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ABSTRACT

This review describes the occurrence of hypoglycemia in young children as a common 

and serious complication that needs to be avoided because of the high risk of brain 

damage and mortality. Young age, fasting and severe infectious disease are considered 

important risk factors. The limited data on the effect of these risk factors on glucose 

metabolism in children are discussed and compared to data on glucose metabolism in 

adults. The observations discussed may have implications for further research on glucose 

kinetics in young  children with infectious disease. 
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INTRODUCTION

Glucose is one of the major fuels to meet the energy requirements of the human body. 

In the healthy individual the amount of glucose produced is regulated to the need of the 

body and more in particular to the need of its major user, the brain. Although the brain 

can also utilize lactate, ketone bodies and certain amino acids, its primary fuel is glucose 

(1). During fasting more than 90% of its energy is provided by glucose, making the brain 

highly vulnerable to alterations in the plasma glucose level (2). The child’s developing 

brain is more susceptible to hypoglycemia compared to the adult brain (3-7). Recurrent 

hypoglycemia may result in permanent neurological damage (4-6). It is therefore 

imperative to prevent the occurrence of hypoglycemia in children. 

In the fasted state the plasma glucose level is maintained within narrow limits by a 

delicate balance between endogenous glucose production (EGP) and glucose utilization. 

The metabolic adaptation of glucose metabolism during fasting differs between children 

and adults (8). The traditional concept is that children have a limited tolerance of fasting 

since glycogen stores are less and therefore they are able to maintain a normal plasma 

glucose level for a fasting period of 12 hours only (9,10). 

Starvation is an uncommon event in a healthy child’s life. However, many infectious 

diseases are characterized by starvation due to disease-induced anorexia as well as by 

cultural customs and traditional habits in disease (11-13). Hypoglycemia is a frequent 

but poor-explored feature of severe infectious diseases in children. This review gives an 

update of the available data on the effect of age and duration of fasting on glucose 

kinetics. Also differences between adults and children will be addressed to emphasize 

that data from studies with adult patients cannot be extrapolated to children. 

DEFINITION OF HYPOGLYCEMIA

The plasma glucose concentration is the resultant of a tightly regulated balance 

between EGP and glucose utilization. A disturbance in this balance will lead to hyper- or 

hypoglycemia. Hypoglycemia in children remains one of the most controversial issues 

with regard to its definition, the mechanism of adverse effect on the brain, and the 

practical approach to monitoring, management and treatment (3,14). The definition of 

hypoglycemia can be based on clinical manifestations, on the range of glucose values 

measured in epidemiological studies, on metabolic and endocrine counterregulatory 

responses or on long-term neurological outcome, but none has been entirely satisfactory 

(15). Hypoglycemia in neonates is often defined as a plasma glucose concentration 

below 2.5 mmol/L (45 mg/dL) (16), while in older children the threshold of 3.0 mmol/L 

is often used (17), and in healthy adults 3.9 mmol/L (18), based on the initiation of the 

counterregulatory response (19). Most studies in infants and children up to 10 years of 
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age performed in tropical settings (16,20-26) use the WHO definition of hypoglycemia 

based on clinical  and epidemiological data: < 2.2 mmol/L or 40 mg/dL (27). 

THE INFLUENCE OF AGE AND FASTING ON GLUCOSE 
METABOLISM IN HEALTHY HUMANS

Hypoglycemia 

Age is a risk factor for hypoglycemia. Studies in both healthy (9) and sick children 

(20,21,25,26,28) suggest a relationship between age and plasma glucose concentration. 

In healthy children fasting plasma glucose concentration increases progressively with age. 

In a study of 28 healthy children, aged 2 to 17 years, plasma glucose concentrations of 

below 2.7 mmol/l after a 24 hour fast were found only in younger children, while values 

of all children older than 10 years were in the normal adult range (9). Hypoglycemia is 

known to be particularly common in the very young children below the age of 3 years 

(25,27,28). 

