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Abstract
Purpose To study striatal dopamine D2 receptor availability
in DYT11 mutation carriers of the autosomal dominantly
inherited disorder myoclonus–dystonia (M–D).
Methods Fifteen DYT11 mutation carriers (11 clinically
affected) and 15 age- and sex-matched controls were
studied using 123I-IBZM SPECT. Specific striatal binding
ratios were calculated using standard templates for striatum
and occipital areas.
Results Multivariate analysis with corrections for ageing
and smoking showed significantly lower specific striatal to
occipital IBZM uptake ratios (SORs) both in the left and
right striatum in clinically affected patients and also in all
DYT11 mutation carriers compared to control subjects.
Conclusions Our findings are consistent with the theory of
reduced dopamine D2 receptor (D2R) availability in
dystonia, although the possibility of increased endogenous
dopamine, and consequently, competitive D2R occupancy
cannot be ruled out.

Keywords Myoclonus . Dystonia . SPECT. Neurology .
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Introduction

The identification of genes in the hereditary forms of
dystonia, like the dystonia-plus syndrome myoclonus–
dystonia (M–D), gives the opportunity to study the
pathophysiology in a well-defined homogeneous group.
M–D is an autosomal dominantly inherited disorder,
clinically characterised by myoclonic jerks and dystonic
postures or movements of the upper body, often combined
with psychiatric disorders such as depression or anxiety [1].
The disorder usually becomes clinically manifest within the
first two decades and is often responsive to alcohol. M–D is
autosomal dominantly inherited and is frequently caused by
mutations in the epsilon-sarcoglycan gene (SGCE) on
chromosome 7q21 [2, 3]. The SGCE gene encodes a
membrane protein that is detected in several parts of the
brain, but of which the function is unknown. Penetrance of
M–D is dependent on the parental origin of the disease
allele due to the mechanism of maternal imprinting [4]. In
many patients with the M–D phenotype, the known DYT11
mutations are lacking, suggesting the involvement of other
genes and/or environmental factors [5]. One new M–D
locus has been mapped recently to chromosome 18p11 in
one family [6]. Furthermore, single mutations in the
dopamine D2 receptor (D2R) and DYT1 genes have been
described in combination with SGCE mutations in two M–
D families [7].

M–D is considered as a dystonia-plus syndrome. The
pathophysiology of M–D is largely elusive, but dysfunction
of the basal ganglia is thought to play a major role in the
pathophysiology of dystonia [8, 9]. Neuronal models of
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dystonia propose hyperactivity of the direct putamen-
pallidal pathway with reduced inhibitory output of the
internal segment of the globus pallidus (GPi) and subse-
quent increased thalamic input to the (pre-)motor cortex.
Striatal dopaminergic dysfunction is implicated in this
model [10]. A recent M–D mouse model using SGCE
knockout mice supported the role of dopamine in M–D and
showed significantly increased levels of dopamine and its
metabolites in the affected mice [11].

Recent in vitro experiments suggested that torsinA, the
defective product of DYT1 mutation-afflicted patients, may
be involved in processing SGCE in the endoplasmatic
reticulum [12, 13]. To our knowledge, no human autopsy
studies reporting on D2R loss in dystonia are available.

D2R imaging studies in other types of dystonia, including
idiopathic cervical dystonia and DYT1 dystonia, showed
reduced in vivo striatal binding [14, 15]. Cervical dystonia
patients showed a bilateral and significant reduction of
striatal D2R binding. In a recent study on DYT1, [11C]
raclopride PET was used to image D2R, and a decreased
striatal D2R binding was described in both affected and
non-affected DYT1 carriers [15]. Another [11C]raclopride
PET study in dopa-responsive dystonia patients (DYT5)
showed increased D2 receptor availability, possibly due to
reduced competition by endogenous dopamine and/or a
compensatory upregulation as a response to dopamine
deficiency [16]. A D2R imaging study in nocturnal
myoclonus suggested lower receptor availability [17]. A
D2R imaging study in M–D will improve our understand-
ing of dystonia and particularly of M–D.

To the best of our knowledge, no D2R imaging studies
in DYT11 gene mutation carriers are available. We,
therefore, examined in vivo striatal D2R availability with

[123I]IBZM single-photon emission computed tomography
(SPECT) using the bolus/constant infusion technique [18]
in clinically affected (CA) and non-affected (CNA) DYT11
mutation carriers and their age- and sex-matched controls.

