
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Laboratory-based grain-shape models for simulating dust infrared spectra

Mutschke, H.; Min, M.; Tamanai, A.
DOI
10.1051/0004-6361/200912267
Publication date
2009
Document Version
Final published version
Published in
Astronomy & Astrophysics

Link to publication

Citation for published version (APA):
Mutschke, H., Min, M., & Tamanai, A. (2009). Laboratory-based grain-shape models for
simulating dust infrared spectra. Astronomy & Astrophysics, 504(3), 875-882.
https://doi.org/10.1051/0004-6361/200912267

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1051/0004-6361/200912267
https://dare.uva.nl/personal/pure/en/publications/laboratorybased-grainshape-models-for-simulating-dust-infrared-spectra(bf8067c6-ff2f-4a08-bef0-9b8c2c710794).html
https://doi.org/10.1051/0004-6361/200912267


A&A 504, 875–882 (2009)
DOI: 10.1051/0004-6361/200912267
c© ESO 2009

Astronomy
&

Astrophysics

Laboratory-based grain-shape models for simulating
dust infrared spectra

H. Mutschke1, M. Min2, and A. Tamanai1

1 Astrophysikalisches Institut und Universitäts-Sternwarte (AIU), Schillergäßchen 2-3, 07745 Jena, Germany
e-mail: mutschke@astro.uni-jena.de

2 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Received 3 April 2009 / Accepted 16 June 2009

ABSTRACT

Context. Analysis of thermal dust emission spectra for dust mineralogy and physical grain properties depends on comparison spectra,
which are either laboratory-measured infrared extinction spectra or calculated extinction cross sections based on certain grain models.
Often, the agreement between these two kinds of spectra, if available, is not yet satisfactory because of the strong influence of the
grain morphology on the spectra.
Aims. We investigate the ability of the statistical light-scattering model with a distribution of form factors (DFF) to reproduce
measured infrared dust extinction spectra for particles that are small compared to the wavelength, i.e. in the size range of 1 μm and
smaller.
Methods. We take advantage of new experimental spectra measured for free particles dispersed in air with accompanying information
on the grain morphology. For the calculations, we used DFFs that were derived for aggregates of spherical grains, as well as for
compact grain shapes corresponding to Gaussian random spheres. In addition we used a fitting algorithm to obtain the best-fit DFFs
for the various laboratory samples. In this way we can independently derive information on the shape of the grains from their infrared
spectra.
Results. With the DFF model, we achieve an adequate fit of the experimental IR spectra. The differences in the IR band profiles
between the spectra of particulates with different grain shapes are simply reflected by different DFFs. Irregular particle shapes require
a DFF similar to that of a Gaussian Random Sphere with σ = 0.3, whereas roundish grain shapes are best fitted with that of a fractal
aggregate of Df = 2.4–1.8. The fitted DFFs generally reproduce the measured spectral shapes quite well. For anisotropic materials,
different DFFs are needed for the different crystallographic axes. The implications of this finding are discussed.
Conclusions. The use of this model could be a step forward toward more realistic comparison data in infrared spectral analysis of
thermal dust emission spectra, provided that these spectra are dominated by emission from submicron grains.

Key words. infrared: general – methods: data analysis – methods: laboratory – circumstellar matter
– planetary systems: protoplanetary disks

1. Introduction

The analysis of mid-infrared dust emission spectra from stellar
outflows, circumstellar disks, and other objects provides infor-
mation about the dust mineralogy, grain sizes, and temperatures,
hence, about physical and chemical conditions in the respective
environments. The information about the dust grain properties is
based on the lattice vibrational bands of the dust particles that
mainly occur in the 10–50 μm wavelength range and that dom-
inate the thermal emission of warm dust. Detailed analyses of,
e.g., Spitzer IRS, and ground-based mid-infrared spectra includ-
ing interferometric data (VLTI/MIDI) have been published in the
last years for dust emission from accretion disks (e.g. van Boekel
et al. 2004), debris disks (e.g. Lisse et al. 2007), and comets (e.g.
Lisse et al. 2006).

The analyses are often performed by applying χ2 fits of a lin-
ear combination of either calculated or measured spectra of dust
grains to the observed spectra. Both approaches have recently
been improved by developing (1) new theoretical models (Min
et al. 2005, 2006) for calculating dust spectra and (2) a new ex-
perimental method for measuring spectra of particles dispersed
in air (Tamanai et al. 2006a,b), which avoids the influence of an
embedding material on experimental infrared extinction spectra.