Fasting is considered a major risk factor for hypoglycemia in children. Healthy adults are 

able to maintain normal plasma glucose levels up to 86 hours of fasting (29). There are 

gender-related differences in the metabolic response to fasting in adults: plasma glucose 

concentrations are lower in women than in men after a 38 hour fast (30). During a 

fasting period of only 24 hours healthy pre-pubertal children show a significant steeper 

decrease in plasma glucose concentration than adults, and they are not able to maintain 

a plasma glucose concentration  > 3.0 mmol/l (8,31,32). Indeed several studies suggest 

that fasting is a major factor in the occurrence of hypoglycemia in children and in adults 

since an association between the occurrence of hypoglycemia and the time since the last 

meal has been found (20,21,25,26,28,33-35). These studies indicate that young children 

probably have a higher risk for developing hypoglycemia when fasting compared to older 

children and adults.

This conclusion is supported by studies on lipolysis and ketogenesis. During fasting lipolysis 

increases, thereby providing the body with alternative fuel and delaying the occurrence 

of hypoglycemia. This is reflected by elevation of plasma concentrations of free fatty 

acids and ketone bodies, e.g. ß-hydroxybutyrate and acetoacetate. After 30 hours of 

fasting plasma concentrations of ketone bodies reach levels in children that are seen in 

women only after a 3 day fast and that are never seen in men (8,31). This indicates that 

glycogen stores in children are depleted more rapidly than in adults and thereby their risk 

of developing hypoglycemia is increased. 

In conclusion, young children are more at risk for developing hypoglycemia than older 

individuals especially in response to fasting.
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Glucose production and utilization

Plasma glucose is derived from exogenous supply, e.g. enteral or parenteral nutrition, 

or from endogenous production. Glucose is produced mainly (~90%) in the liver by 

gluconeogenesis and glycogenolysis and to a smaller extent (~10%) in the kidney by 

gluconeogenesis only (36). Glucose can be oxidized and thereby used for energy supply 

in various tissues, it can be stored as glycogen in the liver and muscle, or stored as 

triglycerides in adipocytes (figure 1). 

During fasting, plasma glucose is dependent on glucose production which consists of 

glycogenolysis, the breakdown of glycogen, and gluconeogenesis, the production of 

Figure 1. Glucose production and utilization
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glucose from lactate, glycerol or several amino acids. Most studies on glucose kinetics in 

adults are performed after different periods of fasting, up to 86 hours. After an overnight 

fast EGP in healthy adults is approximately 11 µmol/kg•min (30,37). Prolongation of the 

fasting period from 16 to 22 hours results in a decline in EGP by ~20% (38) and is further 

reduced to one-third after 86 hours (10). 

In healthy humans EGP decreases from infancy towards adulthood (32,39-64) (table 1). 

This decrease is related to the ratio of brain weight to body weight. The weight of the 

human brain increases 3.5-fold from birth (400 g) to adulthood (1400 g) whereas body 

weight increases more than 20-fold (31) which means a 6-fold decrease in the ratio of 

brain weight to body weight. Since the brain is a major user of glucose (65), young 

children meet up to these cerebral demands by producing relatively more glucose in 

relation to their body weight (17). This relationship of EGP to brain weight is found to be 

linear throughout life (32).
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Studies on EGP in young healthy children can only be carried out during a restricted 

fasting period for ethical and safety reasons. The first published data are on 35 children 

aged between 1 month and 14 years after a 8-9 hour fast: mean EGP was 38 ± 1.4 µmol/

kg•min in the 1 month to 6 years old and 29 ± 1.5 µmol/kg•min in the 6 to 14 years old 

children (32). Haymond et al. reported glucose production rates of 5 healthy children 

aged 4-8 years which declined from 35 to 23 µmol/kg•min after 14 and 30 hours of 

fasting respectively (56). 

In conclusion, EGP is approximately 10-11 µmol/kg•min in adults after an overnight 

fast and decreases to minimally 4 µmol/kg•min depending on the duration of the fast. 

No prolonged fasting studies are performed in children or neonates for obvious ethical 

reasons. EGP ranges from 23-38 µmol/kg•min following short term fasting studies in 

infants and children. Age dependency of glucose production is the cause of this wide 

range.

