
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

RAM: array database management through relational mapping

van Ballegooij, A.R.

Publication date
2009

Link to publication

Citation for published version (APA):
van Ballegooij, A. R. (2009). RAM: array database management through relational mapping.
[Thesis, externally prepared, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/ram-array-database-management-through-relational-mapping(a01c13ce-7a8e-42ab-a9bb-a29e34f50a69).html


Chapter 1

Introduction

Database technology is a central component in today’s information technology. All
kinds of business applications are built around central data repositories managed by
advanced database management systems, and for good reasons. The primary selling
point of database management systems (DBMS) is the potential for reduced application-
development time by using the data-management features made available. But there
are other important benefits from a business point of view: A central database allows
organizations to enforce a standard way of organizing and managing data and it aids
in keeping data available to various applications up-to-date and consistent.

At present the (commercial) database world is dominated by relational database
management systems. Relational database technology replaced flat-file storage sys-
tems because its high level of abstraction separates application code from physical
storage schemes. The relational data model, introduced by Codd in 1970 [1], models
data by grouping related objects into distinct relations.

Oddly enough, database technology has not penetrated scientific computing in the
same way it has the business world. In the world of supercomputers and large-scale
networks of computers, grids, custom-built software solutions are omnipresent. Yet,
scientific instruments and computer simulations create vast volumes of data to be orga-
nized, managed, and analyzed: these are the primary tasks of a database management
system. The lack of acceptance of (relational) database technology in science can be
attributed to a number of issues: the lack of performance offered by existing database
management systems; the mismatch between scientific paradigms and the relational
data model; and the unclear benefit of the investments required to switch from exist-
ing application frameworks, that at present suffice, to a database-driven environment.
The common preference to develop applications in 3rd-generation languages (C++,
FORTRAN, Matlab, ...) directly can only be changed by convincingly showing that
the other problems can be solved.

3



4 Chapter 1. Introduction

1.1 Large Data Volumes

Scientific data sets are growing into the petabyte (1015 bytes) range and clearly pose
a data-management challenge. Database technology capable of storing and managing
these volumes exists and is in use, for example at CERN [2]. But the ability of a
database management system to store vast volumes of data does not guarantee that it
can perform complex analysis tasks efficiently as well. The (perceived) lack of effi-
cient data-processing capabilities in database systems has resulted in many databases
systems merely functioning as a persistent store while external application programs
perform analysis tasks.

The process of configuring a database management system for maximum perfor-
mance is known as database tuning. This problem is known to be difficult as it in-
volves carefully balancing many parameters [3]. And since scientific workloads are
non-typical for relational systems, they require non-standard DBMS configuration.
Costly features, essential in the business domain, may not necessarily be required in
a scientific setting. For example, traditionally database management systems have of-
fered fine-grained transaction and recovery control to retain as much data as possible
in case of system failure: For many scientific analysis tasks simpler, and thus com-
putationally cheaper, solutions may suffice, like recovery through re-computation of
certain analysis results.

Properly tuned current state-of-the-art database technology showcases respectable
processing power. This processing power is for example shown by the publicly avail-
able results for the TPC-H benchmark, a simulation of decision-support systems that
examine large data volumes with complex queries. In this scenario, current database
technology can efficiently process complex queries over datasets into the multiple
terabyte (1012 bytes) range [4]. Although the TPC-H benchmark results do not yet
showcase petabyte-scale processing capabilities, current trends in business, such as
the need to analyze rapidly growing telecommunications and logistics logs, are driv-
ing database technology developments to handle ever larger data sets.

Meanwhile, typical relational query processing techniques are independently mak-
ing their way into high performance computing systems. For example, the Google
map-reduce technique applies the inherent parallelism in set-oriented bulk processing
of data to parallelize complex analysis tasks over thousands of computers [5]. This
technique is similar to those used to push the performance envelope of distributed
database technology [6]. At a lower level, basic linear-algebra operations at the core
of many scientific computing problems have been shown to benefit from data abstrac-
tion. For example, by utilizing generic relational data access methods such as join
algorithms, matrix operations over complex storage schemes can be accelerated [7].

Trends in the evolution of database technology are addressing the challenges posed
by very large scientific data sets [8].