These spectroscopic measurements of dust particles in
aerosol also allow the investigation of the actual morphology of
the aerosol particles by filtering and subsequent scanning elec-
tron microscope (SEM) imaging. Thus, the influence of morpho-
logical particle characteristics on the dust spectra can be studied
in detail. Tamanai et al. (2006b) and Tamanai et al. (2009b) have
reported a strong dependence of the measured profiles of the in-
frared bands on grain shape and agglomeration. Although the
influence of the grain morphology on dust vibrational bands has
been known for many years (Bohren & Huffman 1983), these
effects have not been systematically studied in experiments be-
fore.

Furthermore, Tamanai et al. (2006b) demonstrated that the
band profiles predicted by the currently used models often dif-
fer considerably from the experimentally measured ones. The
reason is that most of these models such as Mie theory, CDE
(Bohren & Huffman 1983), and DHS (Min et al. 2005) are not
flexible enough to take morphological effects sufficiently into
account. Since this is important for interpretating astronomical
spectra, we aim at (a) a clarification of typical properties of mea-
sured infrared band profiles depending primarily on the grain
shape, and (b) the investigation of the ability of an alternative
theoretical model to take the shape effects into account.
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For this purpose, we compare a selection of aerosol-
measured spectra of oxides and silicates for two different classes
of grain morphologies with calculated spectra using the theo-
retical approach of a form factor distribution (Min et al. 2006).
Both the experiments used here and the theory are restricted to
particles small compared to the wavelength. For infrared wave-
lengths, this means a restriction to particles in the size range of
approximately 1 μm and smaller. Consequently, the applicabil-
ity of our results will be limited to interpreting emission (or ab-
sorption) spectra from cosmic environments where such grains
are present. If larger grains provide a strong contribution to the
emission cross section, the spectrum will be influenced by grain
size effects that cannot be treated by the present approach. This
is especially the case when growth or radiation effects have re-
moved submicron grains, such as in evolved protoplanetary disks
and debris disks around luminous stars.

The theoretical model and the particulate materials are intro-
duced in the next two sections, before we compare the experi-
mental and the simulated spectra in Sect. 4. Section 5 summa-
rizes the results.

2. DFF model for spectra simulation

The distribution of form factors model (DFF model, Min et al.
2006) is a statistical approach valid for ensembles of particles
that are small compared to the wavelength (Rayleigh limit). It
describes the averaged extinction (absorption, emission) cross
section 〈Cext〉 per unit volume of such a particulate by the in-
tegral over a continuous distribution of dipole polarizabilities
depending on the dielectric function of the particulate material
relative to its environment ε = εp/εe and a depolarization fac-
tor or form factor L, which is defined in the range 0 ≤ L ≤ 1
(Eq. (1)). P(L) is the distribution of form factors over this range,
which contains the information on the geometrical properties of
the particles.

〈Cext〉
V
=

2π
λ

∫ 1

0

P(L)
1/(ε − 1) + L

dL (1)

Min et al. (2006) have demonstrated that a distribution P(L)
(hereafter called the DFF) can be calculated for each particle
shape, which gives a correct representation of the extinction
cross section of that particle, provided that a spatial discretiza-
tion with sufficient accuracy is possible. For a distribution of
shapes, the individual DFFs have to be averaged.

Another nice property of the DFF approach, which allows
very intuitive understanding of the simulated spectra, is that ma-
jor contributions to the integral occur when

ε ∼ 1 − 1/L (2)

(so-called surface modes, see Bohren & Huffman 1983). This is
indeed the case in strong lattice vibration bands, where the real
part of ε takes a range of negative values (depending on wave-
length), while the imaginary part is comparably small. Thus, re-
lation (2) links the DFF directly to the extinction at correspond-
ing spectral positions; e.g., for spherical grains (P(L) = δ(L =
1/3)), the extinction cross section spectrum will show a single
resonance at the wavelength where ε = −2. Assuming a simple
Lorentzian behavior of the dielectric function, the DFF at low
L values is related to the strength of absorption at wavelengths
longward of the sphere resonance (Re(ε) < −2), whereas the
DFF at larger L is related to absorption at shorter wavelengths
(lower negative Re(ε) values). We illustrate this in Fig. 2, and

for a more precise treatment in the complex ε plane see Min
et al. (2006).