Gluconeogenesis 

Gluconeogenesis is the process in which glucose molecules are newly formed from 

lactate, glycerol or gluconeogenic amino acids, especially alanine and glutamine. In the 

postabsorptive state the estimated contribution of the gluconeogenic precursors to total 

glucose production is approximately 15% for lactate (66-70) and 2-4% for glycerol (71) 

which may increase to 22% after prolonged fasting due to accelerated lipolysis (72). 

Alanine accounts for 6-12% of glucose production in the postabsorptive state (73-75) 

and glutamine, the predominant substrate of gluconeogenesis in the kidney, contributes 

5-8% (76-78). 

Quantifying the contribution of gluconeogenesis to total glucose production is possible 

with techniques using stable isotopes (79). Using the deuterated-water method, the 

contribution of gluconeogenesis to total glucose production in healthy adults has been 

estimated at 47% after 14 hours, 67% after 22 hours and 92% after 42 hours of fasting 

(80). The absolute rate of gluconeogenesis is more or less constant, indicating that the 

decrease in EGP is solely due to a decrease in glycogenolysis. In healthy lean and obese 

pre-pubertal children and adolescents gluconeogenesis contributes 50-60% to EGP after 

an overnight fast, comparable with healthy adults (57,59,60). 

Table 1. Endogenous glucose production in healthy humans in relation to age

endogenous glucose 
production (µmol/kg•min)

reference no.

preterm infants 6-41 39-49

term infants 8-33 40,41,50-55

1 month to 6 year old children 28-40 32,56

8 to 13 year old children 18-26 57-60

adults 10-13 38,61-64

C H A P T E R   2

26



During the first 86 hours of fasting EGP is not dependent on precursor supply in healthy 

adults, unless precursor supply drops more than 50%, a value in general not reached 

during this period (10). Studies measuring gluconeogenesis in non-fasted premature 

infants show that the availability of gluconeogenic substrates is not impaired (81). 

In conclusion, during short term fasting the contribution of gluconeogenesis to EGP 

increases and is comparable in adults and older children. Since absolute gluconeogenesis 

is constant, the decline in EGP is merely caused by decreased glycogenolysis. 

Glycogenolysis and glycogen content 

Glycogen is a glucose polymer which is stored mainly in the liver and muscle. The kidney 

does not store glycogen (82-84). Glycogenolysis or glycogen breakdown is the process 

of debranching glucose polymers to glucose. The liver is the major contributor to plasma 

glucose derived by glycogenolysis since myocytes lack glucose-6-phosphatase which 

dephosphorylates glucose-6-phosphate, an obligatory conversion enabling glucose to 

leave the cell and enter the blood (85). The glucose formed by breakdown of glycogen in 

muscle tissue is used as fuel supply for the myocyte itself. 

Quantification of glycogen stores can be done by liver biopsy (86) but its use in humans 

for research purposes is limited for practical and ethical reasons. In vivo measurement 

of liver glycogen content by using 13C- nuclear magnetic resonance spectroscopy (NMR) 

is an alternative method (87). Data on the NMR technique in young children are scarce, 

partially because of its practical limitations since especially the younger children need to 

be sedated or narcotized. Furthermore, measurements using the NMR technique require 

equipment that is available in only a few centres in the world (79).  The available data are 

mainly confined to non-fasted young children with disorders of carbohydrate metabolism 

(88-90). 
A study in pre-pubertal children with type 1 diabetes mellitus reports that their ability to 

replenish glycogen stores after an overnight fast was as good as in healthy controls (91). 

