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Correlation functions of integrable models: A description
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Jean-Sébastien Cauxa�
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XE Amsterdam, The Netherlands
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Recent developments in the theory of integrable models have provided the means
of calculating dynamical correlation functions of some important observables in
systems such as Heisenberg spin chains and one-dimensional atomic gases. This
article explicitly describes how such calculations are generally implemented in the
ABACUS C�� library, emphasizing the universality in treatment of different cases
coming as a consequence of unifying features within the Bethe ansatz. © 2009
American Institute of Physics. �DOI: 10.1063/1.3216474�

I. INTRODUCTION

The Bethe ansatz,1 introduced in 1931 �very shortly after the appearance of quantum mechan-
ics�, is often viewed as an arcane subject, manifestly interesting for mathematically minded theo-
rists but not for a broad audience. At least two good reasons for this can be given. First, the subject
of integrability is rather specialized and demanding in itself:2–5 it is after all made up of a
collection of somewhat elaborate methods having only limited general applicability, and is there-
fore not typically considered worthy of inclusion in the standard condensed matter curriculum �the
fact remains that the technology developed around integrable models has proven its usefulness in
many ways, perhaps most importantly not only in providing many contributions to our understand-
ing of strongly correlated physics in one dimension6 but also in providing reliable beacons for the
testing and benchmarking of more widely used field-theory or numerics-based methods for such
systems�. Second, and perhaps more importantly, is that the experimental relevance of integrable
systems remains limited. Good realizations of one-dimensional integrable quantum systems do
exist, but are the exception rather than the rule; when a good realization is found, integrability
often cannot provide quantitative predictions for the most important observable quantities.

This last difficulty is related to the long-standing inability of the Bethe ansatz to provide
results for even simple correlation functions of local physical observables. The source of this
difficulty lies in the admittedly unwieldy form of Bethe wave functions, which are composed of a
factorially large sum of free waves with nontrivial relative amplitudes. The action of local opera-
tors on these wave functions is difficult to write down, and since this forms the starting point in
computing any correlation function, progress has been tedious, slow, and limited.

Recent years have, however, seen that some important developments occur at a rapid pace in
the calculation of dynamical correlations for finite systems at zero temperature. This stems from
the appearance of a number of important results in the field of integrability. First and foremost is
Slavnov’s theorem on scalar products, providing initial results on form factors and correlation
functions.7,8 The general problem of describing the action of local operators on Bethe wave
functions was then resolved with the breakthrough solution of the quantum inverse problem for
spin chains,9,10 opening the door to the computation of general correlation functions of the XXZ
chain. The problem of obtaining correlation functions from these representations was then initiated
in Refs. 11–13 with a study of traces over two-particle intermediate states. The ABACUS algorithm
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was thereafter developed in order to tackle the summation of all important general multiparticle
excitations in Heisenberg spin chains and the one-dimensional Bose gas.14–17 The present article
only provides a “conceptual-level” description of the features and functioning of ABACUS, only
emphasizing unifying features of this class of calculations without going deeply into specific
examples. My main objective in this article is to give a more or less detailed discussion of the
strategies adopted in ABACUS, to define some terminology which will prove useful in future works,
and to make some observations on the results obtained. A separate user guide18 will provide
implementation-level details of the library and its usage, including important primary class and
function declarations. Extensive and systematic results for various models will form the subject of
specialized publications. The subject of integrability itself will be covered in a separate set of
lecture notes.19 The general field of correlation functions of strongly correlated one-dimensional
quantum models is the subject of an upcoming review.20

II. DEFINING THE PROBLEM

Let us for definiteness consider a quantum-mechanical model on a lattice, with Hamiltonian H
which we assume for convenience �and without true loss of generality� to act in a Hilbert space
formed by the tensoring of finitely many single-site local Hilbert spaces. Letting N be the number
of such sites and using j=1, . . . ,N as a site label, all operators can be reconstructed from the
self-dual set O j

a of local physical operators, where a is some on-site representation index.
The general problem which we will address is the calculation of two-point zero-temperature

equilibrium correlation functions of the form

�O j
a�t�O j�

ā �0�� , �1�

where �¯ � represents the ground-state expectation value and O j
ā= �O j

a�† for arbitrary time differ-
ences t and distances j− j�. Equivalently, we can consider the Fourier transform of this correlation
function, which �by a slight abuse of terminology� will be called the dynamical structure factor
�DSF�,

Saā�k,�� =
1

N
�

j,j�=1

N

e−ik�j−j���
−�

�

dtei�t�O j
a�t�O j�

ā �0�� . �2�

A complete knowledge of the DSF for all momenta and frequencies naturally allows to reconstruct
�1� without approximation. In reality, however, �2� itself is of more direct usefulness since it is
often the quantity which can be related to energy- and momentum-resolved experimental mea-
surements in linear response.

Calculating the DSF for interacting models �by which is meant models where multiparticle
states are not created by simple products of single-particle creation operators� is a very complex
task. The product of quantum operators acting at different times and places is best dealt with by
introducing a summation over intermediate eigenstates �labeled by Greek indices�, allowing to
resolve the time dependence explicitly. Using the space Fourier transform Ok

a=� je
−ikjO j

a, sum-
ming over lattice sites, and performing the time integration lead to the Lehmann series represen-
tation,

Saā�k,�� =
2�

N
�
�

	��0	Ok
a	��	2��� − E� + E0� , �3�

where E0 is the energy of the ground state 	�0�. The matrix elements ��	O	�� of local operators in
the eigenstates basis are also known as form factors �for continuum models�; their norm square is
also often called transition rate in the literature, in view of the correspondence of �3� to Fermi’s
golden rule.

We can make a simple “wish list” of the elements needed to provide a computation of such
DSFs:
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�1� an orthonormal eigenstate basis;
�2� form factors �matrix elements� ��	Ok

a	�� of operators Ok
a in this basis;

�3� a way to perform the summation over intermediate states.

In general, this is an immensely complicated problem, which can typically be performed for
models which correspond or can be mapped to free particles, or which benefit from a conformal
field theory description. Simplistic treatments of interacting systems, in general, do not provide us
with any of the three needed elements.