The often used continuous distribution of ellipsoids model
(CDE, Bohren & Huffman 1983) can be considered a special
case of the DFF model with P(L) = 2(1 − L). Min et al. (2006)
have calculated DFFs resulting from certain particle shapes for
the cases of (a) aggregates of spherical grains with different frac-
tal dimensions Df and of (b) particles in the form of Gaussian
random spheres (GRS, Muinonen et al. 1996) with different stan-
dard deviations σ of the surface modulation. We may note here
that GRS grain shapes are used in scattering models for large
grains as well (e.g. Volten et al. 2001). However, this is an en-
tirely different (ray optics) approach, where the size distribution
is also reflected by the (often extreme) GRS shape. In contrast, in
our small-particle-limit approach the GRS model describes only
the grain shape.

The DFFs and illustrations of the particle morphologies are
shown in Fig. 1. In both cases, the DFFs broaden strongly with
variation of the respective parameter, i.e. when going from com-
pact to fluffy (low-dimension) aggregates and from sphere-like
to extremely structured GRS.

However, the details are different in the two series. While the
“main peak” of the DFF shifts to higher L with decreasing Df in
the case of the spherical grain aggregates, the opposite is the case
for the GRS with increasing σ. For the extreme cases, namely
the aggregate with Df = 1.2 and the GRS with σ = 0.7, these
main peaks are located at L = 0.6 and L = 0.05, respectively.
Consequently, we can expect the two types of DFFs to produce
band profiles peaking on opposite sides of the sphere resonance
position (Re(ε) ∼ −2). Figure 2 demonstrates this for less ex-
treme geometries, i.e. an aggregate with Df = 2.4 and a GRS
with σ = 0.3. The short-wavelength peak of the aggregate parti-
cle spectrum (Re(ε) ∼ −1.5) corresponds to L ∼ 0.4, whereas
the peak of the GRS spectrum (Re(ε) ∼ −6) corresponds to
L ∼ 0.15. According to the DFF, it was expected to occur at
L ∼ 0.1. The difference probably stems from the influence of
Im(ε), which increases towards longer wavelengths.

For the aggregates of spherical grains, there is actually an-
other peak in the DFF, which becomes stronger and stronger with
lowering Df , namely at L = 0. This component of the DFF pro-
duces a long-wavelength shoulder in the band profile in addition
to the short-wavelength peak (see Fig. 2). The L = 0 compo-
nent indicates two- or one-dimensional elongated, i.e. plate- or
needle-like, structures. Agglomerates of spheres with point-like
contacts are in principle not expected to produce such a compo-
nent. Its presence is a consequence of the limited resolution of
the discretization, which does not allow between point-like con-
tacts and extended contact areas characteristic of e.g. coalesced
particle aggregates to be distinguished (cf. Andersen et al. 2006).
This is a direct effect of the method used to compute the DFFs
(based on the discrete dipole approximation). However, coales-
cence of particles is often observed in real particulates, and its
presence in the model distributions is not at all a shortcoming for
their application, as we show.

In this paper, we make use of these DFFs by comparing
simulated infrared extinction spectra for such synthetic parti-
cle shapes with the measured spectra of real particulates with
known (different) shapes. We consider particulates composed of
spinel, corundum, and forsterite (see next section), for which the
wavelength-dependent optical constants εp(λ) are known from
the literature. We use data by Fabian et al. (2001a) for synthetic
stoichiometric spinel, Querry et al. (1985) for corundum, and
Sogawa et al. (2006) for forsterite. For the last two, the cross
sections obtained for the individual crystal axes are averaged.
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Fig. 1. Synthetic particle shapes and DFFs used in the modeling for aggregates of spherical grains with different fractal dimensions Df (left) and
Gaussian Random Spheres with different standard deviations σ (right).
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Fig. 2. Extinction spectra of fractal aggregates with Df = 2.4 (solid
black line) and Gaussian random spheres with σ = 0.3 (dashed line)
calculated for a Lorentzian oscillator type dielectric function. Re(ε) is
also shown (gray line). The vertical lines indicate the wavelength range
where Re(ε) = 1 − 1/L can be fulfilled and the position of the sphere
resonance (Re(ε) = −2).

For the environment, the dielectric constant εe is unity in the
simulation of aerosol spectra, 2.31 in cases when the particles
are embedded into KBr matrices, and 3.03 for the case of em-
bedding into a CsI matrix.

3. Experimental spectra

The experimental setup for the measurement of infrared extinc-
tion spectra of dust particles dispersed in air (aerosol measure-
ments) was described by Tamanai et al. (2006a,b, 2009a,b). For

comparison with the simulations based on the DFF model, we
have selected two samples of each of the three minerals spinel
(MgAl2O4), corundum (Al2O3), and forsterite (Mg2SiO4), from
these papers. The sample properties are listed in Table 1.