1.2. Multi-Dimensional Arrays 5

1.2 Multi-Dimensional Arrays
What remains is the interface hurdle imposed by the mismatch between computational
paradigms and the relational model, generally known as the impedance mismatch.
While the relational data model is adequate for storing and analyzing scientific ob-
jects, implementing the algorithms required on top of a relational interface is often
awkward and cumbersome. Database management systems do offer rudimentary sup-
port for certain types of scientific data, such as spatial data and time series, but have
not supported the multi-dimensional array as a core data type. The absence of multi-
dimensional arrays as a primary data type in relatinal database systems is the main
driving force behind the development of specialized storage libraries for scientific ap-
plications such as NetCDF [9], and has been argued to be the essential ingredient
required for database technology to be embraced by the scientific community [10].

The current standard for database query languages, SQL-99 [11], does not offer
primitives to construct or query bulk data arrays. Arrays in SQL-99 are small-scale
structures that allow collections inside a single attribute, such as several lines of text
that form an address. Bulk storage in SQL remains fully relational, but there have
been several attempts at the development of database technology centered around the
multi-dimensional array structure.

Multi-dimensional array support for databases is often studied from a theoretical
perspective, with a focus on query-language design and high-level optimization strate-
gies rather than data-management issues. For example, the array query language [12]
(AQL) has been an important contribution toward the development of array support
in database systems by proposing a generic array-comprehension query-language that
seamlessly integrates into an existing set-based data model. Unfortunately, the main
contribution remains theoretical, as it has not evolved beyond a prototype system. Al-
ternatively, the array manipulation language [13, 14] (AML) shows potential for inter-
esting optimizations of array queries made possible by restricting the query-language.
Likewise, this system has not evolved beyond a prototype capable of handling several
specific cases.

One example of a complete system is the RasDaMan system [15]. It is primarily an
image database management system, but showcases many of the features required for
a generic array database system. It consists of an efficient storage manager [16] and an
array oriented query language – RasQL – implemented in a frontend that can interface
with object-oriented and relational database systems. Work by Sarawagi et al. [17]
takes this approach one step further by adding support for large multi-dimensional
arrays to the relational POSTGRES database system [18]. Here, multi-dimensional
arrays are stored in specialized data structures that are integrated into the core of the
database system. The focus of this work is on the low-level storage issues of large
arrays.

The commonality among these array-database efforts is that all of them have been
realized through custom, array-specific, functions, either implemented through exten-
sion of existing database systems or as stand-alone prototypes.



6 Chapter 1. Introduction

1.3 Relational Mapping
An alternative to implementation of new database functionality through new native
functions is relational mapping: translation of operations over non-relational data to
relational queries over a relational representation of that data. This approach has been
used in object-relational database solutions where object-oriented database function-
ality is realized by mapping operations to a relational DBMS [19]. Most functionality
required to support an object-oriented interface on top of a relational database sys-
tem is readily available in the relational paradigm. Features that require additional
functionality, such as user defined types and functions, have been implemented in
mainstream database systems [20] and have been standardized and included in the
SQL standard [11].

The object-relational approach effectively creates a new interface to an existing
database management system, which allows object-oriented data and relational data
to be combined in a single framework. As this approach delegates data-management
to the relational database system, data-management functionality readily available can
be reused for object-oriented data. Additionally, the different access paths to the data,
object-oriented and relational, combine the best of both worlds: The object-oriented
interface simplifies applications by encapsulating database interaction in persistent
objects, while the collected data can be bulk-processed for analysis using the relational
access path.

Despite the advantages of an object-relational mapping approach, specialized im-
plementations of object-database systems exist. The argument for a native implemen-
tation is performance: A native implementation avoids the inevitable overhead intro-
duced by the mapping process. It is common belief that object oriented database sys-
tems are well suited for applications involving complex and heavily interrelated data.
The relational representation of such complex entities is “flattened”, e.g. see [21],
and putting these entities back together in a meaningful way requires joining and sort-
ing, both costly operations [22]. Queries with multiple multi-way joins, required to
reconstruct complex objects, are a problem for relational database management sys-
tems [23].

Following the success of the object-relational approach, the emergence of XML
databases and the XQuery language [24, 25] has lead to various XML-relational map-
ping schemes, for example [26, 27, 28]. Relational storage of XML data is based on
“shredding”; this process translates a tree-based XML document into (several) rela-
tional tables.

The semi-structured XML tree is inherently associated with a navigational pro-
cessing paradigm. Native XQuery implementations, implementations based on a tree
representation of the data, tend to follow this navigational paradigm explicitly. Con-
versely, the relational paradigm supports bulk processing of data, which can be lever-
aged by XML-relational approaches, for example by detecting opportunities to use
optimized join algorithms [29]. The differeces between these paradigms have resulted
in a situation where native implementations outperform XML-relational systems for



1.4. Research Objectives 7

simple queries over small data sets while relational approaches tend to be significantly
more efficient at handling complex queries over large data sets [30].