In one dimension, however, the technology of integrability does provide us with some of the
three elements above, for a number of interesting models. The Bethe ansatz provides the eigen-
states basis, and the algebraic Bethe ansatz �together with the solution of the quantum inverse
problem� provides us with form factors. The summation over intermediate states remains, how-
ever, an open problem, for which partial analytical results are possible in some restricted circum-
stances, but which still demands more often than not a numerical solution.

The ABACUS library has recently been developed in order to perform the calculation of DSFs
of the known integrable models for which eigenstates and form factors can be explicitly con-
structed. ABACUS �Algebraic Bethe Ansatz-based Computation of Universal Structure factors� not
only provides functions for representing and constructing eigenstates, calculating form factors of
a number of physical operators of interest, but also implements a scanning algorithm over inter-
mediate states allowing to construct the correlations explicitly. My main motivations in developing
ABACUS was primarily not only to provide quantitative predictions first for experiments in low-
dimensional magnetism and later on cold atomic gases but also to provide results allowing cross-
checking of more generally applicable alternative theoretical �analytical or numerical� approaches
to the dynamics of strongly correlated systems.

The method which is presented here, and the results that it provides, undoubtedly suffer from
a number of disadvantages and shortcomings. Among those, we can mention the following.

�1� It is restricted to one-dimensional, Bethe ansatz integrable models.
�2� It is restricted to the simplest known models, excluding all “nested” systems.
�3� It only applies to zero-temperature DSFs.
�4� It can only treat finite systems.
�5� It does not provide an exact, closed-form analytical expression, but only a numerical result.

Restriction 1 is insurmountable: the whole ABACUS edifice begins and ends with the Bethe ansatz.
At best, what will be achievable is an extension of the framework to provide a description of
correlations in perturbed integrable models. Restriction 2 is probably temporary and exists simply
because it is not yet known whether economical expressions for form factors of local operators in
nested systems exist or can be realistically found. It is also questionable whether restriction 3 is
temporary or not: on the one hand, Bethe ansatz can deal with finite temperatures quite straight-
forwardly for equilibrium expectation values. On the other hand, the problem of finite temperature
Gibbs traces opens up a Pandora’s box of complications within the ABACUS logic, and it is not yet
clear whether these can be overcome. Restriction 4 comes from the fact that the eigenstates dealt
with must be given by finite numbers of rapidities, and that the Hilbert space must have a measure
of finiteness so that summing over the important intermediate states can be done in a finite time.
It is thus not possible for ABACUS to give results in the strict infinite-size limit. The size depen-
dence of the results is a complex affair, discussed in a later section. Restriction 5 is the most
severe. ABACUS is and will remain numerical; whether simple exact closed-form expressions even
exist for general DSFs is itself more than debatable at present. There are very good mathematical
reasons to believe that such expressions cannot be found, except in various simplifying circum-
stances and/or limits.

For completeness, and in order to relieve the discouragement of the reader, let us now list the
advantages of ABACUS.

�1� It works for very important “canonical” strongly correlated models such as Heisenberg
chains and the Lieb–Liniger model.
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�2� Its implementation is relatively universal to the set of integrable models.
�3� It provides extremely accurate results for large systems.
�4� Its accuracy is to a large degree energy and momentum independent.

Advantage 1 is not strictly an advantage, but is worth emphasizing anyway: the models treated are
strongly interacting systems which do have experimental applicability and an important role as
beacons of reference for refining and fine-tuning alternative approaches. Advantage 2 comes from
the fact that in the field of integrability, if one knows how to perform a “trick” in one model, one
can often apply the same trick to most if not all other integrable models. ABACUS is built from the
start with the intension of exploiting this “universality” within the Bethe ansatz. Advantage 3 is the
most prominent: the accuracy level can be assessed with sum rules, and saturation levels beyond
99% are achievable for systems with many hundreds of particles, even in the more difficult limits.
Relaxing this requirement ever so slightly, say to 90%, one can go to systems with thousands of
particles. In any case, the system sizes achievable are comfortably much, much beyond anything
which will ever be realistically achievable using exact diagonalization. Moreover, the system sizes
attainable are also high enough that finite-size effects are drastically reduced, except perhaps in the
vicinity of excitation thresholds, where the correspondence to singularities which develop in the
infinite-size limit seems difficult to obtain. The fact that large systems can be treated is a conse-
quence of the amount of preliminary information which is provided by integrability in the first
place, and which can be built directly into the algorithm. The fact that ABACUS can give extremely
accurate results for finite systems can itself be seen as an advantage, when applications to nano/
mesoscopic quantum systems are considered. Advantage 4 is an interesting one, since many other
methods �such as bosonization and conformal field theory� are only valid at low energies. The
common lore is that only “universal” low-energy features should be computed by theorists, since
these are the only ones which are unambiguously observable in experiments. A more careful
assessment, however, teaches that such low-energy limits are precisely not accessible experimen-
tally, and that reliable data readout has to be done at higher energy scales. A less misleading
statement about “universality” is thus that the extrapolation via scaling of the low-energy, univer-
sal result �which is not itself consistently observable� to somewhat higher energy scales �which
are� can provide a good fit. However, the limitations of “universal” approaches quickly becomes
severe: in the case of spin chains, for example, inelastic neutron scattering provides data over the
full Brillouin zone, showing clearly the band curvature and interaction effects which cannot be
quantified using bosonization. ABACUS shows its strength here by being able to quantify these
effects: it can compute the DSF at any energy scale, giving very precise data for any region of the
momentum/energy plane. Since the Bethe ansatz used by ABACUS gives exact wave functions
irrespective of their energy, the accuracy of the data becomes more or less energy independent
�since more types of excited states can live at higher energies, the accuracy there becomes limited
by the restricted number of higher excited states that can be constructed; there thus remains an
energy dependence to the accuracy, but it is weak�. This feature of ABACUS makes it, at least in the
mind of the author, the most appropriate method to give quantitative predictions for experiments.

Let us now get down to the specifics. The bulk of the paper is organized as follows, mirroring
the three elements of the above “wish list.” Section III provides an extensive discussion of the
conventions and terminology used in the classification and representation of eigenstates within
ABACUS. Section IV then discusses how individual eigenstates and their norm are obtained, and
how form factors of local operators are computed. Section V describes how the Hilbert space of
intermediate states is scanned in order to achieve optimal results for the DSF. Section VI provides
some example results obtained from ABACUS, with a discussion of some of their specific features.
Finally, Sec. VII presents a discussion of some generic features of the approach, and the paper
ends with conclusions and perspectives for the future.