The two samples of each material have significantly dif-
ferent grain shapes. In general, one of the particulates can be
characterized by a roundish shape or at least by having round
edges, which is often the case for particles that have been con-
densed from the gas or liquid phase in a relatively fast process,
whereas the other particulate is characterized by an irregular
grain shape with sharp edges, which is typical of particulates
produced by crushing larger pieces of material, but may also re-
sult from slow crystal growth. The spectra of the two classes of
particulates differ significantly, as discussed by Tamanai et al.
(2006b, 2009b). Correspondence with astronomically observed
infrared dust emission bands has been found to be better in some
cases for the roundish shapes, especially for the oxides in AGB
star outflows (Tamanai et al. 2009b; see also Posch et al. 1999;
and Fabian et al. 2001a), but in other cases better for the irreg-
ular shapes, especially for forsterite (Tamanai et al. 2006b; see
also Molster et al. 2002; Fabian et al. 2001b). Particle shapes and
spectra are shown in Fig. 3.

4. Results

4.1. Simulated spectra vs. measured aerosol spectra

Figure 4 shows the comparison of the simulated spectra for
spinel, corundum, and forsterite particles with the measured
spectra. The left column compares the spectra calculated for the
aggregates of spheres to the measured spectra of the roundish
particulates. The simulated band profiles consist in most cases
of peaks at short wavelengths and shoulders at longer wave-
lengths (compare Fig. 2). The latter strengthen with lowering
fractal dimension of the aggregate, as do the L ∼ 0 components
in the DFFs. The “primary” peak at shorter wavelengths, which

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=2
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Table 1. Properties of the samples.

Material Chemical formula Product info Processing Grain size Grain shape Reference
Spinel MgAl2O4 Aldrich <0.1 μm round T09b, CSp2

Alfa Aesar Sedimentation < 1 μm irregular T09b, CSP1
Corundum Al2O3 Alfa Aesar <0.3 μm ellipsoidal T09b, CAC1

GC Jena Sedimentation <2 μm irregular T09b, CAC2
Forsterite Mg2SiO4 Marusu <0.3 μm ellipsoidal T06b, CF2

Alfa Aesar Sedimentation <1 μm irregular T06b, CF1

Fig. 3. Aerosol infrared extinction spectra and SEM micrographs of the spinel (left), corundum (middle), and forsterite (right column) particulates.
The solid lines are the spectra of the particulates with roundish shapes, which are shown in the images in the second row. The dashed lines
correspond to the spectra of the sharp-edged grains (images in bottom row). The dark round filter holes in the image background are about 0.5 μm
in diameter except for the image of the roundish spinel sample (upper left micrograph), where they are 0.1 μm in diameter. The numbers indicate
SEM magnification.

weakens only between Df = 2.8 and 2.4, remains present while
shifting to shorter wavelengths. This often leads to a “rectangu-
lar” band profile for low fractal dimensions, such as at Df ≤ 1.8,
which actually reproduces the measured spectrum of the corun-
dum sample well. The comparison with the other simulated spec-
tra demonstrates clearly that in the case of these particles a
strong long-wavelength band component is definitely required to
fit the measured profiles at about 17 μm and 22.5 μm. The find-
ing that a fractal dimension of Df = 1.8 provides the best match
corresponds nicely to the observed agglomeration state of the
corundum powder, which is mainly chain-like (see Fig. 3). For
the other samples of roundish grain shapes, the long-wavelength
component is weaker but also present. For both the spinel and
the forsterite samples, the Df = 2.4 spectrum fits quite well to
the peaks in the measured spectra.

In the case of spinel, the region in between the two bands and
longward of 20 μm shows an enhanced extinction that is not re-
produced by any of the calculations. We interpret this feature as
being caused by extinction from clumps of particles. Apparently,
due to the small size of the individual grains, the clumps ap-
pear compact enough to act partially similar to large grains.
According to Mie calculations, grains of about 5 μm size already
provide sufficient extinction (absorption and scattering) at these
wavelengths.

Moreover, we note that a few bands, such as the forsterite
10 μm and 27.5 μm and the corundum 20 μm bands, are not
satisfactorily reproduced by the same models as the majority of
the bands. This is discussed in Sect. 4.2.