Efficiency issues aside, one of the main advantages of a relational mapping ap-
proach is that support for new data types is automatically integrated into the existing
relational framework. This integration is not standardized as the details of the mapping
scheme differ per implementation, but since data is stored in relations it is relatively
easy to combine foreign and relational data in queries.

1.4 Research Objectives
We propose an approach similar to the object-relational and XML-relational schemes
for multi-dimensional array data: the Relational Array Mapping (RAM) system. The
research objective of this thesis is the realization of an extensible array database
architecture using relational mapping and existing relational database technol-
ogy. Throughout this thesis, the research objective is addressed through the three
separate goals outlined in the remainder of this section by discussing the design of the
RAM system as visualized in Figure 1.1.

The RAM system is isolated in a front end that implements the relational mapping
of the multi-dimensional array data and query language. This way, the RAM front-
end operates alongside existing front-ends, such as a SQL or XQuery compiler, that
access the same database system. The concept of multiple access methods to the same
database system is a classical database management system design pattern introduced
in the System-R architecture [31]. The bulk of the research regarding the RAM system
is conducted in the context of the MonetDB database system [32], which is designed to
be easily extensible through this multiple-front-end pattern. It is possible that certain
functionality required for (efficient) array query processing is not readily available
in a given relational back-end, therefore the design allows room for the addition of
specialized array functionality in the relational back-end itself.

The first goal is the specification an efficient array mapping scheme. Chap-
ter 3 presents an array-oriented data model and shows how this data model can be
implemented in a relational environment.

The front-end consists of four separate components that each perform a distinct
step in query translation: the first component normalizes the queries for further pro-
cessing, the second component translates the normalized queries to an intermediate
array algebra, the third component optimizes array queries through rewriting of the al-
gebraic array-expressions, and finally the fourth component translates the query to the
language of the relational back-end. Explicit separation of these components allows a
study of each of these query translation processes in isolation. Additionally, it isolates
functionality related to a specific back-end in a single component, which facilitates
the support of a variety of back-ends by replacing this single component.

The second goal is to explore the benefit of optimization at the array expres-
sion level in addition to relational query optimization of translated array queries.



8 Chapter 1. Introduction

Relational Database System

RAM Frontend

Translator

Relational
Kernel

SQL Frontend

Preprocessor

Optimizer

Array
Support

Relational Optimizer

Translator

RAM Calculus

RAM Algebra

RAM Algebra

Relational Algebra

RAM Calculus

Figure 1.1: System architecture

Chapter 5 explores the suitability of traditional relational optimization techniques to
be applied to the intermediate array algebra. Optimizing the array algebra expressions
is similar to the logical optimization phase in relational optimizers – the best order of
operations is chosen without fixing which physical operator implementations are to be
used – and the focus is on applying known techniques from the relational domain to
arrays.

The third goal is to show that translation of array operations directly into
primitive relational operations allows for more efficient execution than high-level
relational query languages would. We explore the specifics of RAM translation to
several back-ends in Chapter 4 and discuss the merits of generating a ‘smart’ phys-
ical relational query plan directly from RAM rather than relying on the back-end to
optimize naively generated query plans. Similar to the physical optimization phase
in relational optimizers: The best physical operations are chosen to evaluate an opti-
mized logical plan given known properties of the data to be processed.

The applicability of the system in applications and the benefit of the query opti-
mization are evaluated in Chapter 6. There we present a case study using the RAM



1.4. Research Objectives 9

system and several experiments that showcase the effectiveness of different optimiza-
tion techniques. For these experiments we focus on multimedia (retrieval) as an appli-
cation domain.

The remaining chapters of this thesis, Chapter 2, and Chapter 7, respectively an-
chor this work in literature and wrap up the thesis. Chapter 2 presents an investigation
into existing database technology and its relation with scientific computation and ar-
ray processing in particular. And this thesis is concluded in Chapter 7 by a summary
of the results presented and a discussion of its contributions.



10 Chapter 1. Introduction

Bibliography
[1] E.F. Codd. A relational model of data for large shared data banks. Communica-

tions of the ACM, 13(6):377–387, 1970.

[2] Dirk Dullmann. Petabyte databases. SIGMOD Record, 28(2):506, 1999.

[3] D. Shasha and P. Bonnet. Database Tuning: Principles, Experiments, and Trou-
bleshooting Techniques. Morgan Kaufmann, Singapore, 2002.

