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Robust Weighted Scan Matching
with Quadtrees

Arnoud Visser1, Bayu A. Slamet1, and Max Pfingsthorn2

1 Universiteit van Amsterdam, Science Park 107, Amsterdam, The Netherlands
2 Jacobs University Bremen, Campus Ring 1, Bremen, Germany

Abstract. This paper presents the improvement of the robustness and
accuracy of the weighted scan matching algorithm matching against the
union of earlier acquired scans. The approach allows to reduce the corre-
spondence error, which is explicitly modeled in the weighted scan match-
ing algorithm, by providing a more complete and denser frame of refer-
ence to match new scans. By making use of the efficient quadtree data
structure, earlier acquired scans can be stored with millimeter accuracy
for environments with dimensions larger than 100x100 meter. This can
be realized with the preservation of real-time performance. In our exper-
iments we illustrate the significant gains in robustness and accuracy that
can be the result with this approach.

1 Introduction

Robot motion estimation is a central topic in probabilistic robotics research. Re-
liable robot motion estimation is essential prerequisite to be able to build maps
of unknown environment, such as encountered in search and rescue missions.
The general idea is that ’raw’ motion estimates provided by odometry sensors
or inertial navigation systems (INS) accumulate significant errors and therefore
preclude an accurate spatial interpretation of sensor information, e.g. for the
purpose of mapping, planning or navigation. By establishing correspondences be-
tween current and past observations these motion estimates can be corrected. As
laser range scanners usually provide rather accurate measurements of a robot’s
physical surroundings they are a key enabler for more accurate displacement
estimation based on such a correspondence analysis.

Algorithms that estimate displacement by comparing the current laser scan
with one or more previously acquired laser scans are typically referred to as scan
matchers. While scan matching algorithms usually indeed yield more accurate
motion estimates, they do not resolve the fact that all robot observations remain
correlated through the robot’s trajectory. This implies that every estimate builds
on the previous one. Hence, the estimates may still diverge incrementally from
the robot’s true motions in the long run.

This fundamental issue lies at the core of simultaneous localization and map-
ping (SLAM) research. As such, many advanced techniques that aim to detect
and correct error accumulation have been put forward by SLAM researchers.



Particle filters [1], explicit loop closure strategies [2], Kalman filters [3] and
information filters [4], elaborate exploration strategies that explicitly take the
localization and mapping accuracy into account [5] and highly advanced data
structures [6] to facilitate these algorithms are just some examples, see also [7]
for a survey on several of these techniques and [8] for a more in-depth discussion.

Although these SLAM techniques have proved to be very effective in achiev-
ing their objective, they usually do a global minimalization of the localization
error for all registered viewpoints. In this paper a pure incremental approach
is described, with only a local minimalization of the localization error of a new
viewpoint. We aim to boost the robustness of the scan matcher itself, so that
there are significantly more accurate position estimates to start with. In a later
stage a global minimalization of the localization error can be applied with SLAM
techniques, for instance as a post-processing step.

Scan matching is a research field with a long history [9] and many of the
techniques applied in this article are applied before. Kd-trees, quadtrees and
octrees are well known techniques to index scan points [10]. Matching against
local submaps is a known to improve the robustness of the match. Matching
against all past scans is less common, typically the past scans are accumulated
in evidence grids [11]. Weighted Scan Matching is a technique which by its
advanced way to characterize uncertainty is able to achieve high accuracy [12].
This article is innovative in the combination of those known techniques, which
further improves the robustness of the Weighted Scan Matching algorithm.

The way to characterize uncertainty proposed by Pfister [13] is based on an
analysis of the physical phenomena that challenge scan matchers. The analysis
reveals three sources for uncertainty. The measurement noise and sensor bias
are the well known sources of uncertainty. In [14] it is demonstrated that the
accuracy of the scan matching improves considerably when the remaining cor-
respondence error is explicitly taken into account as third source of uncertainty.
Our approach focuses on further reducing the correspondence error by providing
the algorithm more points by involving all relevant scans observed in the past
in the matching process. The reduced correspondence error also allows tighten-
ing the thresholds of the algorithm, which gives an additional, although slight,
increase of the accuracy. Yet, the major improvement is not the accuracy, but
the increased robustness in situation where not many scan points are available.
The additional points for the algorithm are provided by a neighborhood search
on all previous scans. Quadtrees [15] are used to make this feasible in real time.