Materials and methods

Patients and control subjects

Fifteen DYT11 mutation carriers, including 11 clinically
affected DYT11 carriers (mean age 50 years, range 30–
67 years), four clinically non-affected DYT11 carriers (mean
age 39 years, range 20–52 years), and 15 age- and sex-
matched healthy volunteers (mean age 42 years, range 26–
55 years) were studied. Gene mutation carriers were
recruited from four different pedigrees, ten of these carriers
came from one pedigree. Patients were defined as clinically
affected when signs of dystonia or myoclonus were
detected on neurological examination (Table 1). The
healthy volunteers were historical controls from other
studies using an identical scanning protocol. None of these
control subjects had a history of neuroleptic or other
dopaminergic treatment. None of the volunteers had either
a history or a family history of myoclonus or dystonia.
Smoking was reported by two clinically affected (CA), two
clinically non-affected (CNA) and eight control subjects.
Psychiatric diagnoses (depression, anxiety and/or OCD
symptoms) according to the DSM-IV criteria were made
by a psychiatrist in four CA and none of the CNA subjects.
Two of the CA subjects fulfilled the criteria for depression,
one for anxiety disorder, and one for depression, anxiety
disorder as well as OCD (Table 1). CA subjects were

Table 1 Clinical characteristics of clinically affected and non-affected DYT11 mutation carriers

Subject number Age (years) Gender BFMDRS/UMRS scores Psychiatric symptoms Type of inheritance

1 CA 29 M 18/46 Depr Fa
2 CA 34 M 2/4 – Fa
3 CA 52 M 0/4 Anx Fa
4 CA 45 F 16/10 – Fa
5 CA 48 M 20/100 Depr Fa
6 CA 48 M 14/12 Depr, Anx, OCD Fa
7 CA 44 F 30/23 – Fa
8 CA 48 M 20/15 – Fa
9 CA 60 F 6/0 – Mo
10 CA 65 F 6/0 – Mo
11 CA 50 M 6/0 – Mo
12 CNA 18 F 0/0 – Mo
13 CNA 62 M 0/0 – Mo
14 CNA 35 M 0/0 – Mo
15 CNA 44 M 0/0 – Mo

CA clinically affected, CNA clinically non-affected carriers, M male, F female, BFMDRS Burke–Fahn–Marsden Dystonia Rating Scale, UMRS
Unified Myoclonus Rating Scale, Depr depression, Anx anxiety, OCD obsessive–compulsive disorder, Fa father, Mo mother
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clinically scored using the Burke–Fahn–Marsden Dystonia
Rating Scale (BFMDRS) [19] and the Unified Myoclonus
Rating Scale (UMRS) [20]. The control group comprised of
neurologically and psychiatrically normal subjects. In-
formed consent was obtained in all subjects and the study
was approved by the local medical ethics committee.
Smokers were instructed not to smoke during the study, as
well as in the 6 h preceding the study.

Data acquisition

The selective D2R tracer [123I]IBZM ([123I]iodobenzamide;
specific activity >200 MBq/nmol) was synthesised by
Amersham Healthcare as described earlier [21]. Subjects
received a potassium iodide solution to block thyroid
uptake of free radioactive iodide. SPECT studies were
performed using a 12-detector single-slice brain-dedicated
scanner (Neurofocus 810, which is an upgrade of the
Strichmann Medical Equipment) with a full-width at half-
maximum resolution of approximately 6.5 mm, throughout
the 20-cm field-of-view (http://www.neurophysics.com).
After positioning of the subjects with the head parallel to
the orbitomeatal line, axial slices parallel and upward from
the orbitomeatal line to the vertex were acquired in 5-mm
steps (3 min scanning time per slice, acquired in a 64×64
matrix). The energy window was set at 135–190 keV.

In all participants, approximately 100 MBq of [123I]
IBZM was given intravenously as bolus, followed by
continuous infusion of 25 MBq/h to achieve unchanging
regional brain activity levels [18, 22]. Acquisition of the
images was started 2 h after the bolus injection [23].