Direct measurements with 13C NMR in adults show that liver glycogen stores decrease 

concomitantly with the decrease in glycogenolysis (87,92). These data indicate that 

glycogenolysis and liver glycogen content are correlated during fasting (93). As mentioned 

earlier, in healthy adults, EGP decreases with ~20% between 16 and 22 hours of fasting, 

which could not be contributed to a decrease in gluconeogenesis (94,95). The decline is 

explained by a decrease in glycogenolysis, as was shown in healthy adults using the 13C 

NMR technique: glycogenolysis accounts for 45 % of total glucose production during the 

first 6-12 hours of fasting (92), for 30% after 23 hours (96) and for 4% after 68 hours of 

fasting (87). A limitation of the NMR method is that it may underestimate the contribution 

of glycogenolysis to glucose production, since hepatic gluconeogenic flux into glycogen 

and glycogen turnover persist during fasting. Thus the contribution of glycogenolysis to 

glucose production is greater than the measured net glycogen loss (97). 

Since the liver biopsy and NMR technique cannot readily be used in children, data on 

liver glycogen and glycogenolysis in children have to be derived from indirect sources. 
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A non-invasive approach to test the ability to release glucose from glycogen stores in 

young children is to measure the increase in EGP and plasma glucose concentration after 

a bolus glucagon, a method that is often used in clinical practice (98-101). In adults the 

response of EGP to a glucagon bolus is considered an indicator of glycogen content. 

The response of plasma glucose concentration to a glucagon bolus has been measured 

in healthy children aged 2-6 years after a 24 hour fast and showed that an increase in 

plasma glucose concentration of at least 50% in 30 min after the glucagon bolus is 

considered normal (102). However, these results have to be interpreted with caution 

because a subnormal response of plasma glucose concentration to glucagon is not always 

indicative of impaired glycogenolysis. Since a change in the plasma glucose concentration 

is not necessarily a good parameter for a change in EGP, more insight in glucose kinetics 

must be obtained by combining the glucagon test with stable isotope studies (103). This 

technique was used to measure EGP in response to glucagon in (preterm) infants (104-

107) and in adults (97,108-110) showing a 4.5 fold and 9-fold increase in EGP respectively. 

In children merely case reports have been published on this subject (111,112).

In conclusion, measurements of glycogenolysis and glycogen stores in adults indicate that 

glycogenolysis and liver glycogen content are correlated during fasting. The decline in 

EGP during fasting is explained by a decrease in glycogenolysis ranging from 45 to 4% 

depending on the duration of the fast. The use of techniques to quantify glycogen stores in 

young children is limited and can best be done by combining the glucagon test with stable 

isotope studies: however, definitive data in children supporting this conclusion are scarce. 

GLUCOSE METABOLISM IN MALARIA AND OTHER 
INFECTIOUS DISEASES

Hypoglycemia in infectious diseases

In children with infectious diseases such as severe falciparum malaria, hypoglycemia is 

a common and serious complication (113-116). Hypoglycemia occurs more frequently 

in children (up to 34%) (20,26,27,114,116) than in adults (8%) with malaria (117). 

Hypoglycemia is an important feature in children with malaria, because it predicts 

mortality (118,119). The mortality rate increases four- to six-fold in children with malaria 

complicated with hypoglycemia (20,118,119): 20-30% of the children admitted with 

malaria and suffering from hypoglycemia do not survive (120) compared to a mortality 

rate of 3.8% in normoglycemic children (20). Thus hypoglycemia is considered to be one 

of the major outcome predictors in children with severe malaria. 

The pathogenesis of hypoglycemia in malaria is still incompletely understood although 

several possible mechanisms have been identified. Increased glucose consumption by 

the malaria parasites is considered to be a contributing factor. Parasitized erythrocytes 

consume up to 30-75 times the quantity of glucose that non-infected cells require (121). 

C H A P T E R   2
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Its contribution to total human glucose need however is thought to be relatively modest, 

since the glucose demand of the severely ill patient is far greater than that of the parasites: 

glucose clearance rates increase 40-70% in severe malaria (122-124)  and only 20% in 

non-severe malaria (35,125). Another well-known contributing factor is hyperinsulinemic 

hypoglycemia as a complication of quinine and quinidine in malaria treatment since 

quinine stimulates insulin release in vivo (126,127). 