III. CLASSIFICATION AND REPRESENTATION OF EIGENSTATES

This section aims at providing a representation of eigenstates of Bethe ansatz integrable
models which is tailor made for the purposes of calculating correlation functions. Such a repre-
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sentation will rely only on very generic features of Bethe eigenstates, so the discussion will not
mention any model, in particular �except to highlight exceptional aspects of specific cases�.

Our integrable model H will have a Fock space F of dimensionality dim�F�, which can be
finite �for e.g., finite lattice models� of infinite �for e.g., continuum models with no UV cutoff�.
Typically, we will be able to easily separate this Fock space into a tensor product of spaces FM

with fixed number M of “particles,” with M being the charge of one of the trivially conserved
quantities.21

A. String basis: Configurations

The Bethe ansatz gives us explicit wave functions for eigenstates of H in a fixed-charge
subspace FM, parametrized in terms of M rapidities �a, a=1, . . . ,M. In all generality, the rapidities
of a given Bethe ansatz solvable model live in the complex plane, and this introduces immense
complications in the attempt to prove that the basis of Bethe eigenstates is complete. Under broad
and reasonable assumptions, however, the common lore is that this basis is complete,1 and that
states can be understood and classified in terms of collections of �possibly deformed� generalized
“string” patterns.22 For a given model, let us call Ns the total number of possible string patterns.
We let the label j run through the values 1 , . . . ,Ns, with increasing j representing strings of
increasing charge. In what follows, we call j the string level. A given eigenstate will have specific
numbers Mj of strings of level j. We call a set 
Mj�, j=1, . . . ,Ns a base. The total charge M
=� jljMj, where lj is the charge of a string of level j, is simply called the charge of a base, and we
sometimes write the charge of a base as a subscript �i.e., 
Mj�M�. The total number of strings,
Mst=� jMj �M is called the string charge of a base.

Since two-particle scattering preserves strings, the space FM further subdivides into subspaces
F
Mj�M

having fixed-charge-M bases. In other words, each partitioning of M into a charge-M base

Mj�M generates an independent Hilbert space.

The exponential form of the Bethe equations is a set of transcendental equations for the
rapidities. When written in logarithmic form, these equations can be interpreted as a mapping
between the set of rapidities 
�	

j � and a set of quantum numbers 
I	
j � with j=1, . . . ,Ns and 	

=1, . . . ,Mj at each level,

N
kin
j ��	

j � + �
k=1

Ns

�
	=1

Mk


scat
jk ��	

j ,��
k � = 2�I	

j , �4�

where 
kin
j is a kinetic function and 
scat

jk is a scattering phase shift kernel. Since these equations
make use of the string hypothesis �of perfectly undeformed strings whose deviations are assumed
exponentially small in system size�, thus reducing the number of unknown parameters from the
charge to the string charge, it seems historically appropriate23–25 to call them the Bethe–Gaudin–
Takahashi �BGT� equations, reserving the name Bethe equations to the original full set �for a
number of rapidity parameters equal to the charge� of coupled equations without any string
hypothesis made. Although the rapidities are all interdependent, the quantum numbers are inde-
pendent of one another, modulo applying a simple generalized Pauli principle stating that no two
quantum numbers at the same level are allowed to coincide, i.e., for 	��� �1,Mj�, we must have
I	

j � I�
j , ∀j. The quantum numbers thus provide us with the appropriate labeling of the eigenstates.

We thus write 	
I�� or 	
��� for our eigenstates, with the understanding that 
�� are obtained from
solving the BGT equations with the choice 
I�.

The dimensionality of a given F
Mj�M
subspace coincides with the number of allowable

choices of quantum numbers, since these obey a generalized Pauli principle.26 These can be
counted from the observation that choosing a base fixes the sets of possible quantum numbers 
I	

j �
which can be made at each level. In other words, the choice of a base 
Mj� unambiguously defines
a set 
I�

j �, j=1, . . . ,Ns of left- and right-limiting quantum numbers I�,−
j and I�,+

j at each level: any
eigenstate in this base must have quantum numbers individually obeying the limiting inequalities
I	

j � �−I�,−
j , I�,+

j �, 	=1, . . . ,Mj, j=1, . . . ,Ns.
27 The dimensionality of this subspace is thus
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dim�F
Mj�M
� = �

j=1

Ns 
I�,+
j + I�,−

j + 1

Mj
� . �5�

We call a set of quantum numbers 
I	
j � fulfilling the generalized Pauli principle and the

limiting inequalities a configuration. A unique quantum number configuration is thus associated
with each individual eigenstate via the BGT equations. One subtlety is that not all configurations
lead to sensible string structures. If a set of quantum numbers 
I	

j � is parity invariant, then its
associated rapidities will also be parity invariant. If quantum numbers I	

j1 and I�
j2 for different

levels j1 and j2 within such a set are then simultaneously zero, both string centers �	
j1 and ��

j2

vanish according to the BGT equations. If the string charges are such that lj1
= lj2

mod 2, then the
string hypothesis would predict coinciding rapidities modulo exponentially small deviations �e.g.,
an overlapping three- and five-string on zero rapidity leads to three pairwise superpositions�. Since
the string hypothesis patently fails in such cases, we call these states inadmissible, the usual states
being admissible. Inadmissible states do give proper wave functions involving �strongly� deviated
strings, but the original Bethe equations must be solved. ABACUS ignores inadmissible states in the
current implementation, since the numbers of inadmissible states necessarily are suppressed in a
1 /N fashion as compared to admissible ones, and in any case their contribution to correlation
functions can in some cases be shown to vanish identically.28

For the calculation of zero-temperature correlation functions as performed by ABACUS, the
most important eigenstates are those for which M1�M and Mj �O�1� for j
1, in other words
eigenstates for which only a handful of “higher” strings are present, and most rapidities sit at level
j=1.