Data processing

Attenuation correction of all images was performed as
described earlier [24]. Images were reconstructed in 3-D mode
(http://www.neurophysics.com). These 3-D reconstructed
images were then randomly numbered and analysed blindly
by one observer (RJB). For quantification, a region-of-interest
(ROI) analysis was performed. The analysis procedure was
repeated after approximately 4 weeks to assess intra-observer
variability. For analysis of striatal [123I]IBZM binding, the
ratio of specific striatal to occipital binding (representing non-
specific binding) was calculated by averaging four consecutive
transverse slices, representing the most intense striatal binding.
Standard templates with fixed ROIs (striatal and occipital
volume 2.6 and 3.1 mL per ROI, respectively; so, e.g. total
striatal volume assessed 8×2.6=20.8 mL) were manually
placed on the striatum and occipital cortex (Fig. 1), and then
the ratio of striatal to occipital binding (SOR) was calculated
as follows: (total striatal binding−occipital binding)/occipital
binding. Using the bolus/constant infusion technique, this ratio
represents the BPND [24].

Statistical analysis

Variability between the two analyses was calculated
according to the formula: Δ(SOR2−SOR1)/mean (SOR1,
SOR2). In addition, the intra-class correlation was calculat-
ed. Symmetry of the left and right SORs was calculated
using a Wilcoxon signed ranks test. A Mann–Whitney
analysis was used to assess the differences in age between
groups. Mann–Whitney analyses were performed to assess
differences between all mutation carriers (CA plus CNA)
and control subjects, as well as between clinically affected
DYT11 gene mutation carriers (CA) and their control
subjects. To assess the independent effect of the BFMDRS
and UMRS sum scores, linear regression was performed in
the DYT11 mutation group. Finally, two multivariate linear
models were constructed to assess the effect of left and
right SOR, respectively, corrected for the possible effect of
age and smoking. Even though there were no significant
differences between groups regarding these variables, this
was performed to increase accuracy. Differences were
considered significant at p<0.05. All analyses were carried
out using SPSS version 12.

Results

Clinical characteristics

The clinical characteristics of CA and CNA are summarised in
Table 1. Eight CA inherited the mutation from their father.
Three CA and all CNA inherited the mutated gene from their
mother.

IBZM SPECT

Variability between the two analyses of the 3-D recon-
structed images was 7.3% with an 86% intra-class correla-
tion. Results of the second analysis are presented here.

No significant difference in age was found between
groups (p=0.2). No asymmetry between left SORs and
right SORs was detected in any group (p>0.05); median
values and quartiles are given in Table 2.

When the CA group was compared to the whole control
group, differences for both SORs were found (left: p=
0.036, right: 0.041, mean=0.032). In the full factorial
multivariate analysis, after correcting for age and smoking,
a difference was found for both left (p=0.005), and the
right SOR (p=0.014). In this analysis, age was a significant
covariate (p=0.001), as well as smoking (p=0.001). The
adjusted R2 of the whole model was 0.648.

Comparing the data of all DYT11 mutation carriers (both
CA and CNA) to control subjects, a difference for the left
SOR (p=0.05), but not for the right SOR (p=0.06), was
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found between the DYT11 carriers and controls. After
correcting for age and smoking, the difference for both
SORs (left: p=0.003, right: p=0.018) was significant.

In the linear regression analysis in the DYT11 mutation
group, the clinical BFMDRS and UMRS scores did not
correlate with the SOR (p=0.716).

Discussion

In myoclonus–dystonia patients, a bilateral lower D2R
binding in DYT11 gene mutation carriers was detected
compared to control subjects. This effect was most robust
in the clinically affected subjects compared to control
subjects. Also, smoking and ageing were found to have an
independent effect on striatal D2R binding.

The intra-observer variability and intra-class correlation
are consistent with earlier publications on SPECT tech-

niques [25] and suggest good reproducibility of the present
results. Continuous infusion of the radioligand IBZM is an
advantage of this study, thereby eliminating the possibility
that the presently observed lower striatal binding ratios are
due to differences, e.g. in cerebral blood flow between
groups [18].