Hypoglycemia does not only occur in children with malaria but is also seen in children 

with other infectious diseases, such as pneumonia and diarrhea, both in tropical 

(20,21,24,25,28,113,115) and in western countries (128,129). In a Kenyan study 

hypoglycemia occurred frequently in children with malaria (8.4%), but also in pneumonia 

(3.9%) and diarrhea (5.5%) (20). In Tanzanian children the frequency of hypoglycemia was 

similar in malaria (5.2%) and in other serious infectious illnesses (11.2%) (21), as was the 

case in Nigerian children where hypoglycemia occurred in 6.4% of children with malaria, 

septicaemia and pneumonia (28). The mortality rate of children with other infectious 

diseases is similar to that of children with malaria (table 2). Therefore hypoglycemia 

may not be a disease-specific symptom but may be regarded as a serious metabolic 

complication in acute severe infections in young children (20,21,25,28,115,130-132). 

In conclusion, hypoglycemia is a common and serious complication in young children 

with malaria and other infectious diseases and markedly increases mortality  rates.

Glucose production and uptake in infectious disease

Hyperglycemia is a common finding in sepsis and other acute infections (133), caused by 

an imbalance between alterations in glucose tissue uptake and glucose production (134-

137). In septic adult patients EGP is doubled compared to healthy subjects (138,139). 

However, the increase in EGP does not invariably lead to hyperglycemia. Plasma glucose 

concentrations are sometimes within the normal range despite increased glucose 

production rates in patients with sepsis (140) and in adults with falciparum malaria 

(124,125). Infection with Plasmodium falciparum results in an increase in EGP in adult 

patients with both non-severe and severe falciparum malaria (33,123,125,141). In adults 

with non-severe malaria EGP increases by 20% and plasma glucose concentrations are 

higher (but in the normoglycemic range) compared to healthy controls (125,141). In 

adults with severe malaria and adults with cerebral malaria EGP is doubled and plasma 

glucose concentration is approximately 40% higher than in healthy controls (124,123). 

In pregnant women, infection with Plasmodium falciparum results in a 35% higher EGP 

after an overnight fast but the plasma glucose concentration is comparable with healthy 

pregnant controls (33). 

These findings indicate that peripheral glucose uptake is sometimes increased in adult 

patients with certain infectious diseases. This may be the result of increased tissue 

insulin sensitivity. Under healthy conditions, insulin inhibits hepatic glucose production by 

decreasing both gluconeogenesis and glycogenolysis and stimulates peripheral glucose 

uptake (142-144). In most critically ill adult patients with sepsis and other acute infections, 
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glucose metabolism is disturbed, resulting in hyperglycemia and insulin resistance rather 

than hypoglycemia (133,137,144-146). Insulin resistance is defined as the relative inability 

of insulin to increase glucose uptake and utilization end/or to suppress glucose production 

(147) and typically presents with hyperglycemia despite “normal” or increased insulin 

levels (148), although during infections seemingly low insulin levels have been reported 

(149). During illness, these alterations in glucose metabolism may differ in children 

compared to adults (150). For instance, in children with meningococcal sepsis and shock, 

hyperglycemia and inadequate low insulin levels were found which is compatible with 

an insufficient insulin response (151,152), whereas in children with meningococcal sepsis 

without shock  insulin resistance was found (151). This is in contrast with adults in whom 

normal or high insulin levels were found under those circumstances (153,154). It is not 

clear whether children and adults can reduce insulin production as an adaptive response 

to severe disease or whether this is a direct effect of a specific critical illness (153). 

Data on glucose kinetics in children with acute infectious diseases are scarce. There are 

four studies that report on glucose production rates in children, all with malaria. Glucose 

production rate in Ghanaian children with severe malaria aged 11 months to 10 years after 

a 9 hour fast was 56 µmol/kg•min (155), 2 to 5 times higher than in fasted adults with 

severe malaria (123,124) and approximately twice the production in fasted children with 

non-severe malaria (156). The other three studies (156-158) report on Kenyan children 

with uncomplicated malaria and measured glucose production rates of 27 to 30 µmol/

kg•min in children 2-10 years after 14-23 hours of fasting. Compared to healthy children 

these values are in the normal range for age (table 1).