1. Representation of configurations in ABACUS

Let us now describe how a configuration is represented and labeled in ABACUS. Let us start by
considering level j=1, the level at which we will make use of the most complicated representa-
tion. The M1 quantum numbers of this level are to be chosen within the set of quantum numbers
−I�,−

1 ,−I�,−
1 +1 , . . . , I�,+

1 −1 , I�,+
1 . We represent the possible choices by open circles, as per �a� in

Fig. 1.29 In the same figure, �b� represents the lowest-energy configuration, while �c� and �d�
represent higher-energy configurations. The fact that �b� represents the lowest-energy configura-

60 1 2 3 4 5−1−2−3−4−5

a)

b)

c)

d)

FIG. 1. Representation of quantum numbers at level j=1. In �a�, the set of possible quantum numbers at this level for a
given base is shown as open circles. In this case, we must fill in M1=5 of the possibilities defined by the limiting quantum
numbers I�,−

1 =5 and I�,+
1 =6. �b� shows the lowest-energy configuration. �c� shows a relatively low-energy excited configu-

ration with two particle-hole pairs �four excitations� at this level, with the particles and holes staying close to the Fermi
boundary. Finally, �d� gives an example of a high-energy configuration with three particle-hole pairs �six excitations�, with
holes going further in and particles further out away from the Fermi boundary.
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tion comes by design of the rapidity parametrization and can be ensured at all levels, for all
models.

We often use the term “particle” to denote a given occupied quantum number, representing a
string in the eigenstate. In most cases, we call “excitations” of a configuration the holes within the
base Fermi set �this being defined as the lowest-energy configuration for a given base�, and the
particles outside of it. Thus, configurations �b�–�d� in Fig. 1 each have five particles, but example
�b� has 0 excitations, while �c� has four, and �d� has six �this is not a strict rule: a simple exception
are the two-spinon states of Heisenberg chains in zero field, where the spinons are dispersive
“holes,”30 and the “particles” living out of the base Fermi set are fixed �only one quantum number
slot is available�; since the positions of the two holes completely specify the state, we then say that
such states contain two excitations�. In circumstances where we need to be more specific, we will
distinguish between “dispersive” and “nondispersive” excitations. The latter have only one pos-
sible choice for their quantum number, and therefore are not part of an excitation family; the
former, on the other hand, have many quantum number possibilities, and in most cases become
true excitation branches in the infinite-size limit.

Sectors
Excitations formed by a number of particle-hole pairs can be further separated into different

classes, depending on which sides of the base Fermi set they live on. We first define four sectors
as illustrated in Fig. 2. Sector 0 contains the quantum numbers obeying I�0, I� IF�M1 /2
�right-hand side of the base Fermi set, including zero�. Sector 1 contains those obeying I�0, I

−IF �left-hand side of base Fermi set�. Sector 2 contains the quantum numbers for which I

 IF and I� I�,+

1 , while sector 3 contains those obeying I�−IF and I�−I�,−
1 . The numbers of

excitations ei
1, i=0, . . . ,3 at level j=1, combined and written out as e3

1e2
1e1

1e0
1 is called the level 1

type.31 The fact that excitations come from particle-hole pairs means that at level j=1, we have the
identity e0

1+e1
1=e2

1+e3
1. Despite this slight redundancy, we still label the type as described above,

since it then allows to visualize the overall quantum number excitation pattern of a state with a
quick glance. Thus, in Fig. 1, the configurations b, c, and d are respectively of level 1 types 0000,
1111, and 1212.32

Levels j
1 use a slightly less complicated representation. As mentioned before, in practice
ABACUS only needs to construct states for which Mj �O�1� for j
1, and we therefore use only
two sectors for these levels. As illustrated in Fig. 3, sector 0 at level j contains allowable quantum
numbers Ij �0, while sector 1 contains Ij �0. The level j type is defined similarly to the level 1
type, but is here given by the simple combination e1

j e0
j .

The whole set of level j types for j=1, . . . ,Ns defines the type of the eigenstate.
Mapping to Young tableaux
Within a given sector at a given level, we map the configuration of occupied and unoccupied

quantum numbers onto a Young tableau. This is done differently in each of the four sectors of level

3 21 0Sectors:

0 1 2 3 4 5−1−2−3−4−5 6

FIG. 2. The four sectors of excitations at level j=1. Sectors 0 and 1 are, respectively, the right- and left-hand sides of the
base Fermi set, while 2 and 3 are the right and left outsides of the base Fermi set. The excitation type for the upper
configuration is 0000. The excitation type for the lower configuration is 1212 �see main text�.
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1, and in the two sectors of each level j
1.
It is simplest to illustrate the general idea using a level j
1. This is done in Fig. 4, where a

type 22 configuration is considered. Sector 0 of that level has 2 excitations; there are six allowable
quantum numbers. The lowest energy configuration of this type would have the two quantum
numbers 1/2 and 3/2 occupied. This would be mapped to an empty tableau. Instead, in the
configuration shown, the rightmost excitation sits on 11/2, four slots higher than its quantum
number of 3/2 in the lowest configuration. This displacement is represented by putting four boxes
in the first row of the tableau. Similarly, the second-rightmost excitation sits on 5/2, two slots
higher than its original 1/2. We therefore put two boxes in the second row of the tableau. In sector
1, we have two excitations, and we use the same logic but inverted right to left. The first row of
the tableau in sector 1 thus represents the left displacement of the excitation which sits leftmost in
the lowest configuration. It should be more or less immediately clear to the reader that the
generalized Pauli principle means that the tableaux that are thus obtained obey the Young tableaux
rules. The tableaux in a given sector can also be read in a dual manner: if the row lengths
represent, e.g., the right displacements of a set of particles/holes, then the column lengths repre-
sent the left displacements of the associated holes/particles.

At level j=1, we need four tableaux. The sector 0 tableau at level 1 represents the inward left
displacements �toward the middle� of the holes on the right of the base Fermi set. The sector 1
tableau similarly represents the right displacements of the holes on the left of the base Fermi set.
Sectors 2 and 3 represent, respectively, the right �left� diplacements of the excitations to the right
�left� of the base Fermi set, similarly to the logic used in levels j
1.