2 Related Work

The idea of matching against accumulated scans (instead of single scans) was
already introduced during the development of the original Iterative Closest Point
algorithm (e.g. [9]). In the Computer Vision community many variants of the
basic ICP concept have been proposed, but not all variants are directly appli-
cable to the problem of a laser scanner on a mobile robot. In the mobile robot
case, there are typically many viewpoints with a few measurement points, while



in the case of range images (generated with structured light) there are many
measurement points for a few viewpoints.

Although commercial laser scanners as the SICK LMS 200 can give accu-
rate distance measurements over a range of 80 meters, the angular resolution is
limited, resulting in sparse sampling of surfaces further away. To get a detailed
estimate the profile of the real surface at such a large distance, measurements of
several scans have to be combined, and non-sampled parts have to be interpo-
lated [16].

In [14] we used the local submaps introduced in [6] that also aim at providing
a richer frame of reference for matching new scans. In its original form the
reference scan (scan A in Fig. 1) was extended by all measurements from a few
scans in the neighborhood. The extent of the local submap is limited to a few
scans because the computational effort of the scan matching algorithm grows
quadratically with the number of points considered. The technique presented in
this paper could be seen as an efficient variant of the local submap that considers
as matching candidates only a few measurements in the neighborhood derived
from a data structure that stores all previous scans.

(a) Odometry Estimate (b) Scan Matcher Estimate (c) Correspondence Error

Fig. 1. Two scans A (red) and B (green). a) The second scan B′ at an (erroneously)
estimated location, B shows the true location of the second scan. b) The scans describe
the same geometry after matching. c) The residual correspondence error after matching.

In [17] the authors present a technique for specific use with really sparse
sensor readings that is based on multiscans. A single multiscan then accumulates
sparse sensor readings until the integrated scan is dense enough. This scan is
then matched against features in the environment and a particle filter is used
to maintain multiple hypotheses. In our approach the quadtree also integrates
multiple scans into a denser frame of reference, but the matching process is point
based (not dependent on the presence of particular features in the environment).
Also, we present results that did not (yet) take advantage of particle filtering.

Quadtrees seem a natural extension to occupancy grid maps as they effi-
ciently index the occupancy information and thereby enable their fast retrieval.
Notice that with a quadtree one is not forced to set a lower limit on the di-



mension of the cell (which is typically set to 15 centimeters for occupancy grid
maps). This allows to store efficiently measurements with millimeter precision.
However, only few robotics applications (e.g. [18]) benefit from quadtrees in two
dimensions. The performance boost possible with scan matching is already rec-
ognized for higher dimensions. Octrees and advanced kd-tree search algorithms
are for instance used in [19] for 3D point clouds. Octrees enable [20] to maintain
a particle filter with 5000 particles in real-time for an underwater vehicle.

3 Weighted Scan Matching using Quadtrees

As a robot explores a planar environment there are several aspects that affect the
range sensing process and thereby complicate the scan matching [13]. Matching
two scans A and B is equivalent to estimating the relative translation τ and
rotation ρ between the poses θA and θB where the scans were recorded. This can
be done by projecting all individial scan beams pB on the local coordinate frame
of pose θA, but more sophisticated algorithms maintain subsets cA ⊂ pA and
cB ⊂ pB of points that are deemed correlated. Matching the correlated subsets
cA and cB is finding the estimate displacement ∆θ̂AB = (τ̂ , ρ̂) that minimizes
the error ε defined as:

ε = cA − R̂ · cB − T̂ (1)

where R̂ is the rotation matrix of rotation ρ̂ and T̂ the displacement vector
of translation τ̂ . The error ε can be decomposed in several components. The bias
error refers to the measurement bias that may be inherent to the used scanning
device and the measurement error is the uncertainty attributed to the noise
involved in the measurement process. For every point correspondence pair, the
measurements cA and cB in Eq. (1) can be decomposed into the terms:

ci
A = ri

A + bi
A + δci

A (2)

where ri
A is the ’true’ measurement and bi

A and δci
A respectively denote the

bias error and noise error. Note that in this paper the bias error will further
be ignored as for many datasets the bias of the used sensor is unknown, and as
demonstrated in [13] it has minor impact when compared to the other sources
for uncertainty.

The correspondence error is the consequence from the fact that a range sensor
measures distances at discrete angles, which means that the samples taken from
two different viewpoints will not coincide. The difference in sample distance on
the surface will be small at close distance, but is more prominent for surfaces at
larger distances. Even when both the measurement error δci

A and bias error bi
A

are ignored, and the distance to the real surface ri
A is acquired, this measurement

can still be halfway two other scan points rj
B and rj+1

B , making an maximum
error of ||ri

B − rj+1
B ||/2, which is a function of the distance and incident angle

towards that surface. In the weighted scan matching algorithm this quantity is



actively estimated. This phenomenon is illustrated in Fig. 1(c) where the ellipses
indicate the associated correspondence error.

Ignoring the bias error bi
A then gives the following error ξi per pair of corre-

sponding points:

ξi =
(
ri
A −R · ri

B − τ̂
)︸ ︷︷ ︸

Correspondence Error

+
(
δci

A −R · δci
B

)︸ ︷︷ ︸
Measurement Error

(3)

The error ξi per pair can be used in Eq. (1) to find the displacement that
minimizes the overall error function.

The sub-problem of the measurement error was handled in [13] by modeling
the uncertainty of every single scan beam with a Gaussian distribution. Also the
modeling of the correspondence error was addressed in [13], but this error was
estimated for matching two scans from two poses A and B. Here we demonstrate
that the correspondence error can be reduced by matching the current scan
A against the integration of nearby measurements from many previous scans
B1...N . The correspondence error is not longer a function of the distance, but of
the density of nearby measurements at that point.

The central idea is to use a quadtree [15] to keep an index of all relevant
scans observed in the past. Assume that a particular scan st acquired at time
t was found as being relevant. Then all global projections of the points p ∈ st

will be inserted into the quadtree Q that is maintained. The relevance of a scan
is determined by simple thresholds on the estimated displacement returned by
the scan matcher. Given the displacement estimate ∆θ̂ for a new scan then the
scan is considered relevant if either the translation threshold τmax or the rotation
threshold ρmax is exceeded. Hence, these thresholds are no probabilistic measures
and only serve as a simple constraint to reduce redundancy in the quadtree.

Key to our approach is that the weighted scan matcher matches the new
scan st against the quadtree, which means that st is matched simultaneously
against all past relevant scans. This is feasible in real-time due to the excellent
performance of quadtrees on nearest neighbor finding. The benefit of matching a
scan simultaneously against multiple previous scans is illustrated in Fig. 2 where
a robot zigzags through a corridor. In the example the robot is configured with
a laser range scanner that has a field of view of 180 degrees, which is indicated
using different shades of gray. Assume that the quadtree stores the scans acquired
at time steps t1 and t2, then two alternatives for t3 illustrate the difference. The
robot could proceed with traditional incremental scan matching and only match
the new scan against the one from t2, or it can benefit from the quadtree and
match simultaneously against both previous scans. The latter has two immediate
benefits: the quadtree provides a denser and more complete frame of reference
for matching the new scan. The density gain involves parts of the wall marked
in blue that are covered by both scans of t1 and t2. The gain in completeness
involves the part of the wall marked in red that is not covered by the scan of t2
but is covered by the one of t1.



