15], [15, 20],
[20, 25] and [25 30].

The first six intervals show regular sequences 8-10, 14-8&64d, 25-27 and
28-30, while the second six intervals show one regular sesp6-5-10-15-20—
25-30. We thus find the regularity with period 5 aharation(total length) 30 but
also a regularity with period 2 and duration 6. Just two ticeasnot be considered
a real sequence. Looking upon intervals as train wagonsctdrabe coupled by
spikes which occur at common times (the ends of the wagong)deed can speak
of spike trainsas coming forward by this procedure.

Figures 2.14 and 2.15 show how IIH can be employed to deteriiia firing
frequency of the dominant neuron in the recording. In Figlufel, a small portion
of the raw spike data is shown on the left. Once the data isgss®dl, and the spikes
are localized, the IIH is constructed by pooling spike esaiter each spike. The
peak of the IIH represents the dominant interspike intetiwa, i.e. 187 Hz. When
we look at the rest of the IIH, the global wave pattern is iatlie of long-term
tremor. In Figure 2.15, the high-frequency signal from andymeuron is depicted.
The IIH reveals that the neuron bursts with 227 Hz frequency.

2.3.3 Connection between autocorrelation and IIH

The IIH procedure generates from a sequenaa tine instances a new sequence
of m — 1 positive time lags and it appears to requidém?) operations. Forming
the autocorrelationy = Zj Sj+j of a signals € R" on the other hand requires
O(nlog(n)) operations. In theory there is no relation betwaeandm (other than
n > m and some variations) so without further assumptions it rsl h@ compare
the complexity of the two approaches. Oddly enough autetation and IIH are
equivalent for a single event typie

9When different categorical events can be related to eaar,ate inter-event interval histogram
can be employed to determine the regular patterns too, $ee [7
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2 Neural spike sorting with spatio-temporal features

The raw data 187 Hz, i.e. once every 5.35 milliseconds
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Figure 2.14: 187Hz period+long term tremor. Left: raw dgtaright: 1IH with a
peak at = 5.35ms corresponding to frequency of 1861z.
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Figure 2.15: X-cell (RIP). Left: raw data; right: lIH with peaks at = 4.4ms
and multiples, indicating a frequency of 23 Hz
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2.3 Regularity extraction

Lemma 2.3.1. Lett € N™ and s e N" form a pair of time sequence and corre-
sponding time series. Then the autocorrelation of s eqi@siine series of the 11H
of t.

Proof. The IIH seen as an operation sr{rather thart) is a sum of shifte¢ and
therefore is a discrete convolutidn: s. It is easily seen thdt is in fact the time
reverseds, but then the convolutioh = s is the autocorrelation. O

Indeed the two plots in Fig. 2.11 are equivalent. The resmitains valid if time
instances appear more than once,im which cases; should be defined to mean
the number of times that appears irt. The result also implies that IIH and spec-
tral analysis (DFT of or its autocorrelation) contain the same information. The
difference is the way they are computed and stored. It is aary®pen problem
which of the two approaches is more efficient computatignallhe IIH appears
more natural.

2.3.4 Approximate regularity

Neurons will fire at time intervals that are not completelya&gn length, but suffi-
ciently close to call it regular firing. We therefore congidpproximate regularity
for firing rates, demonstrated on a very simple but illustes¢éxample. Let the time
sequence for spike events be

s = (0, 30,59, 87, 119, 150).

The consecutive intervals have lengths 2@ 28, 32, 31, which would correspond
to quite “close” values in the IIH. A strictly regular sequenwith period 30 would
show five times 30, but now there are five intervals close tor@Dvéth average 30.

The question of determining the regularity of a sequencebsaanswered by
considering intervals [30 A, 30+ A] around the average valua. = 0 corresponds
to the strictly regular sequence. We propose to use thewmlipmeasurefor the
regularity sequences:

A
R=1- ~ 0.93
average

whereR = 1 corresponds to strict regularit is the maximum difference occuring
betweeb interval lengths and the average for a set of cldfezatices of times that
is tested for regularity. We assume that no set should bedsnesl for whichA is
larger than the average, so thits a non-negative number in the interva) 10.