For a given sector i at a given level j, the number of rows nr in the corresponding tableau is
equal to the number of excitations ei

j in this sector. The number of columns nc is given by the
maximal possible displacement of the “highest” excitation, which is simply the number of avail-

able quantum numbers ni
j in this sector minus the number of excitations. There are thus di

j =� ni
j

ei
j �

�Bni
j,ei

j different allowable tableaux �in other words, configurations� in this sector at this level.
We number Young tableaux in the following manner: the empty tableau is given id=0. We add

boxes on the first row until the row is full, increasing the id by one for each added box. When we
reach the maximal length, the next tableau is the one with a single box on the second row �and
thus also on the first row�. We then add boxes again on the first row up to the maximal length. The
next tableau is then the one with two boxes on the second row. We proceed like this until both the

Level j, sector 1 Level j, sector 0

FIG. 3. The two sectors for levels j
1. The level j type for this configuration is 13.

3/2−11/2 −9/2 −7/2 −5/2 −3/2 −1/2 1/2 11/29/27/25/2

FIG. 4. Mapping quantum number configurations in a sector to a Young tableau, here for the two sectors at a level j

1.
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first and second rows are full. The next tableau is then the one with one box on the third row �and
thus also on the second and first ones�. This is done until the full tableau is obtained. An example
of this is given in Fig. 5, where we list all the �nr ,nc�= �3,3� tableaux and their identification
numbers. It is simple to write a recursive algorithm providing the mapping to/from Young tableaux
from/to identification numbers.

Eigenstate labeling in ABACUS

We now have all the needed elements to describe the labeling of eigenstates within ABACUS.
An eigenstate is uniquely identified by a configuration. A configuration is uniquely defined by
three integers: its base_id, its offset type_id, and its offset_id.

The base_id is a long long integer specifying the set 
Mj�. In general, we have M1�M �1,
with Mj �O�1� for j
1. We thus write

base_id = �# #�MNs
�# #�MNs−1

. . . �# #�M3
�# #�M2

�# # # # #�M1
,

in which �##�Mj
signifies two integers giving Mj, e.g., 03 or 11 or other two-digit non-negative

number less than 100. At level 1, in order to permit the labeling of states in large systems, we
allow for a five-digit specification. The numbers should be read from right to left, since leading
zeros are scrapped by file or standard output. A type_id of 1040200293 therefore means that the
base is given by M1=293, M2=2, M3=4, M4=1, and Mj =0, j
4.

The type_id of the offset of a configuration is represented as an integer,

type_id = e1
Nse0

Nse1
Ns−1e0

Ns−1 . . . . e1
3e0

3e1
2e0

2e3
1e2

1e1
1e0

1

�the numbers should again be read from right to left�. This is also represented as a long long
integer in ABACUS, since in practice the code never puts more than nine excitations in a sector
�allowing the type_id to be interpreted one character at a time�, and uses only the lowest set of
levels �meaning that the limitations on the length of integers do not affect the actual calculations
performed�.

Finally, the offset_id is defined as follows. Recall that di
j is the total number of tableaux of

sector i at level j. The tableaux identification number ti
j for this sector at this level thus runs

through the values 0 ,1 , . . . ,di
j −1. Given a set of tableaux identification numbers 
ti

j� for each
sector at each level, we thus define

offset_id = �
j=1

Ns

�
i=0

3

ti
j �
i�=0

i−1

di�
j �

j�=1

j−1

�
i�=0

3

di�
j�

as the single integer defining all tableaux identification numbers. In other words, we order the �s , l�
sector/level pairs as

.

19181716

151413

121110

9

87

654

3210

FIG. 5. Young tableaux and their identification numbers. Tableaux 0–9 form the set of all ten tableaux with �nr ,nc�
= �2,3�. Tableaux 0–19 form the set of twenty tableaux with �nr ,nc�= �3,3�.
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�0,0�,�1,0�,�2,0�,�3,0�,�0,1�,�1,1�,�0,2�,�1,2�, . . . ,�0,Ns − 1�,�1,Ns − 1� ,

and the offset_id is obtained by multiplying each tableau id by the product of the number of
possible tableaux at each lower sector/level pair.

We therefore have defined a mapping between three integers and the whole set of quantum
numbers of an eigenstate,

�base_id,type_id,offset_id� ⇔ 
I	
j � ,

where the string content and excitation pattern are clearly �i.e., humanly� legible from the first and
second integers, respectively. These numbers are used in all functions used by ABACUS and in the
data files that it produces.

IV. CONSTRUCTING INDIVIDUAL EIGENSATES AND CALCULATING THEIR FORM
FACTORS

A. Solving the Bethe equations

As described above, the Bethe ansatz provides an economical pathway for obtaining eigen-
functions by replacing the diagonalization of the Hamiltonian by the process of solving some sets
of nonlinear coupled equations for one eigenstate at a time. The overall difficulty of solving the
Bethe equations varies greatly from one model to the other. Also, within one model, the solution
to the Bethe equations is easy to find for some of the eigenstates, while for some other eigenstates
this might represent a very difficult challenge.

The simplest situation is when all solutions to all Bethe equations are to be found in terms of
real, finite rapidities. This is the case, for example, for the one-dimensional Bose gas �Lieb–
Liniger model� in the repulsive regime: the proof is simple and relies on the convexity of the
Yang–Yang action associated with the Bethe equations �4� on the field of real numbers �Ref. 33,
see also details in Ref. 3�. For Heisenberg spin chains, however, the corresponding Yang–Yang
action is not convex, and complex solutions exist. It is a well-known fact that there is no �and
cannot be a� good numerical method for solving coupled nonlinear systems of equations, so we
have to input as much preliminary knowledge as possible in the procedure. The string hypothesis
conveniently provides such preliminary information.

In order to solve the BGT equations, ABACUS mixes different methods. The simplest method,
used in the initial stages of the solution process, consists in performing some simple iterations.
Defining the set 
�	,�i�

j � as the set of rapidities at iteration number i, we can proceed as follows.
First, the initial set is defined as the solution to the decoupled conditions N
kin

j ��	,�0�
j �=2�I	

j .
Subsequent sets are defined from the recursion relation N
kin

j ��	,�i+1�
j �=2�I	

j

−�k=1
Ns ��=1

Mk 
scat
jk ��	,�i�

j ,��,�i�
k �, possibly using some damping to help stabilize the process. Such

simple iterations have the advantage that they often work, in the sense that some measure of
convergence is achieved. Each iterative step is also rather quick, involving order M2 operations.
However, convergence is slow, especially when the solution is approached, and it is therefore
desirable to accelerate the algorithm in various ways.