[4] Transaction Processing Performance Council. http://www.tpc.org/.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI, 2004.

[6] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High Perfor-
mance Database Systems. Communications ACM, 35(6):85–98, 1992.

[7] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to
the compilation of sparse matrix programs. In Proceedings of the Third Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par97, pages 318–327,
London, UK, 1997. Springer-Verlag.

[8] J. Gray, D.T. Liu, M. Nieto-Santisteban, A.S. Szalay, D. DeWitt, and G. Heber.
Scientific Data Management in the Coming Decade. Technical Report MSR-TR-
2005-10, Microsoft, Berkeley, Johns Hopkins University, Wisconsin, Cornell,
2005.

[9] R.K. Rew, G.P. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide for
C, An Interface for Data Access, Version 3. Unidata, University Corporation for
Atmospheric Research, Boulder, CO, USA, 1997.

[10] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 1–16. ACM Press, 1993.

[11] NCITS H2. Information Technology – Database Languages – SQL. Standard
ISO/IEC 9075-XX:1999, ISO, 1999.

[12] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 228–
239. ACM Press, June 1996.

[13] A.P. Marathe and K. Salem. A Language For Manipulating Arrays. In Proceed-
ings of the 23rd VLDB Conference, pages 46–55, 1997.



BIBLIOGRAPHY 11

[14] A.P. Marathe and K. Salem. Query Processing Techniques for Arrays. The VLDB
Journal, 11(1):68–91, 2002.

[15] P. Baumann. A Database Array Algebra for Spatio-Temporal Data and Beyond.
In Next Generation Information Technologies and Systems, pages 76–93, 1999.

[16] P. Furtado and P. Baumann. Storage of Multidimensional Arrays based on Ar-
bitrary Tiling. In Proceedings of the 15th International Conference on Data
Engineering, ICDE99, pages 408–489, March 1999.

[17] S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimen-
sional Arrays. In Proceedigs of the 10th International Conference on Data Engi-
neering, ICDE94, pages 328–336. IEEE Computer Society Technical Committee
on Data Engineering, 1994.

[18] Michael Stonebraker and Greg Kemnitz. The POSTGRES next generation
database management system. Communications of the ACM, 34(10):78–92,
1991.

[19] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs: The Next
Great Wave. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[20] Vishu Krishnamurthy, Sandeepan Banerjee, and Anil Nori. Bringing object-
relational technology to the mainstream. In Proceedings of the 1999 ACM SIG-
MOD International Conference on Management of Data, SIGMOD99, pages
513–514, New York, NY, USA, 1999. ACM Press.

[21] Peter A. Boncz, Annita N. Wilschut, and Martin L. Kersten. Flattening an Object
Algebra to Provide Performance. In Proceedings of the Fourteenth International
Conference on Data Engineering, ICDE98, pages 568–577, Washington, DC,
USA, 1998. IEEE Computer Society.

[22] Mary E.S. Loomis. Integrating Objects with Relational Technology. Journal of
Object-Oriented Programming Focus On ODBMS, Jul./Aug.:39, 1992.

[23] David Maier. Making database systems fast enough for CAD applications.
Object-Oriented Concepts, Databases, and Applications, pages 573–582, 1989.

[24] W3C. Extensible Markup Language (XML) 1.1. Recommendation,
http://www.w3.org/TR/xml11/, 2004.

[25] W3C. XML Query (XQuery). Recommendation,
http://www.w3.org/TR/xquery/, 2007.

[26] Microsoft. Microsoft support for XML. http://msdn.microsoft.com/sqlxml.

[27] IBM. DB2 XML Extender. http://www.ibm.com /software /data /db2 /extenders
/xmlext /library.html.



12 Chapter 1. Introduction

[28] University of Konstanz, University of Twente, and CWI. MonetDB/XQuery.
http://monetdb.cwi.nl/XQuery.

[29] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
Pathfinder/MonetDB: XQuery - The Relational Way. In Proceedings of the 31st
International Conference on Very Large Databases (VLDB 2005), 2005.

[30] P.A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teuber. Pathfinder: re-
lational XQuery over multi-gigabyte XML inputs in interactive time. Technical
Report INS-E0503, CWI, 2005.

[31] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P.
Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L.
Traiger, B.W. Wade, and V. Watson. System R: Relational Approach to Database
Management. ACM Transactions on Database Systems (TODS), 1(2):97–137,
1976.

[32] P.A. Boncz. Monet : A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, 2002.