Although data are limited and contradictory, glucose metabolism in children with malaria 

seems to be regulated differently than in adults. Severity of infection may be of influence 

on EGP although a possible correlation between EGP and glucose concentration was not 

investigated in the children with severe malaria (155). In children with uncomplicated 

malaria a correlation between EGP and glucose concentration was found (157), 

indicating that hypoglycemia may be caused by limited glucose production capacity. This 

Table 2. Mortality in hypo- and normoglycemic children with infectious diseases 

reference (no.) hypoglycaemic % normoglycemic %

Solomon et al. 1994 (25) 16.3 3.2 RR 5.8

Marsh et al. 1995 (118) 21.7 4.6 RR 3.6

English et al. 1998 (26) 28 7 p =0.003

Schellenberg et al. 1999 (119) 12.4 3.0 OR 6.7

Osier et al. 2003 (20) 20.2 3.8 p <0.001

Dzeing-Ella et al. 2005 (22) 25 8.9 OR 4.0

Elusiyan et al. 2006 (28) 28.6 4.2 p <0.01

Huq et al. 2007 (115) 28 14 OR 2.4

RR= relative risk; OR = odds ratio; 
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is in contrast with adults in whom peripheral uptake is more important (124,125). In 

adults with malaria peripheral glucose demands may increase considerably because of 

accelerated tissue metabolism (122,123), although there also is evidence of tissue insulin 

resistance in both uncomplicated and severe malaria (124). 

In conclusion, the limited data in children with malaria suggest that EGP is an important 

determinant of plasma glucose concentration, indicating that hypoglycaemia may occur 

as a result of impaired EGP. This is in contrast with adults in whom EGP is often increased 

during severe illness with glucose concentrations in the normoglycemic range suggesting 

that peripheral uptake of glucose is facilitated.  

Gluconeogenesis in infectious disease

Only one study measured endogenous glucose production and gluconeogenesis in children 

under five years of age with an infectious disease: in Kenyan children aged 2 to 6.5 years 

with non-severe malaria fractional gluconeogenesis was 73% after 8 hours of fasting (156). 

In comparison: gluconeogenesis contributed for ~87% of glucose production in Vietnamese 

adults with uncomplicated malaria after a seven hour fast (125) and for ~75% in pregnant 

women with uncomplicated falciparum malaria after a 24 hour fast (33). In adults with 

cerebral malaria EGP was completely (100%) derived from gluconeogenesis after a 20 

hour fast (123). These findings indicate that in adults with malaria the contribution of 

gluconeogenesis to glucose production increases with severity of disease (159) and makes 

impaired gluconeogenesis as a cause of hypoglycemia in adults with malaria unlikely. Studies 

measuring gluconeogenesis in children 2-7 years of age with uncomplicated malaria after a 

15 hour fast (156) show that the availability of gluconeogenic substrates is not impaired in 

contrast to what was previously thought (160).

In conclusion, the only study in young children on gluconeogenesis in malaria reports 

a 73% contribution of gluconeogenesis to EGP after a short term fast. In adults with 

malaria this contribution varies from 75-100%.

Glycogenolysis in infectious disease

One single study reports on the response of plasma glucose concentration to a bolus 

glucagon in children with a chronic infection: normoglycemic well-nourished pre-pubertal 

HIV-infected children had a low response of plasma glucose concentration to glucagon 

(4%) in comparison to age-matched healthy controls (91%) after a 15 hour fast, but 

stable isotopes were not used in this study (161). 

Despite the lack of direct measurements, the susceptibility to hypoglycemia in children 

with malaria is often ascribed to impaired glycogenolysis as a result of diminished glycogen 

stores (21). This hypothesis seems to be supported by a study in adults with malaria 

who showed a subnormal response of plasma glucose concentration to glucagon (117). 