The right column compares the spectra of the irregular par-
ticulates with the simulations for the GRS of different surface

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=3
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Fig. 4. Comparison of measured (solid lines) and simulated extinction spectra for the roundish (left column) and irregular (right) particle shapes.
DFF models used in the simulations are given in the legends. The forsterite spectra have been divided into two wavelength ranges.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=4
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crystal axes (dashed line) and allowing two DFFs, i.e. a separate DFF
for the contribution of the vibrational modes along the crystallographic
x-axis (solid line). The DFFs obtained by the two-DFF fitting are plot-
ted in Fig. 6. For comparison, the simulation using the GRS model with
σ = 0.3 is also shown (dotted line).

modulation. As expected, the band profiles in these simulated
spectra are dominated by peaks that shift continuously to larger
wavelengths with an increasing standard deviation parameter.
A shoulder remains at the short-wavelength edge of the pro-
files. The comparison with the measured spectra reveals excel-
lent agreement for the σ = 0.3 simulation in the cases of spinel
and corundum (again apart from the λ = 20 μm band). For the
forsterite, σ = 0.3 is still the best-fitting calculated spectrum,
even if it seems that a little lower σ may have given a better
match. This is especially true for the 10 μm band, which we dis-
cuss separately in Sect. 4.2.

4.2. Fitting of DFFs and the problem of anisotropy

An alternative way to compare theory and measurement is to fit
DFFs to the measured spectra, hoping for a better reproduction
of the measurements and aiming at the comparison of the ob-
tained DFFs. We have developed an automatic fitting procedure
that is able to handle anisotropic materials, i.e. contributions of
up to three dielectric functions (in the case of forsterite, two for
corundum) and even with the option of using different DFFs for
each of these. In Sect. 4.3, we show the result of this fitting for
the irregular spinel. The fitting worked without problems for this
isotropic material.

In the previous section, we noted that a few bands in the
spectra of the anisotropic materials show poor reproduction
by the models, such as the 10 μm band of forsterite and the
20 μm band of corundum. For reproducing them, a DFF peaking
strongly between L = 0.2 and 0.25 (close to that of GRS 0.1)
would work best, but it would not reproduce the other bands.
These bands belong to vibrational modes along certain crys-
tal axes, so introducing different DFFs for different crystal axes
could solve these problems.

In general, deviations in the DFFs along different crystal axes
are not an unlikely option, because the grains could be primarily
elongated along certain crystal axes. Such grain shapes can be
produced both by growth and shattering processes. Allowing for
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Fig. 6. Comparison of the fitted DFFs for irregular forsterite particles
and irregular spinel particles (dashed line) with the GRS model with
σ = 0.3 (dash-dotted), which provides an excellent fit for the spectrum
of the irregular corundum particles.

different DFFs for the different crystal axes lead to a satisfactory
reproduction of the problematic bands both for forsterite and for
corundum. Figure 5 shows as an example the fits for the irregu-
larly shaped forsterite with (a) only one DFF for all axes and (b)
a separate DFF for the contributions of the vibrations along the
crystallographic x-axis. The better match in the 10 μm band is
clearly visible.

However, the DFFs for the different axes needed to be very
different. The DFF required by the problematic bands were al-
ways similar, with a narrow peak in the L = 0.2–0.3 range. This
changed only slightly for roundish grains, even if the main DFF
peaked then on much higher L values. In Fig. 6, the two fitted
DFFs are shown for the irregular forsterite particles (see Fig. 5),
where the difference is still quite moderate. The GRS model with
σ = 0.3, however, represents the case well for the y and z-axis
DFF for the irregular corundum particles. Here, the difference
from the x-axis DFF is very strong. Especially for the roundish
grains, such extreme differences between the crystal axes and
the nondependence on the grain-shape seemed unlikely. In some
bands, we noted that the poor fit introduced by the additional
DFF had to be compensated for by the other components.

This pointed to a different reason for the mismatch in some
bands, which turned out to be an incorrectness in the model,
namely in the treatment of the anisotropy of the materials. The
simple averaging of the absorption cross sections calculated for
the crystallographic axes is correct for spheres that are small
compared to the wavelengths and for ellipsoids, if the ellipsoid
principal axes are associated with the crystal axes. When assum-
ing complicated shapes, such as the GRS or aggregates, however,
it is clear that this condition is not maintained. Here, the influ-
ence of the polarization along one axis on the excitation along
other axes has to be considered.