One way to converge more quickly is to track the changes in the rapidities over a certain
number of iterations. This gives a flow pattern to each rapidity: if this flow is sufficiently regular,
it can then be extrapolated to an infinite number of iterations in order to generate a new set of
rapidities. In practice, this procedure of combining iterations �say four or five� and extrapolations
substantially accelerates convergence as compared to doing only simple iterations.

A more elegant approach becomes available once the iterations have come sufficiently close to
the true solution: the matrix Newton method. This has the advantage of converging quadratically,
but has the disadvantages that �1� it is more computationally costly per iteration step, involving
order M3 operations, and �2� it is not always stable if the starting set of rapidities is too far from
the actual solution �this instability is a possibility if the Yang–Yang action is not convex�. Various
run-time checks need to be made to see if this procedure is stable. One advantage of the matrix
Newton method is that the Jacobian matrix which is needed, given by the matrix of derivatives of
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the left-hand side of �4�, is precisely the Gaudin matrix which is needed to compute the norm of
the eigenstate �discussed in the next subsection�, which also provides a slight acceleration of the
algorithm.

ABACUS considers the Bethe equations as solved provided a further iterative or Newton step
gives a new set of rapidities for which the sum of square differences with the previous set is below
a fixed convergence precision threshold, the latter being set to a fixed value somewhat larger than
the available numerical accuracy �machine epsilon�. In the case of purely real rapidities, this is the
only convergence criterion applied. For states with strings, however, we have to be more careful.
Namely, solutions to the BGT equations do not always represent proper solutions to the corre-
sponding Bethe equations, since the string hypothesis might not be verified to sufficident accuracy
for that specific eigenstate. In spin chains, this occurs in many circumstances, including for
eigenstates with strings having a very large rapidity, or when the magnetic field is near zero �for
a more extensive discussion of deviated strings, see Ref. 28 and references therein�. For eigen-
states with string states, ABACUS therefore also computes the first-order string deviations by
substituting the solution of the BGT equations back into the original Bethe equations, yielding a
new iteration for the �now full� set of rapidities, this time including their imaginary parts explic-
itly. If the sum of the string deviations �defined as the difference between the patterns obtained and
pure, undeformed strings� is higher than a given fixed string precision threshold, the eigenstate is
deemed unusable, and its contribution is excluded from the final result to prevent corruption of the
data. If these deviations are small enough, the contribution from this state will, however, be kept.

B. Calculating norms and form factors

Once the set of rapidities 
�	
j � of an eigenstate is known, it is then a matter of straightforward

number crunching to obtain the norm of the eigenstate. This is given by the Gaudin–Korepin
formula34,35 in terms of the determinant of the Gaudin matrix, the latter being defined �as men-
tioned above� as the derivative matrix of the Bethe equations �in the case of string states, the norm
can be similarly calculated from a reduced Gaudin matrix obtained from the BGT equations, see
Refs. 15 and 36�. The determinant itself is then calculated using LU decomposition.

For form factors of local operators in non-nested Bethe ansatz integrable models, the algebraic
Bethe ansatz provides a representation in terms of a matrix determinant, similarly to the norm. In
this case, however, the matrix depends on two sets of rapidities �one for each of the bra and ket
states� and takes a different form depending on which operator is considered. The explicit formu-
las can be found in the literature. For the Bose gas, the density operator form factor is given in
Refs. 7 and 8 The field operator form factor was given as a sum of determinants in Ref. 37 and
simplified to a single determinant in Ref. 17. For Heisenberg S=1 /2 chains, the Sz and S� operator
form factors were given in Refs. 9 and 10 for the case where string states exist at most on one side
of the bracket. The general expression, valid when either �or both� of the bra and ket states have
strings, was given in Refs. 15 and 38. Here again, the determinant is calculated by ABACUS using
LU decomposition.

V. SCANNING THE HILBERT SPACE

Assuming that eigenstates can be classified, individually labeled, and constructed as described
in the previous sections, we now come to the more challenging third item on the introduction’s
“wish list:” the summation over intermediate states.

For a given DSF in a given model, the perfect scanning algorithm will generate eigenstates in
order of numerically decreasing absolute value of form factors. This is not trivial to achieve in the
models we consider, since the intuitions we can develop relating to the solutions to the Bethe
equations and the rapidity dependence of the form factors remain incomplete.

All is not lost, however. Four general but simple guiding principles can be used to define an
efficient algorithm to scan the Hilbert space. The first principle is that �i� for large enough system
sizes, form factors obey an approximate continuity principle, in the sense that modifying an
excited state in a small way �e.g., moving just one quantum number� does not dramatically change
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the form factor. This principle is ultimately related to the fact that form factors are analytic
functions of the rapidities of the eigenstates involved and translates to the statement that if we find
some excited state having a large contribution, we can exploit this by concentrating computational
resources on the pool of states in its vicinity.

The remaining three principles associate in turn with the three integers we use to label
eigenstates. In general, we observe that form factors of local physical operators between the
ground state and an excited state decrease in numerical value for increasing complexity of the
excited state, by which we explicitly mean that form factors become smaller if �ii� more/higher
strings are included in the excited state, �iii� more particle-hole excitations are created in the
lowest level, and �iv� the excitations’ quantum numbers are moved further and further away from
the base Fermi set defining the lowest-energy state.

These principles are not strictly true in all circumstances, and the ABACUS implementation
attempts to “take them with a grain of salt” and probe sufficiently widely to gather all important
contributions on the one hand, but not spend too much time on irrelevant contributions on the
other.

A. Climbing the Bethe tree

The best way to visualize the scanning through the Hilbert space for the excited states is by
using an analogy with another of Bethe’s creations, namely, a Bethe lattice.39 Starting from the
lowest-energy state, one can then create particle-hole pairs in the lowest level, let these particles
and holes move away from the Fermi configuration, add higher strings, let those disperse, and so
on.

Explicitly, the first excited state constructed is the lowest-energy state of the appropriate
subspace, with the lowest base_id and zero type_id and offset_id. A particle-hole pair is then
created, the type_id becoming in turn 101, 110, 1010, and 1001. For each of these four branchings,
a scan is made on the position of innermost �so sector 0 or 1� excitation. If the contributions
obtained to a chosen sum coming from these states is “large enough” �whose meaning we will
make explicit below�, the next innermost excitation is “raised” by a unit, and a new scan is made
over the innermost excitation positions. The same logic is applied recursively in all sectors of all
levels of the base in current use, as illustrated in Fig. 6.