However, this is contradicted by a study in adults with uncomplicated malaria who were 

fasted for 22 hours. In these patients the decrease in the rate of decline of glycogenolysis 

was slower than in healthy controls, despite a much lower rate of glycogenolysis in the 
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malaria patients, indicating that the regulation of glycogenolysis in malaria is not dictated 

by glycogen content, but is driven by the necessity to maintain euglycemia (162). This 

means that impaired glycogenolysis is unlikely to be a causative factor in the occurrence 

of hypoglycemia in malaria in adults. It also suggests that malaria itself does not cause 

glycogen depletion which is supported by the finding that hepatic glycogen is often still 

present in hypoglycemic adult malaria patients (117). 

The mechanism by which hypoglycemia in children with malaria occurs remains uncertain. 

The limited available data suggest that in children glucose production is an important 

determinant of plasma glucose concentration. Although glucose production measured 

in children with malaria is not impaired during relatively short durations of fasting (up to 

23 hours), longer periods of fasting may result in declining glucose production thereby 

increasing the risk of hypoglycaemia.  Since gluconeogenesis does not seem to be 

impaired in malaria the decline in glucose production in children may indeed be caused 

by decreased glycogenolysis due to diminishing liver glycogen content. This, and whether 

glycogen content is influenced by different infectious diseases during fasting, remains to 

be investigated. 

In conclusion, the cause of hypoglycemia in young children with malaria remains 

uncertain. Impaired EGP as a result of decreased glycogenolysis due to diminished liver 

glycogen stores is presumed the reason, but studies in children are lacking.

SUMMARY

Hypoglycemia in children is a common and serious condition that needs to be prevented 

because of the high risk of brain damage and mortality. Young age, prolonged fasting 

and severe infectious disease are well-recognized risk factors for the occurrence of 

hypoglycemia in children. Young children are more at risk for developing hypoglycemia 

than older children and adults, especially in response to fasting. EGP decreases from 

infancy towards adulthood and this decrease is related to the ratio of brain weight to 

body weight. The contribution of gluconeogenesis to EGP increases during short term 

fasting and is comparable in adults and older children whereas absolute gluconeogenesis 

is constant indicating that the decline in EGP is caused by decreased glycogenolysis. 

Estimation of glycogen stores in young children can be done by combining measurements 

of the response of EGP to a bolus glucagon with stable isotope studies however, data in 

children are scarce. 

Young children with infectious diseases, who develop hypoglycemia, have a 4- to 6-fold 

risk of dying. This increased risk is recognized in several epidemiological studies in 

children with various infectious diseases, of which malaria, pneumonia and diarrhea are 

particularly common. Several assumptions are made in these studies as to the underlying 

cause of hypoglycemia, e.g. impaired gluconeogenesis as a result of limited precursor 
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supply or enhanced glycogenolysis resulting in rapid depletion of glycogen stores. 

However, very few studies with direct measurements of glucose kinetics in children are 

performed in order to support or refute these assumptions. The limited data in children 

with malaria suggest that EGP is a determinant of glucose concentration indicating that 

hypoglycaemia may occur as a result of impaired EGP. This is in contrast with adults 

since in adults with malaria EGP is increased but plasma glucose concentrations may 

be in the normoglycemic range indicating that peripheral glucose uptake is facilitated. 

Studies in adults show that EGP increases in malaria and that gluconeogenesis is the 

main contributor to total EGP, making it unlikely that hypoglycemia in malaria is caused 

by impairment of gluconeogenesis. Such conclusion cannot readily be made for children, 

since only one study reports on gluconeogenesis in young children with malaria. 

Whether hypoglycemia in young children with malaria is caused by impaired EGP as a 

result of decreased glycogenolysis due to diminished liver glycogen stores remains to be 

investigated.

To understand and thereby being able to anticipate on the occurrence of hypoglycemia 

in young children, further research on glucose kinetics in these children is mandatory. 

In particular, studies in adults cannot be extrapolated to children, because glucose 

metabolism during fasting and severe infections seems to be differently regulated between 

adults and children. These studies should focus on young children under five years of age 

with infectious diseases during a period of prolonged fasting. Special reference should be 

given to measurements of glycogenolysis and liver glycogen content.
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