This can be demonstrated by means of the discrete dipole
approximation (DDA) model. The DDA allows one to take the
full tensor nature of the refractive index into account. We will
demonstrate the effects of this in a separate paper (Min et al., in
prep).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912267&pdf_id=6
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(dotted lines) and Df = 2.4 (dashed lines).

4.3. Reproduction of KBr and CsI spectra

An interesting question is whether the DFF models can predict
the influence of embedding media on the spectra of particulates.
Tamanai et al. (2006b, 2009b) demonstrated the strong influence
of potassium bromide and cesium iodide matrices used in the
conventional pellet technique onto IR band profiles of embedded
particulates. Within the DFF model, the embedding medium is
taken into account simply via the relative dielectric constant ε =
εp/εe.

Figures 7 and 8 show simulated spectra for spinel using iden-
tical DFFs and different dielectric constants of the embedding
medium (εe = 1 for aerosol, 2.31 for KBr, and 3.03 for CsI)
compared to corresponding measured spectra. For the irregularly
shaped particles (Fig. 7), the DFF for GRS with σ = 0.3 and a
fitted DFF were used. The comparison shows that the former,
which reproduces the aerosol measurements satisfactorily, gives
a still quite imprecise representation of the measured spectra for
embedded particles. However, this does not mean that the model
fails to treat the influence of the embedding, because some ad-
justment of the DFF (see Fig. 6) leads to a nearly perfect fit of
all the spectra measured in different matrices.

Unfortunately, this is not the case for the roundish parti-
cles (Fig. 7, see especially the 18 μm band). Here, the embed-
ded particles are best matched by a DFF strongly dominated by
the spherical character of the single grains or characterized by
very compact aggregation, whereas for the aerosol spectra we
had to use a DFF calculated for a lower fractal dimension of
the aggregates. If this indeed reflects different morphologies of
the spinel particles in aerosol and in embedded states, it could
possibly indicate a compaction of the aggregates by the pellet
pressing, or, since we have already noted that these spectra are
also influenced by size effects, an aggregate size reduction by
the thorough mixing with the matrix powder. The size of the ag-
gregates of course could always be influenced by the preparation
technique. Unfortunately, an inspection of the morphology of the
embedded aggregates is not possible and a treatment of size ef-
fects is beyond the capabilities of this theory. For the other sam-
ples, which have larger grains and therefore show less clumping,
we have not observed similar effects.
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Fig. 8. Same as Fig. 7 for irregular spinel particles. The DFF models
used here are the Gaussian random spheres with σ = 0.3 (dashed lines)
and a fitted DFF (see Fig. 6).

5. Conclusions

By comparison with experimental spectra, we have demon-
strated the usefulness of the DFF approach for simulating the
infrared extinction spectra of submicron-sized particulates com-
posed of oxide and silicate minerals. Predefined DFFs with cer-
tain characteristics can be used to achieve a satisfactory predic-
tion for the shape dependence of the measured infrared band
profiles. Good agreement between experimental and calculated
band profiles was achieved by using

1. DFFs calculated for Gaussian random spheres with a surface
modulation of σ ∼ 0.3 in the case of particulates with irreg-
ular grain shapes. The main characteristics of these DFFs is
a strong and relatively sharp peak at L ∼ 0.1.

2. DFFs calculated for aggregates of spheres with a fractal di-
mension Df = 2.4 or Df = 1.8 in the case of particulates with
roundish grain shapes. These DFFs peak at L = 0.33−0.45
and also have a component at very low L values, which is
required to fit the experimental band profiles and seems to
be correlated with the agglomeration state in the particulate.

Our results suggest that DFF models, such as the ones for GRS
with σ ∼ 0.3 and fractal aggregates with Df = 2.4 or Df = 1.8,
would reflect morphological properties of real particles signifi-
cantly better than CDE or DHS models, so would be useful in
the simulation of cosmic-dust spectra. This could lead to better
predictions of infrared band profiles or at least to a valid estimate
of possible band variations. A necessary condition is that grain
sizes that are small compared to the wavelength can be assumed
to dominate the spectrum.

We recognized that the averaging of spectra obtained by the
DFF model for the individual crystallographic orientations of an
anisotropic material is incorrect and leads in some cases to sig-
nificantly wrong band profiles. This is a problem of all com-
parable theories and can only be overcome by exact simulations,
such as a full DDA treatment, which however lacks the statistical
approach and is difficult to implement in comprehensive astro-
nomical spectroscopic simulations. Therefore, currently a safer
way may be to rely on aerosol-measured spectra.
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