It must be stressed that once a set of differences is choserstil has to check
whether indeed one spike train has been found. A very sinxalmple of two spike
trains with period 5 that interfere, is given by the sequence

t=1(0,15,6,10, 11, 15, 16).
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2 Neural spike sorting with spatio-temporal features

The histogram shows peaks at “1” and at “5”. The four diffeeshof 1 do not form
atrain at all, whereas the six differences 5 turn out to fosmtrains: (0, 5, 10, 15)
and(1, 6,11, 16).

An alternative approach to detect regularity using stzisnethods is indicated
next. For a sequence of time instantes (i3, to, .. .) at which spikes occur, define
the sequence of differences

At = (o —t1,t3 — 1o, ...).

Assume that the differencég; 1 — tx are a realization of a single random variable
T. Based on the emperical distribution and using an unparartesit it is possible
to find the distribuition of the random variablle. Under the assumption that

is normally distributedN (x, ¢?) and based on the available realizatian it is
possible to find estimators andé2 of the mean and the variance of the normal
distribution. Then taking into consideration a confidermeel of, say, 95% for all
the realizations thetx,1 — tx € (& — 26, it + 26) can be considered indicating
approximate regularity of the firing rates.

2.4 Concluding remarks

In this paper we mentioned four goals in Section 2.1.1.

The first goal mentioned was pinpointing the location of epikThe main prob-
lem was the removal of background noise in combination wdltfonal time shift
correction. This problem was dealt with in Section 2.2.1thwkigure 2.4(b) as
description of the final result.

The second goal, classification of spikes, was treated tmssc2.2.2 and 2.2.3.
We can view a spike as having several features (width, hemgtth and height of
upward part, width and height of downward part, et ceterdyoA&ombinations of
features can be relevant. The PCA treated in Section 2&@matically selects
features that distinguish spikes. In the coding approac®ection 2.2.3 these fea-
tures are sananually It turns out that the main feature is the amplitude. The PCA
analysis revealed that occasionally other features ageast, as shown by the pres-
ence of three clusters in Figure 2.5. To obtain this secoataife from the PCA itis
important that the alignment of the spikes in time is goode THree clusters were
only observed after the fractional time shifts of Sectiah 2were done.

In Figure 2.5 values for the two dominant features from thé\R@e displayed
for a set of spikes. Clearly groups (clusters) can be distsiged. Although these
groups are clearly visible, it is still a question how to seléde groups. For this
purpose automatic clustering algorithms exist. Of counssuch simple examples
manual grouping is also easily done. We feel that automéaistering combined
with visual inspection of the outcome and the possibilitghange the cluster areas
could be of interest for the application.
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2.4 Concluding remarks

Both the manual and the PCA based feature selection wereappljed to very
few traces, so it is difficult to say whether the manual or PG&dal method is
better. Also, the main difference between spikes is in thplénade, which is easy
to measure. But overall our judgment at this moment is inffafdhe PCA. It is
a well established technique, which produces picturesisigitas input for cluster
analysis. Results of the manual method are less clear.

The third goal was to distinguish spike trains accordindteé¢ types. This was
discussed in Section 2.3. The main problem was to deterngike $rains with
certain characteristic time spacings and determine thaiatibn. The difficulty
lies in the fact that different spike trains may overlap. kcton 2.3.1 classical
autocorrelation was applied, whereas in Section 2.3.2ha&napproach, the so-
called interspike interval histogram (IIH) was considerbdSection 2.3.3 the two
techniques were connected. Since the two techniques agatiedly equivalent
they share the same advantages and disadvantages, exciygifeomputational
complexity which is yet unsettled. For overlap free spikens and artificial data
the two methods are transparent and appear to work well. a&e af overlapping
spike trains needs to examined further before conclusiande drawn.

To deal with the fact that the intervals between two condeauiirings of a neu-
ron will only be approximately the same in Section 2.3.4 threocept of approximate
regularity was introduced.
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