When considering the density and completeness gains illustrated in Fig. 2
one may indeed expect the correspondence error of Eq. (3) to be reduced. This
is demonstrated in Fig. 4 of Sec. 4.

4 Experiments and Results

In our experiments we will use two implementations of the Weighted Scan
Matcher (WSM) [13]. The point-correlation procedure of the original imple-
mentation was replaced with a nearest neighbor search algorithm of a quadtree.
We did not make any additional modifications to the internal workings of the
scan matchers, so we refer the interested reader to prior research [14, 21] and the
original papers for further details.

The experiments will investigate the improvements that can be gained from
using quadtrees for weighted scan matching. The visualizations were created with
the standard occupancy rendering techniques from [14]. All presented results are
strictly based on scan matching, the SLAM algorithm was purely incremental. As

(a) t1 (b) t2

(c) t3 incremental (d) t3 using quadtree

Fig. 2. The benefit of using a quadtree that indexes all scans observed in the past.
After the scans acquired at time-steps t1 and t2 the quadtree has a denser and more
complete reference frame to offer for matching the scan of t3. The walls shaded with
blue were covered by both scans of t1 and t2 and illustrate the density gain. The part of
the wall shaded with red marks reference data not present in the scan of t2 but which
is covered by the quadtree that also holds the scan of t1.



long as the scan matching routine reported good correspondence, the result was
used for localization. When the correspondence dropped below a threshold, the
map was extended. When the correspondence was bad, the measurements from
the dead reckoning were used. The initially found locations are not corrected
afterwards in a global optimalization routine.

In the remainder of this section we will refer to the original implementation
of WSM as the incremental version and we use Q-WSM to refer to the version
that benefits from quadtrees.

4.1 Performance Benchmarks

For these experiments we used the high-fidelity simulator [22] that is also used
during the Virtual Robots competition that is part of the RoboCup Rescue
World Championships 3.

Figure 3 shows the results acquired on a dataset that was recorded in ’The
Park’4. The challenge posed by this dataset is that often the range scanner only
observes one or two trees and that the robot moves on slippery grass. The dataset
covers an area of approximately 80 by 40 meters where the robot started in the
bottom-right corner and traverses the park in clockwise direction. The robot’s
path is shaded with gray for clarity and should describe a single closed loop from
tip to tail.

The incremental version of WSM accumulates a significant error, leaving a
gap of several meters. The Q-WSM version closes the loop implicitly. The error
of the incremental version can mainly be found in the upper right corner, where a
sharp point turn is made5 at a location without clear features. For the majority of
the scans the results of both versions are equally good, the additional robustness
of the Q-WSM version is mainly visible at the difficult situations.

For a more detailed comparison of both algorithms, the average correlation
distances that remain after matching are plotted in Fig. 4. Q-WSM finds matches
with less residual correspondence error almost throughout the dataset. Over the
whole dataset the average correlation distance reduces from 10.20 mm to 5.62
mm.

To see if the reduced correlation distance also improves the robustness of
the scan matcher the uncertainty measures returned by the algorithms were
analyzed. This uncertainty measure is the full 3-by-3 covariance matrix of the
Gaussian distribution over the displacement estimate and does not lend itself well
for charting in its original form. Therefore we took the on-diagonal elements that
describe the independent uncertainty in x and y direction and combined these
into a Euclidean distance measure. The trace of the covariance matrix acquired
with Q-WSM is in most cases (94%) smaller than the trace of incremental ver-
sion. The average uncertainty of the Q-WSM algorithm reduced to 36% of the
average uncertainty of the incremental version.
3 USARSim source code and manual are available online at http://www.sourceforge.

net/projects/usarsim
4 Outdoor area of the DM compWorldDay1 map
5 Data collected by novice driver according to [23]



(a) Incremental WSM (b) Q-WSM

Fig. 3. Comparison of the two versions of WSM for a drive through a park, with poor
odometry and sparse range scans.