Reduced D2R binding is consistent with the theory of
reduced D2R availability in dystonia [10]. An increased
dopamine level may induce a downregulation of the D2R
and may also induce an increased occupancy of D2R by
endogenous dopamine [22]. Both phenomena may lead to
the presently observed lower D2R binding. Our observation
of reduced D2R binding in the clinically affected mutation
carrier group and also in the whole DYT11 gene mutation
carrier group may suggest similar, less extensive, abnor-
malities in the non-clinically affected group, although the
number of non-clinically affected subjects is too small to
draw firm conclusions. This would be consistent with a
[11C]raclopride PET study investigating DYT1 CNA [15]. It
is noteworthy, however, that the maternal imprinting
mechanism as described in DYT11 is not responsible for
reduced penetrance in DYT1 mutation carriers. Maternal
imprinting implies to induce only abnormalities in mutation
carriers inheriting the mutated allele from their father, as
only wild-type paternal allele was detectable in cDNA in
peripheral leucocytes [26, 27]. Larger groups of non-
clinically affected DYT11 mutation carriers should be tested
to investigate this matter. Clinically, the maternal imprinting
is not complete. Three out of 11 CA, inheriting the gene
from their mother, did show mild axial dystonia. This
phenomenon has also been described in other M–D families
[1, 27–29].

It remains unclear whether this D2R binding reduction is
related to the dystonia, or also to the myoclonus, or
possibly even the psychiatric symptoms. Regarding the
psychiatric symptoms, three subjects of the CA group were
diagnosed with recurrent episodes of depression, two were
diagnosed with anxiety disorder and one was diagnosed
with OCD. A D2R study using [123I]IBZM SPECT found
no differences between depressed patients and controls
[30], whilst another found increased D2R availability using
[11C]raclopride PET [31]. Therefore, it seems unlikely that
the results of the present study may be attributed to
depression. Limited information is available on anxiety

Table 2 Median values of specific striatal to occipital binding ratios for all groups with 25th and 75th quartiles between brackets

SOR left SOR right SOR mean

CA 0.93 (0.89–1.04), p=0.005 0.92 (0.86–0.97), p=0.014 0.90 (0.87–1.00), p=0.004
DYT11+ 0.95 (0.90–1.06), p=0.003 0.92 (0.86–1.05), p=0.018 0.90 (0.87–1.05), p=0.003
CO 1.03 (0.96–1.28) 1.05 (0.94–1.19) 1.02 (0.95–1.23)

p values represent comparisons to control subjects after correction for age and smoking
SOR specific striatal to occipital binding ratio, CA clinically affected, CO control

Fig. 1 Standardised template with fixed ROIs for the striatum and
occipital cortex that was used to analyse the [123I]IBZM binding in the
striatum and occipital cortex (non-specific binding)
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patients, only one study using [123I]IBZM SPECT sug-
gested lower D2R availability in social phobia [32]. Due to
the small number of OCD and anxiety patients in the
current study, major effects are unlikely.

In our study, smoking turned out to be a significant
covariate. Conflicting evidence exists on the effect of
smoking on D2R expression and availability in smoking
subjects. Although not found in a number of earlier studies
[33–35], the effect of smoking on D2R availability has been
described in another, very recent study [36].

Ageing effects on dopamine D2R in SPECT studies are
well-described [37] and we could replicate this finding. The
algorithm correcting for ageing effects we used in this study
is based on a linear relation between D2R availability and
age. Although this relation cannot be stated to be linear
with certainty, groups were age-matched and analyses were
done with and without this correction, both yielding
significant results. Left–right asymmetry of striatal dopa-
mine D2 receptors has been described in the literature [38],
but was not detected in the present study.

A possible limitation of the current study is the fact that
the spatial resolution of clinical SPECT studies is lower
than that of PET. This prevents the possibility of adequately
analysing putamen and caudate nucleus binding separately.
However, separate analysis of binding in M–D patients will
probably not provide much additional information. In an
[11C]raclopride PET study in DYT1 patients (compared to
controls), differences in binding in the whole striatum were
similar to differences in binding in the caudate nucleus and
putamen separately [15].

Another limitation might be that a large number of
participants in the DYT11-positive group are related to each
other. Although it cannot be stated with certainty that these
subjects do not carry an additional mutation of the D2R,
this seems highly unlikely.

Since none of the healthy volunteers had a history or a
family history of myoclonus or dystonia, was aged above
26 and as M–D is an extremely rare affliction, it is very
unlikely that a DYT11 mutation carrier was recruited into
the control population [39]. However, since we have not
determined the lack of this mutation in our control group,
we cannot rule out with absolute certainty that all controls
did not carry this mutation.

In conclusion, the present study provides evidence for
the presence of D2R binding abnormalities in DYT11
mutation carriers. Although further research is warranted,
these findings may provide further insight in the patho-
physiology of inherited forms of dystonia.
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