If a base, through this scheme, has given a large enough contribution, the base is then “com-
plexified” at different levels, yielding a new family of bases on which the recursive scanning is
also performed in a similar way until all large enough contributions from all bases have been
exhausted. Very importantly, an ABACUS object called Scanned_Intervals maintains a map of the
Hilbert space which shows which regions have been scanned and what average results have been
obtained per scanned region. This crucial run-time information will be used subsequently, as
described in Sec. V B.

B. Optimizing the climb

Defining the term “large enough” used in Sec. V A leads us to the description of the highest-
level procedure in ABACUS. The driving algorithm defines a real quantity called running_threshold
which defines a “large enough” form factor as one whose value exceeds this threshold. The initial
value of the threshold is chosen such that only relatively few �of order �N2� intermediate states
are constructed on a first run of the recursive Bethe tree climb. Once this first climb has termi-
nated, a new lower value of running_threshold is chosen, and a new climb is initiated.

The Scanned_Intervals object now fulfils its role, by �1� specifying to the scanning algorithm
which parts of the Hilbert space of intermediate states can potentially yield contributions which
are now “large enough” according to the new running_threshold, and �2� which parts have already
been scanned and should therefore be avoided to prevent state double counting.

When the second recursive Bethe tree climb terminates, the running_threshold is again re-
duced by an appropriate amount, and a third recursive climb is initiated. This is continued until a
user-specified maximal allowed computing time is reached, before which ABACUS interprets and
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saves all the data to disk. Importantly, the Scanned_Intervals object is also saved, allowing a
calculation which has successfully terminated to be restarted at a later stage, enabling to “polish”
results if required. A parallel implementation of ABACUS also exists, based on the same principles.
This whole construction naturally provides an optimal use of the available computing resources.

VI. RESULTS AND THEIR INTERPRETATION

At the end of an ABACUS run, a large collection of form factor data becomes available,
composed of energy-momentum-form factor triplets, either in a file with additional state-by-state
information or conveniently binned into a form factor matrix �for large-scale computations pro-
ducing immense numbers of entries, which could not all be individually saved to disk�. The
quality of this raw set of data �see an example in Fig. 7� can be measured by exploiting various
sum rules, the simplest of which is to consider the summation over all momenta and integration
over all frequencies of Eq. �2�. The resulting local expectation value �OaOā� is in most cases
known analytically. Since expression �3� is a summation over terms strictly greater than or equal
to zero, the form factor data set can be summed up and compared to the analytical expectation
value. A sum rule saturation percentage can thus be assigned to each data set produced. Other sum
rules can occasionally be used, for example, the so-called f-sum rule which relates the integral
over all frequencies of �Saā�k ,�� to a known function of k. This is particularly useful since it
allows to individually evaluate the quality of each separate momentum slice in the data set, which
is beyond the reach of the integrated intensity. Sum rules are routinely checked by ABACUS: a
summary file is produced, which contains information about the run. For each base and associated
type, the number of scanned states is given, together with their contribution to the integrated
intensity sum rule. Such summary files therefore provide a wealth of information about which
types of excitations carry significant correlation weight and which do not.

Inevitably, for a given target sum rule saturation, the computation quickly becomes more
intensive with increasing system size. The operation count for obtaining an individual state and its
form factor scales like N3. In practice, the number of states that has to be included in the sum-

FIG. 6. Climbing the Bethe tree for a given base. If an active excitation scan gives good enough results �in the sense
defined in the text�, a whole new generation of scans is initiated by descending the state �again, as explained in the text�
in all possible ways, and starting a new active excitation scan for each such descendent. This procedure is continued
recursively, and continues until good results are exhausted. Since each eigenstate is obtained via a unique such descen-
dency path, the full Hilbert space can be faithfully probed.
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mation over intermediate states superficially seems to scale polynomially with N as N�3–5 depend-
ing on the system and its parameters. As a rule of thumb, doubling the system size thus requires
about two orders of magnitude more computational power to achieve the same saturation. In fact,
the scaling with system size is a complex affair. If this scaling was of a well-defined degree, the
curves of leftover sum rule weight as a function of number of contributions summed would have
the same slope �assuming the efficiency of ABACUS to be system size independent�. This is not the
case, as can be seen from the example in Fig. 8 and Table I, and there seems to be some additional
�possibly logarithmic� system size dependence in the exponent. This is, in fact, quite natural: for
larger and larger systems, we expect an increasing fraction of the correlation weight to be carried
by states with higher excitation numbers. The system size scaling is discussed somewhat more in
Sec. VII, but a systematic study of it is beyond the scope of this article.

The finite system DSF which ABACUS calculates, as is clear from Eq. �3�, is not a smooth
function in the energy-momentum plane, since it is simply composed of isolated delta peaks of
various heights, aligned on well-defined lines in momentum but distributed in a very irregular
pattern in energy �due to the adopted periodic boundary conditions on the wave functions, mo-
mentum is always an integer multiple of 2� /N; energies are on the other hand certainly not
equispaced in our interacting models�. Only in the thermodynamic limit does the DSF become a
continuous function; to obtain this, some form of smoothing of the ABACUS results is necessary.
Since the momentum is already sitting on a regular lattice, only the energy delta function is
smoothened into a Gaussian. This has the unfortunate effect of blurring some would-be sharp
excitation thresholds, but allows to obtain easily interpretable density plots of the DSF. The width
of the Gaussian is chosen so as to be somewhat larger than the typical two-excitation energy level
spacing, so that the delta functions blend into a smooth function representing the density of states
in this region of the Brillouin zone. Since this two-excitation energy level spacing is typically of
order 1 /N, the negative effects of the Gaussian quickly become less significant for bigger systems.
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FIG. 7. �Color online� Numerical value of �squared� form factors obtained during a typical ABACUS run �here, for the XXZ
model at �=0.6 and Stot

z =0.1 for a small system of N=50 sites�. The horizontal axis is simply the ordinality of the
computed point. The continuous �in color: yellow� line represents a hypothetically achieved perfect ordering of form
factors in monotonically decreasing numerical value �an ideal algorithm would simply follow the yellow line�. While still
far from perfect �a factor of approximately 10 in speed could be gained by making the scanning perfect�, ABACUS does
follow such ideal lines reasonably closely in most circumstances.
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VII. DISCUSSION

A. Size dependence of contributions

The dependence on system size of a given DSF in a given model is very complex. First of all,
it may take different forms depending on which model parameters are used and on which part of
the energy-momentum plane one is studying. Changing system size affects �i� the number of
eigenstates in the Hilbert space, �ii� the relative number of states of different bases, �iii� the quality
of numerical solutions to the Bethe equations, in particular, the relative number of acceptable and
unacceptable quality string states that can be constructed, �iv� the form factor of a given identifi-
able state, and finally �v� the positional distribution of eigenstates in energy �density of states�.