The used laser range scanner was configured at 1 Hz with a resolution of
181 beams over a field of view of 180 degrees. The time necessary to match a
scan ranged from 40 to 411 milliseconds for Q-WSM. The average time was 128
milliseconds. These results were acquired on a three-year old notebook (1.9GHz
CPU and 1GB RAM) and clearly illustrate that the quadtree approach does not
preclude real-time performance for this dataset.

4.2 Comparison with SLAM approaches

To validate the results acquired in the simulator on data that suffers from real-
world odometric errors and sensor noise we use some dataset published on Radish
6 from [24]. The results in Fig. 5 serve to illustrate the general applicability
of the presented approach. For this purpose we employed Q-WSM on several
publicly available robotics datasets, some of which are also often referred in
SLAM research. During the workshop also the comparison to other datasets can
be made, such as the CMU Newell Simon Hall, Intel Lab Oregon or AP Hill
dataset.

The ’Edmonton Convention Center’ concerns quite a large area with lots of
open spaces and ’Stanford Gates’ is a huge dataset where the robot traverses sev-
eral hundreds of meters. For comparison, the maps generated with CARMEN7

are given. The ”MIT CSAIL building” was used as example by [23] to illustrate
how difficult SLAM could be. The map was generated by an Extended Kalman
Filter, including two manual corrections. Especially note the amount of detail
that is preserved by the Q-WSM algorithm for these datasets, like table legs
and other small obstacles. Those small obstacles are not visible on the original
maps, due to the bigger gridsize. Still, the claim is not made that SLAM is out-
performed. For instance in the ’Stanford Gates’ map it is clear that loop closing

6 Available on http://radish.sourceforge.net
7 http://carmen.sourceforge.net/



Fig. 4. Detailed comparison of the performance of the quadtree-based and incremental
WSM algorithm for a drive through a park. The figure gives the residual correlation
distance, Q-WSM in front of incremental WSM. The x-axis represents the time line
defined by the 800 scans that comprised this dataset and the y-axis plots for each
scan the average correlation distance (mm) that remains after applying the estimated
displacement.

could help to get rid of the offset of 20 centimeters visible in the corridor at the
right. The comparison with these SLAM approaches is made, to demonstrate
how far one can come without SLAM and how easy it would be for a SLAM
algorithm to make the final corrections with this initial match. Last but not
least, this map is generated on the fly and directly available to an operator of
for instance a rescue mission. It is clear that the maps are of enough quality to
be used for navigation.

5 Discussion

It is clear that while driving around the number of points stored in the quadtree
grows. The depth of the tree is limited by setting a minimal cell size, but this
minimal cell size is rather small (1 millimeter), well below the accuracy of the
laser scanner. When the number of points in the quadtree grows, searching for
nearest neighbors stays efficient, a well known characteristic of quadtrees. Yet,
another well known characteristic of quadtrees is that the construction time in-
creases when the tree grows in size. Fortunately searching is performed more
often than registration of scan points on the map. No significant performance
drop was experienced on the datasets of Radish, with map sizes of several hun-
dred meters.

6 Conclusion

This paper presents an improvement of the weighted scan matcher which targets
the correspondence error by providing a denser and more complete frame of



(a) Edmonton Convention
Center - courtesy from Roy

(b) Stanford Gates - courtesy
from Gerkey

(c) MIT CSAIL building
- courtesy from Roy [23]

(d) Edmonton Convention
Center - Q-WSM

(e) Stanford Gates - Q-WSM (f) MIT CSAIL
building - Q-WSM

Fig. 5. Three real measured datasets from Radish. Here we present results that are
acquired just by running the scan matcher Q-WSM as an iterative process, without
any global optimization at the end of the process.

reference for matching new scans. This is realized by storing all relevant scans
observed in the past in a quadtree, which enables the weighted scan matcher to
preserve real-time performance.

In our experiments we showed that our approach can reduce the residual
correspondence error and lead to increased robustness and accuracy. In several
tests on real-robot data the applicability of our approach was illustrated. This
paper demonstrates a different approach to robotic mapping under real-time
constraints.
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