Point �i� is trivial: the dimensionality of the Hilbert space is factorial in system size and poses
a severe limitation on the attainable size. Point �ii� is more subtle and interesting. Namely, the
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FIG. 8. �Color online� Again for the typical example of the XXZ model at �=0.6 and Stot
z =0.1, the remainder of total

integrated intensity sum rule after summing finite numbers of form factors is plotted. The number of states needed to
achieve a required saturation increases more rapidly than polynomially in system size �as seen by the decreasing slope of
the curves for increasing N�, pointing to additional weak system size dependence in the ABACUS operation count exponent
associated with the system size �see text for further discussion�.

TABLE I. Number of form factors needed to attain a given sum rule saturation level for various values of
system size. This is again for the example of the XXZ model at �=0.6 and Stot

z =0.1. The numbers in parentheses
are the Hilbert space dimensionality fraction represented by the number of states mentioned, illustrating the
efficiency of working in the chosen eigenstates basis. Missing numbers in the table could be obtained by simply
running ABACUS for longer �all data here are from single CPU runs�. Although the number of states needed to
achieve a fixed target sum rule saturation increases more rapidly than polynomially in N as seen from Fig. 7, the
Hilbert space fraction needed also decreases.

% N=50 N=100 N=200 N=400

90 235�4.9�10−12� 944�6.8�10−26� 8 772�5.3�10−54� 117 373�3.5�10−111�
95 385�8.2�10−12� 2 492�1.8�10−25� 27 096�1.6�10−53� 573 466�1.7�10−110�
99 1 515�3.2�10−11� 18 490�1.3�10−24� 469 120�2.8�10−52�

99.9 7 478�1.6�10−10� 141 560�1.0�10−23�
99.99 26 724�5.7�10−10� 932 706�6.8�10−23�
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number of n-excitation states scales approximately as �system size�n; therefore, the number of
2 ,3 ,4 , . . . excitation states scales differently, families with more excitations having an increasingly
larger number of members. For any n-excitation state, we can generically find order �size�2 states
with n+2 excitations, and determining how these different bases relatively contribute to the final
answer for large systems is thus an extremely complicated problem.

We can, however, make some general statements. Suppose for definiteness that our excitations
only come in pairs �as in, e.g., the Lieb–Liniger model�. For very small size �few particles�,
two-excitation states will carry a fraction c2�1 of the sum rules. As the system size N increases,
we will see the two-excitation contribution “leak” �as guaranteed by the preservation of sum rules�
into the increasingly more numerous 4 ,6 ,8. . .-excitation ones. c2 will be strictly monotonically
decreasing in N, e.g., �c2 /�N�0 ∀N. Despite this, the limit limN→� c2 might remain finite �as is
the case for spinons in the zero-field isotropic or gapped Heisenberg antiferromagnet; for the
gapless region, it seems reasonable for cj for j finite to vanish in the thermodynamic limit, except
at zero field�. c4, on the other hand, will not be monotonic: it will increase for small N but
eventually reach a maximum at some inflexion value N4, after which it will decrease, i.e.,
�c4 /�N
0, N�N4 but �c4 /�N�0, N
N4. The limiting value limN→� c4 might also remain
finite. There will similarly be increasingly large inflexion values N6 ,N8 , . . ., N4�N6�N8. . ., but
the determination of these inflexion values is beyond the reach of the current implementation.

This scenario, although more or less inevitable in the mind of the author, remains conjectural
since even the lowest of these inflexion points �N4� seems to lie above currently achievable system
sizes. In any case, we can expect the finite-size result for large enough systems to closely resemble
the infinite-size result �except perhaps in the immediate vicinity of excitation thresholds�: while
each term in the series c2+c4+c6+¯ might have substantial size dependence, the sum itself �i.e.,
the full DSF� is seen to have much smaller size dependence: increasing contributions �as system
size increases� from higher excitation numbers tend more or less to compensate the decrease in the
lower excitation number contributions �at least in gapless models�, since these two types of
contribution resemble each other. Thus, for example, the contribution of four-spinon states in the
Heisenberg magnet40 looks like a rescaled two-spinon contribution, and we can expect more or
less the same of yet higher excitation numbers �this, disregarding the different high-energy tails,
which carry very little correlation weight anyway�.

VIII. CONCLUSION AND PERSPECTIVES

Much remains to be done in the general field of dynamical correlation functions of integrable
models, and the reader is referred to Ref. 20 for an extensive discussion of this subject. As far as
ABACUS is concerned, various improvements of the subalgorithms for solving BGT equations are
possible, as well as further optimization of the state scanning algorithm. A better handling of
deformed string eigenstates is also necessary: this, at the moment, represents the most severe
limitation of the applicability of ABACUS for some DSFs of spin chains in small magnetic fields,
but requires a rather more elaborate treatment to be properly dealt with. For certain cases, as, for
example, gapped antiferromagnets, the correct state counting itself is not fully known for arbitrary
bases due to difficulties in defining the quantum number limits �see Ref. 41 for further discussion
of this point�.

The restriction to zero temperature would also need to be overcome, possibly by using some
ideas from the thermodynamic Bethe ansatz. On a more theoretical front, representations of form
factors for nested systems such as the Yang permutation model42 or the Hubbard model43 are
needed before ABACUS can be used. Once these are available, however, the “universal” ABACUS

logic will be quickly implementable for these systems as well.

A. Data availability

Requests to the author for calculations of DSFs for specific models and values of the param-
eters are welcome. An online database of ABACUS computations will also eventually be made
available. Alternately, the C�� source code can be obtained from the author on request.
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